| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * This file is part of STM32 ADC driver |
| * |
| * Copyright (C) 2016, STMicroelectronics - All Rights Reserved |
| * Author: Fabrice Gasnier <fabrice.gasnier@st.com>. |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/debugfs.h> |
| #include <linux/delay.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/dmaengine.h> |
| #include <linux/iio/iio.h> |
| #include <linux/iio/buffer.h> |
| #include <linux/iio/timer/stm32-lptim-trigger.h> |
| #include <linux/iio/timer/stm32-timer-trigger.h> |
| #include <linux/iio/trigger.h> |
| #include <linux/iio/trigger_consumer.h> |
| #include <linux/iio/triggered_buffer.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/iopoll.h> |
| #include <linux/module.h> |
| #include <linux/mod_devicetable.h> |
| #include <linux/nvmem-consumer.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/property.h> |
| |
| #include "stm32-adc-core.h" |
| |
| /* Number of linear calibration shadow registers / LINCALRDYW control bits */ |
| #define STM32H7_LINCALFACT_NUM 6 |
| |
| /* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */ |
| #define STM32H7_BOOST_CLKRATE 20000000UL |
| |
| #define STM32_ADC_CH_MAX 20 /* max number of channels */ |
| #define STM32_ADC_CH_SZ 16 /* max channel name size */ |
| #define STM32_ADC_MAX_SQ 16 /* SQ1..SQ16 */ |
| #define STM32_ADC_MAX_SMP 7 /* SMPx range is [0..7] */ |
| #define STM32_ADC_TIMEOUT_US 100000 |
| #define STM32_ADC_TIMEOUT (msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000)) |
| #define STM32_ADC_HW_STOP_DELAY_MS 100 |
| #define STM32_ADC_VREFINT_VOLTAGE 3300 |
| |
| #define STM32_DMA_BUFFER_SIZE PAGE_SIZE |
| |
| /* External trigger enable */ |
| enum stm32_adc_exten { |
| STM32_EXTEN_SWTRIG, |
| STM32_EXTEN_HWTRIG_RISING_EDGE, |
| STM32_EXTEN_HWTRIG_FALLING_EDGE, |
| STM32_EXTEN_HWTRIG_BOTH_EDGES, |
| }; |
| |
| /* extsel - trigger mux selection value */ |
| enum stm32_adc_extsel { |
| STM32_EXT0, |
| STM32_EXT1, |
| STM32_EXT2, |
| STM32_EXT3, |
| STM32_EXT4, |
| STM32_EXT5, |
| STM32_EXT6, |
| STM32_EXT7, |
| STM32_EXT8, |
| STM32_EXT9, |
| STM32_EXT10, |
| STM32_EXT11, |
| STM32_EXT12, |
| STM32_EXT13, |
| STM32_EXT14, |
| STM32_EXT15, |
| STM32_EXT16, |
| STM32_EXT17, |
| STM32_EXT18, |
| STM32_EXT19, |
| STM32_EXT20, |
| }; |
| |
| enum stm32_adc_int_ch { |
| STM32_ADC_INT_CH_NONE = -1, |
| STM32_ADC_INT_CH_VDDCORE, |
| STM32_ADC_INT_CH_VDDCPU, |
| STM32_ADC_INT_CH_VDDQ_DDR, |
| STM32_ADC_INT_CH_VREFINT, |
| STM32_ADC_INT_CH_VBAT, |
| STM32_ADC_INT_CH_NB, |
| }; |
| |
| /** |
| * struct stm32_adc_ic - ADC internal channels |
| * @name: name of the internal channel |
| * @idx: internal channel enum index |
| */ |
| struct stm32_adc_ic { |
| const char *name; |
| u32 idx; |
| }; |
| |
| static const struct stm32_adc_ic stm32_adc_ic[STM32_ADC_INT_CH_NB] = { |
| { "vddcore", STM32_ADC_INT_CH_VDDCORE }, |
| { "vddcpu", STM32_ADC_INT_CH_VDDCPU }, |
| { "vddq_ddr", STM32_ADC_INT_CH_VDDQ_DDR }, |
| { "vrefint", STM32_ADC_INT_CH_VREFINT }, |
| { "vbat", STM32_ADC_INT_CH_VBAT }, |
| }; |
| |
| /** |
| * struct stm32_adc_trig_info - ADC trigger info |
| * @name: name of the trigger, corresponding to its source |
| * @extsel: trigger selection |
| */ |
| struct stm32_adc_trig_info { |
| const char *name; |
| enum stm32_adc_extsel extsel; |
| }; |
| |
| /** |
| * struct stm32_adc_calib - optional adc calibration data |
| * @lincalfact: Linearity calibration factor |
| * @lincal_saved: Indicates that linear calibration factors are saved |
| */ |
| struct stm32_adc_calib { |
| u32 lincalfact[STM32H7_LINCALFACT_NUM]; |
| bool lincal_saved; |
| }; |
| |
| /** |
| * struct stm32_adc_regs - stm32 ADC misc registers & bitfield desc |
| * @reg: register offset |
| * @mask: bitfield mask |
| * @shift: left shift |
| */ |
| struct stm32_adc_regs { |
| int reg; |
| int mask; |
| int shift; |
| }; |
| |
| /** |
| * struct stm32_adc_vrefint - stm32 ADC internal reference voltage data |
| * @vrefint_cal: vrefint calibration value from nvmem |
| * @vrefint_data: vrefint actual value |
| */ |
| struct stm32_adc_vrefint { |
| u32 vrefint_cal; |
| u32 vrefint_data; |
| }; |
| |
| /** |
| * struct stm32_adc_regspec - stm32 registers definition |
| * @dr: data register offset |
| * @ier_eoc: interrupt enable register & eocie bitfield |
| * @ier_ovr: interrupt enable register & overrun bitfield |
| * @isr_eoc: interrupt status register & eoc bitfield |
| * @isr_ovr: interrupt status register & overrun bitfield |
| * @sqr: reference to sequence registers array |
| * @exten: trigger control register & bitfield |
| * @extsel: trigger selection register & bitfield |
| * @res: resolution selection register & bitfield |
| * @difsel: differential mode selection register & bitfield |
| * @smpr: smpr1 & smpr2 registers offset array |
| * @smp_bits: smpr1 & smpr2 index and bitfields |
| * @or_vddcore: option register & vddcore bitfield |
| * @or_vddcpu: option register & vddcpu bitfield |
| * @or_vddq_ddr: option register & vddq_ddr bitfield |
| * @ccr_vbat: common register & vbat bitfield |
| * @ccr_vref: common register & vrefint bitfield |
| */ |
| struct stm32_adc_regspec { |
| const u32 dr; |
| const struct stm32_adc_regs ier_eoc; |
| const struct stm32_adc_regs ier_ovr; |
| const struct stm32_adc_regs isr_eoc; |
| const struct stm32_adc_regs isr_ovr; |
| const struct stm32_adc_regs *sqr; |
| const struct stm32_adc_regs exten; |
| const struct stm32_adc_regs extsel; |
| const struct stm32_adc_regs res; |
| const struct stm32_adc_regs difsel; |
| const u32 smpr[2]; |
| const struct stm32_adc_regs *smp_bits; |
| const struct stm32_adc_regs or_vddcore; |
| const struct stm32_adc_regs or_vddcpu; |
| const struct stm32_adc_regs or_vddq_ddr; |
| const struct stm32_adc_regs ccr_vbat; |
| const struct stm32_adc_regs ccr_vref; |
| }; |
| |
| struct stm32_adc; |
| |
| /** |
| * struct stm32_adc_cfg - stm32 compatible configuration data |
| * @regs: registers descriptions |
| * @adc_info: per instance input channels definitions |
| * @trigs: external trigger sources |
| * @clk_required: clock is required |
| * @has_vregready: vregready status flag presence |
| * @has_boostmode: boost mode support flag |
| * @has_linearcal: linear calibration support flag |
| * @has_presel: channel preselection support flag |
| * @prepare: optional prepare routine (power-up, enable) |
| * @start_conv: routine to start conversions |
| * @stop_conv: routine to stop conversions |
| * @unprepare: optional unprepare routine (disable, power-down) |
| * @irq_clear: routine to clear irqs |
| * @smp_cycles: programmable sampling time (ADC clock cycles) |
| * @ts_int_ch: pointer to array of internal channels minimum sampling time in ns |
| */ |
| struct stm32_adc_cfg { |
| const struct stm32_adc_regspec *regs; |
| const struct stm32_adc_info *adc_info; |
| struct stm32_adc_trig_info *trigs; |
| bool clk_required; |
| bool has_vregready; |
| bool has_boostmode; |
| bool has_linearcal; |
| bool has_presel; |
| int (*prepare)(struct iio_dev *); |
| void (*start_conv)(struct iio_dev *, bool dma); |
| void (*stop_conv)(struct iio_dev *); |
| void (*unprepare)(struct iio_dev *); |
| void (*irq_clear)(struct iio_dev *indio_dev, u32 msk); |
| const unsigned int *smp_cycles; |
| const unsigned int *ts_int_ch; |
| }; |
| |
| /** |
| * struct stm32_adc - private data of each ADC IIO instance |
| * @common: reference to ADC block common data |
| * @offset: ADC instance register offset in ADC block |
| * @cfg: compatible configuration data |
| * @completion: end of single conversion completion |
| * @buffer: data buffer + 8 bytes for timestamp if enabled |
| * @clk: clock for this adc instance |
| * @irq: interrupt for this adc instance |
| * @lock: spinlock |
| * @bufi: data buffer index |
| * @num_conv: expected number of scan conversions |
| * @res: data resolution (e.g. RES bitfield value) |
| * @trigger_polarity: external trigger polarity (e.g. exten) |
| * @dma_chan: dma channel |
| * @rx_buf: dma rx buffer cpu address |
| * @rx_dma_buf: dma rx buffer bus address |
| * @rx_buf_sz: dma rx buffer size |
| * @difsel: bitmask to set single-ended/differential channel |
| * @pcsel: bitmask to preselect channels on some devices |
| * @smpr_val: sampling time settings (e.g. smpr1 / smpr2) |
| * @cal: optional calibration data on some devices |
| * @vrefint: internal reference voltage data |
| * @chan_name: channel name array |
| * @num_diff: number of differential channels |
| * @int_ch: internal channel indexes array |
| * @nsmps: number of channels with optional sample time |
| */ |
| struct stm32_adc { |
| struct stm32_adc_common *common; |
| u32 offset; |
| const struct stm32_adc_cfg *cfg; |
| struct completion completion; |
| u16 buffer[STM32_ADC_MAX_SQ + 4] __aligned(8); |
| struct clk *clk; |
| int irq; |
| spinlock_t lock; /* interrupt lock */ |
| unsigned int bufi; |
| unsigned int num_conv; |
| u32 res; |
| u32 trigger_polarity; |
| struct dma_chan *dma_chan; |
| u8 *rx_buf; |
| dma_addr_t rx_dma_buf; |
| unsigned int rx_buf_sz; |
| u32 difsel; |
| u32 pcsel; |
| u32 smpr_val[2]; |
| struct stm32_adc_calib cal; |
| struct stm32_adc_vrefint vrefint; |
| char chan_name[STM32_ADC_CH_MAX][STM32_ADC_CH_SZ]; |
| u32 num_diff; |
| int int_ch[STM32_ADC_INT_CH_NB]; |
| int nsmps; |
| }; |
| |
| struct stm32_adc_diff_channel { |
| u32 vinp; |
| u32 vinn; |
| }; |
| |
| /** |
| * struct stm32_adc_info - stm32 ADC, per instance config data |
| * @max_channels: Number of channels |
| * @resolutions: available resolutions |
| * @num_res: number of available resolutions |
| */ |
| struct stm32_adc_info { |
| int max_channels; |
| const unsigned int *resolutions; |
| const unsigned int num_res; |
| }; |
| |
| static const unsigned int stm32f4_adc_resolutions[] = { |
| /* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */ |
| 12, 10, 8, 6, |
| }; |
| |
| /* stm32f4 can have up to 16 channels */ |
| static const struct stm32_adc_info stm32f4_adc_info = { |
| .max_channels = 16, |
| .resolutions = stm32f4_adc_resolutions, |
| .num_res = ARRAY_SIZE(stm32f4_adc_resolutions), |
| }; |
| |
| static const unsigned int stm32h7_adc_resolutions[] = { |
| /* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */ |
| 16, 14, 12, 10, 8, |
| }; |
| |
| /* stm32h7 can have up to 20 channels */ |
| static const struct stm32_adc_info stm32h7_adc_info = { |
| .max_channels = STM32_ADC_CH_MAX, |
| .resolutions = stm32h7_adc_resolutions, |
| .num_res = ARRAY_SIZE(stm32h7_adc_resolutions), |
| }; |
| |
| /* stm32mp13 can have up to 19 channels */ |
| static const struct stm32_adc_info stm32mp13_adc_info = { |
| .max_channels = 19, |
| .resolutions = stm32f4_adc_resolutions, |
| .num_res = ARRAY_SIZE(stm32f4_adc_resolutions), |
| }; |
| |
| /* |
| * stm32f4_sq - describe regular sequence registers |
| * - L: sequence len (register & bit field) |
| * - SQ1..SQ16: sequence entries (register & bit field) |
| */ |
| static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = { |
| /* L: len bit field description to be kept as first element */ |
| { STM32F4_ADC_SQR1, GENMASK(23, 20), 20 }, |
| /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */ |
| { STM32F4_ADC_SQR3, GENMASK(4, 0), 0 }, |
| { STM32F4_ADC_SQR3, GENMASK(9, 5), 5 }, |
| { STM32F4_ADC_SQR3, GENMASK(14, 10), 10 }, |
| { STM32F4_ADC_SQR3, GENMASK(19, 15), 15 }, |
| { STM32F4_ADC_SQR3, GENMASK(24, 20), 20 }, |
| { STM32F4_ADC_SQR3, GENMASK(29, 25), 25 }, |
| { STM32F4_ADC_SQR2, GENMASK(4, 0), 0 }, |
| { STM32F4_ADC_SQR2, GENMASK(9, 5), 5 }, |
| { STM32F4_ADC_SQR2, GENMASK(14, 10), 10 }, |
| { STM32F4_ADC_SQR2, GENMASK(19, 15), 15 }, |
| { STM32F4_ADC_SQR2, GENMASK(24, 20), 20 }, |
| { STM32F4_ADC_SQR2, GENMASK(29, 25), 25 }, |
| { STM32F4_ADC_SQR1, GENMASK(4, 0), 0 }, |
| { STM32F4_ADC_SQR1, GENMASK(9, 5), 5 }, |
| { STM32F4_ADC_SQR1, GENMASK(14, 10), 10 }, |
| { STM32F4_ADC_SQR1, GENMASK(19, 15), 15 }, |
| }; |
| |
| /* STM32F4 external trigger sources for all instances */ |
| static struct stm32_adc_trig_info stm32f4_adc_trigs[] = { |
| { TIM1_CH1, STM32_EXT0 }, |
| { TIM1_CH2, STM32_EXT1 }, |
| { TIM1_CH3, STM32_EXT2 }, |
| { TIM2_CH2, STM32_EXT3 }, |
| { TIM2_CH3, STM32_EXT4 }, |
| { TIM2_CH4, STM32_EXT5 }, |
| { TIM2_TRGO, STM32_EXT6 }, |
| { TIM3_CH1, STM32_EXT7 }, |
| { TIM3_TRGO, STM32_EXT8 }, |
| { TIM4_CH4, STM32_EXT9 }, |
| { TIM5_CH1, STM32_EXT10 }, |
| { TIM5_CH2, STM32_EXT11 }, |
| { TIM5_CH3, STM32_EXT12 }, |
| { TIM8_CH1, STM32_EXT13 }, |
| { TIM8_TRGO, STM32_EXT14 }, |
| {}, /* sentinel */ |
| }; |
| |
| /* |
| * stm32f4_smp_bits[] - describe sampling time register index & bit fields |
| * Sorted so it can be indexed by channel number. |
| */ |
| static const struct stm32_adc_regs stm32f4_smp_bits[] = { |
| /* STM32F4_ADC_SMPR2: smpr[] index, mask, shift for SMP0 to SMP9 */ |
| { 1, GENMASK(2, 0), 0 }, |
| { 1, GENMASK(5, 3), 3 }, |
| { 1, GENMASK(8, 6), 6 }, |
| { 1, GENMASK(11, 9), 9 }, |
| { 1, GENMASK(14, 12), 12 }, |
| { 1, GENMASK(17, 15), 15 }, |
| { 1, GENMASK(20, 18), 18 }, |
| { 1, GENMASK(23, 21), 21 }, |
| { 1, GENMASK(26, 24), 24 }, |
| { 1, GENMASK(29, 27), 27 }, |
| /* STM32F4_ADC_SMPR1, smpr[] index, mask, shift for SMP10 to SMP18 */ |
| { 0, GENMASK(2, 0), 0 }, |
| { 0, GENMASK(5, 3), 3 }, |
| { 0, GENMASK(8, 6), 6 }, |
| { 0, GENMASK(11, 9), 9 }, |
| { 0, GENMASK(14, 12), 12 }, |
| { 0, GENMASK(17, 15), 15 }, |
| { 0, GENMASK(20, 18), 18 }, |
| { 0, GENMASK(23, 21), 21 }, |
| { 0, GENMASK(26, 24), 24 }, |
| }; |
| |
| /* STM32F4 programmable sampling time (ADC clock cycles) */ |
| static const unsigned int stm32f4_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = { |
| 3, 15, 28, 56, 84, 112, 144, 480, |
| }; |
| |
| static const struct stm32_adc_regspec stm32f4_adc_regspec = { |
| .dr = STM32F4_ADC_DR, |
| .ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE }, |
| .ier_ovr = { STM32F4_ADC_CR1, STM32F4_OVRIE }, |
| .isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC }, |
| .isr_ovr = { STM32F4_ADC_SR, STM32F4_OVR }, |
| .sqr = stm32f4_sq, |
| .exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT }, |
| .extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK, |
| STM32F4_EXTSEL_SHIFT }, |
| .res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT }, |
| .smpr = { STM32F4_ADC_SMPR1, STM32F4_ADC_SMPR2 }, |
| .smp_bits = stm32f4_smp_bits, |
| }; |
| |
| static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = { |
| /* L: len bit field description to be kept as first element */ |
| { STM32H7_ADC_SQR1, GENMASK(3, 0), 0 }, |
| /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */ |
| { STM32H7_ADC_SQR1, GENMASK(10, 6), 6 }, |
| { STM32H7_ADC_SQR1, GENMASK(16, 12), 12 }, |
| { STM32H7_ADC_SQR1, GENMASK(22, 18), 18 }, |
| { STM32H7_ADC_SQR1, GENMASK(28, 24), 24 }, |
| { STM32H7_ADC_SQR2, GENMASK(4, 0), 0 }, |
| { STM32H7_ADC_SQR2, GENMASK(10, 6), 6 }, |
| { STM32H7_ADC_SQR2, GENMASK(16, 12), 12 }, |
| { STM32H7_ADC_SQR2, GENMASK(22, 18), 18 }, |
| { STM32H7_ADC_SQR2, GENMASK(28, 24), 24 }, |
| { STM32H7_ADC_SQR3, GENMASK(4, 0), 0 }, |
| { STM32H7_ADC_SQR3, GENMASK(10, 6), 6 }, |
| { STM32H7_ADC_SQR3, GENMASK(16, 12), 12 }, |
| { STM32H7_ADC_SQR3, GENMASK(22, 18), 18 }, |
| { STM32H7_ADC_SQR3, GENMASK(28, 24), 24 }, |
| { STM32H7_ADC_SQR4, GENMASK(4, 0), 0 }, |
| { STM32H7_ADC_SQR4, GENMASK(10, 6), 6 }, |
| }; |
| |
| /* STM32H7 external trigger sources for all instances */ |
| static struct stm32_adc_trig_info stm32h7_adc_trigs[] = { |
| { TIM1_CH1, STM32_EXT0 }, |
| { TIM1_CH2, STM32_EXT1 }, |
| { TIM1_CH3, STM32_EXT2 }, |
| { TIM2_CH2, STM32_EXT3 }, |
| { TIM3_TRGO, STM32_EXT4 }, |
| { TIM4_CH4, STM32_EXT5 }, |
| { TIM8_TRGO, STM32_EXT7 }, |
| { TIM8_TRGO2, STM32_EXT8 }, |
| { TIM1_TRGO, STM32_EXT9 }, |
| { TIM1_TRGO2, STM32_EXT10 }, |
| { TIM2_TRGO, STM32_EXT11 }, |
| { TIM4_TRGO, STM32_EXT12 }, |
| { TIM6_TRGO, STM32_EXT13 }, |
| { TIM15_TRGO, STM32_EXT14 }, |
| { TIM3_CH4, STM32_EXT15 }, |
| { LPTIM1_OUT, STM32_EXT18 }, |
| { LPTIM2_OUT, STM32_EXT19 }, |
| { LPTIM3_OUT, STM32_EXT20 }, |
| {}, |
| }; |
| |
| /* |
| * stm32h7_smp_bits - describe sampling time register index & bit fields |
| * Sorted so it can be indexed by channel number. |
| */ |
| static const struct stm32_adc_regs stm32h7_smp_bits[] = { |
| /* STM32H7_ADC_SMPR1, smpr[] index, mask, shift for SMP0 to SMP9 */ |
| { 0, GENMASK(2, 0), 0 }, |
| { 0, GENMASK(5, 3), 3 }, |
| { 0, GENMASK(8, 6), 6 }, |
| { 0, GENMASK(11, 9), 9 }, |
| { 0, GENMASK(14, 12), 12 }, |
| { 0, GENMASK(17, 15), 15 }, |
| { 0, GENMASK(20, 18), 18 }, |
| { 0, GENMASK(23, 21), 21 }, |
| { 0, GENMASK(26, 24), 24 }, |
| { 0, GENMASK(29, 27), 27 }, |
| /* STM32H7_ADC_SMPR2, smpr[] index, mask, shift for SMP10 to SMP19 */ |
| { 1, GENMASK(2, 0), 0 }, |
| { 1, GENMASK(5, 3), 3 }, |
| { 1, GENMASK(8, 6), 6 }, |
| { 1, GENMASK(11, 9), 9 }, |
| { 1, GENMASK(14, 12), 12 }, |
| { 1, GENMASK(17, 15), 15 }, |
| { 1, GENMASK(20, 18), 18 }, |
| { 1, GENMASK(23, 21), 21 }, |
| { 1, GENMASK(26, 24), 24 }, |
| { 1, GENMASK(29, 27), 27 }, |
| }; |
| |
| /* STM32H7 programmable sampling time (ADC clock cycles, rounded down) */ |
| static const unsigned int stm32h7_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = { |
| 1, 2, 8, 16, 32, 64, 387, 810, |
| }; |
| |
| static const struct stm32_adc_regspec stm32h7_adc_regspec = { |
| .dr = STM32H7_ADC_DR, |
| .ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE }, |
| .ier_ovr = { STM32H7_ADC_IER, STM32H7_OVRIE }, |
| .isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC }, |
| .isr_ovr = { STM32H7_ADC_ISR, STM32H7_OVR }, |
| .sqr = stm32h7_sq, |
| .exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT }, |
| .extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK, |
| STM32H7_EXTSEL_SHIFT }, |
| .res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT }, |
| .difsel = { STM32H7_ADC_DIFSEL, STM32H7_DIFSEL_MASK}, |
| .smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 }, |
| .smp_bits = stm32h7_smp_bits, |
| }; |
| |
| /* STM32MP13 programmable sampling time (ADC clock cycles, rounded down) */ |
| static const unsigned int stm32mp13_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = { |
| 2, 6, 12, 24, 47, 92, 247, 640, |
| }; |
| |
| static const struct stm32_adc_regspec stm32mp13_adc_regspec = { |
| .dr = STM32H7_ADC_DR, |
| .ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE }, |
| .ier_ovr = { STM32H7_ADC_IER, STM32H7_OVRIE }, |
| .isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC }, |
| .isr_ovr = { STM32H7_ADC_ISR, STM32H7_OVR }, |
| .sqr = stm32h7_sq, |
| .exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT }, |
| .extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK, |
| STM32H7_EXTSEL_SHIFT }, |
| .res = { STM32H7_ADC_CFGR, STM32MP13_RES_MASK, STM32MP13_RES_SHIFT }, |
| .difsel = { STM32MP13_ADC_DIFSEL, STM32MP13_DIFSEL_MASK}, |
| .smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 }, |
| .smp_bits = stm32h7_smp_bits, |
| .or_vddcore = { STM32MP13_ADC2_OR, STM32MP13_OP0 }, |
| .or_vddcpu = { STM32MP13_ADC2_OR, STM32MP13_OP1 }, |
| .or_vddq_ddr = { STM32MP13_ADC2_OR, STM32MP13_OP2 }, |
| .ccr_vbat = { STM32H7_ADC_CCR, STM32H7_VBATEN }, |
| .ccr_vref = { STM32H7_ADC_CCR, STM32H7_VREFEN }, |
| }; |
| |
| static const struct stm32_adc_regspec stm32mp1_adc_regspec = { |
| .dr = STM32H7_ADC_DR, |
| .ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE }, |
| .ier_ovr = { STM32H7_ADC_IER, STM32H7_OVRIE }, |
| .isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC }, |
| .isr_ovr = { STM32H7_ADC_ISR, STM32H7_OVR }, |
| .sqr = stm32h7_sq, |
| .exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT }, |
| .extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK, |
| STM32H7_EXTSEL_SHIFT }, |
| .res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT }, |
| .difsel = { STM32H7_ADC_DIFSEL, STM32H7_DIFSEL_MASK}, |
| .smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 }, |
| .smp_bits = stm32h7_smp_bits, |
| .or_vddcore = { STM32MP1_ADC2_OR, STM32MP1_VDDCOREEN }, |
| .ccr_vbat = { STM32H7_ADC_CCR, STM32H7_VBATEN }, |
| .ccr_vref = { STM32H7_ADC_CCR, STM32H7_VREFEN }, |
| }; |
| |
| /* |
| * STM32 ADC registers access routines |
| * @adc: stm32 adc instance |
| * @reg: reg offset in adc instance |
| * |
| * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp. |
| * for adc1, adc2 and adc3. |
| */ |
| static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg) |
| { |
| return readl_relaxed(adc->common->base + adc->offset + reg); |
| } |
| |
| #define stm32_adc_readl_addr(addr) stm32_adc_readl(adc, addr) |
| |
| #define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \ |
| readx_poll_timeout(stm32_adc_readl_addr, reg, val, \ |
| cond, sleep_us, timeout_us) |
| |
| static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg) |
| { |
| return readw_relaxed(adc->common->base + adc->offset + reg); |
| } |
| |
| static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val) |
| { |
| writel_relaxed(val, adc->common->base + adc->offset + reg); |
| } |
| |
| static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&adc->lock, flags); |
| stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits); |
| spin_unlock_irqrestore(&adc->lock, flags); |
| } |
| |
| static void stm32_adc_set_bits_common(struct stm32_adc *adc, u32 reg, u32 bits) |
| { |
| spin_lock(&adc->common->lock); |
| writel_relaxed(readl_relaxed(adc->common->base + reg) | bits, |
| adc->common->base + reg); |
| spin_unlock(&adc->common->lock); |
| } |
| |
| static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&adc->lock, flags); |
| stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits); |
| spin_unlock_irqrestore(&adc->lock, flags); |
| } |
| |
| static void stm32_adc_clr_bits_common(struct stm32_adc *adc, u32 reg, u32 bits) |
| { |
| spin_lock(&adc->common->lock); |
| writel_relaxed(readl_relaxed(adc->common->base + reg) & ~bits, |
| adc->common->base + reg); |
| spin_unlock(&adc->common->lock); |
| } |
| |
| /** |
| * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt |
| * @adc: stm32 adc instance |
| */ |
| static void stm32_adc_conv_irq_enable(struct stm32_adc *adc) |
| { |
| stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg, |
| adc->cfg->regs->ier_eoc.mask); |
| }; |
| |
| /** |
| * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt |
| * @adc: stm32 adc instance |
| */ |
| static void stm32_adc_conv_irq_disable(struct stm32_adc *adc) |
| { |
| stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg, |
| adc->cfg->regs->ier_eoc.mask); |
| } |
| |
| static void stm32_adc_ovr_irq_enable(struct stm32_adc *adc) |
| { |
| stm32_adc_set_bits(adc, adc->cfg->regs->ier_ovr.reg, |
| adc->cfg->regs->ier_ovr.mask); |
| } |
| |
| static void stm32_adc_ovr_irq_disable(struct stm32_adc *adc) |
| { |
| stm32_adc_clr_bits(adc, adc->cfg->regs->ier_ovr.reg, |
| adc->cfg->regs->ier_ovr.mask); |
| } |
| |
| static void stm32_adc_set_res(struct stm32_adc *adc) |
| { |
| const struct stm32_adc_regs *res = &adc->cfg->regs->res; |
| u32 val; |
| |
| val = stm32_adc_readl(adc, res->reg); |
| val = (val & ~res->mask) | (adc->res << res->shift); |
| stm32_adc_writel(adc, res->reg, val); |
| } |
| |
| static int stm32_adc_hw_stop(struct device *dev) |
| { |
| struct iio_dev *indio_dev = dev_get_drvdata(dev); |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| |
| if (adc->cfg->unprepare) |
| adc->cfg->unprepare(indio_dev); |
| |
| clk_disable_unprepare(adc->clk); |
| |
| return 0; |
| } |
| |
| static int stm32_adc_hw_start(struct device *dev) |
| { |
| struct iio_dev *indio_dev = dev_get_drvdata(dev); |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| int ret; |
| |
| ret = clk_prepare_enable(adc->clk); |
| if (ret) |
| return ret; |
| |
| stm32_adc_set_res(adc); |
| |
| if (adc->cfg->prepare) { |
| ret = adc->cfg->prepare(indio_dev); |
| if (ret) |
| goto err_clk_dis; |
| } |
| |
| return 0; |
| |
| err_clk_dis: |
| clk_disable_unprepare(adc->clk); |
| |
| return ret; |
| } |
| |
| static void stm32_adc_int_ch_enable(struct iio_dev *indio_dev) |
| { |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| u32 i; |
| |
| for (i = 0; i < STM32_ADC_INT_CH_NB; i++) { |
| if (adc->int_ch[i] == STM32_ADC_INT_CH_NONE) |
| continue; |
| |
| switch (i) { |
| case STM32_ADC_INT_CH_VDDCORE: |
| dev_dbg(&indio_dev->dev, "Enable VDDCore\n"); |
| stm32_adc_set_bits(adc, adc->cfg->regs->or_vddcore.reg, |
| adc->cfg->regs->or_vddcore.mask); |
| break; |
| case STM32_ADC_INT_CH_VDDCPU: |
| dev_dbg(&indio_dev->dev, "Enable VDDCPU\n"); |
| stm32_adc_set_bits(adc, adc->cfg->regs->or_vddcpu.reg, |
| adc->cfg->regs->or_vddcpu.mask); |
| break; |
| case STM32_ADC_INT_CH_VDDQ_DDR: |
| dev_dbg(&indio_dev->dev, "Enable VDDQ_DDR\n"); |
| stm32_adc_set_bits(adc, adc->cfg->regs->or_vddq_ddr.reg, |
| adc->cfg->regs->or_vddq_ddr.mask); |
| break; |
| case STM32_ADC_INT_CH_VREFINT: |
| dev_dbg(&indio_dev->dev, "Enable VREFInt\n"); |
| stm32_adc_set_bits_common(adc, adc->cfg->regs->ccr_vref.reg, |
| adc->cfg->regs->ccr_vref.mask); |
| break; |
| case STM32_ADC_INT_CH_VBAT: |
| dev_dbg(&indio_dev->dev, "Enable VBAT\n"); |
| stm32_adc_set_bits_common(adc, adc->cfg->regs->ccr_vbat.reg, |
| adc->cfg->regs->ccr_vbat.mask); |
| break; |
| } |
| } |
| } |
| |
| static void stm32_adc_int_ch_disable(struct stm32_adc *adc) |
| { |
| u32 i; |
| |
| for (i = 0; i < STM32_ADC_INT_CH_NB; i++) { |
| if (adc->int_ch[i] == STM32_ADC_INT_CH_NONE) |
| continue; |
| |
| switch (i) { |
| case STM32_ADC_INT_CH_VDDCORE: |
| stm32_adc_clr_bits(adc, adc->cfg->regs->or_vddcore.reg, |
| adc->cfg->regs->or_vddcore.mask); |
| break; |
| case STM32_ADC_INT_CH_VDDCPU: |
| stm32_adc_clr_bits(adc, adc->cfg->regs->or_vddcpu.reg, |
| adc->cfg->regs->or_vddcpu.mask); |
| break; |
| case STM32_ADC_INT_CH_VDDQ_DDR: |
| stm32_adc_clr_bits(adc, adc->cfg->regs->or_vddq_ddr.reg, |
| adc->cfg->regs->or_vddq_ddr.mask); |
| break; |
| case STM32_ADC_INT_CH_VREFINT: |
| stm32_adc_clr_bits_common(adc, adc->cfg->regs->ccr_vref.reg, |
| adc->cfg->regs->ccr_vref.mask); |
| break; |
| case STM32_ADC_INT_CH_VBAT: |
| stm32_adc_clr_bits_common(adc, adc->cfg->regs->ccr_vbat.reg, |
| adc->cfg->regs->ccr_vbat.mask); |
| break; |
| } |
| } |
| } |
| |
| /** |
| * stm32f4_adc_start_conv() - Start conversions for regular channels. |
| * @indio_dev: IIO device instance |
| * @dma: use dma to transfer conversion result |
| * |
| * Start conversions for regular channels. |
| * Also take care of normal or DMA mode. Circular DMA may be used for regular |
| * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct |
| * DR read instead (e.g. read_raw, or triggered buffer mode without DMA). |
| */ |
| static void stm32f4_adc_start_conv(struct iio_dev *indio_dev, bool dma) |
| { |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| |
| stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN); |
| |
| if (dma) |
| stm32_adc_set_bits(adc, STM32F4_ADC_CR2, |
| STM32F4_DMA | STM32F4_DDS); |
| |
| stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON); |
| |
| /* Wait for Power-up time (tSTAB from datasheet) */ |
| usleep_range(2, 3); |
| |
| /* Software start ? (e.g. trigger detection disabled ?) */ |
| if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK)) |
| stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART); |
| } |
| |
| static void stm32f4_adc_stop_conv(struct iio_dev *indio_dev) |
| { |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| |
| stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK); |
| stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT); |
| |
| stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN); |
| stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, |
| STM32F4_ADON | STM32F4_DMA | STM32F4_DDS); |
| } |
| |
| static void stm32f4_adc_irq_clear(struct iio_dev *indio_dev, u32 msk) |
| { |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| |
| stm32_adc_clr_bits(adc, adc->cfg->regs->isr_eoc.reg, msk); |
| } |
| |
| static void stm32h7_adc_start_conv(struct iio_dev *indio_dev, bool dma) |
| { |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| enum stm32h7_adc_dmngt dmngt; |
| unsigned long flags; |
| u32 val; |
| |
| if (dma) |
| dmngt = STM32H7_DMNGT_DMA_CIRC; |
| else |
| dmngt = STM32H7_DMNGT_DR_ONLY; |
| |
| spin_lock_irqsave(&adc->lock, flags); |
| val = stm32_adc_readl(adc, STM32H7_ADC_CFGR); |
| val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT); |
| stm32_adc_writel(adc, STM32H7_ADC_CFGR, val); |
| spin_unlock_irqrestore(&adc->lock, flags); |
| |
| stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART); |
| } |
| |
| static void stm32h7_adc_stop_conv(struct iio_dev *indio_dev) |
| { |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| int ret; |
| u32 val; |
| |
| stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP); |
| |
| ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val, |
| !(val & (STM32H7_ADSTART)), |
| 100, STM32_ADC_TIMEOUT_US); |
| if (ret) |
| dev_warn(&indio_dev->dev, "stop failed\n"); |
| |
| /* STM32H7_DMNGT_MASK covers STM32MP13_DMAEN & STM32MP13_DMACFG */ |
| stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK); |
| } |
| |
| static void stm32h7_adc_irq_clear(struct iio_dev *indio_dev, u32 msk) |
| { |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| /* On STM32H7 IRQs are cleared by writing 1 into ISR register */ |
| stm32_adc_set_bits(adc, adc->cfg->regs->isr_eoc.reg, msk); |
| } |
| |
| static void stm32mp13_adc_start_conv(struct iio_dev *indio_dev, bool dma) |
| { |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| |
| if (dma) |
| stm32_adc_set_bits(adc, STM32H7_ADC_CFGR, |
| STM32MP13_DMAEN | STM32MP13_DMACFG); |
| |
| stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART); |
| } |
| |
| static int stm32h7_adc_exit_pwr_down(struct iio_dev *indio_dev) |
| { |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| int ret; |
| u32 val; |
| |
| /* Exit deep power down, then enable ADC voltage regulator */ |
| stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD); |
| stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN); |
| |
| if (adc->cfg->has_boostmode && |
| adc->common->rate > STM32H7_BOOST_CLKRATE) |
| stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST); |
| |
| /* Wait for startup time */ |
| if (!adc->cfg->has_vregready) { |
| usleep_range(10, 20); |
| return 0; |
| } |
| |
| ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val, |
| val & STM32MP1_VREGREADY, 100, |
| STM32_ADC_TIMEOUT_US); |
| if (ret) { |
| stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD); |
| dev_err(&indio_dev->dev, "Failed to exit power down\n"); |
| } |
| |
| return ret; |
| } |
| |
| static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc) |
| { |
| if (adc->cfg->has_boostmode) |
| stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST); |
| |
| /* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */ |
| stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD); |
| } |
| |
| static int stm32h7_adc_enable(struct iio_dev *indio_dev) |
| { |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| int ret; |
| u32 val; |
| |
| stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN); |
| |
| /* Poll for ADRDY to be set (after adc startup time) */ |
| ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val, |
| val & STM32H7_ADRDY, |
| 100, STM32_ADC_TIMEOUT_US); |
| if (ret) { |
| stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS); |
| dev_err(&indio_dev->dev, "Failed to enable ADC\n"); |
| } else { |
| /* Clear ADRDY by writing one */ |
| stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY); |
| } |
| |
| return ret; |
| } |
| |
| static void stm32h7_adc_disable(struct iio_dev *indio_dev) |
| { |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| int ret; |
| u32 val; |
| |
| if (!(stm32_adc_readl(adc, STM32H7_ADC_CR) & STM32H7_ADEN)) |
| return; |
| |
| /* Disable ADC and wait until it's effectively disabled */ |
| stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS); |
| ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val, |
| !(val & STM32H7_ADEN), 100, |
| STM32_ADC_TIMEOUT_US); |
| if (ret) |
| dev_warn(&indio_dev->dev, "Failed to disable\n"); |
| } |
| |
| /** |
| * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result |
| * @indio_dev: IIO device instance |
| * Note: Must be called once ADC is enabled, so LINCALRDYW[1..6] are writable |
| */ |
| static int stm32h7_adc_read_selfcalib(struct iio_dev *indio_dev) |
| { |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| int i, ret; |
| u32 lincalrdyw_mask, val; |
| |
| /* Read linearity calibration */ |
| lincalrdyw_mask = STM32H7_LINCALRDYW6; |
| for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) { |
| /* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */ |
| stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask); |
| |
| /* Poll: wait calib data to be ready in CALFACT2 register */ |
| ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val, |
| !(val & lincalrdyw_mask), |
| 100, STM32_ADC_TIMEOUT_US); |
| if (ret) { |
| dev_err(&indio_dev->dev, "Failed to read calfact\n"); |
| return ret; |
| } |
| |
| val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2); |
| adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK); |
| adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT; |
| |
| lincalrdyw_mask >>= 1; |
| } |
| adc->cal.lincal_saved = true; |
| |
| return 0; |
| } |
| |
| /** |
| * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result |
| * @indio_dev: IIO device instance |
| * Note: ADC must be enabled, with no on-going conversions. |
| */ |
| static int stm32h7_adc_restore_selfcalib(struct iio_dev *indio_dev) |
| { |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| int i, ret; |
| u32 lincalrdyw_mask, val; |
| |
| lincalrdyw_mask = STM32H7_LINCALRDYW6; |
| for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) { |
| /* |
| * Write saved calibration data to shadow registers: |
| * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger |
| * data write. Then poll to wait for complete transfer. |
| */ |
| val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT; |
| stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val); |
| stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask); |
| ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val, |
| val & lincalrdyw_mask, |
| 100, STM32_ADC_TIMEOUT_US); |
| if (ret) { |
| dev_err(&indio_dev->dev, "Failed to write calfact\n"); |
| return ret; |
| } |
| |
| /* |
| * Read back calibration data, has two effects: |
| * - It ensures bits LINCALRDYW[6..1] are kept cleared |
| * for next time calibration needs to be restored. |
| * - BTW, bit clear triggers a read, then check data has been |
| * correctly written. |
| */ |
| stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask); |
| ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val, |
| !(val & lincalrdyw_mask), |
| 100, STM32_ADC_TIMEOUT_US); |
| if (ret) { |
| dev_err(&indio_dev->dev, "Failed to read calfact\n"); |
| return ret; |
| } |
| val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2); |
| if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) { |
| dev_err(&indio_dev->dev, "calfact not consistent\n"); |
| return -EIO; |
| } |
| |
| lincalrdyw_mask >>= 1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Fixed timeout value for ADC calibration. |
| * worst cases: |
| * - low clock frequency |
| * - maximum prescalers |
| * Calibration requires: |
| * - 131,072 ADC clock cycle for the linear calibration |
| * - 20 ADC clock cycle for the offset calibration |
| * |
| * Set to 100ms for now |
| */ |
| #define STM32H7_ADC_CALIB_TIMEOUT_US 100000 |
| |
| /** |
| * stm32h7_adc_selfcalib() - Procedure to calibrate ADC |
| * @indio_dev: IIO device instance |
| * @do_lincal: linear calibration request flag |
| * Note: Must be called once ADC is out of power down. |
| * |
| * Run offset calibration unconditionally. |
| * Run linear calibration if requested & supported. |
| */ |
| static int stm32h7_adc_selfcalib(struct iio_dev *indio_dev, int do_lincal) |
| { |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| int ret; |
| u32 msk = STM32H7_ADCALDIF; |
| u32 val; |
| |
| if (adc->cfg->has_linearcal && do_lincal) |
| msk |= STM32H7_ADCALLIN; |
| /* ADC must be disabled for calibration */ |
| stm32h7_adc_disable(indio_dev); |
| |
| /* |
| * Select calibration mode: |
| * - Offset calibration for single ended inputs |
| * - No linearity calibration (do it later, before reading it) |
| */ |
| stm32_adc_clr_bits(adc, STM32H7_ADC_CR, msk); |
| |
| /* Start calibration, then wait for completion */ |
| stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL); |
| ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val, |
| !(val & STM32H7_ADCAL), 100, |
| STM32H7_ADC_CALIB_TIMEOUT_US); |
| if (ret) { |
| dev_err(&indio_dev->dev, "calibration (single-ended) error %d\n", ret); |
| goto out; |
| } |
| |
| /* |
| * Select calibration mode, then start calibration: |
| * - Offset calibration for differential input |
| * - Linearity calibration (needs to be done only once for single/diff) |
| * will run simultaneously with offset calibration. |
| */ |
| stm32_adc_set_bits(adc, STM32H7_ADC_CR, msk); |
| stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL); |
| ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val, |
| !(val & STM32H7_ADCAL), 100, |
| STM32H7_ADC_CALIB_TIMEOUT_US); |
| if (ret) { |
| dev_err(&indio_dev->dev, "calibration (diff%s) error %d\n", |
| (msk & STM32H7_ADCALLIN) ? "+linear" : "", ret); |
| goto out; |
| } |
| |
| out: |
| stm32_adc_clr_bits(adc, STM32H7_ADC_CR, msk); |
| |
| return ret; |
| } |
| |
| /** |
| * stm32h7_adc_check_selfcalib() - Check linear calibration status |
| * @indio_dev: IIO device instance |
| * |
| * Used to check if linear calibration has been done. |
| * Return true if linear calibration factors are already saved in private data |
| * or if a linear calibration has been done at boot stage. |
| */ |
| static int stm32h7_adc_check_selfcalib(struct iio_dev *indio_dev) |
| { |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| u32 val; |
| |
| if (adc->cal.lincal_saved) |
| return true; |
| |
| /* |
| * Check if linear calibration factors are available in ADC registers, |
| * by checking that all LINCALRDYWx bits are set. |
| */ |
| val = stm32_adc_readl(adc, STM32H7_ADC_CR) & STM32H7_LINCALRDYW_MASK; |
| if (val == STM32H7_LINCALRDYW_MASK) |
| return true; |
| |
| return false; |
| } |
| |
| /** |
| * stm32h7_adc_prepare() - Leave power down mode to enable ADC. |
| * @indio_dev: IIO device instance |
| * Leave power down mode. |
| * Configure channels as single ended or differential before enabling ADC. |
| * Enable ADC. |
| * Restore calibration data. |
| * Pre-select channels that may be used in PCSEL (required by input MUX / IO): |
| * - Only one input is selected for single ended (e.g. 'vinp') |
| * - Two inputs are selected for differential channels (e.g. 'vinp' & 'vinn') |
| */ |
| static int stm32h7_adc_prepare(struct iio_dev *indio_dev) |
| { |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| int lincal_done = false; |
| int ret; |
| |
| ret = stm32h7_adc_exit_pwr_down(indio_dev); |
| if (ret) |
| return ret; |
| |
| if (adc->cfg->has_linearcal) |
| lincal_done = stm32h7_adc_check_selfcalib(indio_dev); |
| |
| /* Always run offset calibration. Run linear calibration only once */ |
| ret = stm32h7_adc_selfcalib(indio_dev, !lincal_done); |
| if (ret < 0) |
| goto pwr_dwn; |
| |
| stm32_adc_int_ch_enable(indio_dev); |
| |
| stm32_adc_writel(adc, adc->cfg->regs->difsel.reg, adc->difsel); |
| |
| ret = stm32h7_adc_enable(indio_dev); |
| if (ret) |
| goto ch_disable; |
| |
| if (adc->cfg->has_linearcal) { |
| if (!adc->cal.lincal_saved) |
| ret = stm32h7_adc_read_selfcalib(indio_dev); |
| else |
| ret = stm32h7_adc_restore_selfcalib(indio_dev); |
| |
| if (ret) |
| goto disable; |
| } |
| |
| if (adc->cfg->has_presel) |
| stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel); |
| |
| return 0; |
| |
| disable: |
| stm32h7_adc_disable(indio_dev); |
| ch_disable: |
| stm32_adc_int_ch_disable(adc); |
| pwr_dwn: |
| stm32h7_adc_enter_pwr_down(adc); |
| |
| return ret; |
| } |
| |
| static void stm32h7_adc_unprepare(struct iio_dev *indio_dev) |
| { |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| |
| if (adc->cfg->has_presel) |
| stm32_adc_writel(adc, STM32H7_ADC_PCSEL, 0); |
| stm32h7_adc_disable(indio_dev); |
| stm32_adc_int_ch_disable(adc); |
| stm32h7_adc_enter_pwr_down(adc); |
| } |
| |
| /** |
| * stm32_adc_conf_scan_seq() - Build regular channels scan sequence |
| * @indio_dev: IIO device |
| * @scan_mask: channels to be converted |
| * |
| * Conversion sequence : |
| * Apply sampling time settings for all channels. |
| * Configure ADC scan sequence based on selected channels in scan_mask. |
| * Add channels to SQR registers, from scan_mask LSB to MSB, then |
| * program sequence len. |
| */ |
| static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev, |
| const unsigned long *scan_mask) |
| { |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr; |
| const struct iio_chan_spec *chan; |
| u32 val, bit; |
| int i = 0; |
| |
| /* Apply sampling time settings */ |
| stm32_adc_writel(adc, adc->cfg->regs->smpr[0], adc->smpr_val[0]); |
| stm32_adc_writel(adc, adc->cfg->regs->smpr[1], adc->smpr_val[1]); |
| |
| for_each_set_bit(bit, scan_mask, indio_dev->masklength) { |
| chan = indio_dev->channels + bit; |
| /* |
| * Assign one channel per SQ entry in regular |
| * sequence, starting with SQ1. |
| */ |
| i++; |
| if (i > STM32_ADC_MAX_SQ) |
| return -EINVAL; |
| |
| dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n", |
| __func__, chan->channel, i); |
| |
| val = stm32_adc_readl(adc, sqr[i].reg); |
| val &= ~sqr[i].mask; |
| val |= chan->channel << sqr[i].shift; |
| stm32_adc_writel(adc, sqr[i].reg, val); |
| } |
| |
| if (!i) |
| return -EINVAL; |
| |
| /* Sequence len */ |
| val = stm32_adc_readl(adc, sqr[0].reg); |
| val &= ~sqr[0].mask; |
| val |= ((i - 1) << sqr[0].shift); |
| stm32_adc_writel(adc, sqr[0].reg, val); |
| |
| return 0; |
| } |
| |
| /** |
| * stm32_adc_get_trig_extsel() - Get external trigger selection |
| * @indio_dev: IIO device structure |
| * @trig: trigger |
| * |
| * Returns trigger extsel value, if trig matches, -EINVAL otherwise. |
| */ |
| static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev, |
| struct iio_trigger *trig) |
| { |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| int i; |
| |
| /* lookup triggers registered by stm32 timer trigger driver */ |
| for (i = 0; adc->cfg->trigs[i].name; i++) { |
| /** |
| * Checking both stm32 timer trigger type and trig name |
| * should be safe against arbitrary trigger names. |
| */ |
| if ((is_stm32_timer_trigger(trig) || |
| is_stm32_lptim_trigger(trig)) && |
| !strcmp(adc->cfg->trigs[i].name, trig->name)) { |
| return adc->cfg->trigs[i].extsel; |
| } |
| } |
| |
| return -EINVAL; |
| } |
| |
| /** |
| * stm32_adc_set_trig() - Set a regular trigger |
| * @indio_dev: IIO device |
| * @trig: IIO trigger |
| * |
| * Set trigger source/polarity (e.g. SW, or HW with polarity) : |
| * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw) |
| * - if HW trigger enabled, set source & polarity |
| */ |
| static int stm32_adc_set_trig(struct iio_dev *indio_dev, |
| struct iio_trigger *trig) |
| { |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG; |
| unsigned long flags; |
| int ret; |
| |
| if (trig) { |
| ret = stm32_adc_get_trig_extsel(indio_dev, trig); |
| if (ret < 0) |
| return ret; |
| |
| /* set trigger source and polarity (default to rising edge) */ |
| extsel = ret; |
| exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE; |
| } |
| |
| spin_lock_irqsave(&adc->lock, flags); |
| val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg); |
| val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask); |
| val |= exten << adc->cfg->regs->exten.shift; |
| val |= extsel << adc->cfg->regs->extsel.shift; |
| stm32_adc_writel(adc, adc->cfg->regs->exten.reg, val); |
| spin_unlock_irqrestore(&adc->lock, flags); |
| |
| return 0; |
| } |
| |
| static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev, |
| const struct iio_chan_spec *chan, |
| unsigned int type) |
| { |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| |
| adc->trigger_polarity = type; |
| |
| return 0; |
| } |
| |
| static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev, |
| const struct iio_chan_spec *chan) |
| { |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| |
| return adc->trigger_polarity; |
| } |
| |
| static const char * const stm32_trig_pol_items[] = { |
| "rising-edge", "falling-edge", "both-edges", |
| }; |
| |
| static const struct iio_enum stm32_adc_trig_pol = { |
| .items = stm32_trig_pol_items, |
| .num_items = ARRAY_SIZE(stm32_trig_pol_items), |
| .get = stm32_adc_get_trig_pol, |
| .set = stm32_adc_set_trig_pol, |
| }; |
| |
| /** |
| * stm32_adc_single_conv() - Performs a single conversion |
| * @indio_dev: IIO device |
| * @chan: IIO channel |
| * @res: conversion result |
| * |
| * The function performs a single conversion on a given channel: |
| * - Apply sampling time settings |
| * - Program sequencer with one channel (e.g. in SQ1 with len = 1) |
| * - Use SW trigger |
| * - Start conversion, then wait for interrupt completion. |
| */ |
| static int stm32_adc_single_conv(struct iio_dev *indio_dev, |
| const struct iio_chan_spec *chan, |
| int *res) |
| { |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| struct device *dev = indio_dev->dev.parent; |
| const struct stm32_adc_regspec *regs = adc->cfg->regs; |
| long timeout; |
| u32 val; |
| int ret; |
| |
| reinit_completion(&adc->completion); |
| |
| adc->bufi = 0; |
| |
| ret = pm_runtime_resume_and_get(dev); |
| if (ret < 0) |
| return ret; |
| |
| /* Apply sampling time settings */ |
| stm32_adc_writel(adc, regs->smpr[0], adc->smpr_val[0]); |
| stm32_adc_writel(adc, regs->smpr[1], adc->smpr_val[1]); |
| |
| /* Program chan number in regular sequence (SQ1) */ |
| val = stm32_adc_readl(adc, regs->sqr[1].reg); |
| val &= ~regs->sqr[1].mask; |
| val |= chan->channel << regs->sqr[1].shift; |
| stm32_adc_writel(adc, regs->sqr[1].reg, val); |
| |
| /* Set regular sequence len (0 for 1 conversion) */ |
| stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask); |
| |
| /* Trigger detection disabled (conversion can be launched in SW) */ |
| stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask); |
| |
| stm32_adc_conv_irq_enable(adc); |
| |
| adc->cfg->start_conv(indio_dev, false); |
| |
| timeout = wait_for_completion_interruptible_timeout( |
| &adc->completion, STM32_ADC_TIMEOUT); |
| if (timeout == 0) { |
| ret = -ETIMEDOUT; |
| } else if (timeout < 0) { |
| ret = timeout; |
| } else { |
| *res = adc->buffer[0]; |
| ret = IIO_VAL_INT; |
| } |
| |
| adc->cfg->stop_conv(indio_dev); |
| |
| stm32_adc_conv_irq_disable(adc); |
| |
| pm_runtime_mark_last_busy(dev); |
| pm_runtime_put_autosuspend(dev); |
| |
| return ret; |
| } |
| |
| static int stm32_adc_read_raw(struct iio_dev *indio_dev, |
| struct iio_chan_spec const *chan, |
| int *val, int *val2, long mask) |
| { |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| int ret; |
| |
| switch (mask) { |
| case IIO_CHAN_INFO_RAW: |
| case IIO_CHAN_INFO_PROCESSED: |
| ret = iio_device_claim_direct_mode(indio_dev); |
| if (ret) |
| return ret; |
| if (chan->type == IIO_VOLTAGE) |
| ret = stm32_adc_single_conv(indio_dev, chan, val); |
| else |
| ret = -EINVAL; |
| |
| if (mask == IIO_CHAN_INFO_PROCESSED) |
| *val = STM32_ADC_VREFINT_VOLTAGE * adc->vrefint.vrefint_cal / *val; |
| |
| iio_device_release_direct_mode(indio_dev); |
| return ret; |
| |
| case IIO_CHAN_INFO_SCALE: |
| if (chan->differential) { |
| *val = adc->common->vref_mv * 2; |
| *val2 = chan->scan_type.realbits; |
| } else { |
| *val = adc->common->vref_mv; |
| *val2 = chan->scan_type.realbits; |
| } |
| return IIO_VAL_FRACTIONAL_LOG2; |
| |
| case IIO_CHAN_INFO_OFFSET: |
| if (chan->differential) |
| /* ADC_full_scale / 2 */ |
| *val = -((1 << chan->scan_type.realbits) / 2); |
| else |
| *val = 0; |
| return IIO_VAL_INT; |
| |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static void stm32_adc_irq_clear(struct iio_dev *indio_dev, u32 msk) |
| { |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| |
| adc->cfg->irq_clear(indio_dev, msk); |
| } |
| |
| static irqreturn_t stm32_adc_threaded_isr(int irq, void *data) |
| { |
| struct iio_dev *indio_dev = data; |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| const struct stm32_adc_regspec *regs = adc->cfg->regs; |
| u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg); |
| |
| /* Check ovr status right now, as ovr mask should be already disabled */ |
| if (status & regs->isr_ovr.mask) { |
| /* |
| * Clear ovr bit to avoid subsequent calls to IRQ handler. |
| * This requires to stop ADC first. OVR bit state in ISR, |
| * is propaged to CSR register by hardware. |
| */ |
| adc->cfg->stop_conv(indio_dev); |
| stm32_adc_irq_clear(indio_dev, regs->isr_ovr.mask); |
| dev_err(&indio_dev->dev, "Overrun, stopping: restart needed\n"); |
| return IRQ_HANDLED; |
| } |
| |
| return IRQ_NONE; |
| } |
| |
| static irqreturn_t stm32_adc_isr(int irq, void *data) |
| { |
| struct iio_dev *indio_dev = data; |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| const struct stm32_adc_regspec *regs = adc->cfg->regs; |
| u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg); |
| |
| if (status & regs->isr_ovr.mask) { |
| /* |
| * Overrun occurred on regular conversions: data for wrong |
| * channel may be read. Unconditionally disable interrupts |
| * to stop processing data and print error message. |
| * Restarting the capture can be done by disabling, then |
| * re-enabling it (e.g. write 0, then 1 to buffer/enable). |
| */ |
| stm32_adc_ovr_irq_disable(adc); |
| stm32_adc_conv_irq_disable(adc); |
| return IRQ_WAKE_THREAD; |
| } |
| |
| if (status & regs->isr_eoc.mask) { |
| /* Reading DR also clears EOC status flag */ |
| adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr); |
| if (iio_buffer_enabled(indio_dev)) { |
| adc->bufi++; |
| if (adc->bufi >= adc->num_conv) { |
| stm32_adc_conv_irq_disable(adc); |
| iio_trigger_poll(indio_dev->trig); |
| } |
| } else { |
| complete(&adc->completion); |
| } |
| return IRQ_HANDLED; |
| } |
| |
| return IRQ_NONE; |
| } |
| |
| /** |
| * stm32_adc_validate_trigger() - validate trigger for stm32 adc |
| * @indio_dev: IIO device |
| * @trig: new trigger |
| * |
| * Returns: 0 if trig matches one of the triggers registered by stm32 adc |
| * driver, -EINVAL otherwise. |
| */ |
| static int stm32_adc_validate_trigger(struct iio_dev *indio_dev, |
| struct iio_trigger *trig) |
| { |
| return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0; |
| } |
| |
| static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val) |
| { |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2; |
| unsigned int rx_buf_sz = STM32_DMA_BUFFER_SIZE; |
| |
| /* |
| * dma cyclic transfers are used, buffer is split into two periods. |
| * There should be : |
| * - always one buffer (period) dma is working on |
| * - one buffer (period) driver can push data. |
| */ |
| watermark = min(watermark, val * (unsigned)(sizeof(u16))); |
| adc->rx_buf_sz = min(rx_buf_sz, watermark * 2 * adc->num_conv); |
| |
| return 0; |
| } |
| |
| static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev, |
| const unsigned long *scan_mask) |
| { |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| struct device *dev = indio_dev->dev.parent; |
| int ret; |
| |
| ret = pm_runtime_resume_and_get(dev); |
| if (ret < 0) |
| return ret; |
| |
| adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength); |
| |
| ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask); |
| pm_runtime_mark_last_busy(dev); |
| pm_runtime_put_autosuspend(dev); |
| |
| return ret; |
| } |
| |
| static int stm32_adc_fwnode_xlate(struct iio_dev *indio_dev, |
| const struct fwnode_reference_args *iiospec) |
| { |
| int i; |
| |
| for (i = 0; i < indio_dev->num_channels; i++) |
| if (indio_dev->channels[i].channel == iiospec->args[0]) |
| return i; |
| |
| return -EINVAL; |
| } |
| |
| /** |
| * stm32_adc_debugfs_reg_access - read or write register value |
| * @indio_dev: IIO device structure |
| * @reg: register offset |
| * @writeval: value to write |
| * @readval: value to read |
| * |
| * To read a value from an ADC register: |
| * echo [ADC reg offset] > direct_reg_access |
| * cat direct_reg_access |
| * |
| * To write a value in a ADC register: |
| * echo [ADC_reg_offset] [value] > direct_reg_access |
| */ |
| static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev, |
| unsigned reg, unsigned writeval, |
| unsigned *readval) |
| { |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| struct device *dev = indio_dev->dev.parent; |
| int ret; |
| |
| ret = pm_runtime_resume_and_get(dev); |
| if (ret < 0) |
| return ret; |
| |
| if (!readval) |
| stm32_adc_writel(adc, reg, writeval); |
| else |
| *readval = stm32_adc_readl(adc, reg); |
| |
| pm_runtime_mark_last_busy(dev); |
| pm_runtime_put_autosuspend(dev); |
| |
| return 0; |
| } |
| |
| static const struct iio_info stm32_adc_iio_info = { |
| .read_raw = stm32_adc_read_raw, |
| .validate_trigger = stm32_adc_validate_trigger, |
| .hwfifo_set_watermark = stm32_adc_set_watermark, |
| .update_scan_mode = stm32_adc_update_scan_mode, |
| .debugfs_reg_access = stm32_adc_debugfs_reg_access, |
| .fwnode_xlate = stm32_adc_fwnode_xlate, |
| }; |
| |
| static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc) |
| { |
| struct dma_tx_state state; |
| enum dma_status status; |
| |
| status = dmaengine_tx_status(adc->dma_chan, |
| adc->dma_chan->cookie, |
| &state); |
| if (status == DMA_IN_PROGRESS) { |
| /* Residue is size in bytes from end of buffer */ |
| unsigned int i = adc->rx_buf_sz - state.residue; |
| unsigned int size; |
| |
| /* Return available bytes */ |
| if (i >= adc->bufi) |
| size = i - adc->bufi; |
| else |
| size = adc->rx_buf_sz + i - adc->bufi; |
| |
| return size; |
| } |
| |
| return 0; |
| } |
| |
| static void stm32_adc_dma_buffer_done(void *data) |
| { |
| struct iio_dev *indio_dev = data; |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| int residue = stm32_adc_dma_residue(adc); |
| |
| /* |
| * In DMA mode the trigger services of IIO are not used |
| * (e.g. no call to iio_trigger_poll). |
| * Calling irq handler associated to the hardware trigger is not |
| * relevant as the conversions have already been done. Data |
| * transfers are performed directly in DMA callback instead. |
| * This implementation avoids to call trigger irq handler that |
| * may sleep, in an atomic context (DMA irq handler context). |
| */ |
| dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi); |
| |
| while (residue >= indio_dev->scan_bytes) { |
| u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi]; |
| |
| iio_push_to_buffers(indio_dev, buffer); |
| |
| residue -= indio_dev->scan_bytes; |
| adc->bufi += indio_dev->scan_bytes; |
| if (adc->bufi >= adc->rx_buf_sz) |
| adc->bufi = 0; |
| } |
| } |
| |
| static int stm32_adc_dma_start(struct iio_dev *indio_dev) |
| { |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| struct dma_async_tx_descriptor *desc; |
| dma_cookie_t cookie; |
| int ret; |
| |
| if (!adc->dma_chan) |
| return 0; |
| |
| dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__, |
| adc->rx_buf_sz, adc->rx_buf_sz / 2); |
| |
| /* Prepare a DMA cyclic transaction */ |
| desc = dmaengine_prep_dma_cyclic(adc->dma_chan, |
| adc->rx_dma_buf, |
| adc->rx_buf_sz, adc->rx_buf_sz / 2, |
| DMA_DEV_TO_MEM, |
| DMA_PREP_INTERRUPT); |
| if (!desc) |
| return -EBUSY; |
| |
| desc->callback = stm32_adc_dma_buffer_done; |
| desc->callback_param = indio_dev; |
| |
| cookie = dmaengine_submit(desc); |
| ret = dma_submit_error(cookie); |
| if (ret) { |
| dmaengine_terminate_sync(adc->dma_chan); |
| return ret; |
| } |
| |
| /* Issue pending DMA requests */ |
| dma_async_issue_pending(adc->dma_chan); |
| |
| return 0; |
| } |
| |
| static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev) |
| { |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| struct device *dev = indio_dev->dev.parent; |
| int ret; |
| |
| ret = pm_runtime_resume_and_get(dev); |
| if (ret < 0) |
| return ret; |
| |
| ret = stm32_adc_set_trig(indio_dev, indio_dev->trig); |
| if (ret) { |
| dev_err(&indio_dev->dev, "Can't set trigger\n"); |
| goto err_pm_put; |
| } |
| |
| ret = stm32_adc_dma_start(indio_dev); |
| if (ret) { |
| dev_err(&indio_dev->dev, "Can't start dma\n"); |
| goto err_clr_trig; |
| } |
| |
| /* Reset adc buffer index */ |
| adc->bufi = 0; |
| |
| stm32_adc_ovr_irq_enable(adc); |
| |
| if (!adc->dma_chan) |
| stm32_adc_conv_irq_enable(adc); |
| |
| adc->cfg->start_conv(indio_dev, !!adc->dma_chan); |
| |
| return 0; |
| |
| err_clr_trig: |
| stm32_adc_set_trig(indio_dev, NULL); |
| err_pm_put: |
| pm_runtime_mark_last_busy(dev); |
| pm_runtime_put_autosuspend(dev); |
| |
| return ret; |
| } |
| |
| static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev) |
| { |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| struct device *dev = indio_dev->dev.parent; |
| |
| adc->cfg->stop_conv(indio_dev); |
| if (!adc->dma_chan) |
| stm32_adc_conv_irq_disable(adc); |
| |
| stm32_adc_ovr_irq_disable(adc); |
| |
| if (adc->dma_chan) |
| dmaengine_terminate_sync(adc->dma_chan); |
| |
| if (stm32_adc_set_trig(indio_dev, NULL)) |
| dev_err(&indio_dev->dev, "Can't clear trigger\n"); |
| |
| pm_runtime_mark_last_busy(dev); |
| pm_runtime_put_autosuspend(dev); |
| |
| return 0; |
| } |
| |
| static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = { |
| .postenable = &stm32_adc_buffer_postenable, |
| .predisable = &stm32_adc_buffer_predisable, |
| }; |
| |
| static irqreturn_t stm32_adc_trigger_handler(int irq, void *p) |
| { |
| struct iio_poll_func *pf = p; |
| struct iio_dev *indio_dev = pf->indio_dev; |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| |
| dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi); |
| |
| /* reset buffer index */ |
| adc->bufi = 0; |
| iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer, |
| pf->timestamp); |
| iio_trigger_notify_done(indio_dev->trig); |
| |
| /* re-enable eoc irq */ |
| stm32_adc_conv_irq_enable(adc); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = { |
| IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol), |
| { |
| .name = "trigger_polarity_available", |
| .shared = IIO_SHARED_BY_ALL, |
| .read = iio_enum_available_read, |
| .private = (uintptr_t)&stm32_adc_trig_pol, |
| }, |
| {}, |
| }; |
| |
| static void stm32_adc_debugfs_init(struct iio_dev *indio_dev) |
| { |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| struct dentry *d = iio_get_debugfs_dentry(indio_dev); |
| struct stm32_adc_calib *cal = &adc->cal; |
| char buf[16]; |
| unsigned int i; |
| |
| if (!adc->cfg->has_linearcal) |
| return; |
| |
| for (i = 0; i < STM32H7_LINCALFACT_NUM; i++) { |
| snprintf(buf, sizeof(buf), "lincalfact%d", i + 1); |
| debugfs_create_u32(buf, 0444, d, &cal->lincalfact[i]); |
| } |
| } |
| |
| static int stm32_adc_fw_get_resolution(struct iio_dev *indio_dev) |
| { |
| struct device *dev = &indio_dev->dev; |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| unsigned int i; |
| u32 res; |
| |
| if (device_property_read_u32(dev, "assigned-resolution-bits", &res)) |
| res = adc->cfg->adc_info->resolutions[0]; |
| |
| for (i = 0; i < adc->cfg->adc_info->num_res; i++) |
| if (res == adc->cfg->adc_info->resolutions[i]) |
| break; |
| if (i >= adc->cfg->adc_info->num_res) { |
| dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res); |
| return -EINVAL; |
| } |
| |
| dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res); |
| adc->res = i; |
| |
| return 0; |
| } |
| |
| static void stm32_adc_smpr_init(struct stm32_adc *adc, int channel, u32 smp_ns) |
| { |
| const struct stm32_adc_regs *smpr = &adc->cfg->regs->smp_bits[channel]; |
| u32 period_ns, shift = smpr->shift, mask = smpr->mask; |
| unsigned int i, smp, r = smpr->reg; |
| |
| /* |
| * For internal channels, ensure that the sampling time cannot |
| * be lower than the one specified in the datasheet |
| */ |
| for (i = 0; i < STM32_ADC_INT_CH_NB; i++) |
| if (channel == adc->int_ch[i] && adc->int_ch[i] != STM32_ADC_INT_CH_NONE) |
| smp_ns = max(smp_ns, adc->cfg->ts_int_ch[i]); |
| |
| /* Determine sampling time (ADC clock cycles) */ |
| period_ns = NSEC_PER_SEC / adc->common->rate; |
| for (smp = 0; smp <= STM32_ADC_MAX_SMP; smp++) |
| if ((period_ns * adc->cfg->smp_cycles[smp]) >= smp_ns) |
| break; |
| if (smp > STM32_ADC_MAX_SMP) |
| smp = STM32_ADC_MAX_SMP; |
| |
| /* pre-build sampling time registers (e.g. smpr1, smpr2) */ |
| adc->smpr_val[r] = (adc->smpr_val[r] & ~mask) | (smp << shift); |
| } |
| |
| static void stm32_adc_chan_init_one(struct iio_dev *indio_dev, |
| struct iio_chan_spec *chan, u32 vinp, |
| u32 vinn, int scan_index, bool differential) |
| { |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| char *name = adc->chan_name[vinp]; |
| |
| chan->type = IIO_VOLTAGE; |
| chan->channel = vinp; |
| if (differential) { |
| chan->differential = 1; |
| chan->channel2 = vinn; |
| snprintf(name, STM32_ADC_CH_SZ, "in%d-in%d", vinp, vinn); |
| } else { |
| snprintf(name, STM32_ADC_CH_SZ, "in%d", vinp); |
| } |
| chan->datasheet_name = name; |
| chan->scan_index = scan_index; |
| chan->indexed = 1; |
| if (chan->channel == adc->int_ch[STM32_ADC_INT_CH_VREFINT]) |
| chan->info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED); |
| else |
| chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW); |
| chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | |
| BIT(IIO_CHAN_INFO_OFFSET); |
| chan->scan_type.sign = 'u'; |
| chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res]; |
| chan->scan_type.storagebits = 16; |
| chan->ext_info = stm32_adc_ext_info; |
| |
| /* pre-build selected channels mask */ |
| adc->pcsel |= BIT(chan->channel); |
| if (differential) { |
| /* pre-build diff channels mask */ |
| adc->difsel |= BIT(chan->channel) & adc->cfg->regs->difsel.mask; |
| /* Also add negative input to pre-selected channels */ |
| adc->pcsel |= BIT(chan->channel2); |
| } |
| } |
| |
| static int stm32_adc_get_legacy_chan_count(struct iio_dev *indio_dev, struct stm32_adc *adc) |
| { |
| struct device *dev = &indio_dev->dev; |
| const struct stm32_adc_info *adc_info = adc->cfg->adc_info; |
| int num_channels = 0, ret; |
| |
| dev_dbg(&indio_dev->dev, "using legacy channel config\n"); |
| |
| ret = device_property_count_u32(dev, "st,adc-channels"); |
| if (ret > adc_info->max_channels) { |
| dev_err(&indio_dev->dev, "Bad st,adc-channels?\n"); |
| return -EINVAL; |
| } else if (ret > 0) { |
| num_channels += ret; |
| } |
| |
| /* |
| * each st,adc-diff-channels is a group of 2 u32 so we divide @ret |
| * to get the *real* number of channels. |
| */ |
| ret = device_property_count_u32(dev, "st,adc-diff-channels"); |
| if (ret > 0) { |
| ret /= (int)(sizeof(struct stm32_adc_diff_channel) / sizeof(u32)); |
| if (ret > adc_info->max_channels) { |
| dev_err(&indio_dev->dev, "Bad st,adc-diff-channels?\n"); |
| return -EINVAL; |
| } else if (ret > 0) { |
| adc->num_diff = ret; |
| num_channels += ret; |
| } |
| } |
| |
| /* Optional sample time is provided either for each, or all channels */ |
| adc->nsmps = device_property_count_u32(dev, "st,min-sample-time-nsecs"); |
| if (adc->nsmps > 1 && adc->nsmps != num_channels) { |
| dev_err(&indio_dev->dev, "Invalid st,min-sample-time-nsecs\n"); |
| return -EINVAL; |
| } |
| |
| return num_channels; |
| } |
| |
| static int stm32_adc_legacy_chan_init(struct iio_dev *indio_dev, |
| struct stm32_adc *adc, |
| struct iio_chan_spec *channels, |
| int nchans) |
| { |
| const struct stm32_adc_info *adc_info = adc->cfg->adc_info; |
| struct stm32_adc_diff_channel diff[STM32_ADC_CH_MAX]; |
| struct device *dev = &indio_dev->dev; |
| u32 num_diff = adc->num_diff; |
| int num_se = nchans - num_diff; |
| int size = num_diff * sizeof(*diff) / sizeof(u32); |
| int scan_index = 0, ret, i, c; |
| u32 smp = 0, smps[STM32_ADC_CH_MAX], chans[STM32_ADC_CH_MAX]; |
| |
| if (num_diff) { |
| ret = device_property_read_u32_array(dev, "st,adc-diff-channels", |
| (u32 *)diff, size); |
| if (ret) { |
| dev_err(&indio_dev->dev, "Failed to get diff channels %d\n", ret); |
| return ret; |
| } |
| |
| for (i = 0; i < num_diff; i++) { |
| if (diff[i].vinp >= adc_info->max_channels || |
| diff[i].vinn >= adc_info->max_channels) { |
| dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n", |
| diff[i].vinp, diff[i].vinn); |
| return -EINVAL; |
| } |
| |
| stm32_adc_chan_init_one(indio_dev, &channels[scan_index], |
| diff[i].vinp, diff[i].vinn, |
| scan_index, true); |
| scan_index++; |
| } |
| } |
| if (num_se > 0) { |
| ret = device_property_read_u32_array(dev, "st,adc-channels", chans, num_se); |
| if (ret) { |
| dev_err(&indio_dev->dev, "Failed to get st,adc-channels %d\n", ret); |
| return ret; |
| } |
| |
| for (c = 0; c < num_se; c++) { |
| if (chans[c] >= adc_info->max_channels) { |
| dev_err(&indio_dev->dev, "Invalid channel %d\n", |
| chans[c]); |
| return -EINVAL; |
| } |
| |
| /* Channel can't be configured both as single-ended & diff */ |
| for (i = 0; i < num_diff; i++) { |
| if (chans[c] == diff[i].vinp) { |
| dev_err(&indio_dev->dev, "channel %d misconfigured\n", |
| chans[c]); |
| return -EINVAL; |
| } |
| } |
| stm32_adc_chan_init_one(indio_dev, &channels[scan_index], |
| chans[c], 0, scan_index, false); |
| scan_index++; |
| } |
| } |
| |
| if (adc->nsmps > 0) { |
| ret = device_property_read_u32_array(dev, "st,min-sample-time-nsecs", |
| smps, adc->nsmps); |
| if (ret) |
| return ret; |
| } |
| |
| for (i = 0; i < scan_index; i++) { |
| /* |
| * This check is used with the above logic so that smp value |
| * will only be modified if valid u32 value can be decoded. This |
| * allows to get either no value, 1 shared value for all indexes, |
| * or one value per channel. The point is to have the same |
| * behavior as 'of_property_read_u32_index()'. |
| */ |
| if (i < adc->nsmps) |
| smp = smps[i]; |
| |
| /* Prepare sampling time settings */ |
| stm32_adc_smpr_init(adc, channels[i].channel, smp); |
| } |
| |
| return scan_index; |
| } |
| |
| static int stm32_adc_populate_int_ch(struct iio_dev *indio_dev, const char *ch_name, |
| int chan) |
| { |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| u16 vrefint; |
| int i, ret; |
| |
| for (i = 0; i < STM32_ADC_INT_CH_NB; i++) { |
| if (!strncmp(stm32_adc_ic[i].name, ch_name, STM32_ADC_CH_SZ)) { |
| /* Check internal channel availability */ |
| switch (i) { |
| case STM32_ADC_INT_CH_VDDCORE: |
| if (!adc->cfg->regs->or_vddcore.reg) |
| dev_warn(&indio_dev->dev, |
| "%s channel not available\n", ch_name); |
| break; |
| case STM32_ADC_INT_CH_VDDCPU: |
| if (!adc->cfg->regs->or_vddcpu.reg) |
| dev_warn(&indio_dev->dev, |
| "%s channel not available\n", ch_name); |
| break; |
| case STM32_ADC_INT_CH_VDDQ_DDR: |
| if (!adc->cfg->regs->or_vddq_ddr.reg) |
| dev_warn(&indio_dev->dev, |
| "%s channel not available\n", ch_name); |
| break; |
| case STM32_ADC_INT_CH_VREFINT: |
| if (!adc->cfg->regs->ccr_vref.reg) |
| dev_warn(&indio_dev->dev, |
| "%s channel not available\n", ch_name); |
| break; |
| case STM32_ADC_INT_CH_VBAT: |
| if (!adc->cfg->regs->ccr_vbat.reg) |
| dev_warn(&indio_dev->dev, |
| "%s channel not available\n", ch_name); |
| break; |
| } |
| |
| if (stm32_adc_ic[i].idx != STM32_ADC_INT_CH_VREFINT) { |
| adc->int_ch[i] = chan; |
| break; |
| } |
| |
| /* Get calibration data for vrefint channel */ |
| ret = nvmem_cell_read_u16(&indio_dev->dev, "vrefint", &vrefint); |
| if (ret && ret != -ENOENT) { |
| return dev_err_probe(indio_dev->dev.parent, ret, |
| "nvmem access error\n"); |
| } |
| if (ret == -ENOENT) { |
| dev_dbg(&indio_dev->dev, "vrefint calibration not found. Skip vrefint channel\n"); |
| return ret; |
| } else if (!vrefint) { |
| dev_dbg(&indio_dev->dev, "Null vrefint calibration value. Skip vrefint channel\n"); |
| return -ENOENT; |
| } |
| adc->int_ch[i] = chan; |
| adc->vrefint.vrefint_cal = vrefint; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int stm32_adc_generic_chan_init(struct iio_dev *indio_dev, |
| struct stm32_adc *adc, |
| struct iio_chan_spec *channels) |
| { |
| const struct stm32_adc_info *adc_info = adc->cfg->adc_info; |
| struct fwnode_handle *child; |
| const char *name; |
| int val, scan_index = 0, ret; |
| bool differential; |
| u32 vin[2]; |
| |
| device_for_each_child_node(&indio_dev->dev, child) { |
| ret = fwnode_property_read_u32(child, "reg", &val); |
| if (ret) { |
| dev_err(&indio_dev->dev, "Missing channel index %d\n", ret); |
| goto err; |
| } |
| |
| ret = fwnode_property_read_string(child, "label", &name); |
| /* label is optional */ |
| if (!ret) { |
| if (strlen(name) >= STM32_ADC_CH_SZ) { |
| dev_err(&indio_dev->dev, "Label %s exceeds %d characters\n", |
| name, STM32_ADC_CH_SZ); |
| ret = -EINVAL; |
| goto err; |
| } |
| strscpy(adc->chan_name[val], name, STM32_ADC_CH_SZ); |
| ret = stm32_adc_populate_int_ch(indio_dev, name, val); |
| if (ret == -ENOENT) |
| continue; |
| else if (ret) |
| goto err; |
| } else if (ret != -EINVAL) { |
| dev_err(&indio_dev->dev, "Invalid label %d\n", ret); |
| goto err; |
| } |
| |
| if (val >= adc_info->max_channels) { |
| dev_err(&indio_dev->dev, "Invalid channel %d\n", val); |
| ret = -EINVAL; |
| goto err; |
| } |
| |
| differential = false; |
| ret = fwnode_property_read_u32_array(child, "diff-channels", vin, 2); |
| /* diff-channels is optional */ |
| if (!ret) { |
| differential = true; |
| if (vin[0] != val || vin[1] >= adc_info->max_channels) { |
| dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n", |
| vin[0], vin[1]); |
| goto err; |
| } |
| } else if (ret != -EINVAL) { |
| dev_err(&indio_dev->dev, "Invalid diff-channels property %d\n", ret); |
| goto err; |
| } |
| |
| stm32_adc_chan_init_one(indio_dev, &channels[scan_index], val, |
| vin[1], scan_index, differential); |
| |
| val = 0; |
| ret = fwnode_property_read_u32(child, "st,min-sample-time-ns", &val); |
| /* st,min-sample-time-ns is optional */ |
| if (ret && ret != -EINVAL) { |
| dev_err(&indio_dev->dev, "Invalid st,min-sample-time-ns property %d\n", |
| ret); |
| goto err; |
| } |
| |
| stm32_adc_smpr_init(adc, channels[scan_index].channel, val); |
| if (differential) |
| stm32_adc_smpr_init(adc, vin[1], val); |
| |
| scan_index++; |
| } |
| |
| return scan_index; |
| |
| err: |
| fwnode_handle_put(child); |
| |
| return ret; |
| } |
| |
| static int stm32_adc_chan_fw_init(struct iio_dev *indio_dev, bool timestamping) |
| { |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| const struct stm32_adc_info *adc_info = adc->cfg->adc_info; |
| struct iio_chan_spec *channels; |
| int scan_index = 0, num_channels = 0, ret, i; |
| bool legacy = false; |
| |
| for (i = 0; i < STM32_ADC_INT_CH_NB; i++) |
| adc->int_ch[i] = STM32_ADC_INT_CH_NONE; |
| |
| num_channels = device_get_child_node_count(&indio_dev->dev); |
| /* If no channels have been found, fallback to channels legacy properties. */ |
| if (!num_channels) { |
| legacy = true; |
| |
| ret = stm32_adc_get_legacy_chan_count(indio_dev, adc); |
| if (!ret) { |
| dev_err(indio_dev->dev.parent, "No channel found\n"); |
| return -ENODATA; |
| } else if (ret < 0) { |
| return ret; |
| } |
| |
| num_channels = ret; |
| } |
| |
| if (num_channels > adc_info->max_channels) { |
| dev_err(&indio_dev->dev, "Channel number [%d] exceeds %d\n", |
| num_channels, adc_info->max_channels); |
| return -EINVAL; |
| } |
| |
| if (timestamping) |
| num_channels++; |
| |
| channels = devm_kcalloc(&indio_dev->dev, num_channels, |
| sizeof(struct iio_chan_spec), GFP_KERNEL); |
| if (!channels) |
| return -ENOMEM; |
| |
| if (legacy) |
| ret = stm32_adc_legacy_chan_init(indio_dev, adc, channels, |
| timestamping ? num_channels - 1 : num_channels); |
| else |
| ret = stm32_adc_generic_chan_init(indio_dev, adc, channels); |
| if (ret < 0) |
| return ret; |
| scan_index = ret; |
| |
| if (timestamping) { |
| struct iio_chan_spec *timestamp = &channels[scan_index]; |
| |
| timestamp->type = IIO_TIMESTAMP; |
| timestamp->channel = -1; |
| timestamp->scan_index = scan_index; |
| timestamp->scan_type.sign = 's'; |
| timestamp->scan_type.realbits = 64; |
| timestamp->scan_type.storagebits = 64; |
| |
| scan_index++; |
| } |
| |
| indio_dev->num_channels = scan_index; |
| indio_dev->channels = channels; |
| |
| return 0; |
| } |
| |
| static int stm32_adc_dma_request(struct device *dev, struct iio_dev *indio_dev) |
| { |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| struct dma_slave_config config; |
| int ret; |
| |
| adc->dma_chan = dma_request_chan(dev, "rx"); |
| if (IS_ERR(adc->dma_chan)) { |
| ret = PTR_ERR(adc->dma_chan); |
| if (ret != -ENODEV) |
| return dev_err_probe(dev, ret, |
| "DMA channel request failed with\n"); |
| |
| /* DMA is optional: fall back to IRQ mode */ |
| adc->dma_chan = NULL; |
| return 0; |
| } |
| |
| adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev, |
| STM32_DMA_BUFFER_SIZE, |
| &adc->rx_dma_buf, GFP_KERNEL); |
| if (!adc->rx_buf) { |
| ret = -ENOMEM; |
| goto err_release; |
| } |
| |
| /* Configure DMA channel to read data register */ |
| memset(&config, 0, sizeof(config)); |
| config.src_addr = (dma_addr_t)adc->common->phys_base; |
| config.src_addr += adc->offset + adc->cfg->regs->dr; |
| config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; |
| |
| ret = dmaengine_slave_config(adc->dma_chan, &config); |
| if (ret) |
| goto err_free; |
| |
| return 0; |
| |
| err_free: |
| dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE, |
| adc->rx_buf, adc->rx_dma_buf); |
| err_release: |
| dma_release_channel(adc->dma_chan); |
| |
| return ret; |
| } |
| |
| static int stm32_adc_probe(struct platform_device *pdev) |
| { |
| struct iio_dev *indio_dev; |
| struct device *dev = &pdev->dev; |
| irqreturn_t (*handler)(int irq, void *p) = NULL; |
| struct stm32_adc *adc; |
| bool timestamping = false; |
| int ret; |
| |
| indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc)); |
| if (!indio_dev) |
| return -ENOMEM; |
| |
| adc = iio_priv(indio_dev); |
| adc->common = dev_get_drvdata(pdev->dev.parent); |
| spin_lock_init(&adc->lock); |
| init_completion(&adc->completion); |
| adc->cfg = device_get_match_data(dev); |
| |
| indio_dev->name = dev_name(&pdev->dev); |
| device_set_node(&indio_dev->dev, dev_fwnode(&pdev->dev)); |
| indio_dev->info = &stm32_adc_iio_info; |
| indio_dev->modes = INDIO_DIRECT_MODE | INDIO_HARDWARE_TRIGGERED; |
| |
| platform_set_drvdata(pdev, indio_dev); |
| |
| ret = device_property_read_u32(dev, "reg", &adc->offset); |
| if (ret != 0) { |
| dev_err(&pdev->dev, "missing reg property\n"); |
| return -EINVAL; |
| } |
| |
| adc->irq = platform_get_irq(pdev, 0); |
| if (adc->irq < 0) |
| return adc->irq; |
| |
| ret = devm_request_threaded_irq(&pdev->dev, adc->irq, stm32_adc_isr, |
| stm32_adc_threaded_isr, |
| 0, pdev->name, indio_dev); |
| if (ret) { |
| dev_err(&pdev->dev, "failed to request IRQ\n"); |
| return ret; |
| } |
| |
| adc->clk = devm_clk_get(&pdev->dev, NULL); |
| if (IS_ERR(adc->clk)) { |
| ret = PTR_ERR(adc->clk); |
| if (ret == -ENOENT && !adc->cfg->clk_required) { |
| adc->clk = NULL; |
| } else { |
| dev_err(&pdev->dev, "Can't get clock\n"); |
| return ret; |
| } |
| } |
| |
| ret = stm32_adc_fw_get_resolution(indio_dev); |
| if (ret < 0) |
| return ret; |
| |
| ret = stm32_adc_dma_request(dev, indio_dev); |
| if (ret < 0) |
| return ret; |
| |
| if (!adc->dma_chan) { |
| /* For PIO mode only, iio_pollfunc_store_time stores a timestamp |
| * in the primary trigger IRQ handler and stm32_adc_trigger_handler |
| * runs in the IRQ thread to push out buffer along with timestamp. |
| */ |
| handler = &stm32_adc_trigger_handler; |
| timestamping = true; |
| } |
| |
| ret = stm32_adc_chan_fw_init(indio_dev, timestamping); |
| if (ret < 0) |
| goto err_dma_disable; |
| |
| ret = iio_triggered_buffer_setup(indio_dev, |
| &iio_pollfunc_store_time, handler, |
| &stm32_adc_buffer_setup_ops); |
| if (ret) { |
| dev_err(&pdev->dev, "buffer setup failed\n"); |
| goto err_dma_disable; |
| } |
| |
| /* Get stm32-adc-core PM online */ |
| pm_runtime_get_noresume(dev); |
| pm_runtime_set_active(dev); |
| pm_runtime_set_autosuspend_delay(dev, STM32_ADC_HW_STOP_DELAY_MS); |
| pm_runtime_use_autosuspend(dev); |
| pm_runtime_enable(dev); |
| |
| ret = stm32_adc_hw_start(dev); |
| if (ret) |
| goto err_buffer_cleanup; |
| |
| ret = iio_device_register(indio_dev); |
| if (ret) { |
| dev_err(&pdev->dev, "iio dev register failed\n"); |
| goto err_hw_stop; |
| } |
| |
| pm_runtime_mark_last_busy(dev); |
| pm_runtime_put_autosuspend(dev); |
| |
| if (IS_ENABLED(CONFIG_DEBUG_FS)) |
| stm32_adc_debugfs_init(indio_dev); |
| |
| return 0; |
| |
| err_hw_stop: |
| stm32_adc_hw_stop(dev); |
| |
| err_buffer_cleanup: |
| pm_runtime_disable(dev); |
| pm_runtime_set_suspended(dev); |
| pm_runtime_put_noidle(dev); |
| iio_triggered_buffer_cleanup(indio_dev); |
| |
| err_dma_disable: |
| if (adc->dma_chan) { |
| dma_free_coherent(adc->dma_chan->device->dev, |
| STM32_DMA_BUFFER_SIZE, |
| adc->rx_buf, adc->rx_dma_buf); |
| dma_release_channel(adc->dma_chan); |
| } |
| |
| return ret; |
| } |
| |
| static void stm32_adc_remove(struct platform_device *pdev) |
| { |
| struct iio_dev *indio_dev = platform_get_drvdata(pdev); |
| struct stm32_adc *adc = iio_priv(indio_dev); |
| |
| pm_runtime_get_sync(&pdev->dev); |
| /* iio_device_unregister() also removes debugfs entries */ |
| iio_device_unregister(indio_dev); |
| stm32_adc_hw_stop(&pdev->dev); |
| pm_runtime_disable(&pdev->dev); |
| pm_runtime_set_suspended(&pdev->dev); |
| pm_runtime_put_noidle(&pdev->dev); |
| iio_triggered_buffer_cleanup(indio_dev); |
| if (adc->dma_chan) { |
| dma_free_coherent(adc->dma_chan->device->dev, |
| STM32_DMA_BUFFER_SIZE, |
| adc->rx_buf, adc->rx_dma_buf); |
| dma_release_channel(adc->dma_chan); |
| } |
| } |
| |
| static int stm32_adc_suspend(struct device *dev) |
| { |
| struct iio_dev *indio_dev = dev_get_drvdata(dev); |
| |
| if (iio_buffer_enabled(indio_dev)) |
| stm32_adc_buffer_predisable(indio_dev); |
| |
| return pm_runtime_force_suspend(dev); |
| } |
| |
| static int stm32_adc_resume(struct device *dev) |
| { |
| struct iio_dev *indio_dev = dev_get_drvdata(dev); |
| int ret; |
| |
| ret = pm_runtime_force_resume(dev); |
| if (ret < 0) |
| return ret; |
| |
| if (!iio_buffer_enabled(indio_dev)) |
| return 0; |
| |
| ret = stm32_adc_update_scan_mode(indio_dev, |
| indio_dev->active_scan_mask); |
| if (ret < 0) |
| return ret; |
| |
| return stm32_adc_buffer_postenable(indio_dev); |
| } |
| |
| static int stm32_adc_runtime_suspend(struct device *dev) |
| { |
| return stm32_adc_hw_stop(dev); |
| } |
| |
| static int stm32_adc_runtime_resume(struct device *dev) |
| { |
| return stm32_adc_hw_start(dev); |
| } |
| |
| static const struct dev_pm_ops stm32_adc_pm_ops = { |
| SYSTEM_SLEEP_PM_OPS(stm32_adc_suspend, stm32_adc_resume) |
| RUNTIME_PM_OPS(stm32_adc_runtime_suspend, stm32_adc_runtime_resume, |
| NULL) |
| }; |
| |
| static const struct stm32_adc_cfg stm32f4_adc_cfg = { |
| .regs = &stm32f4_adc_regspec, |
| .adc_info = &stm32f4_adc_info, |
| .trigs = stm32f4_adc_trigs, |
| .clk_required = true, |
| .start_conv = stm32f4_adc_start_conv, |
| .stop_conv = stm32f4_adc_stop_conv, |
| .smp_cycles = stm32f4_adc_smp_cycles, |
| .irq_clear = stm32f4_adc_irq_clear, |
| }; |
| |
| static const unsigned int stm32_adc_min_ts_h7[] = { 0, 0, 0, 4300, 9000 }; |
| static_assert(ARRAY_SIZE(stm32_adc_min_ts_h7) == STM32_ADC_INT_CH_NB); |
| |
| static const struct stm32_adc_cfg stm32h7_adc_cfg = { |
| .regs = &stm32h7_adc_regspec, |
| .adc_info = &stm32h7_adc_info, |
| .trigs = stm32h7_adc_trigs, |
| .has_boostmode = true, |
| .has_linearcal = true, |
| .has_presel = true, |
| .start_conv = stm32h7_adc_start_conv, |
| .stop_conv = stm32h7_adc_stop_conv, |
| .prepare = stm32h7_adc_prepare, |
| .unprepare = stm32h7_adc_unprepare, |
| .smp_cycles = stm32h7_adc_smp_cycles, |
| .irq_clear = stm32h7_adc_irq_clear, |
| .ts_int_ch = stm32_adc_min_ts_h7, |
| }; |
| |
| static const unsigned int stm32_adc_min_ts_mp1[] = { 100, 100, 100, 4300, 9800 }; |
| static_assert(ARRAY_SIZE(stm32_adc_min_ts_mp1) == STM32_ADC_INT_CH_NB); |
| |
| static const struct stm32_adc_cfg stm32mp1_adc_cfg = { |
| .regs = &stm32mp1_adc_regspec, |
| .adc_info = &stm32h7_adc_info, |
| .trigs = stm32h7_adc_trigs, |
| .has_vregready = true, |
| .has_boostmode = true, |
| .has_linearcal = true, |
| .has_presel = true, |
| .start_conv = stm32h7_adc_start_conv, |
| .stop_conv = stm32h7_adc_stop_conv, |
| .prepare = stm32h7_adc_prepare, |
| .unprepare = stm32h7_adc_unprepare, |
| .smp_cycles = stm32h7_adc_smp_cycles, |
| .irq_clear = stm32h7_adc_irq_clear, |
| .ts_int_ch = stm32_adc_min_ts_mp1, |
| }; |
| |
| static const unsigned int stm32_adc_min_ts_mp13[] = { 100, 0, 0, 4300, 9800 }; |
| static_assert(ARRAY_SIZE(stm32_adc_min_ts_mp13) == STM32_ADC_INT_CH_NB); |
| |
| static const struct stm32_adc_cfg stm32mp13_adc_cfg = { |
| .regs = &stm32mp13_adc_regspec, |
| .adc_info = &stm32mp13_adc_info, |
| .trigs = stm32h7_adc_trigs, |
| .start_conv = stm32mp13_adc_start_conv, |
| .stop_conv = stm32h7_adc_stop_conv, |
| .prepare = stm32h7_adc_prepare, |
| .unprepare = stm32h7_adc_unprepare, |
| .smp_cycles = stm32mp13_adc_smp_cycles, |
| .irq_clear = stm32h7_adc_irq_clear, |
| .ts_int_ch = stm32_adc_min_ts_mp13, |
| }; |
| |
| static const struct of_device_id stm32_adc_of_match[] = { |
| { .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg }, |
| { .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg }, |
| { .compatible = "st,stm32mp1-adc", .data = (void *)&stm32mp1_adc_cfg }, |
| { .compatible = "st,stm32mp13-adc", .data = (void *)&stm32mp13_adc_cfg }, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(of, stm32_adc_of_match); |
| |
| static struct platform_driver stm32_adc_driver = { |
| .probe = stm32_adc_probe, |
| .remove_new = stm32_adc_remove, |
| .driver = { |
| .name = "stm32-adc", |
| .of_match_table = stm32_adc_of_match, |
| .pm = pm_ptr(&stm32_adc_pm_ops), |
| }, |
| }; |
| module_platform_driver(stm32_adc_driver); |
| |
| MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>"); |
| MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver"); |
| MODULE_LICENSE("GPL v2"); |
| MODULE_ALIAS("platform:stm32-adc"); |