blob: 62490424b6aed44698c376560550af353073b72b [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2022 Analog Devices, Inc.
* Author: Cosmin Tanislav <cosmin.tanislav@analog.com>
*/
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/gpio/driver.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/spi/spi.h>
#include <linux/units.h>
#include <asm/div64.h>
#include <asm/unaligned.h>
#include <linux/iio/buffer.h>
#include <linux/iio/iio.h>
#include <linux/iio/kfifo_buf.h>
#include <linux/iio/sysfs.h>
#define AD4130_NAME "ad4130"
#define AD4130_COMMS_READ_MASK BIT(6)
#define AD4130_STATUS_REG 0x00
#define AD4130_ADC_CONTROL_REG 0x01
#define AD4130_ADC_CONTROL_BIPOLAR_MASK BIT(14)
#define AD4130_ADC_CONTROL_INT_REF_VAL_MASK BIT(13)
#define AD4130_INT_REF_2_5V 2500000
#define AD4130_INT_REF_1_25V 1250000
#define AD4130_ADC_CONTROL_CSB_EN_MASK BIT(9)
#define AD4130_ADC_CONTROL_INT_REF_EN_MASK BIT(8)
#define AD4130_ADC_CONTROL_MODE_MASK GENMASK(5, 2)
#define AD4130_ADC_CONTROL_MCLK_SEL_MASK GENMASK(1, 0)
#define AD4130_MCLK_FREQ_76_8KHZ 76800
#define AD4130_MCLK_FREQ_153_6KHZ 153600
#define AD4130_DATA_REG 0x02
#define AD4130_IO_CONTROL_REG 0x03
#define AD4130_IO_CONTROL_INT_PIN_SEL_MASK GENMASK(9, 8)
#define AD4130_IO_CONTROL_GPIO_DATA_MASK GENMASK(7, 4)
#define AD4130_IO_CONTROL_GPIO_CTRL_MASK GENMASK(3, 0)
#define AD4130_VBIAS_REG 0x04
#define AD4130_ID_REG 0x05
#define AD4130_ERROR_REG 0x06
#define AD4130_ERROR_EN_REG 0x07
#define AD4130_MCLK_COUNT_REG 0x08
#define AD4130_CHANNEL_X_REG(x) (0x09 + (x))
#define AD4130_CHANNEL_EN_MASK BIT(23)
#define AD4130_CHANNEL_SETUP_MASK GENMASK(22, 20)
#define AD4130_CHANNEL_AINP_MASK GENMASK(17, 13)
#define AD4130_CHANNEL_AINM_MASK GENMASK(12, 8)
#define AD4130_CHANNEL_IOUT1_MASK GENMASK(7, 4)
#define AD4130_CHANNEL_IOUT2_MASK GENMASK(3, 0)
#define AD4130_CONFIG_X_REG(x) (0x19 + (x))
#define AD4130_CONFIG_IOUT1_VAL_MASK GENMASK(15, 13)
#define AD4130_CONFIG_IOUT2_VAL_MASK GENMASK(12, 10)
#define AD4130_CONFIG_BURNOUT_MASK GENMASK(9, 8)
#define AD4130_CONFIG_REF_BUFP_MASK BIT(7)
#define AD4130_CONFIG_REF_BUFM_MASK BIT(6)
#define AD4130_CONFIG_REF_SEL_MASK GENMASK(5, 4)
#define AD4130_CONFIG_PGA_MASK GENMASK(3, 1)
#define AD4130_FILTER_X_REG(x) (0x21 + (x))
#define AD4130_FILTER_MODE_MASK GENMASK(15, 12)
#define AD4130_FILTER_SELECT_MASK GENMASK(10, 0)
#define AD4130_FILTER_SELECT_MIN 1
#define AD4130_OFFSET_X_REG(x) (0x29 + (x))
#define AD4130_GAIN_X_REG(x) (0x31 + (x))
#define AD4130_MISC_REG 0x39
#define AD4130_FIFO_CONTROL_REG 0x3a
#define AD4130_FIFO_CONTROL_HEADER_MASK BIT(18)
#define AD4130_FIFO_CONTROL_MODE_MASK GENMASK(17, 16)
#define AD4130_FIFO_CONTROL_WM_INT_EN_MASK BIT(9)
#define AD4130_FIFO_CONTROL_WM_MASK GENMASK(7, 0)
#define AD4130_WATERMARK_256 0
#define AD4130_FIFO_STATUS_REG 0x3b
#define AD4130_FIFO_THRESHOLD_REG 0x3c
#define AD4130_FIFO_DATA_REG 0x3d
#define AD4130_FIFO_SIZE 256
#define AD4130_FIFO_MAX_SAMPLE_SIZE 3
#define AD4130_MAX_ANALOG_PINS 16
#define AD4130_MAX_CHANNELS 16
#define AD4130_MAX_DIFF_INPUTS 30
#define AD4130_MAX_GPIOS 4
#define AD4130_MAX_ODR 2400
#define AD4130_MAX_PGA 8
#define AD4130_MAX_SETUPS 8
#define AD4130_AIN2_P1 0x2
#define AD4130_AIN3_P2 0x3
#define AD4130_RESET_BUF_SIZE 8
#define AD4130_RESET_SLEEP_US (160 * MICRO / AD4130_MCLK_FREQ_76_8KHZ)
#define AD4130_INVALID_SLOT -1
static const unsigned int ad4130_reg_size[] = {
[AD4130_STATUS_REG] = 1,
[AD4130_ADC_CONTROL_REG] = 2,
[AD4130_DATA_REG] = 3,
[AD4130_IO_CONTROL_REG] = 2,
[AD4130_VBIAS_REG] = 2,
[AD4130_ID_REG] = 1,
[AD4130_ERROR_REG] = 2,
[AD4130_ERROR_EN_REG] = 2,
[AD4130_MCLK_COUNT_REG] = 1,
[AD4130_CHANNEL_X_REG(0) ... AD4130_CHANNEL_X_REG(AD4130_MAX_CHANNELS - 1)] = 3,
[AD4130_CONFIG_X_REG(0) ... AD4130_CONFIG_X_REG(AD4130_MAX_SETUPS - 1)] = 2,
[AD4130_FILTER_X_REG(0) ... AD4130_FILTER_X_REG(AD4130_MAX_SETUPS - 1)] = 3,
[AD4130_OFFSET_X_REG(0) ... AD4130_OFFSET_X_REG(AD4130_MAX_SETUPS - 1)] = 3,
[AD4130_GAIN_X_REG(0) ... AD4130_GAIN_X_REG(AD4130_MAX_SETUPS - 1)] = 3,
[AD4130_MISC_REG] = 2,
[AD4130_FIFO_CONTROL_REG] = 3,
[AD4130_FIFO_STATUS_REG] = 1,
[AD4130_FIFO_THRESHOLD_REG] = 3,
[AD4130_FIFO_DATA_REG] = 3,
};
enum ad4130_int_ref_val {
AD4130_INT_REF_VAL_2_5V,
AD4130_INT_REF_VAL_1_25V,
};
enum ad4130_mclk_sel {
AD4130_MCLK_76_8KHZ,
AD4130_MCLK_76_8KHZ_OUT,
AD4130_MCLK_76_8KHZ_EXT,
AD4130_MCLK_153_6KHZ_EXT,
};
enum ad4130_int_pin_sel {
AD4130_INT_PIN_INT,
AD4130_INT_PIN_CLK,
AD4130_INT_PIN_P2,
AD4130_INT_PIN_DOUT,
};
enum ad4130_iout {
AD4130_IOUT_OFF,
AD4130_IOUT_10000NA,
AD4130_IOUT_20000NA,
AD4130_IOUT_50000NA,
AD4130_IOUT_100000NA,
AD4130_IOUT_150000NA,
AD4130_IOUT_200000NA,
AD4130_IOUT_100NA,
AD4130_IOUT_MAX
};
enum ad4130_burnout {
AD4130_BURNOUT_OFF,
AD4130_BURNOUT_500NA,
AD4130_BURNOUT_2000NA,
AD4130_BURNOUT_4000NA,
AD4130_BURNOUT_MAX
};
enum ad4130_ref_sel {
AD4130_REF_REFIN1,
AD4130_REF_REFIN2,
AD4130_REF_REFOUT_AVSS,
AD4130_REF_AVDD_AVSS,
AD4130_REF_SEL_MAX
};
enum ad4130_fifo_mode {
AD4130_FIFO_MODE_DISABLED = 0b00,
AD4130_FIFO_MODE_WM = 0b01,
};
enum ad4130_mode {
AD4130_MODE_CONTINUOUS = 0b0000,
AD4130_MODE_IDLE = 0b0100,
};
enum ad4130_filter_mode {
AD4130_FILTER_SINC4,
AD4130_FILTER_SINC4_SINC1,
AD4130_FILTER_SINC3,
AD4130_FILTER_SINC3_REJ60,
AD4130_FILTER_SINC3_SINC1,
AD4130_FILTER_SINC3_PF1,
AD4130_FILTER_SINC3_PF2,
AD4130_FILTER_SINC3_PF3,
AD4130_FILTER_SINC3_PF4,
};
enum ad4130_pin_function {
AD4130_PIN_FN_NONE,
AD4130_PIN_FN_SPECIAL = BIT(0),
AD4130_PIN_FN_DIFF = BIT(1),
AD4130_PIN_FN_EXCITATION = BIT(2),
AD4130_PIN_FN_VBIAS = BIT(3),
};
struct ad4130_setup_info {
unsigned int iout0_val;
unsigned int iout1_val;
unsigned int burnout;
unsigned int pga;
unsigned int fs;
u32 ref_sel;
enum ad4130_filter_mode filter_mode;
bool ref_bufp;
bool ref_bufm;
};
struct ad4130_slot_info {
struct ad4130_setup_info setup;
unsigned int enabled_channels;
unsigned int channels;
};
struct ad4130_chan_info {
struct ad4130_setup_info setup;
u32 iout0;
u32 iout1;
int slot;
bool enabled;
bool initialized;
};
struct ad4130_filter_config {
enum ad4130_filter_mode filter_mode;
unsigned int odr_div;
unsigned int fs_max;
enum iio_available_type samp_freq_avail_type;
int samp_freq_avail_len;
int samp_freq_avail[3][2];
};
struct ad4130_state {
struct regmap *regmap;
struct spi_device *spi;
struct clk *mclk;
struct regulator_bulk_data regulators[4];
u32 irq_trigger;
u32 inv_irq_trigger;
/*
* Synchronize access to members the of driver state, and ensure
* atomicity of consecutive regmap operations.
*/
struct mutex lock;
struct completion completion;
struct iio_chan_spec chans[AD4130_MAX_CHANNELS];
struct ad4130_chan_info chans_info[AD4130_MAX_CHANNELS];
struct ad4130_slot_info slots_info[AD4130_MAX_SETUPS];
enum ad4130_pin_function pins_fn[AD4130_MAX_ANALOG_PINS];
u32 vbias_pins[AD4130_MAX_ANALOG_PINS];
u32 num_vbias_pins;
int scale_tbls[AD4130_REF_SEL_MAX][AD4130_MAX_PGA][2];
struct gpio_chip gc;
struct clk_hw int_clk_hw;
u32 int_pin_sel;
u32 int_ref_uv;
u32 mclk_sel;
bool int_ref_en;
bool bipolar;
unsigned int num_enabled_channels;
unsigned int effective_watermark;
unsigned int watermark;
struct spi_message fifo_msg;
struct spi_transfer fifo_xfer[2];
/*
* DMA (thus cache coherency maintenance) requires any transfer
* buffers to live in their own cache lines. As the use of these
* buffers is synchronous, all of the buffers used for DMA in this
* driver may share a cache line.
*/
u8 reset_buf[AD4130_RESET_BUF_SIZE] __aligned(IIO_DMA_MINALIGN);
u8 reg_write_tx_buf[4];
u8 reg_read_tx_buf[1];
u8 reg_read_rx_buf[3];
u8 fifo_tx_buf[2];
u8 fifo_rx_buf[AD4130_FIFO_SIZE *
AD4130_FIFO_MAX_SAMPLE_SIZE];
};
static const char * const ad4130_int_pin_names[] = {
[AD4130_INT_PIN_INT] = "int",
[AD4130_INT_PIN_CLK] = "clk",
[AD4130_INT_PIN_P2] = "p2",
[AD4130_INT_PIN_DOUT] = "dout",
};
static const unsigned int ad4130_iout_current_na_tbl[AD4130_IOUT_MAX] = {
[AD4130_IOUT_OFF] = 0,
[AD4130_IOUT_100NA] = 100,
[AD4130_IOUT_10000NA] = 10000,
[AD4130_IOUT_20000NA] = 20000,
[AD4130_IOUT_50000NA] = 50000,
[AD4130_IOUT_100000NA] = 100000,
[AD4130_IOUT_150000NA] = 150000,
[AD4130_IOUT_200000NA] = 200000,
};
static const unsigned int ad4130_burnout_current_na_tbl[AD4130_BURNOUT_MAX] = {
[AD4130_BURNOUT_OFF] = 0,
[AD4130_BURNOUT_500NA] = 500,
[AD4130_BURNOUT_2000NA] = 2000,
[AD4130_BURNOUT_4000NA] = 4000,
};
#define AD4130_VARIABLE_ODR_CONFIG(_filter_mode, _odr_div, _fs_max) \
{ \
.filter_mode = (_filter_mode), \
.odr_div = (_odr_div), \
.fs_max = (_fs_max), \
.samp_freq_avail_type = IIO_AVAIL_RANGE, \
.samp_freq_avail = { \
{ AD4130_MAX_ODR, (_odr_div) * (_fs_max) }, \
{ AD4130_MAX_ODR, (_odr_div) * (_fs_max) }, \
{ AD4130_MAX_ODR, (_odr_div) }, \
}, \
}
#define AD4130_FIXED_ODR_CONFIG(_filter_mode, _odr_div) \
{ \
.filter_mode = (_filter_mode), \
.odr_div = (_odr_div), \
.fs_max = AD4130_FILTER_SELECT_MIN, \
.samp_freq_avail_type = IIO_AVAIL_LIST, \
.samp_freq_avail_len = 1, \
.samp_freq_avail = { \
{ AD4130_MAX_ODR, (_odr_div) }, \
}, \
}
static const struct ad4130_filter_config ad4130_filter_configs[] = {
AD4130_VARIABLE_ODR_CONFIG(AD4130_FILTER_SINC4, 1, 10),
AD4130_VARIABLE_ODR_CONFIG(AD4130_FILTER_SINC4_SINC1, 11, 10),
AD4130_VARIABLE_ODR_CONFIG(AD4130_FILTER_SINC3, 1, 2047),
AD4130_VARIABLE_ODR_CONFIG(AD4130_FILTER_SINC3_REJ60, 1, 2047),
AD4130_VARIABLE_ODR_CONFIG(AD4130_FILTER_SINC3_SINC1, 10, 2047),
AD4130_FIXED_ODR_CONFIG(AD4130_FILTER_SINC3_PF1, 92),
AD4130_FIXED_ODR_CONFIG(AD4130_FILTER_SINC3_PF2, 100),
AD4130_FIXED_ODR_CONFIG(AD4130_FILTER_SINC3_PF3, 124),
AD4130_FIXED_ODR_CONFIG(AD4130_FILTER_SINC3_PF4, 148),
};
static const char * const ad4130_filter_modes_str[] = {
[AD4130_FILTER_SINC4] = "sinc4",
[AD4130_FILTER_SINC4_SINC1] = "sinc4+sinc1",
[AD4130_FILTER_SINC3] = "sinc3",
[AD4130_FILTER_SINC3_REJ60] = "sinc3+rej60",
[AD4130_FILTER_SINC3_SINC1] = "sinc3+sinc1",
[AD4130_FILTER_SINC3_PF1] = "sinc3+pf1",
[AD4130_FILTER_SINC3_PF2] = "sinc3+pf2",
[AD4130_FILTER_SINC3_PF3] = "sinc3+pf3",
[AD4130_FILTER_SINC3_PF4] = "sinc3+pf4",
};
static int ad4130_get_reg_size(struct ad4130_state *st, unsigned int reg,
unsigned int *size)
{
if (reg >= ARRAY_SIZE(ad4130_reg_size))
return -EINVAL;
*size = ad4130_reg_size[reg];
return 0;
}
static unsigned int ad4130_data_reg_size(struct ad4130_state *st)
{
unsigned int data_reg_size;
int ret;
ret = ad4130_get_reg_size(st, AD4130_DATA_REG, &data_reg_size);
if (ret)
return 0;
return data_reg_size;
}
static unsigned int ad4130_resolution(struct ad4130_state *st)
{
return ad4130_data_reg_size(st) * BITS_PER_BYTE;
}
static int ad4130_reg_write(void *context, unsigned int reg, unsigned int val)
{
struct ad4130_state *st = context;
unsigned int size;
int ret;
ret = ad4130_get_reg_size(st, reg, &size);
if (ret)
return ret;
st->reg_write_tx_buf[0] = reg;
switch (size) {
case 3:
put_unaligned_be24(val, &st->reg_write_tx_buf[1]);
break;
case 2:
put_unaligned_be16(val, &st->reg_write_tx_buf[1]);
break;
case 1:
st->reg_write_tx_buf[1] = val;
break;
default:
return -EINVAL;
}
return spi_write(st->spi, st->reg_write_tx_buf, size + 1);
}
static int ad4130_reg_read(void *context, unsigned int reg, unsigned int *val)
{
struct ad4130_state *st = context;
struct spi_transfer t[] = {
{
.tx_buf = st->reg_read_tx_buf,
.len = sizeof(st->reg_read_tx_buf),
},
{
.rx_buf = st->reg_read_rx_buf,
},
};
unsigned int size;
int ret;
ret = ad4130_get_reg_size(st, reg, &size);
if (ret)
return ret;
st->reg_read_tx_buf[0] = AD4130_COMMS_READ_MASK | reg;
t[1].len = size;
ret = spi_sync_transfer(st->spi, t, ARRAY_SIZE(t));
if (ret)
return ret;
switch (size) {
case 3:
*val = get_unaligned_be24(st->reg_read_rx_buf);
break;
case 2:
*val = get_unaligned_be16(st->reg_read_rx_buf);
break;
case 1:
*val = st->reg_read_rx_buf[0];
break;
default:
return -EINVAL;
}
return 0;
}
static const struct regmap_config ad4130_regmap_config = {
.reg_read = ad4130_reg_read,
.reg_write = ad4130_reg_write,
};
static int ad4130_gpio_init_valid_mask(struct gpio_chip *gc,
unsigned long *valid_mask,
unsigned int ngpios)
{
struct ad4130_state *st = gpiochip_get_data(gc);
unsigned int i;
/*
* Output-only GPIO functionality is available on pins AIN2 through
* AIN5. If these pins are used for anything else, do not expose them.
*/
for (i = 0; i < ngpios; i++) {
unsigned int pin = i + AD4130_AIN2_P1;
bool valid = st->pins_fn[pin] == AD4130_PIN_FN_NONE;
__assign_bit(i, valid_mask, valid);
}
return 0;
}
static int ad4130_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
{
return GPIO_LINE_DIRECTION_OUT;
}
static void ad4130_gpio_set(struct gpio_chip *gc, unsigned int offset,
int value)
{
struct ad4130_state *st = gpiochip_get_data(gc);
unsigned int mask = FIELD_PREP(AD4130_IO_CONTROL_GPIO_DATA_MASK,
BIT(offset));
regmap_update_bits(st->regmap, AD4130_IO_CONTROL_REG, mask,
value ? mask : 0);
}
static int ad4130_set_mode(struct ad4130_state *st, enum ad4130_mode mode)
{
return regmap_update_bits(st->regmap, AD4130_ADC_CONTROL_REG,
AD4130_ADC_CONTROL_MODE_MASK,
FIELD_PREP(AD4130_ADC_CONTROL_MODE_MASK, mode));
}
static int ad4130_set_watermark_interrupt_en(struct ad4130_state *st, bool en)
{
return regmap_update_bits(st->regmap, AD4130_FIFO_CONTROL_REG,
AD4130_FIFO_CONTROL_WM_INT_EN_MASK,
FIELD_PREP(AD4130_FIFO_CONTROL_WM_INT_EN_MASK, en));
}
static unsigned int ad4130_watermark_reg_val(unsigned int val)
{
if (val == AD4130_FIFO_SIZE)
val = AD4130_WATERMARK_256;
return val;
}
static int ad4130_set_fifo_mode(struct ad4130_state *st,
enum ad4130_fifo_mode mode)
{
return regmap_update_bits(st->regmap, AD4130_FIFO_CONTROL_REG,
AD4130_FIFO_CONTROL_MODE_MASK,
FIELD_PREP(AD4130_FIFO_CONTROL_MODE_MASK, mode));
}
static void ad4130_push_fifo_data(struct iio_dev *indio_dev)
{
struct ad4130_state *st = iio_priv(indio_dev);
unsigned int data_reg_size = ad4130_data_reg_size(st);
unsigned int transfer_len = st->effective_watermark * data_reg_size;
unsigned int set_size = st->num_enabled_channels * data_reg_size;
unsigned int i;
int ret;
st->fifo_tx_buf[1] = ad4130_watermark_reg_val(st->effective_watermark);
st->fifo_xfer[1].len = transfer_len;
ret = spi_sync(st->spi, &st->fifo_msg);
if (ret)
return;
for (i = 0; i < transfer_len; i += set_size)
iio_push_to_buffers(indio_dev, &st->fifo_rx_buf[i]);
}
static irqreturn_t ad4130_irq_handler(int irq, void *private)
{
struct iio_dev *indio_dev = private;
struct ad4130_state *st = iio_priv(indio_dev);
if (iio_buffer_enabled(indio_dev))
ad4130_push_fifo_data(indio_dev);
else
complete(&st->completion);
return IRQ_HANDLED;
}
static int ad4130_find_slot(struct ad4130_state *st,
struct ad4130_setup_info *target_setup_info,
unsigned int *slot, bool *overwrite)
{
unsigned int i;
*slot = AD4130_INVALID_SLOT;
*overwrite = false;
for (i = 0; i < AD4130_MAX_SETUPS; i++) {
struct ad4130_slot_info *slot_info = &st->slots_info[i];
/* Immediately accept a matching setup info. */
if (!memcmp(target_setup_info, &slot_info->setup,
sizeof(*target_setup_info))) {
*slot = i;
return 0;
}
/* Ignore all setups which are used by enabled channels. */
if (slot_info->enabled_channels)
continue;
/* Find the least used slot. */
if (*slot == AD4130_INVALID_SLOT ||
slot_info->channels < st->slots_info[*slot].channels)
*slot = i;
}
if (*slot == AD4130_INVALID_SLOT)
return -EINVAL;
*overwrite = true;
return 0;
}
static void ad4130_unlink_channel(struct ad4130_state *st, unsigned int channel)
{
struct ad4130_chan_info *chan_info = &st->chans_info[channel];
struct ad4130_slot_info *slot_info = &st->slots_info[chan_info->slot];
chan_info->slot = AD4130_INVALID_SLOT;
slot_info->channels--;
}
static int ad4130_unlink_slot(struct ad4130_state *st, unsigned int slot)
{
unsigned int i;
for (i = 0; i < AD4130_MAX_CHANNELS; i++) {
struct ad4130_chan_info *chan_info = &st->chans_info[i];
if (!chan_info->initialized || chan_info->slot != slot)
continue;
ad4130_unlink_channel(st, i);
}
return 0;
}
static int ad4130_link_channel_slot(struct ad4130_state *st,
unsigned int channel, unsigned int slot)
{
struct ad4130_slot_info *slot_info = &st->slots_info[slot];
struct ad4130_chan_info *chan_info = &st->chans_info[channel];
int ret;
ret = regmap_update_bits(st->regmap, AD4130_CHANNEL_X_REG(channel),
AD4130_CHANNEL_SETUP_MASK,
FIELD_PREP(AD4130_CHANNEL_SETUP_MASK, slot));
if (ret)
return ret;
chan_info->slot = slot;
slot_info->channels++;
return 0;
}
static int ad4130_write_slot_setup(struct ad4130_state *st,
unsigned int slot,
struct ad4130_setup_info *setup_info)
{
unsigned int val;
int ret;
val = FIELD_PREP(AD4130_CONFIG_IOUT1_VAL_MASK, setup_info->iout0_val) |
FIELD_PREP(AD4130_CONFIG_IOUT1_VAL_MASK, setup_info->iout1_val) |
FIELD_PREP(AD4130_CONFIG_BURNOUT_MASK, setup_info->burnout) |
FIELD_PREP(AD4130_CONFIG_REF_BUFP_MASK, setup_info->ref_bufp) |
FIELD_PREP(AD4130_CONFIG_REF_BUFM_MASK, setup_info->ref_bufm) |
FIELD_PREP(AD4130_CONFIG_REF_SEL_MASK, setup_info->ref_sel) |
FIELD_PREP(AD4130_CONFIG_PGA_MASK, setup_info->pga);
ret = regmap_write(st->regmap, AD4130_CONFIG_X_REG(slot), val);
if (ret)
return ret;
val = FIELD_PREP(AD4130_FILTER_MODE_MASK, setup_info->filter_mode) |
FIELD_PREP(AD4130_FILTER_SELECT_MASK, setup_info->fs);
ret = regmap_write(st->regmap, AD4130_FILTER_X_REG(slot), val);
if (ret)
return ret;
memcpy(&st->slots_info[slot].setup, setup_info, sizeof(*setup_info));
return 0;
}
static int ad4130_write_channel_setup(struct ad4130_state *st,
unsigned int channel, bool on_enable)
{
struct ad4130_chan_info *chan_info = &st->chans_info[channel];
struct ad4130_setup_info *setup_info = &chan_info->setup;
bool overwrite;
int slot;
int ret;
/*
* The following cases need to be handled.
*
* 1. Enabled and linked channel with setup changes:
* - Find a slot. If not possible, return error.
* - Unlink channel from current slot.
* - If the slot has channels linked to it, unlink all channels, and
* write the new setup to it.
* - Link channel to new slot.
*
* 2. Soon to be enabled and unlinked channel:
* - Find a slot. If not possible, return error.
* - If the slot has channels linked to it, unlink all channels, and
* write the new setup to it.
* - Link channel to the slot.
*
* 3. Disabled and linked channel with setup changes:
* - Unlink channel from current slot.
*
* 4. Soon to be enabled and linked channel:
* 5. Disabled and unlinked channel with setup changes:
* - Do nothing.
*/
/* Case 4 */
if (on_enable && chan_info->slot != AD4130_INVALID_SLOT)
return 0;
if (!on_enable && !chan_info->enabled) {
if (chan_info->slot != AD4130_INVALID_SLOT)
/* Case 3 */
ad4130_unlink_channel(st, channel);
/* Cases 3 & 5 */
return 0;
}
/* Cases 1 & 2 */
ret = ad4130_find_slot(st, setup_info, &slot, &overwrite);
if (ret)
return ret;
if (chan_info->slot != AD4130_INVALID_SLOT)
/* Case 1 */
ad4130_unlink_channel(st, channel);
if (overwrite) {
ret = ad4130_unlink_slot(st, slot);
if (ret)
return ret;
ret = ad4130_write_slot_setup(st, slot, setup_info);
if (ret)
return ret;
}
return ad4130_link_channel_slot(st, channel, slot);
}
static int ad4130_set_channel_enable(struct ad4130_state *st,
unsigned int channel, bool status)
{
struct ad4130_chan_info *chan_info = &st->chans_info[channel];
struct ad4130_slot_info *slot_info;
int ret;
if (chan_info->enabled == status)
return 0;
if (status) {
ret = ad4130_write_channel_setup(st, channel, true);
if (ret)
return ret;
}
slot_info = &st->slots_info[chan_info->slot];
ret = regmap_update_bits(st->regmap, AD4130_CHANNEL_X_REG(channel),
AD4130_CHANNEL_EN_MASK,
FIELD_PREP(AD4130_CHANNEL_EN_MASK, status));
if (ret)
return ret;
slot_info->enabled_channels += status ? 1 : -1;
chan_info->enabled = status;
return 0;
}
/*
* Table 58. FILTER_MODE_n bits and Filter Types of the datasheet describes
* the relation between filter mode, ODR and FS.
*
* Notice that the max ODR of each filter mode is not necessarily the
* absolute max ODR supported by the chip.
*
* The ODR divider is not explicitly specified, but it can be deduced based
* on the ODR range of each filter mode.
*
* For example, for Sinc4+Sinc1, max ODR is 218.18. That means that the
* absolute max ODR is divided by 11 to achieve the max ODR of this filter
* mode.
*
* The formulas for converting between ODR and FS for a specific filter
* mode can be deduced from the same table.
*
* Notice that FS = 1 actually means max ODR, and that ODR decreases by
* (maximum ODR / maximum FS) for each increment of FS.
*
* odr = MAX_ODR / odr_div * (1 - (fs - 1) / fs_max) <=>
* odr = MAX_ODR * (1 - (fs - 1) / fs_max) / odr_div <=>
* odr = MAX_ODR * (1 - (fs - 1) / fs_max) / odr_div <=>
* odr = MAX_ODR * (fs_max - fs + 1) / (fs_max * odr_div)
* (used in ad4130_fs_to_freq)
*
* For the opposite formula, FS can be extracted from the last one.
*
* MAX_ODR * (fs_max - fs + 1) = fs_max * odr_div * odr <=>
* fs_max - fs + 1 = fs_max * odr_div * odr / MAX_ODR <=>
* fs = 1 + fs_max - fs_max * odr_div * odr / MAX_ODR
* (used in ad4130_fs_to_freq)
*/
static void ad4130_freq_to_fs(enum ad4130_filter_mode filter_mode,
int val, int val2, unsigned int *fs)
{
const struct ad4130_filter_config *filter_config =
&ad4130_filter_configs[filter_mode];
u64 dividend, divisor;
int temp;
dividend = filter_config->fs_max * filter_config->odr_div *
((u64)val * NANO + val2);
divisor = (u64)AD4130_MAX_ODR * NANO;
temp = AD4130_FILTER_SELECT_MIN + filter_config->fs_max -
DIV64_U64_ROUND_CLOSEST(dividend, divisor);
if (temp < AD4130_FILTER_SELECT_MIN)
temp = AD4130_FILTER_SELECT_MIN;
else if (temp > filter_config->fs_max)
temp = filter_config->fs_max;
*fs = temp;
}
static void ad4130_fs_to_freq(enum ad4130_filter_mode filter_mode,
unsigned int fs, int *val, int *val2)
{
const struct ad4130_filter_config *filter_config =
&ad4130_filter_configs[filter_mode];
unsigned int dividend, divisor;
u64 temp;
dividend = (filter_config->fs_max - fs + AD4130_FILTER_SELECT_MIN) *
AD4130_MAX_ODR;
divisor = filter_config->fs_max * filter_config->odr_div;
temp = div_u64((u64)dividend * NANO, divisor);
*val = div_u64_rem(temp, NANO, val2);
}
static int ad4130_set_filter_mode(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
unsigned int val)
{
struct ad4130_state *st = iio_priv(indio_dev);
unsigned int channel = chan->scan_index;
struct ad4130_chan_info *chan_info = &st->chans_info[channel];
struct ad4130_setup_info *setup_info = &chan_info->setup;
enum ad4130_filter_mode old_filter_mode;
int freq_val, freq_val2;
unsigned int old_fs;
int ret = 0;
mutex_lock(&st->lock);
if (setup_info->filter_mode == val)
goto out;
old_fs = setup_info->fs;
old_filter_mode = setup_info->filter_mode;
/*
* When switching between filter modes, try to match the ODR as
* close as possible. To do this, convert the current FS into ODR
* using the old filter mode, then convert it back into FS using
* the new filter mode.
*/
ad4130_fs_to_freq(setup_info->filter_mode, setup_info->fs,
&freq_val, &freq_val2);
ad4130_freq_to_fs(val, freq_val, freq_val2, &setup_info->fs);
setup_info->filter_mode = val;
ret = ad4130_write_channel_setup(st, channel, false);
if (ret) {
setup_info->fs = old_fs;
setup_info->filter_mode = old_filter_mode;
}
out:
mutex_unlock(&st->lock);
return ret;
}
static int ad4130_get_filter_mode(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan)
{
struct ad4130_state *st = iio_priv(indio_dev);
unsigned int channel = chan->scan_index;
struct ad4130_setup_info *setup_info = &st->chans_info[channel].setup;
enum ad4130_filter_mode filter_mode;
mutex_lock(&st->lock);
filter_mode = setup_info->filter_mode;
mutex_unlock(&st->lock);
return filter_mode;
}
static const struct iio_enum ad4130_filter_mode_enum = {
.items = ad4130_filter_modes_str,
.num_items = ARRAY_SIZE(ad4130_filter_modes_str),
.set = ad4130_set_filter_mode,
.get = ad4130_get_filter_mode,
};
static const struct iio_chan_spec_ext_info ad4130_filter_mode_ext_info[] = {
IIO_ENUM("filter_mode", IIO_SEPARATE, &ad4130_filter_mode_enum),
IIO_ENUM_AVAILABLE("filter_mode", IIO_SHARED_BY_TYPE,
&ad4130_filter_mode_enum),
{ }
};
static const struct iio_chan_spec ad4130_channel_template = {
.type = IIO_VOLTAGE,
.indexed = 1,
.differential = 1,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_OFFSET) |
BIT(IIO_CHAN_INFO_SAMP_FREQ),
.info_mask_separate_available = BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_SAMP_FREQ),
.ext_info = ad4130_filter_mode_ext_info,
.scan_type = {
.sign = 'u',
.endianness = IIO_BE,
},
};
static int ad4130_set_channel_pga(struct ad4130_state *st, unsigned int channel,
int val, int val2)
{
struct ad4130_chan_info *chan_info = &st->chans_info[channel];
struct ad4130_setup_info *setup_info = &chan_info->setup;
unsigned int pga, old_pga;
int ret = 0;
for (pga = 0; pga < AD4130_MAX_PGA; pga++)
if (val == st->scale_tbls[setup_info->ref_sel][pga][0] &&
val2 == st->scale_tbls[setup_info->ref_sel][pga][1])
break;
if (pga == AD4130_MAX_PGA)
return -EINVAL;
mutex_lock(&st->lock);
if (pga == setup_info->pga)
goto out;
old_pga = setup_info->pga;
setup_info->pga = pga;
ret = ad4130_write_channel_setup(st, channel, false);
if (ret)
setup_info->pga = old_pga;
out:
mutex_unlock(&st->lock);
return ret;
}
static int ad4130_set_channel_freq(struct ad4130_state *st,
unsigned int channel, int val, int val2)
{
struct ad4130_chan_info *chan_info = &st->chans_info[channel];
struct ad4130_setup_info *setup_info = &chan_info->setup;
unsigned int fs, old_fs;
int ret = 0;
mutex_lock(&st->lock);
old_fs = setup_info->fs;
ad4130_freq_to_fs(setup_info->filter_mode, val, val2, &fs);
if (fs == setup_info->fs)
goto out;
setup_info->fs = fs;
ret = ad4130_write_channel_setup(st, channel, false);
if (ret)
setup_info->fs = old_fs;
out:
mutex_unlock(&st->lock);
return ret;
}
static int _ad4130_read_sample(struct iio_dev *indio_dev, unsigned int channel,
int *val)
{
struct ad4130_state *st = iio_priv(indio_dev);
int ret;
ret = ad4130_set_channel_enable(st, channel, true);
if (ret)
return ret;
reinit_completion(&st->completion);
ret = ad4130_set_mode(st, AD4130_MODE_CONTINUOUS);
if (ret)
return ret;
ret = wait_for_completion_timeout(&st->completion,
msecs_to_jiffies(1000));
if (!ret)
return -ETIMEDOUT;
ret = ad4130_set_mode(st, AD4130_MODE_IDLE);
if (ret)
return ret;
ret = regmap_read(st->regmap, AD4130_DATA_REG, val);
if (ret)
return ret;
ret = ad4130_set_channel_enable(st, channel, false);
if (ret)
return ret;
return IIO_VAL_INT;
}
static int ad4130_read_sample(struct iio_dev *indio_dev, unsigned int channel,
int *val)
{
struct ad4130_state *st = iio_priv(indio_dev);
int ret;
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
return ret;
mutex_lock(&st->lock);
ret = _ad4130_read_sample(indio_dev, channel, val);
mutex_unlock(&st->lock);
iio_device_release_direct_mode(indio_dev);
return ret;
}
static int ad4130_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long info)
{
struct ad4130_state *st = iio_priv(indio_dev);
unsigned int channel = chan->scan_index;
struct ad4130_setup_info *setup_info = &st->chans_info[channel].setup;
switch (info) {
case IIO_CHAN_INFO_RAW:
return ad4130_read_sample(indio_dev, channel, val);
case IIO_CHAN_INFO_SCALE:
mutex_lock(&st->lock);
*val = st->scale_tbls[setup_info->ref_sel][setup_info->pga][0];
*val2 = st->scale_tbls[setup_info->ref_sel][setup_info->pga][1];
mutex_unlock(&st->lock);
return IIO_VAL_INT_PLUS_NANO;
case IIO_CHAN_INFO_OFFSET:
*val = st->bipolar ? -BIT(chan->scan_type.realbits - 1) : 0;
return IIO_VAL_INT;
case IIO_CHAN_INFO_SAMP_FREQ:
mutex_lock(&st->lock);
ad4130_fs_to_freq(setup_info->filter_mode, setup_info->fs,
val, val2);
mutex_unlock(&st->lock);
return IIO_VAL_INT_PLUS_NANO;
default:
return -EINVAL;
}
}
static int ad4130_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals, int *type, int *length,
long info)
{
struct ad4130_state *st = iio_priv(indio_dev);
unsigned int channel = chan->scan_index;
struct ad4130_setup_info *setup_info = &st->chans_info[channel].setup;
const struct ad4130_filter_config *filter_config;
switch (info) {
case IIO_CHAN_INFO_SCALE:
*vals = (int *)st->scale_tbls[setup_info->ref_sel];
*length = ARRAY_SIZE(st->scale_tbls[setup_info->ref_sel]) * 2;
*type = IIO_VAL_INT_PLUS_NANO;
return IIO_AVAIL_LIST;
case IIO_CHAN_INFO_SAMP_FREQ:
mutex_lock(&st->lock);
filter_config = &ad4130_filter_configs[setup_info->filter_mode];
mutex_unlock(&st->lock);
*vals = (int *)filter_config->samp_freq_avail;
*length = filter_config->samp_freq_avail_len * 2;
*type = IIO_VAL_FRACTIONAL;
return filter_config->samp_freq_avail_type;
default:
return -EINVAL;
}
}
static int ad4130_write_raw_get_fmt(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
long info)
{
switch (info) {
case IIO_CHAN_INFO_SCALE:
case IIO_CHAN_INFO_SAMP_FREQ:
return IIO_VAL_INT_PLUS_NANO;
default:
return -EINVAL;
}
}
static int ad4130_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long info)
{
struct ad4130_state *st = iio_priv(indio_dev);
unsigned int channel = chan->scan_index;
switch (info) {
case IIO_CHAN_INFO_SCALE:
return ad4130_set_channel_pga(st, channel, val, val2);
case IIO_CHAN_INFO_SAMP_FREQ:
return ad4130_set_channel_freq(st, channel, val, val2);
default:
return -EINVAL;
}
}
static int ad4130_reg_access(struct iio_dev *indio_dev, unsigned int reg,
unsigned int writeval, unsigned int *readval)
{
struct ad4130_state *st = iio_priv(indio_dev);
if (readval)
return regmap_read(st->regmap, reg, readval);
return regmap_write(st->regmap, reg, writeval);
}
static int ad4130_update_scan_mode(struct iio_dev *indio_dev,
const unsigned long *scan_mask)
{
struct ad4130_state *st = iio_priv(indio_dev);
unsigned int channel;
unsigned int val = 0;
int ret;
mutex_lock(&st->lock);
for_each_set_bit(channel, scan_mask, indio_dev->num_channels) {
ret = ad4130_set_channel_enable(st, channel, true);
if (ret)
goto out;
val++;
}
st->num_enabled_channels = val;
out:
mutex_unlock(&st->lock);
return 0;
}
static int ad4130_set_fifo_watermark(struct iio_dev *indio_dev, unsigned int val)
{
struct ad4130_state *st = iio_priv(indio_dev);
unsigned int eff;
int ret;
if (val > AD4130_FIFO_SIZE)
return -EINVAL;
eff = val * st->num_enabled_channels;
if (eff > AD4130_FIFO_SIZE)
/*
* Always set watermark to a multiple of the number of
* enabled channels to avoid making the FIFO unaligned.
*/
eff = rounddown(AD4130_FIFO_SIZE, st->num_enabled_channels);
mutex_lock(&st->lock);
ret = regmap_update_bits(st->regmap, AD4130_FIFO_CONTROL_REG,
AD4130_FIFO_CONTROL_WM_MASK,
FIELD_PREP(AD4130_FIFO_CONTROL_WM_MASK,
ad4130_watermark_reg_val(eff)));
if (ret)
goto out;
st->effective_watermark = eff;
st->watermark = val;
out:
mutex_unlock(&st->lock);
return ret;
}
static const struct iio_info ad4130_info = {
.read_raw = ad4130_read_raw,
.read_avail = ad4130_read_avail,
.write_raw_get_fmt = ad4130_write_raw_get_fmt,
.write_raw = ad4130_write_raw,
.update_scan_mode = ad4130_update_scan_mode,
.hwfifo_set_watermark = ad4130_set_fifo_watermark,
.debugfs_reg_access = ad4130_reg_access,
};
static int ad4130_buffer_postenable(struct iio_dev *indio_dev)
{
struct ad4130_state *st = iio_priv(indio_dev);
int ret;
mutex_lock(&st->lock);
ret = ad4130_set_watermark_interrupt_en(st, true);
if (ret)
goto out;
ret = irq_set_irq_type(st->spi->irq, st->inv_irq_trigger);
if (ret)
goto out;
ret = ad4130_set_fifo_mode(st, AD4130_FIFO_MODE_WM);
if (ret)
goto out;
ret = ad4130_set_mode(st, AD4130_MODE_CONTINUOUS);
out:
mutex_unlock(&st->lock);
return ret;
}
static int ad4130_buffer_predisable(struct iio_dev *indio_dev)
{
struct ad4130_state *st = iio_priv(indio_dev);
unsigned int i;
int ret;
mutex_lock(&st->lock);
ret = ad4130_set_mode(st, AD4130_MODE_IDLE);
if (ret)
goto out;
ret = irq_set_irq_type(st->spi->irq, st->irq_trigger);
if (ret)
goto out;
ret = ad4130_set_fifo_mode(st, AD4130_FIFO_MODE_DISABLED);
if (ret)
goto out;
ret = ad4130_set_watermark_interrupt_en(st, false);
if (ret)
goto out;
/*
* update_scan_mode() is not called in the disable path, disable all
* channels here.
*/
for (i = 0; i < indio_dev->num_channels; i++) {
ret = ad4130_set_channel_enable(st, i, false);
if (ret)
goto out;
}
out:
mutex_unlock(&st->lock);
return ret;
}
static const struct iio_buffer_setup_ops ad4130_buffer_ops = {
.postenable = ad4130_buffer_postenable,
.predisable = ad4130_buffer_predisable,
};
static ssize_t hwfifo_watermark_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ad4130_state *st = iio_priv(dev_to_iio_dev(dev));
unsigned int val;
mutex_lock(&st->lock);
val = st->watermark;
mutex_unlock(&st->lock);
return sysfs_emit(buf, "%d\n", val);
}
static ssize_t hwfifo_enabled_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ad4130_state *st = iio_priv(dev_to_iio_dev(dev));
unsigned int val;
int ret;
ret = regmap_read(st->regmap, AD4130_FIFO_CONTROL_REG, &val);
if (ret)
return ret;
val = FIELD_GET(AD4130_FIFO_CONTROL_MODE_MASK, val);
return sysfs_emit(buf, "%d\n", val != AD4130_FIFO_MODE_DISABLED);
}
static ssize_t hwfifo_watermark_min_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sysfs_emit(buf, "%s\n", "1");
}
static ssize_t hwfifo_watermark_max_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sysfs_emit(buf, "%s\n", __stringify(AD4130_FIFO_SIZE));
}
static IIO_DEVICE_ATTR_RO(hwfifo_watermark_min, 0);
static IIO_DEVICE_ATTR_RO(hwfifo_watermark_max, 0);
static IIO_DEVICE_ATTR_RO(hwfifo_watermark, 0);
static IIO_DEVICE_ATTR_RO(hwfifo_enabled, 0);
static const struct iio_dev_attr *ad4130_fifo_attributes[] = {
&iio_dev_attr_hwfifo_watermark_min,
&iio_dev_attr_hwfifo_watermark_max,
&iio_dev_attr_hwfifo_watermark,
&iio_dev_attr_hwfifo_enabled,
NULL
};
static int _ad4130_find_table_index(const unsigned int *tbl, size_t len,
unsigned int val)
{
unsigned int i;
for (i = 0; i < len; i++)
if (tbl[i] == val)
return i;
return -EINVAL;
}
#define ad4130_find_table_index(table, val) \
_ad4130_find_table_index(table, ARRAY_SIZE(table), val)
static int ad4130_get_ref_voltage(struct ad4130_state *st,
enum ad4130_ref_sel ref_sel)
{
switch (ref_sel) {
case AD4130_REF_REFIN1:
return regulator_get_voltage(st->regulators[2].consumer);
case AD4130_REF_REFIN2:
return regulator_get_voltage(st->regulators[3].consumer);
case AD4130_REF_AVDD_AVSS:
return regulator_get_voltage(st->regulators[0].consumer);
case AD4130_REF_REFOUT_AVSS:
return st->int_ref_uv;
default:
return -EINVAL;
}
}
static int ad4130_parse_fw_setup(struct ad4130_state *st,
struct fwnode_handle *child,
struct ad4130_setup_info *setup_info)
{
struct device *dev = &st->spi->dev;
u32 tmp;
int ret;
tmp = 0;
fwnode_property_read_u32(child, "adi,excitation-current-0-nanoamp", &tmp);
ret = ad4130_find_table_index(ad4130_iout_current_na_tbl, tmp);
if (ret < 0)
return dev_err_probe(dev, ret,
"Invalid excitation current %unA\n", tmp);
setup_info->iout0_val = ret;
tmp = 0;
fwnode_property_read_u32(child, "adi,excitation-current-1-nanoamp", &tmp);
ret = ad4130_find_table_index(ad4130_iout_current_na_tbl, tmp);
if (ret < 0)
return dev_err_probe(dev, ret,
"Invalid excitation current %unA\n", tmp);
setup_info->iout1_val = ret;
tmp = 0;
fwnode_property_read_u32(child, "adi,burnout-current-nanoamp", &tmp);
ret = ad4130_find_table_index(ad4130_burnout_current_na_tbl, tmp);
if (ret < 0)
return dev_err_probe(dev, ret,
"Invalid burnout current %unA\n", tmp);
setup_info->burnout = ret;
setup_info->ref_bufp = fwnode_property_read_bool(child, "adi,buffered-positive");
setup_info->ref_bufm = fwnode_property_read_bool(child, "adi,buffered-negative");
setup_info->ref_sel = AD4130_REF_REFIN1;
fwnode_property_read_u32(child, "adi,reference-select",
&setup_info->ref_sel);
if (setup_info->ref_sel >= AD4130_REF_SEL_MAX)
return dev_err_probe(dev, -EINVAL,
"Invalid reference selected %u\n",
setup_info->ref_sel);
if (setup_info->ref_sel == AD4130_REF_REFOUT_AVSS)
st->int_ref_en = true;
ret = ad4130_get_ref_voltage(st, setup_info->ref_sel);
if (ret < 0)
return dev_err_probe(dev, ret, "Cannot use reference %u\n",
setup_info->ref_sel);
return 0;
}
static int ad4130_validate_diff_channel(struct ad4130_state *st, u32 pin)
{
struct device *dev = &st->spi->dev;
if (pin >= AD4130_MAX_DIFF_INPUTS)
return dev_err_probe(dev, -EINVAL,
"Invalid differential channel %u\n", pin);
if (pin >= AD4130_MAX_ANALOG_PINS)
return 0;
if (st->pins_fn[pin] == AD4130_PIN_FN_SPECIAL)
return dev_err_probe(dev, -EINVAL,
"Pin %u already used with fn %u\n", pin,
st->pins_fn[pin]);
st->pins_fn[pin] |= AD4130_PIN_FN_DIFF;
return 0;
}
static int ad4130_validate_diff_channels(struct ad4130_state *st,
u32 *pins, unsigned int len)
{
unsigned int i;
int ret;
for (i = 0; i < len; i++) {
ret = ad4130_validate_diff_channel(st, pins[i]);
if (ret)
return ret;
}
return 0;
}
static int ad4130_validate_excitation_pin(struct ad4130_state *st, u32 pin)
{
struct device *dev = &st->spi->dev;
if (pin >= AD4130_MAX_ANALOG_PINS)
return dev_err_probe(dev, -EINVAL,
"Invalid excitation pin %u\n", pin);
if (st->pins_fn[pin] == AD4130_PIN_FN_SPECIAL)
return dev_err_probe(dev, -EINVAL,
"Pin %u already used with fn %u\n", pin,
st->pins_fn[pin]);
st->pins_fn[pin] |= AD4130_PIN_FN_EXCITATION;
return 0;
}
static int ad4130_validate_vbias_pin(struct ad4130_state *st, u32 pin)
{
struct device *dev = &st->spi->dev;
if (pin >= AD4130_MAX_ANALOG_PINS)
return dev_err_probe(dev, -EINVAL, "Invalid vbias pin %u\n",
pin);
if (st->pins_fn[pin] == AD4130_PIN_FN_SPECIAL)
return dev_err_probe(dev, -EINVAL,
"Pin %u already used with fn %u\n", pin,
st->pins_fn[pin]);
st->pins_fn[pin] |= AD4130_PIN_FN_VBIAS;
return 0;
}
static int ad4130_validate_vbias_pins(struct ad4130_state *st,
u32 *pins, unsigned int len)
{
unsigned int i;
int ret;
for (i = 0; i < st->num_vbias_pins; i++) {
ret = ad4130_validate_vbias_pin(st, pins[i]);
if (ret)
return ret;
}
return 0;
}
static int ad4130_parse_fw_channel(struct iio_dev *indio_dev,
struct fwnode_handle *child)
{
struct ad4130_state *st = iio_priv(indio_dev);
unsigned int resolution = ad4130_resolution(st);
unsigned int index = indio_dev->num_channels++;
struct device *dev = &st->spi->dev;
struct ad4130_chan_info *chan_info;
struct iio_chan_spec *chan;
u32 pins[2];
int ret;
if (index >= AD4130_MAX_CHANNELS)
return dev_err_probe(dev, -EINVAL, "Too many channels\n");
chan = &st->chans[index];
chan_info = &st->chans_info[index];
*chan = ad4130_channel_template;
chan->scan_type.realbits = resolution;
chan->scan_type.storagebits = resolution;
chan->scan_index = index;
chan_info->slot = AD4130_INVALID_SLOT;
chan_info->setup.fs = AD4130_FILTER_SELECT_MIN;
chan_info->initialized = true;
ret = fwnode_property_read_u32_array(child, "diff-channels", pins,
ARRAY_SIZE(pins));
if (ret)
return ret;
ret = ad4130_validate_diff_channels(st, pins, ARRAY_SIZE(pins));
if (ret)
return ret;
chan->channel = pins[0];
chan->channel2 = pins[1];
ret = ad4130_parse_fw_setup(st, child, &chan_info->setup);
if (ret)
return ret;
fwnode_property_read_u32(child, "adi,excitation-pin-0",
&chan_info->iout0);
if (chan_info->setup.iout0_val != AD4130_IOUT_OFF) {
ret = ad4130_validate_excitation_pin(st, chan_info->iout0);
if (ret)
return ret;
}
fwnode_property_read_u32(child, "adi,excitation-pin-1",
&chan_info->iout1);
if (chan_info->setup.iout1_val != AD4130_IOUT_OFF) {
ret = ad4130_validate_excitation_pin(st, chan_info->iout1);
if (ret)
return ret;
}
return 0;
}
static int ad4130_parse_fw_children(struct iio_dev *indio_dev)
{
struct ad4130_state *st = iio_priv(indio_dev);
struct device *dev = &st->spi->dev;
struct fwnode_handle *child;
int ret;
indio_dev->channels = st->chans;
device_for_each_child_node(dev, child) {
ret = ad4130_parse_fw_channel(indio_dev, child);
if (ret) {
fwnode_handle_put(child);
return ret;
}
}
return 0;
}
static int ad4310_parse_fw(struct iio_dev *indio_dev)
{
struct ad4130_state *st = iio_priv(indio_dev);
struct device *dev = &st->spi->dev;
u32 ext_clk_freq = AD4130_MCLK_FREQ_76_8KHZ;
unsigned int i;
int avdd_uv;
int irq;
int ret;
st->mclk = devm_clk_get_optional(dev, "mclk");
if (IS_ERR(st->mclk))
return dev_err_probe(dev, PTR_ERR(st->mclk),
"Failed to get mclk\n");
st->int_pin_sel = AD4130_INT_PIN_INT;
for (i = 0; i < ARRAY_SIZE(ad4130_int_pin_names); i++) {
irq = fwnode_irq_get_byname(dev_fwnode(dev),
ad4130_int_pin_names[i]);
if (irq > 0) {
st->int_pin_sel = i;
break;
}
}
if (st->int_pin_sel == AD4130_INT_PIN_DOUT)
return dev_err_probe(dev, -EINVAL,
"Cannot use DOUT as interrupt pin\n");
if (st->int_pin_sel == AD4130_INT_PIN_P2)
st->pins_fn[AD4130_AIN3_P2] = AD4130_PIN_FN_SPECIAL;
device_property_read_u32(dev, "adi,ext-clk-freq-hz", &ext_clk_freq);
if (ext_clk_freq != AD4130_MCLK_FREQ_153_6KHZ &&
ext_clk_freq != AD4130_MCLK_FREQ_76_8KHZ)
return dev_err_probe(dev, -EINVAL,
"Invalid external clock frequency %u\n",
ext_clk_freq);
if (st->mclk && ext_clk_freq == AD4130_MCLK_FREQ_153_6KHZ)
st->mclk_sel = AD4130_MCLK_153_6KHZ_EXT;
else if (st->mclk)
st->mclk_sel = AD4130_MCLK_76_8KHZ_EXT;
else
st->mclk_sel = AD4130_MCLK_76_8KHZ;
if (st->int_pin_sel == AD4130_INT_PIN_CLK &&
st->mclk_sel != AD4130_MCLK_76_8KHZ)
return dev_err_probe(dev, -EINVAL,
"Invalid clock %u for interrupt pin %u\n",
st->mclk_sel, st->int_pin_sel);
st->int_ref_uv = AD4130_INT_REF_2_5V;
/*
* When the AVDD supply is set to below 2.5V the internal reference of
* 1.25V should be selected.
* See datasheet page 37, section ADC REFERENCE.
*/
avdd_uv = regulator_get_voltage(st->regulators[0].consumer);
if (avdd_uv > 0 && avdd_uv < AD4130_INT_REF_2_5V)
st->int_ref_uv = AD4130_INT_REF_1_25V;
st->bipolar = device_property_read_bool(dev, "adi,bipolar");
ret = device_property_count_u32(dev, "adi,vbias-pins");
if (ret > 0) {
if (ret > AD4130_MAX_ANALOG_PINS)
return dev_err_probe(dev, -EINVAL,
"Too many vbias pins %u\n", ret);
st->num_vbias_pins = ret;
ret = device_property_read_u32_array(dev, "adi,vbias-pins",
st->vbias_pins,
st->num_vbias_pins);
if (ret)
return dev_err_probe(dev, ret,
"Failed to read vbias pins\n");
ret = ad4130_validate_vbias_pins(st, st->vbias_pins,
st->num_vbias_pins);
if (ret)
return ret;
}
ret = ad4130_parse_fw_children(indio_dev);
if (ret)
return ret;
return 0;
}
static void ad4130_fill_scale_tbls(struct ad4130_state *st)
{
unsigned int pow = ad4130_resolution(st) - st->bipolar;
unsigned int i, j;
for (i = 0; i < AD4130_REF_SEL_MAX; i++) {
int ret;
u64 nv;
ret = ad4130_get_ref_voltage(st, i);
if (ret < 0)
continue;
nv = (u64)ret * NANO;
for (j = 0; j < AD4130_MAX_PGA; j++)
st->scale_tbls[i][j][1] = div_u64(nv >> (pow + j), MILLI);
}
}
static void ad4130_clk_disable_unprepare(void *clk)
{
clk_disable_unprepare(clk);
}
static int ad4130_set_mclk_sel(struct ad4130_state *st,
enum ad4130_mclk_sel mclk_sel)
{
return regmap_update_bits(st->regmap, AD4130_ADC_CONTROL_REG,
AD4130_ADC_CONTROL_MCLK_SEL_MASK,
FIELD_PREP(AD4130_ADC_CONTROL_MCLK_SEL_MASK,
mclk_sel));
}
static unsigned long ad4130_int_clk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
return AD4130_MCLK_FREQ_76_8KHZ;
}
static int ad4130_int_clk_is_enabled(struct clk_hw *hw)
{
struct ad4130_state *st = container_of(hw, struct ad4130_state, int_clk_hw);
return st->mclk_sel == AD4130_MCLK_76_8KHZ_OUT;
}
static int ad4130_int_clk_prepare(struct clk_hw *hw)
{
struct ad4130_state *st = container_of(hw, struct ad4130_state, int_clk_hw);
int ret;
ret = ad4130_set_mclk_sel(st, AD4130_MCLK_76_8KHZ_OUT);
if (ret)
return ret;
st->mclk_sel = AD4130_MCLK_76_8KHZ_OUT;
return 0;
}
static void ad4130_int_clk_unprepare(struct clk_hw *hw)
{
struct ad4130_state *st = container_of(hw, struct ad4130_state, int_clk_hw);
int ret;
ret = ad4130_set_mclk_sel(st, AD4130_MCLK_76_8KHZ);
if (ret)
return;
st->mclk_sel = AD4130_MCLK_76_8KHZ;
}
static const struct clk_ops ad4130_int_clk_ops = {
.recalc_rate = ad4130_int_clk_recalc_rate,
.is_enabled = ad4130_int_clk_is_enabled,
.prepare = ad4130_int_clk_prepare,
.unprepare = ad4130_int_clk_unprepare,
};
static int ad4130_setup_int_clk(struct ad4130_state *st)
{
struct device *dev = &st->spi->dev;
struct device_node *of_node = dev_of_node(dev);
struct clk_init_data init = {};
const char *clk_name;
int ret;
if (st->int_pin_sel == AD4130_INT_PIN_CLK ||
st->mclk_sel != AD4130_MCLK_76_8KHZ)
return 0;
if (!of_node)
return 0;
clk_name = of_node->name;
of_property_read_string(of_node, "clock-output-names", &clk_name);
init.name = clk_name;
init.ops = &ad4130_int_clk_ops;
st->int_clk_hw.init = &init;
ret = devm_clk_hw_register(dev, &st->int_clk_hw);
if (ret)
return ret;
return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get,
&st->int_clk_hw);
}
static int ad4130_setup(struct iio_dev *indio_dev)
{
struct ad4130_state *st = iio_priv(indio_dev);
struct device *dev = &st->spi->dev;
unsigned int int_ref_val;
unsigned long rate = AD4130_MCLK_FREQ_76_8KHZ;
unsigned int val;
unsigned int i;
int ret;
if (st->mclk_sel == AD4130_MCLK_153_6KHZ_EXT)
rate = AD4130_MCLK_FREQ_153_6KHZ;
ret = clk_set_rate(st->mclk, rate);
if (ret)
return ret;
ret = clk_prepare_enable(st->mclk);
if (ret)
return ret;
ret = devm_add_action_or_reset(dev, ad4130_clk_disable_unprepare,
st->mclk);
if (ret)
return ret;
if (st->int_ref_uv == AD4130_INT_REF_2_5V)
int_ref_val = AD4130_INT_REF_VAL_2_5V;
else
int_ref_val = AD4130_INT_REF_VAL_1_25V;
/* Switch to SPI 4-wire mode. */
val = FIELD_PREP(AD4130_ADC_CONTROL_CSB_EN_MASK, 1);
val |= FIELD_PREP(AD4130_ADC_CONTROL_BIPOLAR_MASK, st->bipolar);
val |= FIELD_PREP(AD4130_ADC_CONTROL_INT_REF_EN_MASK, st->int_ref_en);
val |= FIELD_PREP(AD4130_ADC_CONTROL_MODE_MASK, AD4130_MODE_IDLE);
val |= FIELD_PREP(AD4130_ADC_CONTROL_MCLK_SEL_MASK, st->mclk_sel);
val |= FIELD_PREP(AD4130_ADC_CONTROL_INT_REF_VAL_MASK, int_ref_val);
ret = regmap_write(st->regmap, AD4130_ADC_CONTROL_REG, val);
if (ret)
return ret;
/*
* Configure unused GPIOs for output. If configured, the interrupt
* function of P2 takes priority over the GPIO out function.
*/
val = 0;
for (i = 0; i < AD4130_MAX_GPIOS; i++)
if (st->pins_fn[i + AD4130_AIN2_P1] == AD4130_PIN_FN_NONE)
val |= FIELD_PREP(AD4130_IO_CONTROL_GPIO_CTRL_MASK, BIT(i));
val |= FIELD_PREP(AD4130_IO_CONTROL_INT_PIN_SEL_MASK, st->int_pin_sel);
ret = regmap_write(st->regmap, AD4130_IO_CONTROL_REG, val);
if (ret)
return ret;
val = 0;
for (i = 0; i < st->num_vbias_pins; i++)
val |= BIT(st->vbias_pins[i]);
ret = regmap_write(st->regmap, AD4130_VBIAS_REG, val);
if (ret)
return ret;
ret = regmap_update_bits(st->regmap, AD4130_FIFO_CONTROL_REG,
AD4130_FIFO_CONTROL_HEADER_MASK, 0);
if (ret)
return ret;
/* FIFO watermark interrupt starts out as enabled, disable it. */
ret = ad4130_set_watermark_interrupt_en(st, false);
if (ret)
return ret;
/* Setup channels. */
for (i = 0; i < indio_dev->num_channels; i++) {
struct ad4130_chan_info *chan_info = &st->chans_info[i];
struct iio_chan_spec *chan = &st->chans[i];
unsigned int val;
val = FIELD_PREP(AD4130_CHANNEL_AINP_MASK, chan->channel) |
FIELD_PREP(AD4130_CHANNEL_AINM_MASK, chan->channel2) |
FIELD_PREP(AD4130_CHANNEL_IOUT1_MASK, chan_info->iout0) |
FIELD_PREP(AD4130_CHANNEL_IOUT2_MASK, chan_info->iout1);
ret = regmap_write(st->regmap, AD4130_CHANNEL_X_REG(i), val);
if (ret)
return ret;
}
return 0;
}
static int ad4130_soft_reset(struct ad4130_state *st)
{
int ret;
ret = spi_write(st->spi, st->reset_buf, sizeof(st->reset_buf));
if (ret)
return ret;
fsleep(AD4130_RESET_SLEEP_US);
return 0;
}
static void ad4130_disable_regulators(void *data)
{
struct ad4130_state *st = data;
regulator_bulk_disable(ARRAY_SIZE(st->regulators), st->regulators);
}
static int ad4130_probe(struct spi_device *spi)
{
struct device *dev = &spi->dev;
struct iio_dev *indio_dev;
struct ad4130_state *st;
int ret;
indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
if (!indio_dev)
return -ENOMEM;
st = iio_priv(indio_dev);
memset(st->reset_buf, 0xff, sizeof(st->reset_buf));
init_completion(&st->completion);
mutex_init(&st->lock);
st->spi = spi;
/*
* Xfer: [ XFR1 ] [ XFR2 ]
* Master: 0x7D N ......................
* Slave: ...... DATA1 DATA2 ... DATAN
*/
st->fifo_tx_buf[0] = AD4130_COMMS_READ_MASK | AD4130_FIFO_DATA_REG;
st->fifo_xfer[0].tx_buf = st->fifo_tx_buf;
st->fifo_xfer[0].len = sizeof(st->fifo_tx_buf);
st->fifo_xfer[1].rx_buf = st->fifo_rx_buf;
spi_message_init_with_transfers(&st->fifo_msg, st->fifo_xfer,
ARRAY_SIZE(st->fifo_xfer));
indio_dev->name = AD4130_NAME;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = &ad4130_info;
st->regmap = devm_regmap_init(dev, NULL, st, &ad4130_regmap_config);
if (IS_ERR(st->regmap))
return PTR_ERR(st->regmap);
st->regulators[0].supply = "avdd";
st->regulators[1].supply = "iovdd";
st->regulators[2].supply = "refin1";
st->regulators[3].supply = "refin2";
ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(st->regulators),
st->regulators);
if (ret)
return dev_err_probe(dev, ret, "Failed to get regulators\n");
ret = regulator_bulk_enable(ARRAY_SIZE(st->regulators), st->regulators);
if (ret)
return dev_err_probe(dev, ret, "Failed to enable regulators\n");
ret = devm_add_action_or_reset(dev, ad4130_disable_regulators, st);
if (ret)
return dev_err_probe(dev, ret,
"Failed to add regulators disable action\n");
ret = ad4130_soft_reset(st);
if (ret)
return ret;
ret = ad4310_parse_fw(indio_dev);
if (ret)
return ret;
ret = ad4130_setup(indio_dev);
if (ret)
return ret;
ret = ad4130_setup_int_clk(st);
if (ret)
return ret;
ad4130_fill_scale_tbls(st);
st->gc.owner = THIS_MODULE;
st->gc.label = AD4130_NAME;
st->gc.base = -1;
st->gc.ngpio = AD4130_MAX_GPIOS;
st->gc.parent = dev;
st->gc.can_sleep = true;
st->gc.init_valid_mask = ad4130_gpio_init_valid_mask;
st->gc.get_direction = ad4130_gpio_get_direction;
st->gc.set = ad4130_gpio_set;
ret = devm_gpiochip_add_data(dev, &st->gc, st);
if (ret)
return ret;
ret = devm_iio_kfifo_buffer_setup_ext(dev, indio_dev,
&ad4130_buffer_ops,
ad4130_fifo_attributes);
if (ret)
return ret;
ret = devm_request_threaded_irq(dev, spi->irq, NULL,
ad4130_irq_handler, IRQF_ONESHOT,
indio_dev->name, indio_dev);
if (ret)
return dev_err_probe(dev, ret, "Failed to request irq\n");
/*
* When the chip enters FIFO mode, IRQ polarity is inverted.
* When the chip exits FIFO mode, IRQ polarity returns to normal.
* See datasheet pages: 65, FIFO Watermark Interrupt section,
* and 71, Bit Descriptions for STATUS Register, RDYB.
* Cache the normal and inverted IRQ triggers to set them when
* entering and exiting FIFO mode.
*/
st->irq_trigger = irq_get_trigger_type(spi->irq);
if (st->irq_trigger & IRQF_TRIGGER_RISING)
st->inv_irq_trigger = IRQF_TRIGGER_FALLING;
else if (st->irq_trigger & IRQF_TRIGGER_FALLING)
st->inv_irq_trigger = IRQF_TRIGGER_RISING;
else
return dev_err_probe(dev, -EINVAL, "Invalid irq flags: %u\n",
st->irq_trigger);
return devm_iio_device_register(dev, indio_dev);
}
static const struct of_device_id ad4130_of_match[] = {
{
.compatible = "adi,ad4130",
},
{ }
};
MODULE_DEVICE_TABLE(of, ad4130_of_match);
static struct spi_driver ad4130_driver = {
.driver = {
.name = AD4130_NAME,
.of_match_table = ad4130_of_match,
},
.probe = ad4130_probe,
};
module_spi_driver(ad4130_driver);
MODULE_AUTHOR("Cosmin Tanislav <cosmin.tanislav@analog.com>");
MODULE_DESCRIPTION("Analog Devices AD4130 SPI driver");
MODULE_LICENSE("GPL");