blob: 2f5165918163dfff5733831045edd81a19bbc75c [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Linux-DVB Driver for DiBcom's DiB8000 chip (ISDB-T).
*
* Copyright (C) 2009 DiBcom (http://www.dibcom.fr/)
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/mutex.h>
#include <asm/div64.h>
#include <linux/int_log.h>
#include <media/dvb_frontend.h>
#include "dib8000.h"
#define LAYER_ALL -1
#define LAYER_A 1
#define LAYER_B 2
#define LAYER_C 3
#define MAX_NUMBER_OF_FRONTENDS 6
/* #define DIB8000_AGC_FREEZE */
static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");
#define dprintk(fmt, arg...) do { \
if (debug) \
printk(KERN_DEBUG pr_fmt("%s: " fmt), \
__func__, ##arg); \
} while (0)
struct i2c_device {
struct i2c_adapter *adap;
u8 addr;
u8 *i2c_write_buffer;
u8 *i2c_read_buffer;
struct mutex *i2c_buffer_lock;
};
enum param_loop_step {
LOOP_TUNE_1,
LOOP_TUNE_2
};
enum dib8000_autosearch_step {
AS_START = 0,
AS_SEARCHING_FFT,
AS_SEARCHING_GUARD,
AS_DONE = 100,
};
enum timeout_mode {
SYMBOL_DEPENDENT_OFF = 0,
SYMBOL_DEPENDENT_ON,
};
struct dib8000_state {
struct dib8000_config cfg;
struct i2c_device i2c;
struct dibx000_i2c_master i2c_master;
u16 wbd_ref;
u8 current_band;
u32 current_bandwidth;
struct dibx000_agc_config *current_agc;
u32 timf;
u32 timf_default;
u8 div_force_off:1;
u8 div_state:1;
u16 div_sync_wait;
u8 agc_state;
u8 differential_constellation;
u8 diversity_onoff;
s16 ber_monitored_layer;
u16 gpio_dir;
u16 gpio_val;
u16 revision;
u8 isdbt_cfg_loaded;
enum frontend_tune_state tune_state;
s32 status;
struct dvb_frontend *fe[MAX_NUMBER_OF_FRONTENDS];
/* for the I2C transfer */
struct i2c_msg msg[2];
u8 i2c_write_buffer[4];
u8 i2c_read_buffer[2];
struct mutex i2c_buffer_lock;
u8 input_mode_mpeg;
u16 tuner_enable;
struct i2c_adapter dib8096p_tuner_adap;
u16 current_demod_bw;
u16 seg_mask;
u16 seg_diff_mask;
u16 mode;
u8 layer_b_nb_seg;
u8 layer_c_nb_seg;
u8 channel_parameters_set;
u16 autosearch_state;
u16 found_nfft;
u16 found_guard;
u8 subchannel;
u8 symbol_duration;
unsigned long timeout;
u8 longest_intlv_layer;
u16 output_mode;
/* for DVBv5 stats */
s64 init_ucb;
unsigned long per_jiffies_stats;
unsigned long ber_jiffies_stats;
unsigned long ber_jiffies_stats_layer[3];
#ifdef DIB8000_AGC_FREEZE
u16 agc1_max;
u16 agc1_min;
u16 agc2_max;
u16 agc2_min;
#endif
};
enum dib8000_power_mode {
DIB8000_POWER_ALL = 0,
DIB8000_POWER_INTERFACE_ONLY,
};
static u16 dib8000_i2c_read16(struct i2c_device *i2c, u16 reg)
{
u16 ret;
struct i2c_msg msg[2] = {
{.addr = i2c->addr >> 1, .flags = 0, .len = 2},
{.addr = i2c->addr >> 1, .flags = I2C_M_RD, .len = 2},
};
if (mutex_lock_interruptible(i2c->i2c_buffer_lock) < 0) {
dprintk("could not acquire lock\n");
return 0;
}
msg[0].buf = i2c->i2c_write_buffer;
msg[0].buf[0] = reg >> 8;
msg[0].buf[1] = reg & 0xff;
msg[1].buf = i2c->i2c_read_buffer;
if (i2c_transfer(i2c->adap, msg, 2) != 2)
dprintk("i2c read error on %d\n", reg);
ret = (msg[1].buf[0] << 8) | msg[1].buf[1];
mutex_unlock(i2c->i2c_buffer_lock);
return ret;
}
static u16 __dib8000_read_word(struct dib8000_state *state, u16 reg)
{
u16 ret;
state->i2c_write_buffer[0] = reg >> 8;
state->i2c_write_buffer[1] = reg & 0xff;
memset(state->msg, 0, 2 * sizeof(struct i2c_msg));
state->msg[0].addr = state->i2c.addr >> 1;
state->msg[0].flags = 0;
state->msg[0].buf = state->i2c_write_buffer;
state->msg[0].len = 2;
state->msg[1].addr = state->i2c.addr >> 1;
state->msg[1].flags = I2C_M_RD;
state->msg[1].buf = state->i2c_read_buffer;
state->msg[1].len = 2;
if (i2c_transfer(state->i2c.adap, state->msg, 2) != 2)
dprintk("i2c read error on %d\n", reg);
ret = (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1];
return ret;
}
static u16 dib8000_read_word(struct dib8000_state *state, u16 reg)
{
u16 ret;
if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
dprintk("could not acquire lock\n");
return 0;
}
ret = __dib8000_read_word(state, reg);
mutex_unlock(&state->i2c_buffer_lock);
return ret;
}
static u32 dib8000_read32(struct dib8000_state *state, u16 reg)
{
u16 rw[2];
if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
dprintk("could not acquire lock\n");
return 0;
}
rw[0] = __dib8000_read_word(state, reg + 0);
rw[1] = __dib8000_read_word(state, reg + 1);
mutex_unlock(&state->i2c_buffer_lock);
return ((rw[0] << 16) | (rw[1]));
}
static int dib8000_i2c_write16(struct i2c_device *i2c, u16 reg, u16 val)
{
struct i2c_msg msg = {.addr = i2c->addr >> 1, .flags = 0, .len = 4};
int ret = 0;
if (mutex_lock_interruptible(i2c->i2c_buffer_lock) < 0) {
dprintk("could not acquire lock\n");
return -EINVAL;
}
msg.buf = i2c->i2c_write_buffer;
msg.buf[0] = (reg >> 8) & 0xff;
msg.buf[1] = reg & 0xff;
msg.buf[2] = (val >> 8) & 0xff;
msg.buf[3] = val & 0xff;
ret = i2c_transfer(i2c->adap, &msg, 1) != 1 ? -EREMOTEIO : 0;
mutex_unlock(i2c->i2c_buffer_lock);
return ret;
}
static int dib8000_write_word(struct dib8000_state *state, u16 reg, u16 val)
{
int ret;
if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
dprintk("could not acquire lock\n");
return -EINVAL;
}
state->i2c_write_buffer[0] = (reg >> 8) & 0xff;
state->i2c_write_buffer[1] = reg & 0xff;
state->i2c_write_buffer[2] = (val >> 8) & 0xff;
state->i2c_write_buffer[3] = val & 0xff;
memset(&state->msg[0], 0, sizeof(struct i2c_msg));
state->msg[0].addr = state->i2c.addr >> 1;
state->msg[0].flags = 0;
state->msg[0].buf = state->i2c_write_buffer;
state->msg[0].len = 4;
ret = (i2c_transfer(state->i2c.adap, state->msg, 1) != 1 ?
-EREMOTEIO : 0);
mutex_unlock(&state->i2c_buffer_lock);
return ret;
}
static const s16 coeff_2k_sb_1seg_dqpsk[8] = {
(769 << 5) | 0x0a, (745 << 5) | 0x03, (595 << 5) | 0x0d, (769 << 5) | 0x0a, (920 << 5) | 0x09, (784 << 5) | 0x02, (519 << 5) | 0x0c,
(920 << 5) | 0x09
};
static const s16 coeff_2k_sb_1seg[8] = {
(692 << 5) | 0x0b, (683 << 5) | 0x01, (519 << 5) | 0x09, (692 << 5) | 0x0b, 0 | 0x1f, 0 | 0x1f, 0 | 0x1f, 0 | 0x1f
};
static const s16 coeff_2k_sb_3seg_0dqpsk_1dqpsk[8] = {
(832 << 5) | 0x10, (912 << 5) | 0x05, (900 << 5) | 0x12, (832 << 5) | 0x10, (-931 << 5) | 0x0f, (912 << 5) | 0x04, (807 << 5) | 0x11,
(-931 << 5) | 0x0f
};
static const s16 coeff_2k_sb_3seg_0dqpsk[8] = {
(622 << 5) | 0x0c, (941 << 5) | 0x04, (796 << 5) | 0x10, (622 << 5) | 0x0c, (982 << 5) | 0x0c, (519 << 5) | 0x02, (572 << 5) | 0x0e,
(982 << 5) | 0x0c
};
static const s16 coeff_2k_sb_3seg_1dqpsk[8] = {
(699 << 5) | 0x14, (607 << 5) | 0x04, (944 << 5) | 0x13, (699 << 5) | 0x14, (-720 << 5) | 0x0d, (640 << 5) | 0x03, (866 << 5) | 0x12,
(-720 << 5) | 0x0d
};
static const s16 coeff_2k_sb_3seg[8] = {
(664 << 5) | 0x0c, (925 << 5) | 0x03, (937 << 5) | 0x10, (664 << 5) | 0x0c, (-610 << 5) | 0x0a, (697 << 5) | 0x01, (836 << 5) | 0x0e,
(-610 << 5) | 0x0a
};
static const s16 coeff_4k_sb_1seg_dqpsk[8] = {
(-955 << 5) | 0x0e, (687 << 5) | 0x04, (818 << 5) | 0x10, (-955 << 5) | 0x0e, (-922 << 5) | 0x0d, (750 << 5) | 0x03, (665 << 5) | 0x0f,
(-922 << 5) | 0x0d
};
static const s16 coeff_4k_sb_1seg[8] = {
(638 << 5) | 0x0d, (683 << 5) | 0x02, (638 << 5) | 0x0d, (638 << 5) | 0x0d, (-655 << 5) | 0x0a, (517 << 5) | 0x00, (698 << 5) | 0x0d,
(-655 << 5) | 0x0a
};
static const s16 coeff_4k_sb_3seg_0dqpsk_1dqpsk[8] = {
(-707 << 5) | 0x14, (910 << 5) | 0x06, (889 << 5) | 0x16, (-707 << 5) | 0x14, (-958 << 5) | 0x13, (993 << 5) | 0x05, (523 << 5) | 0x14,
(-958 << 5) | 0x13
};
static const s16 coeff_4k_sb_3seg_0dqpsk[8] = {
(-723 << 5) | 0x13, (910 << 5) | 0x05, (777 << 5) | 0x14, (-723 << 5) | 0x13, (-568 << 5) | 0x0f, (547 << 5) | 0x03, (696 << 5) | 0x12,
(-568 << 5) | 0x0f
};
static const s16 coeff_4k_sb_3seg_1dqpsk[8] = {
(-940 << 5) | 0x15, (607 << 5) | 0x05, (915 << 5) | 0x16, (-940 << 5) | 0x15, (-848 << 5) | 0x13, (683 << 5) | 0x04, (543 << 5) | 0x14,
(-848 << 5) | 0x13
};
static const s16 coeff_4k_sb_3seg[8] = {
(612 << 5) | 0x12, (910 << 5) | 0x04, (864 << 5) | 0x14, (612 << 5) | 0x12, (-869 << 5) | 0x13, (683 << 5) | 0x02, (869 << 5) | 0x12,
(-869 << 5) | 0x13
};
static const s16 coeff_8k_sb_1seg_dqpsk[8] = {
(-835 << 5) | 0x12, (684 << 5) | 0x05, (735 << 5) | 0x14, (-835 << 5) | 0x12, (-598 << 5) | 0x10, (781 << 5) | 0x04, (739 << 5) | 0x13,
(-598 << 5) | 0x10
};
static const s16 coeff_8k_sb_1seg[8] = {
(673 << 5) | 0x0f, (683 << 5) | 0x03, (808 << 5) | 0x12, (673 << 5) | 0x0f, (585 << 5) | 0x0f, (512 << 5) | 0x01, (780 << 5) | 0x0f,
(585 << 5) | 0x0f
};
static const s16 coeff_8k_sb_3seg_0dqpsk_1dqpsk[8] = {
(863 << 5) | 0x17, (930 << 5) | 0x07, (878 << 5) | 0x19, (863 << 5) | 0x17, (0 << 5) | 0x14, (521 << 5) | 0x05, (980 << 5) | 0x18,
(0 << 5) | 0x14
};
static const s16 coeff_8k_sb_3seg_0dqpsk[8] = {
(-924 << 5) | 0x17, (910 << 5) | 0x06, (774 << 5) | 0x17, (-924 << 5) | 0x17, (-877 << 5) | 0x15, (565 << 5) | 0x04, (553 << 5) | 0x15,
(-877 << 5) | 0x15
};
static const s16 coeff_8k_sb_3seg_1dqpsk[8] = {
(-921 << 5) | 0x19, (607 << 5) | 0x06, (881 << 5) | 0x19, (-921 << 5) | 0x19, (-921 << 5) | 0x14, (713 << 5) | 0x05, (1018 << 5) | 0x18,
(-921 << 5) | 0x14
};
static const s16 coeff_8k_sb_3seg[8] = {
(514 << 5) | 0x14, (910 << 5) | 0x05, (861 << 5) | 0x17, (514 << 5) | 0x14, (690 << 5) | 0x14, (683 << 5) | 0x03, (662 << 5) | 0x15,
(690 << 5) | 0x14
};
static const s16 ana_fe_coeff_3seg[24] = {
81, 80, 78, 74, 68, 61, 54, 45, 37, 28, 19, 11, 4, 1022, 1017, 1013, 1010, 1008, 1008, 1008, 1008, 1010, 1014, 1017
};
static const s16 ana_fe_coeff_1seg[24] = {
249, 226, 164, 82, 5, 981, 970, 988, 1018, 20, 31, 26, 8, 1012, 1000, 1018, 1012, 8, 15, 14, 9, 3, 1017, 1003
};
static const s16 ana_fe_coeff_13seg[24] = {
396, 305, 105, -51, -77, -12, 41, 31, -11, -30, -11, 14, 15, -2, -13, -7, 5, 8, 1, -6, -7, -3, 0, 1
};
static u16 fft_to_mode(struct dib8000_state *state)
{
u16 mode;
switch (state->fe[0]->dtv_property_cache.transmission_mode) {
case TRANSMISSION_MODE_2K:
mode = 1;
break;
case TRANSMISSION_MODE_4K:
mode = 2;
break;
default:
case TRANSMISSION_MODE_AUTO:
case TRANSMISSION_MODE_8K:
mode = 3;
break;
}
return mode;
}
static void dib8000_set_acquisition_mode(struct dib8000_state *state)
{
u16 nud = dib8000_read_word(state, 298);
nud |= (1 << 3) | (1 << 0);
dprintk("acquisition mode activated\n");
dib8000_write_word(state, 298, nud);
}
static int dib8000_set_output_mode(struct dvb_frontend *fe, int mode)
{
struct dib8000_state *state = fe->demodulator_priv;
u16 outreg, fifo_threshold, smo_mode, sram = 0x0205; /* by default SDRAM deintlv is enabled */
state->output_mode = mode;
outreg = 0;
fifo_threshold = 1792;
smo_mode = (dib8000_read_word(state, 299) & 0x0050) | (1 << 1);
dprintk("-I- Setting output mode for demod %p to %d\n",
&state->fe[0], mode);
switch (mode) {
case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock
outreg = (1 << 10); /* 0x0400 */
break;
case OUTMODE_MPEG2_PAR_CONT_CLK: // STBs with parallel continues clock
outreg = (1 << 10) | (1 << 6); /* 0x0440 */
break;
case OUTMODE_MPEG2_SERIAL: // STBs with serial input
outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0482 */
break;
case OUTMODE_DIVERSITY:
if (state->cfg.hostbus_diversity) {
outreg = (1 << 10) | (4 << 6); /* 0x0500 */
sram &= 0xfdff;
} else
sram |= 0x0c00;
break;
case OUTMODE_MPEG2_FIFO: // e.g. USB feeding
smo_mode |= (3 << 1);
fifo_threshold = 512;
outreg = (1 << 10) | (5 << 6);
break;
case OUTMODE_HIGH_Z: // disable
outreg = 0;
break;
case OUTMODE_ANALOG_ADC:
outreg = (1 << 10) | (3 << 6);
dib8000_set_acquisition_mode(state);
break;
default:
dprintk("Unhandled output_mode passed to be set for demod %p\n",
&state->fe[0]);
return -EINVAL;
}
if (state->cfg.output_mpeg2_in_188_bytes)
smo_mode |= (1 << 5);
dib8000_write_word(state, 299, smo_mode);
dib8000_write_word(state, 300, fifo_threshold); /* synchronous fread */
dib8000_write_word(state, 1286, outreg);
dib8000_write_word(state, 1291, sram);
return 0;
}
static int dib8000_set_diversity_in(struct dvb_frontend *fe, int onoff)
{
struct dib8000_state *state = fe->demodulator_priv;
u16 tmp, sync_wait = dib8000_read_word(state, 273) & 0xfff0;
dprintk("set diversity input to %i\n", onoff);
if (!state->differential_constellation) {
dib8000_write_word(state, 272, 1 << 9); //dvsy_off_lmod4 = 1
dib8000_write_word(state, 273, sync_wait | (1 << 2) | 2); // sync_enable = 1; comb_mode = 2
} else {
dib8000_write_word(state, 272, 0); //dvsy_off_lmod4 = 0
dib8000_write_word(state, 273, sync_wait); // sync_enable = 0; comb_mode = 0
}
state->diversity_onoff = onoff;
switch (onoff) {
case 0: /* only use the internal way - not the diversity input */
dib8000_write_word(state, 270, 1);
dib8000_write_word(state, 271, 0);
break;
case 1: /* both ways */
dib8000_write_word(state, 270, 6);
dib8000_write_word(state, 271, 6);
break;
case 2: /* only the diversity input */
dib8000_write_word(state, 270, 0);
dib8000_write_word(state, 271, 1);
break;
}
if (state->revision == 0x8002) {
tmp = dib8000_read_word(state, 903);
dib8000_write_word(state, 903, tmp & ~(1 << 3));
msleep(30);
dib8000_write_word(state, 903, tmp | (1 << 3));
}
return 0;
}
static void dib8000_set_power_mode(struct dib8000_state *state, enum dib8000_power_mode mode)
{
/* by default everything is going to be powered off */
u16 reg_774 = 0x3fff, reg_775 = 0xffff, reg_776 = 0xffff,
reg_900 = (dib8000_read_word(state, 900) & 0xfffc) | 0x3,
reg_1280;
if (state->revision != 0x8090)
reg_1280 = (dib8000_read_word(state, 1280) & 0x00ff) | 0xff00;
else
reg_1280 = (dib8000_read_word(state, 1280) & 0x707f) | 0x8f80;
/* now, depending on the requested mode, we power on */
switch (mode) {
/* power up everything in the demod */
case DIB8000_POWER_ALL:
reg_774 = 0x0000;
reg_775 = 0x0000;
reg_776 = 0x0000;
reg_900 &= 0xfffc;
if (state->revision != 0x8090)
reg_1280 &= 0x00ff;
else
reg_1280 &= 0x707f;
break;
case DIB8000_POWER_INTERFACE_ONLY:
if (state->revision != 0x8090)
reg_1280 &= 0x00ff;
else
reg_1280 &= 0xfa7b;
break;
}
dprintk("powermode : 774 : %x ; 775 : %x; 776 : %x ; 900 : %x; 1280 : %x\n", reg_774, reg_775, reg_776, reg_900, reg_1280);
dib8000_write_word(state, 774, reg_774);
dib8000_write_word(state, 775, reg_775);
dib8000_write_word(state, 776, reg_776);
dib8000_write_word(state, 900, reg_900);
dib8000_write_word(state, 1280, reg_1280);
}
static int dib8000_set_adc_state(struct dib8000_state *state, enum dibx000_adc_states no)
{
int ret = 0;
u16 reg, reg_907 = dib8000_read_word(state, 907);
u16 reg_908 = dib8000_read_word(state, 908);
switch (no) {
case DIBX000_SLOW_ADC_ON:
if (state->revision != 0x8090) {
reg_908 |= (1 << 1) | (1 << 0);
ret |= dib8000_write_word(state, 908, reg_908);
reg_908 &= ~(1 << 1);
} else {
reg = dib8000_read_word(state, 1925);
/* en_slowAdc = 1 & reset_sladc = 1 */
dib8000_write_word(state, 1925, reg |
(1<<4) | (1<<2));
/* read access to make it works... strange ... */
reg = dib8000_read_word(state, 1925);
msleep(20);
/* en_slowAdc = 1 & reset_sladc = 0 */
dib8000_write_word(state, 1925, reg & ~(1<<4));
reg = dib8000_read_word(state, 921) & ~((0x3 << 14)
| (0x3 << 12));
/* ref = Vin1 => Vbg ; sel = Vin0 or Vin3 ;
(Vin2 = Vcm) */
dib8000_write_word(state, 921, reg | (1 << 14)
| (3 << 12));
}
break;
case DIBX000_SLOW_ADC_OFF:
if (state->revision == 0x8090) {
reg = dib8000_read_word(state, 1925);
/* reset_sladc = 1 en_slowAdc = 0 */
dib8000_write_word(state, 1925,
(reg & ~(1<<2)) | (1<<4));
}
reg_908 |= (1 << 1) | (1 << 0);
break;
case DIBX000_ADC_ON:
reg_907 &= 0x0fff;
reg_908 &= 0x0003;
break;
case DIBX000_ADC_OFF: // leave the VBG voltage on
reg_907 = (1 << 13) | (1 << 12);
reg_908 = (1 << 6) | (1 << 5) | (1 << 4) | (1 << 3) | (1 << 1);
break;
case DIBX000_VBG_ENABLE:
reg_907 &= ~(1 << 15);
break;
case DIBX000_VBG_DISABLE:
reg_907 |= (1 << 15);
break;
default:
break;
}
ret |= dib8000_write_word(state, 907, reg_907);
ret |= dib8000_write_word(state, 908, reg_908);
return ret;
}
static int dib8000_set_bandwidth(struct dvb_frontend *fe, u32 bw)
{
struct dib8000_state *state = fe->demodulator_priv;
u32 timf;
if (bw == 0)
bw = 6000;
if (state->timf == 0) {
dprintk("using default timf\n");
timf = state->timf_default;
} else {
dprintk("using updated timf\n");
timf = state->timf;
}
dib8000_write_word(state, 29, (u16) ((timf >> 16) & 0xffff));
dib8000_write_word(state, 30, (u16) ((timf) & 0xffff));
return 0;
}
static int dib8000_sad_calib(struct dib8000_state *state)
{
u8 sad_sel = 3;
if (state->revision == 0x8090) {
dib8000_write_word(state, 922, (sad_sel << 2));
dib8000_write_word(state, 923, 2048);
dib8000_write_word(state, 922, (sad_sel << 2) | 0x1);
dib8000_write_word(state, 922, (sad_sel << 2));
} else {
/* internal */
dib8000_write_word(state, 923, (0 << 1) | (0 << 0));
dib8000_write_word(state, 924, 776);
/* do the calibration */
dib8000_write_word(state, 923, (1 << 0));
dib8000_write_word(state, 923, (0 << 0));
}
msleep(1);
return 0;
}
static int dib8000_set_wbd_ref(struct dvb_frontend *fe, u16 value)
{
struct dib8000_state *state = fe->demodulator_priv;
if (value > 4095)
value = 4095;
state->wbd_ref = value;
return dib8000_write_word(state, 106, value);
}
static void dib8000_reset_pll_common(struct dib8000_state *state, const struct dibx000_bandwidth_config *bw)
{
dprintk("ifreq: %d %x, inversion: %d\n", bw->ifreq, bw->ifreq, bw->ifreq >> 25);
if (state->revision != 0x8090) {
dib8000_write_word(state, 23,
(u16) (((bw->internal * 1000) >> 16) & 0xffff));
dib8000_write_word(state, 24,
(u16) ((bw->internal * 1000) & 0xffff));
} else {
dib8000_write_word(state, 23, (u16) (((bw->internal / 2 * 1000) >> 16) & 0xffff));
dib8000_write_word(state, 24,
(u16) ((bw->internal / 2 * 1000) & 0xffff));
}
dib8000_write_word(state, 27, (u16) ((bw->ifreq >> 16) & 0x01ff));
dib8000_write_word(state, 28, (u16) (bw->ifreq & 0xffff));
dib8000_write_word(state, 26, (u16) ((bw->ifreq >> 25) & 0x0003));
if (state->revision != 0x8090)
dib8000_write_word(state, 922, bw->sad_cfg);
}
static void dib8000_reset_pll(struct dib8000_state *state)
{
const struct dibx000_bandwidth_config *pll = state->cfg.pll;
u16 clk_cfg1, reg;
if (state->revision != 0x8090) {
dib8000_write_word(state, 901,
(pll->pll_prediv << 8) | (pll->pll_ratio << 0));
clk_cfg1 = (1 << 10) | (0 << 9) | (pll->IO_CLK_en_core << 8) |
(pll->bypclk_div << 5) | (pll->enable_refdiv << 4) |
(1 << 3) | (pll->pll_range << 1) |
(pll->pll_reset << 0);
dib8000_write_word(state, 902, clk_cfg1);
clk_cfg1 = (clk_cfg1 & 0xfff7) | (pll->pll_bypass << 3);
dib8000_write_word(state, 902, clk_cfg1);
dprintk("clk_cfg1: 0x%04x\n", clk_cfg1);
/* smpl_cfg: P_refclksel=2, P_ensmplsel=1 nodivsmpl=1 */
if (state->cfg.pll->ADClkSrc == 0)
dib8000_write_word(state, 904,
(0 << 15) | (0 << 12) | (0 << 10) |
(pll->modulo << 8) |
(pll->ADClkSrc << 7) | (0 << 1));
else if (state->cfg.refclksel != 0)
dib8000_write_word(state, 904, (0 << 15) | (1 << 12) |
((state->cfg.refclksel & 0x3) << 10) |
(pll->modulo << 8) |
(pll->ADClkSrc << 7) | (0 << 1));
else
dib8000_write_word(state, 904, (0 << 15) | (1 << 12) |
(3 << 10) | (pll->modulo << 8) |
(pll->ADClkSrc << 7) | (0 << 1));
} else {
dib8000_write_word(state, 1856, (!pll->pll_reset<<13) |
(pll->pll_range<<12) | (pll->pll_ratio<<6) |
(pll->pll_prediv));
reg = dib8000_read_word(state, 1857);
dib8000_write_word(state, 1857, reg|(!pll->pll_bypass<<15));
reg = dib8000_read_word(state, 1858); /* Force clk out pll /2 */
dib8000_write_word(state, 1858, reg | 1);
dib8000_write_word(state, 904, (pll->modulo << 8));
}
dib8000_reset_pll_common(state, pll);
}
static int dib8000_update_pll(struct dvb_frontend *fe,
struct dibx000_bandwidth_config *pll, u32 bw, u8 ratio)
{
struct dib8000_state *state = fe->demodulator_priv;
u16 reg_1857, reg_1856 = dib8000_read_word(state, 1856);
u8 loopdiv, prediv, oldprediv = state->cfg.pll->pll_prediv ;
u32 internal, xtal;
/* get back old values */
prediv = reg_1856 & 0x3f;
loopdiv = (reg_1856 >> 6) & 0x3f;
if ((pll == NULL) || (pll->pll_prediv == prediv &&
pll->pll_ratio == loopdiv))
return -EINVAL;
dprintk("Updating pll (prediv: old = %d new = %d ; loopdiv : old = %d new = %d)\n", prediv, pll->pll_prediv, loopdiv, pll->pll_ratio);
if (state->revision == 0x8090) {
reg_1856 &= 0xf000;
reg_1857 = dib8000_read_word(state, 1857);
/* disable PLL */
dib8000_write_word(state, 1857, reg_1857 & ~(1 << 15));
dib8000_write_word(state, 1856, reg_1856 |
((pll->pll_ratio & 0x3f) << 6) |
(pll->pll_prediv & 0x3f));
/* write new system clk into P_sec_len */
internal = dib8000_read32(state, 23) / 1000;
dprintk("Old Internal = %d\n", internal);
xtal = 2 * (internal / loopdiv) * prediv;
internal = 1000 * (xtal/pll->pll_prediv) * pll->pll_ratio;
dprintk("Xtal = %d , New Fmem = %d New Fdemod = %d, New Fsampling = %d\n", xtal, internal/1000, internal/2000, internal/8000);
dprintk("New Internal = %d\n", internal);
dib8000_write_word(state, 23,
(u16) (((internal / 2) >> 16) & 0xffff));
dib8000_write_word(state, 24, (u16) ((internal / 2) & 0xffff));
/* enable PLL */
dib8000_write_word(state, 1857, reg_1857 | (1 << 15));
while (((dib8000_read_word(state, 1856)>>15)&0x1) != 1)
dprintk("Waiting for PLL to lock\n");
/* verify */
reg_1856 = dib8000_read_word(state, 1856);
dprintk("PLL Updated with prediv = %d and loopdiv = %d\n",
reg_1856&0x3f, (reg_1856>>6)&0x3f);
} else {
if (bw != state->current_demod_bw) {
/** Bandwidth change => force PLL update **/
dprintk("PLL: Bandwidth Change %d MHz -> %d MHz (prediv: %d->%d)\n", state->current_demod_bw / 1000, bw / 1000, oldprediv, state->cfg.pll->pll_prediv);
if (state->cfg.pll->pll_prediv != oldprediv) {
/** Full PLL change only if prediv is changed **/
/** full update => bypass and reconfigure **/
dprintk("PLL: New Setting for %d MHz Bandwidth (prediv: %d, ratio: %d)\n", bw/1000, state->cfg.pll->pll_prediv, state->cfg.pll->pll_ratio);
dib8000_write_word(state, 902, dib8000_read_word(state, 902) | (1<<3)); /* bypass PLL */
dib8000_reset_pll(state);
dib8000_write_word(state, 898, 0x0004); /* sad */
} else
ratio = state->cfg.pll->pll_ratio;
state->current_demod_bw = bw;
}
if (ratio != 0) {
/** ratio update => only change ratio **/
dprintk("PLL: Update ratio (prediv: %d, ratio: %d)\n", state->cfg.pll->pll_prediv, ratio);
dib8000_write_word(state, 901, (state->cfg.pll->pll_prediv << 8) | (ratio << 0)); /* only the PLL ratio is updated. */
}
}
return 0;
}
static int dib8000_reset_gpio(struct dib8000_state *st)
{
/* reset the GPIOs */
dib8000_write_word(st, 1029, st->cfg.gpio_dir);
dib8000_write_word(st, 1030, st->cfg.gpio_val);
/* TODO 782 is P_gpio_od */
dib8000_write_word(st, 1032, st->cfg.gpio_pwm_pos);
dib8000_write_word(st, 1037, st->cfg.pwm_freq_div);
return 0;
}
static int dib8000_cfg_gpio(struct dib8000_state *st, u8 num, u8 dir, u8 val)
{
st->cfg.gpio_dir = dib8000_read_word(st, 1029);
st->cfg.gpio_dir &= ~(1 << num); /* reset the direction bit */
st->cfg.gpio_dir |= (dir & 0x1) << num; /* set the new direction */
dib8000_write_word(st, 1029, st->cfg.gpio_dir);
st->cfg.gpio_val = dib8000_read_word(st, 1030);
st->cfg.gpio_val &= ~(1 << num); /* reset the direction bit */
st->cfg.gpio_val |= (val & 0x01) << num; /* set the new value */
dib8000_write_word(st, 1030, st->cfg.gpio_val);
dprintk("gpio dir: %x: gpio val: %x\n", st->cfg.gpio_dir, st->cfg.gpio_val);
return 0;
}
static int dib8000_set_gpio(struct dvb_frontend *fe, u8 num, u8 dir, u8 val)
{
struct dib8000_state *state = fe->demodulator_priv;
return dib8000_cfg_gpio(state, num, dir, val);
}
static const u16 dib8000_defaults[] = {
/* auto search configuration - lock0 by default waiting
* for cpil_lock; lock1 cpil_lock; lock2 tmcc_sync_lock */
3, 7,
0x0004,
0x0400,
0x0814,
12, 11,
0x001b,
0x7740,
0x005b,
0x8d80,
0x01c9,
0xc380,
0x0000,
0x0080,
0x0000,
0x0090,
0x0001,
0xd4c0,
/*1, 32,
0x6680 // P_corm_thres Lock algorithms configuration */
11, 80, /* set ADC level to -16 */
(1 << 13) - 825 - 117,
(1 << 13) - 837 - 117,
(1 << 13) - 811 - 117,
(1 << 13) - 766 - 117,
(1 << 13) - 737 - 117,
(1 << 13) - 693 - 117,
(1 << 13) - 648 - 117,
(1 << 13) - 619 - 117,
(1 << 13) - 575 - 117,
(1 << 13) - 531 - 117,
(1 << 13) - 501 - 117,
4, 108,
0,
0,
0,
0,
1, 175,
0x0410,
1, 179,
8192, // P_fft_nb_to_cut
6, 181,
0x2800, // P_coff_corthres_ ( 2k 4k 8k ) 0x2800
0x2800,
0x2800,
0x2800, // P_coff_cpilthres_ ( 2k 4k 8k ) 0x2800
0x2800,
0x2800,
2, 193,
0x0666, // P_pha3_thres
0x0000, // P_cti_use_cpe, P_cti_use_prog
2, 205,
0x200f, // P_cspu_regul, P_cspu_win_cut
0x000f, // P_des_shift_work
5, 215,
0x023d, // P_adp_regul_cnt
0x00a4, // P_adp_noise_cnt
0x00a4, // P_adp_regul_ext
0x7ff0, // P_adp_noise_ext
0x3ccc, // P_adp_fil
1, 230,
0x0000, // P_2d_byp_ti_num
1, 263,
0x800, //P_equal_thres_wgn
1, 268,
(2 << 9) | 39, // P_equal_ctrl_synchro, P_equal_speedmode
1, 270,
0x0001, // P_div_lock0_wait
1, 285,
0x0020, //p_fec_
1, 299,
0x0062, /* P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard */
1, 338,
(1 << 12) | // P_ctrl_corm_thres4pre_freq_inh=1
(1 << 10) |
(0 << 9) | /* P_ctrl_pre_freq_inh=0 */
(3 << 5) | /* P_ctrl_pre_freq_step=3 */
(1 << 0), /* P_pre_freq_win_len=1 */
0,
};
static u16 dib8000_identify(struct i2c_device *client)
{
u16 value;
//because of glitches sometimes
value = dib8000_i2c_read16(client, 896);
if ((value = dib8000_i2c_read16(client, 896)) != 0x01b3) {
dprintk("wrong Vendor ID (read=0x%x)\n", value);
return 0;
}
value = dib8000_i2c_read16(client, 897);
if (value != 0x8000 && value != 0x8001 &&
value != 0x8002 && value != 0x8090) {
dprintk("wrong Device ID (%x)\n", value);
return 0;
}
switch (value) {
case 0x8000:
dprintk("found DiB8000A\n");
break;
case 0x8001:
dprintk("found DiB8000B\n");
break;
case 0x8002:
dprintk("found DiB8000C\n");
break;
case 0x8090:
dprintk("found DiB8096P\n");
break;
}
return value;
}
static int dib8000_read_unc_blocks(struct dvb_frontend *fe, u32 *unc);
static void dib8000_reset_stats(struct dvb_frontend *fe)
{
struct dib8000_state *state = fe->demodulator_priv;
struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
u32 ucb;
memset(&c->strength, 0, sizeof(c->strength));
memset(&c->cnr, 0, sizeof(c->cnr));
memset(&c->post_bit_error, 0, sizeof(c->post_bit_error));
memset(&c->post_bit_count, 0, sizeof(c->post_bit_count));
memset(&c->block_error, 0, sizeof(c->block_error));
c->strength.len = 1;
c->cnr.len = 1;
c->block_error.len = 1;
c->block_count.len = 1;
c->post_bit_error.len = 1;
c->post_bit_count.len = 1;
c->strength.stat[0].scale = FE_SCALE_DECIBEL;
c->strength.stat[0].uvalue = 0;
c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
dib8000_read_unc_blocks(fe, &ucb);
state->init_ucb = -ucb;
state->ber_jiffies_stats = 0;
state->per_jiffies_stats = 0;
memset(&state->ber_jiffies_stats_layer, 0,
sizeof(state->ber_jiffies_stats_layer));
}
static int dib8000_reset(struct dvb_frontend *fe)
{
struct dib8000_state *state = fe->demodulator_priv;
if ((state->revision = dib8000_identify(&state->i2c)) == 0)
return -EINVAL;
/* sram lead in, rdy */
if (state->revision != 0x8090)
dib8000_write_word(state, 1287, 0x0003);
if (state->revision == 0x8000)
dprintk("error : dib8000 MA not supported\n");
dibx000_reset_i2c_master(&state->i2c_master);
dib8000_set_power_mode(state, DIB8000_POWER_ALL);
/* always leave the VBG voltage on - it consumes almost nothing but takes a long time to start */
dib8000_set_adc_state(state, DIBX000_ADC_OFF);
/* restart all parts */
dib8000_write_word(state, 770, 0xffff);
dib8000_write_word(state, 771, 0xffff);
dib8000_write_word(state, 772, 0xfffc);
dib8000_write_word(state, 898, 0x000c); /* restart sad */
if (state->revision == 0x8090)
dib8000_write_word(state, 1280, 0x0045);
else
dib8000_write_word(state, 1280, 0x004d);
dib8000_write_word(state, 1281, 0x000c);
dib8000_write_word(state, 770, 0x0000);
dib8000_write_word(state, 771, 0x0000);
dib8000_write_word(state, 772, 0x0000);
dib8000_write_word(state, 898, 0x0004); // sad
dib8000_write_word(state, 1280, 0x0000);
dib8000_write_word(state, 1281, 0x0000);
/* drives */
if (state->revision != 0x8090) {
if (state->cfg.drives)
dib8000_write_word(state, 906, state->cfg.drives);
else {
dprintk("using standard PAD-drive-settings, please adjust settings in config-struct to be optimal.\n");
/* min drive SDRAM - not optimal - adjust */
dib8000_write_word(state, 906, 0x2d98);
}
}
dib8000_reset_pll(state);
if (state->revision != 0x8090)
dib8000_write_word(state, 898, 0x0004);
if (dib8000_reset_gpio(state) != 0)
dprintk("GPIO reset was not successful.\n");
if ((state->revision != 0x8090) &&
(dib8000_set_output_mode(fe, OUTMODE_HIGH_Z) != 0))
dprintk("OUTPUT_MODE could not be reset.\n");
state->current_agc = NULL;
// P_iqc_alpha_pha, P_iqc_alpha_amp, P_iqc_dcc_alpha, ...
/* P_iqc_ca2 = 0; P_iqc_impnc_on = 0; P_iqc_mode = 0; */
if (state->cfg.pll->ifreq == 0)
dib8000_write_word(state, 40, 0x0755); /* P_iqc_corr_inh = 0 enable IQcorr block */
else
dib8000_write_word(state, 40, 0x1f55); /* P_iqc_corr_inh = 1 disable IQcorr block */
{
u16 l = 0, r;
const u16 *n;
n = dib8000_defaults;
l = *n++;
while (l) {
r = *n++;
do {
dib8000_write_word(state, r, *n++);
r++;
} while (--l);
l = *n++;
}
}
state->isdbt_cfg_loaded = 0;
//div_cfg override for special configs
if ((state->revision != 8090) && (state->cfg.div_cfg != 0))
dib8000_write_word(state, 903, state->cfg.div_cfg);
/* unforce divstr regardless whether i2c enumeration was done or not */
dib8000_write_word(state, 1285, dib8000_read_word(state, 1285) & ~(1 << 1));
dib8000_set_bandwidth(fe, 6000);
dib8000_set_adc_state(state, DIBX000_SLOW_ADC_ON);
dib8000_sad_calib(state);
if (state->revision != 0x8090)
dib8000_set_adc_state(state, DIBX000_SLOW_ADC_OFF);
/* ber_rs_len = 3 */
dib8000_write_word(state, 285, (dib8000_read_word(state, 285) & ~0x60) | (3 << 5));
dib8000_set_power_mode(state, DIB8000_POWER_INTERFACE_ONLY);
dib8000_reset_stats(fe);
return 0;
}
static void dib8000_restart_agc(struct dib8000_state *state)
{
// P_restart_iqc & P_restart_agc
dib8000_write_word(state, 770, 0x0a00);
dib8000_write_word(state, 770, 0x0000);
}
static int dib8000_update_lna(struct dib8000_state *state)
{
u16 dyn_gain;
if (state->cfg.update_lna) {
// read dyn_gain here (because it is demod-dependent and not tuner)
dyn_gain = dib8000_read_word(state, 390);
if (state->cfg.update_lna(state->fe[0], dyn_gain)) {
dib8000_restart_agc(state);
return 1;
}
}
return 0;
}
static int dib8000_set_agc_config(struct dib8000_state *state, u8 band)
{
struct dibx000_agc_config *agc = NULL;
int i;
u16 reg;
if (state->current_band == band && state->current_agc != NULL)
return 0;
state->current_band = band;
for (i = 0; i < state->cfg.agc_config_count; i++)
if (state->cfg.agc[i].band_caps & band) {
agc = &state->cfg.agc[i];
break;
}
if (agc == NULL) {
dprintk("no valid AGC configuration found for band 0x%02x\n", band);
return -EINVAL;
}
state->current_agc = agc;
/* AGC */
dib8000_write_word(state, 76, agc->setup);
dib8000_write_word(state, 77, agc->inv_gain);
dib8000_write_word(state, 78, agc->time_stabiliz);
dib8000_write_word(state, 101, (agc->alpha_level << 12) | agc->thlock);
// Demod AGC loop configuration
dib8000_write_word(state, 102, (agc->alpha_mant << 5) | agc->alpha_exp);
dib8000_write_word(state, 103, (agc->beta_mant << 6) | agc->beta_exp);
dprintk("WBD: ref: %d, sel: %d, active: %d, alpha: %d\n",
state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel);
/* AGC continued */
if (state->wbd_ref != 0)
dib8000_write_word(state, 106, state->wbd_ref);
else // use default
dib8000_write_word(state, 106, agc->wbd_ref);
if (state->revision == 0x8090) {
reg = dib8000_read_word(state, 922) & (0x3 << 2);
dib8000_write_word(state, 922, reg | (agc->wbd_sel << 2));
}
dib8000_write_word(state, 107, (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8));
dib8000_write_word(state, 108, agc->agc1_max);
dib8000_write_word(state, 109, agc->agc1_min);
dib8000_write_word(state, 110, agc->agc2_max);
dib8000_write_word(state, 111, agc->agc2_min);
dib8000_write_word(state, 112, (agc->agc1_pt1 << 8) | agc->agc1_pt2);
dib8000_write_word(state, 113, (agc->agc1_slope1 << 8) | agc->agc1_slope2);
dib8000_write_word(state, 114, (agc->agc2_pt1 << 8) | agc->agc2_pt2);
dib8000_write_word(state, 115, (agc->agc2_slope1 << 8) | agc->agc2_slope2);
dib8000_write_word(state, 75, agc->agc1_pt3);
if (state->revision != 0x8090)
dib8000_write_word(state, 923,
(dib8000_read_word(state, 923) & 0xffe3) |
(agc->wbd_inv << 4) | (agc->wbd_sel << 2));
return 0;
}
static void dib8000_pwm_agc_reset(struct dvb_frontend *fe)
{
struct dib8000_state *state = fe->demodulator_priv;
dib8000_set_adc_state(state, DIBX000_ADC_ON);
dib8000_set_agc_config(state, (unsigned char)(BAND_OF_FREQUENCY(fe->dtv_property_cache.frequency / 1000)));
}
static int dib8000_agc_soft_split(struct dib8000_state *state)
{
u16 agc, split_offset;
if (!state->current_agc || !state->current_agc->perform_agc_softsplit || state->current_agc->split.max == 0)
return 0;
// n_agc_global
agc = dib8000_read_word(state, 390);
if (agc > state->current_agc->split.min_thres)
split_offset = state->current_agc->split.min;
else if (agc < state->current_agc->split.max_thres)
split_offset = state->current_agc->split.max;
else
split_offset = state->current_agc->split.max *
(agc - state->current_agc->split.min_thres) /
(state->current_agc->split.max_thres - state->current_agc->split.min_thres);
dprintk("AGC split_offset: %d\n", split_offset);
// P_agc_force_split and P_agc_split_offset
dib8000_write_word(state, 107, (dib8000_read_word(state, 107) & 0xff00) | split_offset);
return 5000;
}
static int dib8000_agc_startup(struct dvb_frontend *fe)
{
struct dib8000_state *state = fe->demodulator_priv;
enum frontend_tune_state *tune_state = &state->tune_state;
int ret = 0;
u16 reg;
u32 upd_demod_gain_period = 0x8000;
switch (*tune_state) {
case CT_AGC_START:
// set power-up level: interf+analog+AGC
if (state->revision != 0x8090)
dib8000_set_adc_state(state, DIBX000_ADC_ON);
else {
dib8000_set_power_mode(state, DIB8000_POWER_ALL);
reg = dib8000_read_word(state, 1947)&0xff00;
dib8000_write_word(state, 1946,
upd_demod_gain_period & 0xFFFF);
/* bit 14 = enDemodGain */
dib8000_write_word(state, 1947, reg | (1<<14) |
((upd_demod_gain_period >> 16) & 0xFF));
/* enable adc i & q */
reg = dib8000_read_word(state, 1920);
dib8000_write_word(state, 1920, (reg | 0x3) &
(~(1 << 7)));
}
if (dib8000_set_agc_config(state, (unsigned char)(BAND_OF_FREQUENCY(fe->dtv_property_cache.frequency / 1000))) != 0) {
*tune_state = CT_AGC_STOP;
state->status = FE_STATUS_TUNE_FAILED;
break;
}
ret = 70;
*tune_state = CT_AGC_STEP_0;
break;
case CT_AGC_STEP_0:
//AGC initialization
if (state->cfg.agc_control)
state->cfg.agc_control(fe, 1);
dib8000_restart_agc(state);
// wait AGC rough lock time
ret = 50;
*tune_state = CT_AGC_STEP_1;
break;
case CT_AGC_STEP_1:
// wait AGC accurate lock time
ret = 70;
if (dib8000_update_lna(state))
// wait only AGC rough lock time
ret = 50;
else
*tune_state = CT_AGC_STEP_2;
break;
case CT_AGC_STEP_2:
dib8000_agc_soft_split(state);
if (state->cfg.agc_control)
state->cfg.agc_control(fe, 0);
*tune_state = CT_AGC_STOP;
break;
default:
ret = dib8000_agc_soft_split(state);
break;
}
return ret;
}
static void dib8096p_host_bus_drive(struct dib8000_state *state, u8 drive)
{
u16 reg;
drive &= 0x7;
/* drive host bus 2, 3, 4 */
reg = dib8000_read_word(state, 1798) &
~(0x7 | (0x7 << 6) | (0x7 << 12));
reg |= (drive<<12) | (drive<<6) | drive;
dib8000_write_word(state, 1798, reg);
/* drive host bus 5,6 */
reg = dib8000_read_word(state, 1799) & ~((0x7 << 2) | (0x7 << 8));
reg |= (drive<<8) | (drive<<2);
dib8000_write_word(state, 1799, reg);
/* drive host bus 7, 8, 9 */
reg = dib8000_read_word(state, 1800) &
~(0x7 | (0x7 << 6) | (0x7 << 12));
reg |= (drive<<12) | (drive<<6) | drive;
dib8000_write_word(state, 1800, reg);
/* drive host bus 10, 11 */
reg = dib8000_read_word(state, 1801) & ~((0x7 << 2) | (0x7 << 8));
reg |= (drive<<8) | (drive<<2);
dib8000_write_word(state, 1801, reg);
/* drive host bus 12, 13, 14 */
reg = dib8000_read_word(state, 1802) &
~(0x7 | (0x7 << 6) | (0x7 << 12));
reg |= (drive<<12) | (drive<<6) | drive;
dib8000_write_word(state, 1802, reg);
}
static u32 dib8096p_calcSyncFreq(u32 P_Kin, u32 P_Kout,
u32 insertExtSynchro, u32 syncSize)
{
u32 quantif = 3;
u32 nom = (insertExtSynchro * P_Kin+syncSize);
u32 denom = P_Kout;
u32 syncFreq = ((nom << quantif) / denom);
if ((syncFreq & ((1 << quantif) - 1)) != 0)
syncFreq = (syncFreq >> quantif) + 1;
else
syncFreq = (syncFreq >> quantif);
if (syncFreq != 0)
syncFreq = syncFreq - 1;
return syncFreq;
}
static void dib8096p_cfg_DibTx(struct dib8000_state *state, u32 P_Kin,
u32 P_Kout, u32 insertExtSynchro, u32 synchroMode,
u32 syncWord, u32 syncSize)
{
dprintk("Configure DibStream Tx\n");
dib8000_write_word(state, 1615, 1);
dib8000_write_word(state, 1603, P_Kin);
dib8000_write_word(state, 1605, P_Kout);
dib8000_write_word(state, 1606, insertExtSynchro);
dib8000_write_word(state, 1608, synchroMode);
dib8000_write_word(state, 1609, (syncWord >> 16) & 0xffff);
dib8000_write_word(state, 1610, syncWord & 0xffff);
dib8000_write_word(state, 1612, syncSize);
dib8000_write_word(state, 1615, 0);
}
static void dib8096p_cfg_DibRx(struct dib8000_state *state, u32 P_Kin,
u32 P_Kout, u32 synchroMode, u32 insertExtSynchro,
u32 syncWord, u32 syncSize, u32 dataOutRate)
{
u32 syncFreq;
dprintk("Configure DibStream Rx synchroMode = %d\n", synchroMode);
if ((P_Kin != 0) && (P_Kout != 0)) {
syncFreq = dib8096p_calcSyncFreq(P_Kin, P_Kout,
insertExtSynchro, syncSize);
dib8000_write_word(state, 1542, syncFreq);
}
dib8000_write_word(state, 1554, 1);
dib8000_write_word(state, 1536, P_Kin);
dib8000_write_word(state, 1537, P_Kout);
dib8000_write_word(state, 1539, synchroMode);
dib8000_write_word(state, 1540, (syncWord >> 16) & 0xffff);
dib8000_write_word(state, 1541, syncWord & 0xffff);
dib8000_write_word(state, 1543, syncSize);
dib8000_write_word(state, 1544, dataOutRate);
dib8000_write_word(state, 1554, 0);
}
static void dib8096p_enMpegMux(struct dib8000_state *state, int onoff)
{
u16 reg_1287;
reg_1287 = dib8000_read_word(state, 1287);
switch (onoff) {
case 1:
reg_1287 &= ~(1 << 8);
break;
case 0:
reg_1287 |= (1 << 8);
break;
}
dib8000_write_word(state, 1287, reg_1287);
}
static void dib8096p_configMpegMux(struct dib8000_state *state,
u16 pulseWidth, u16 enSerialMode, u16 enSerialClkDiv2)
{
u16 reg_1287;
dprintk("Enable Mpeg mux\n");
dib8096p_enMpegMux(state, 0);
/* If the input mode is MPEG do not divide the serial clock */
if ((enSerialMode == 1) && (state->input_mode_mpeg == 1))
enSerialClkDiv2 = 0;
reg_1287 = ((pulseWidth & 0x1f) << 3) |
((enSerialMode & 0x1) << 2) | (enSerialClkDiv2 & 0x1);
dib8000_write_word(state, 1287, reg_1287);
dib8096p_enMpegMux(state, 1);
}
static void dib8096p_setDibTxMux(struct dib8000_state *state, int mode)
{
u16 reg_1288 = dib8000_read_word(state, 1288) & ~(0x7 << 7);
switch (mode) {
case MPEG_ON_DIBTX:
dprintk("SET MPEG ON DIBSTREAM TX\n");
dib8096p_cfg_DibTx(state, 8, 5, 0, 0, 0, 0);
reg_1288 |= (1 << 9); break;
case DIV_ON_DIBTX:
dprintk("SET DIV_OUT ON DIBSTREAM TX\n");
dib8096p_cfg_DibTx(state, 5, 5, 0, 0, 0, 0);
reg_1288 |= (1 << 8); break;
case ADC_ON_DIBTX:
dprintk("SET ADC_OUT ON DIBSTREAM TX\n");
dib8096p_cfg_DibTx(state, 20, 5, 10, 0, 0, 0);
reg_1288 |= (1 << 7); break;
default:
break;
}
dib8000_write_word(state, 1288, reg_1288);
}
static void dib8096p_setHostBusMux(struct dib8000_state *state, int mode)
{
u16 reg_1288 = dib8000_read_word(state, 1288) & ~(0x7 << 4);
switch (mode) {
case DEMOUT_ON_HOSTBUS:
dprintk("SET DEM OUT OLD INTERF ON HOST BUS\n");
dib8096p_enMpegMux(state, 0);
reg_1288 |= (1 << 6);
break;
case DIBTX_ON_HOSTBUS:
dprintk("SET DIBSTREAM TX ON HOST BUS\n");
dib8096p_enMpegMux(state, 0);
reg_1288 |= (1 << 5);
break;
case MPEG_ON_HOSTBUS:
dprintk("SET MPEG MUX ON HOST BUS\n");
reg_1288 |= (1 << 4);
break;
default:
break;
}
dib8000_write_word(state, 1288, reg_1288);
}
static int dib8096p_set_diversity_in(struct dvb_frontend *fe, int onoff)
{
struct dib8000_state *state = fe->demodulator_priv;
u16 reg_1287;
switch (onoff) {
case 0: /* only use the internal way - not the diversity input */
dprintk("%s mode OFF : by default Enable Mpeg INPUT\n",
__func__);
/* outputRate = 8 */
dib8096p_cfg_DibRx(state, 8, 5, 0, 0, 0, 8, 0);
/* Do not divide the serial clock of MPEG MUX in
SERIAL MODE in case input mode MPEG is used */
reg_1287 = dib8000_read_word(state, 1287);
/* enSerialClkDiv2 == 1 ? */
if ((reg_1287 & 0x1) == 1) {
/* force enSerialClkDiv2 = 0 */
reg_1287 &= ~0x1;
dib8000_write_word(state, 1287, reg_1287);
}
state->input_mode_mpeg = 1;
break;
case 1: /* both ways */
case 2: /* only the diversity input */
dprintk("%s ON : Enable diversity INPUT\n", __func__);
dib8096p_cfg_DibRx(state, 5, 5, 0, 0, 0, 0, 0);
state->input_mode_mpeg = 0;
break;
}
dib8000_set_diversity_in(state->fe[0], onoff);
return 0;
}
static int dib8096p_set_output_mode(struct dvb_frontend *fe, int mode)
{
struct dib8000_state *state = fe->demodulator_priv;
u16 outreg, smo_mode, fifo_threshold;
u8 prefer_mpeg_mux_use = 1;
int ret = 0;
state->output_mode = mode;
dib8096p_host_bus_drive(state, 1);
fifo_threshold = 1792;
smo_mode = (dib8000_read_word(state, 299) & 0x0050) | (1 << 1);
outreg = dib8000_read_word(state, 1286) &
~((1 << 10) | (0x7 << 6) | (1 << 1));
switch (mode) {
case OUTMODE_HIGH_Z:
outreg = 0;
break;
case OUTMODE_MPEG2_SERIAL:
if (prefer_mpeg_mux_use) {
dprintk("dib8096P setting output mode TS_SERIAL using Mpeg Mux\n");
dib8096p_configMpegMux(state, 3, 1, 1);
dib8096p_setHostBusMux(state, MPEG_ON_HOSTBUS);
} else {/* Use Smooth block */
dprintk("dib8096P setting output mode TS_SERIAL using Smooth bloc\n");
dib8096p_setHostBusMux(state,
DEMOUT_ON_HOSTBUS);
outreg |= (2 << 6) | (0 << 1);
}
break;
case OUTMODE_MPEG2_PAR_GATED_CLK:
if (prefer_mpeg_mux_use) {
dprintk("dib8096P setting output mode TS_PARALLEL_GATED using Mpeg Mux\n");
dib8096p_configMpegMux(state, 2, 0, 0);
dib8096p_setHostBusMux(state, MPEG_ON_HOSTBUS);
} else { /* Use Smooth block */
dprintk("dib8096P setting output mode TS_PARALLEL_GATED using Smooth block\n");
dib8096p_setHostBusMux(state,
DEMOUT_ON_HOSTBUS);
outreg |= (0 << 6);
}
break;
case OUTMODE_MPEG2_PAR_CONT_CLK: /* Using Smooth block only */
dprintk("dib8096P setting output mode TS_PARALLEL_CONT using Smooth block\n");
dib8096p_setHostBusMux(state, DEMOUT_ON_HOSTBUS);
outreg |= (1 << 6);
break;
case OUTMODE_MPEG2_FIFO:
/* Using Smooth block because not supported
by new Mpeg Mux bloc */
dprintk("dib8096P setting output mode TS_FIFO using Smooth block\n");
dib8096p_setHostBusMux(state, DEMOUT_ON_HOSTBUS);
outreg |= (5 << 6);
smo_mode |= (3 << 1);
fifo_threshold = 512;
break;
case OUTMODE_DIVERSITY:
dprintk("dib8096P setting output mode MODE_DIVERSITY\n");
dib8096p_setDibTxMux(state, DIV_ON_DIBTX);
dib8096p_setHostBusMux(state, DIBTX_ON_HOSTBUS);
break;
case OUTMODE_ANALOG_ADC:
dprintk("dib8096P setting output mode MODE_ANALOG_ADC\n");
dib8096p_setDibTxMux(state, ADC_ON_DIBTX);
dib8096p_setHostBusMux(state, DIBTX_ON_HOSTBUS);
break;
}
if (mode != OUTMODE_HIGH_Z)
outreg |= (1<<10);
dprintk("output_mpeg2_in_188_bytes = %d\n",
state->cfg.output_mpeg2_in_188_bytes);
if (state->cfg.output_mpeg2_in_188_bytes)
smo_mode |= (1 << 5);
ret |= dib8000_write_word(state, 299, smo_mode);
/* synchronous fread */
ret |= dib8000_write_word(state, 299 + 1, fifo_threshold);
ret |= dib8000_write_word(state, 1286, outreg);
return ret;
}
static int map_addr_to_serpar_number(struct i2c_msg *msg)
{
if (msg->buf[0] <= 15)
msg->buf[0] -= 1;
else if (msg->buf[0] == 17)
msg->buf[0] = 15;
else if (msg->buf[0] == 16)
msg->buf[0] = 17;
else if (msg->buf[0] == 19)
msg->buf[0] = 16;
else if (msg->buf[0] >= 21 && msg->buf[0] <= 25)
msg->buf[0] -= 3;
else if (msg->buf[0] == 28)
msg->buf[0] = 23;
else if (msg->buf[0] == 99)
msg->buf[0] = 99;
else
return -EINVAL;
return 0;
}
static int dib8096p_tuner_write_serpar(struct i2c_adapter *i2c_adap,
struct i2c_msg msg[], int num)
{
struct dib8000_state *state = i2c_get_adapdata(i2c_adap);
u8 n_overflow = 1;
u16 i = 1000;
u16 serpar_num = msg[0].buf[0];
while (n_overflow == 1 && i) {
n_overflow = (dib8000_read_word(state, 1984) >> 1) & 0x1;
i--;
if (i == 0)
dprintk("Tuner ITF: write busy (overflow)\n");
}
dib8000_write_word(state, 1985, (1 << 6) | (serpar_num & 0x3f));
dib8000_write_word(state, 1986, (msg[0].buf[1] << 8) | msg[0].buf[2]);
return num;
}
static int dib8096p_tuner_read_serpar(struct i2c_adapter *i2c_adap,
struct i2c_msg msg[], int num)
{
struct dib8000_state *state = i2c_get_adapdata(i2c_adap);
u8 n_overflow = 1, n_empty = 1;
u16 i = 1000;
u16 serpar_num = msg[0].buf[0];
u16 read_word;
while (n_overflow == 1 && i) {
n_overflow = (dib8000_read_word(state, 1984) >> 1) & 0x1;
i--;
if (i == 0)
dprintk("TunerITF: read busy (overflow)\n");
}
dib8000_write_word(state, 1985, (0<<6) | (serpar_num&0x3f));
i = 1000;
while (n_empty == 1 && i) {
n_empty = dib8000_read_word(state, 1984)&0x1;
i--;
if (i == 0)
dprintk("TunerITF: read busy (empty)\n");
}
read_word = dib8000_read_word(state, 1987);
msg[1].buf[0] = (read_word >> 8) & 0xff;
msg[1].buf[1] = (read_word) & 0xff;
return num;
}
static int dib8096p_tuner_rw_serpar(struct i2c_adapter *i2c_adap,
struct i2c_msg msg[], int num)
{
if (map_addr_to_serpar_number(&msg[0]) == 0) {
if (num == 1) /* write */
return dib8096p_tuner_write_serpar(i2c_adap, msg, 1);
else /* read */
return dib8096p_tuner_read_serpar(i2c_adap, msg, 2);
}
return num;
}
static int dib8096p_rw_on_apb(struct i2c_adapter *i2c_adap,
struct i2c_msg msg[], int num, u16 apb_address)
{
struct dib8000_state *state = i2c_get_adapdata(i2c_adap);
u16 word;
if (num == 1) { /* write */
dib8000_write_word(state, apb_address,
((msg[0].buf[1] << 8) | (msg[0].buf[2])));
} else {
word = dib8000_read_word(state, apb_address);
msg[1].buf[0] = (word >> 8) & 0xff;
msg[1].buf[1] = (word) & 0xff;
}
return num;
}
static int dib8096p_tuner_xfer(struct i2c_adapter *i2c_adap,
struct i2c_msg msg[], int num)
{
struct dib8000_state *state = i2c_get_adapdata(i2c_adap);
u16 apb_address = 0, word;
int i = 0;
switch (msg[0].buf[0]) {
case 0x12:
apb_address = 1920;
break;
case 0x14:
apb_address = 1921;
break;
case 0x24:
apb_address = 1922;
break;
case 0x1a:
apb_address = 1923;
break;
case 0x22:
apb_address = 1924;
break;
case 0x33:
apb_address = 1926;
break;
case 0x34:
apb_address = 1927;
break;
case 0x35:
apb_address = 1928;
break;
case 0x36:
apb_address = 1929;
break;
case 0x37:
apb_address = 1930;
break;
case 0x38:
apb_address = 1931;
break;
case 0x39:
apb_address = 1932;
break;
case 0x2a:
apb_address = 1935;
break;
case 0x2b:
apb_address = 1936;
break;
case 0x2c:
apb_address = 1937;
break;
case 0x2d:
apb_address = 1938;
break;
case 0x2e:
apb_address = 1939;
break;
case 0x2f:
apb_address = 1940;
break;
case 0x30:
apb_address = 1941;
break;
case 0x31:
apb_address = 1942;
break;
case 0x32:
apb_address = 1943;
break;
case 0x3e:
apb_address = 1944;
break;
case 0x3f:
apb_address = 1945;
break;
case 0x40:
apb_address = 1948;
break;
case 0x25:
apb_address = 936;
break;
case 0x26:
apb_address = 937;
break;
case 0x27:
apb_address = 938;
break;
case 0x28:
apb_address = 939;
break;
case 0x1d:
/* get sad sel request */
i = ((dib8000_read_word(state, 921) >> 12)&0x3);
word = dib8000_read_word(state, 924+i);
msg[1].buf[0] = (word >> 8) & 0xff;
msg[1].buf[1] = (word) & 0xff;
return num;
case 0x1f:
if (num == 1) { /* write */
word = (u16) ((msg[0].buf[1] << 8) |
msg[0].buf[2]);
/* in the VGAMODE Sel are located on bit 0/1 */
word &= 0x3;
word = (dib8000_read_word(state, 921) &
~(3<<12)) | (word<<12);
/* Set the proper input */
dib8000_write_word(state, 921, word);
return num;
}
}
if (apb_address != 0) /* R/W access via APB */
return dib8096p_rw_on_apb(i2c_adap, msg, num, apb_address);
else /* R/W access via SERPAR */
return dib8096p_tuner_rw_serpar(i2c_adap, msg, num);
return 0;
}
static u32 dib8096p_i2c_func(struct i2c_adapter *adapter)
{
return I2C_FUNC_I2C;
}
static const struct i2c_algorithm dib8096p_tuner_xfer_algo = {
.master_xfer = dib8096p_tuner_xfer,
.functionality = dib8096p_i2c_func,
};
static struct i2c_adapter *dib8096p_get_i2c_tuner(struct dvb_frontend *fe)
{
struct dib8000_state *st = fe->demodulator_priv;
return &st->dib8096p_tuner_adap;
}
static int dib8096p_tuner_sleep(struct dvb_frontend *fe, int onoff)
{
struct dib8000_state *state = fe->demodulator_priv;
u16 en_cur_state;
dprintk("sleep dib8096p: %d\n", onoff);
en_cur_state = dib8000_read_word(state, 1922);
/* LNAs and MIX are ON and therefore it is a valid configuration */
if (en_cur_state > 0xff)
state->tuner_enable = en_cur_state ;
if (onoff)
en_cur_state &= 0x00ff;
else {
if (state->tuner_enable != 0)
en_cur_state = state->tuner_enable;
}
dib8000_write_word(state, 1922, en_cur_state);
return 0;
}
static const s32 lut_1000ln_mant[] =
{
908, 7003, 7090, 7170, 7244, 7313, 7377, 7438, 7495, 7549, 7600
};
static s32 dib8000_get_adc_power(struct dvb_frontend *fe, u8 mode)
{
struct dib8000_state *state = fe->demodulator_priv;
u32 ix = 0, tmp_val = 0, exp = 0, mant = 0;
s32 val;
val = dib8000_read32(state, 384);
if (mode) {
tmp_val = val;
while (tmp_val >>= 1)
exp++;
mant = (val * 1000 / (1<<exp));
ix = (u8)((mant-1000)/100); /* index of the LUT */
val = (lut_1000ln_mant[ix] + 693*(exp-20) - 6908);
val = (val*256)/1000;
}
return val;
}
static int dib8090p_get_dc_power(struct dvb_frontend *fe, u8 IQ)
{
struct dib8000_state *state = fe->demodulator_priv;
int val = 0;
switch (IQ) {
case 1:
val = dib8000_read_word(state, 403);
break;
case 0:
val = dib8000_read_word(state, 404);
break;
}
if (val & 0x200)
val -= 1024;
return val;
}
static void dib8000_update_timf(struct dib8000_state *state)
{
u32 timf = state->timf = dib8000_read32(state, 435);
dib8000_write_word(state, 29, (u16) (timf >> 16));
dib8000_write_word(state, 30, (u16) (timf & 0xffff));
dprintk("Updated timing frequency: %d (default: %d)\n", state->timf, state->timf_default);
}
static u32 dib8000_ctrl_timf(struct dvb_frontend *fe, uint8_t op, uint32_t timf)
{
struct dib8000_state *state = fe->demodulator_priv;
switch (op) {
case DEMOD_TIMF_SET:
state->timf = timf;
break;
case DEMOD_TIMF_UPDATE:
dib8000_update_timf(state);
break;
case DEMOD_TIMF_GET:
break;
}
dib8000_set_bandwidth(state->fe[0], 6000);
return state->timf;
}
static const u16 adc_target_16dB[11] = {
7250, 7238, 7264, 7309, 7338, 7382, 7427, 7456, 7500, 7544, 7574
};
static const u8 permu_seg[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12 };
static u16 dib8000_set_layer(struct dib8000_state *state, u8 layer_index, u16 max_constellation)
{
u8 cr, constellation, time_intlv;
struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
switch (c->layer[layer_index].modulation) {
case DQPSK:
constellation = 0;
break;
case QPSK:
constellation = 1;
break;
case QAM_16:
constellation = 2;
break;
case QAM_64:
default:
constellation = 3;
break;
}
switch (c->layer[layer_index].fec) {
case FEC_1_2:
cr = 1;
break;
case FEC_2_3:
cr = 2;
break;
case FEC_3_4:
cr = 3;
break;
case FEC_5_6:
cr = 5;
break;
case FEC_7_8:
default:
cr = 7;
break;
}
time_intlv = fls(c->layer[layer_index].interleaving);
if (time_intlv > 3 && !(time_intlv == 4 && c->isdbt_sb_mode == 1))
time_intlv = 0;
dib8000_write_word(state, 2 + layer_index, (constellation << 10) | ((c->layer[layer_index].segment_count & 0xf) << 6) | (cr << 3) | time_intlv);
if (c->layer[layer_index].segment_count > 0) {
switch (max_constellation) {
case DQPSK:
case QPSK:
if (c->layer[layer_index].modulation == QAM_16 || c->layer[layer_index].modulation == QAM_64)
max_constellation = c->layer[layer_index].modulation;
break;
case QAM_16:
if (c->layer[layer_index].modulation == QAM_64)
max_constellation = c->layer[layer_index].modulation;
break;
}
}
return max_constellation;
}
static const u16 adp_Q64[4] = {0x0148, 0xfff0, 0x00a4, 0xfff8}; /* P_adp_regul_cnt 0.04, P_adp_noise_cnt -0.002, P_adp_regul_ext 0.02, P_adp_noise_ext -0.001 */
static const u16 adp_Q16[4] = {0x023d, 0xffdf, 0x00a4, 0xfff0}; /* P_adp_regul_cnt 0.07, P_adp_noise_cnt -0.004, P_adp_regul_ext 0.02, P_adp_noise_ext -0.002 */
static const u16 adp_Qdefault[4] = {0x099a, 0xffae, 0x0333, 0xfff8}; /* P_adp_regul_cnt 0.3, P_adp_noise_cnt -0.01, P_adp_regul_ext 0.1, P_adp_noise_ext -0.002 */
static u16 dib8000_adp_fine_tune(struct dib8000_state *state, u16 max_constellation)
{
u16 i, ana_gain = 0;
const u16 *adp;
/* channel estimation fine configuration */
switch (max_constellation) {
case QAM_64:
ana_gain = 0x7;
adp = &adp_Q64[0];
break;
case QAM_16:
ana_gain = 0x7;
adp = &adp_Q16[0];
break;
default:
ana_gain = 0;
adp = &adp_Qdefault[0];
break;
}
for (i = 0; i < 4; i++)
dib8000_write_word(state, 215 + i, adp[i]);
return ana_gain;
}
static void dib8000_update_ana_gain(struct dib8000_state *state, u16 ana_gain)
{
u16 i;
dib8000_write_word(state, 116, ana_gain);
/* update ADC target depending on ana_gain */
if (ana_gain) { /* set -16dB ADC target for ana_gain=-1 */
for (i = 0; i < 10; i++)
dib8000_write_word(state, 80 + i, adc_target_16dB[i]);
} else { /* set -22dB ADC target for ana_gain=0 */
for (i = 0; i < 10; i++)
dib8000_write_word(state, 80 + i, adc_target_16dB[i] - 355);
}
}
static void dib8000_load_ana_fe_coefs(struct dib8000_state *state, const s16 *ana_fe)
{
u16 mode = 0;
if (state->isdbt_cfg_loaded == 0)
for (mode = 0; mode < 24; mode++)
dib8000_write_word(state, 117 + mode, ana_fe[mode]);
}
static const u16 lut_prbs_2k[13] = {
0x423, 0x009, 0x5C7,
0x7A6, 0x3D8, 0x527,
0x7FF, 0x79B, 0x3D6,
0x3A2, 0x53B, 0x2F4,
0x213
};
static const u16 lut_prbs_4k[13] = {
0x208, 0x0C3, 0x7B9,
0x423, 0x5C7, 0x3D8,
0x7FF, 0x3D6, 0x53B,
0x213, 0x029, 0x0D0,
0x48E
};
static const u16 lut_prbs_8k[13] = {
0x740, 0x069, 0x7DD,
0x208, 0x7B9, 0x5C7,
0x7FF, 0x53B, 0x029,
0x48E, 0x4C4, 0x367,
0x684
};
static u16 dib8000_get_init_prbs(struct dib8000_state *state, u16 subchannel)
{
int sub_channel_prbs_group = 0;
int prbs_group;
sub_channel_prbs_group = subchannel / 3;
if (sub_channel_prbs_group >= ARRAY_SIZE(lut_prbs_2k))
return 0;
switch (state->fe[0]->dtv_property_cache.transmission_mode) {
case TRANSMISSION_MODE_2K:
prbs_group = lut_prbs_2k[sub_channel_prbs_group];
break;
case TRANSMISSION_MODE_4K:
prbs_group = lut_prbs_4k[sub_channel_prbs_group];
break;
default:
case TRANSMISSION_MODE_8K:
prbs_group = lut_prbs_8k[sub_channel_prbs_group];
}
dprintk("sub_channel_prbs_group = %d , subchannel =%d prbs = 0x%04x\n",
sub_channel_prbs_group, subchannel, prbs_group);
return prbs_group;
}
static void dib8000_set_13seg_channel(struct dib8000_state *state)
{
u16 i;
u16 coff_pow = 0x2800;
state->seg_mask = 0x1fff; /* All 13 segments enabled */
/* ---- COFF ---- Carloff, the most robust --- */
if (state->isdbt_cfg_loaded == 0) { /* if not Sound Broadcasting mode : put default values for 13 segments */
dib8000_write_word(state, 180, (16 << 6) | 9);
dib8000_write_word(state, 187, (4 << 12) | (8 << 5) | 0x2);
coff_pow = 0x2800;
for (i = 0; i < 6; i++)
dib8000_write_word(state, 181+i, coff_pow);
/* P_ctrl_corm_thres4pre_freq_inh=1, P_ctrl_pre_freq_mode_sat=1 */
/* P_ctrl_pre_freq_mode_sat=1, P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 3, P_pre_freq_win_len=1 */
dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (3 << 5) | 1);
/* P_ctrl_pre_freq_win_len=8, P_ctrl_pre_freq_thres_lockin=6 */
dib8000_write_word(state, 340, (8 << 6) | (6 << 0));
/* P_ctrl_pre_freq_thres_lockout=4, P_small_use_tmcc/ac/cp=1 */
dib8000_write_word(state, 341, (4 << 3) | (1 << 2) | (1 << 1) | (1 << 0));
dib8000_write_word(state, 228, 0); /* default value */
dib8000_write_word(state, 265, 31); /* default value */
dib8000_write_word(state, 205, 0x200f); /* init value */
}
/*
* make the cpil_coff_lock more robust but slower p_coff_winlen
* 6bits; p_coff_thres_lock 6bits (for coff lock if needed)
*/
if (state->cfg.pll->ifreq == 0)
dib8000_write_word(state, 266, ~state->seg_mask | state->seg_diff_mask | 0x40); /* P_equal_noise_seg_inh */
dib8000_load_ana_fe_coefs(state, ana_fe_coeff_13seg);
}
static void dib8000_set_subchannel_prbs(struct dib8000_state *state, u16 init_prbs)
{
u16 reg_1;
reg_1 = dib8000_read_word(state, 1);
dib8000_write_word(state, 1, (init_prbs << 2) | (reg_1 & 0x3)); /* ADDR 1 */
}
static void dib8000_small_fine_tune(struct dib8000_state *state)
{
u16 i;
const s16 *ncoeff;
struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
dib8000_write_word(state, 352, state->seg_diff_mask);
dib8000_write_word(state, 353, state->seg_mask);
/* P_small_coef_ext_enable=ISDB-Tsb, P_small_narrow_band=ISDB-Tsb, P_small_last_seg=13, P_small_offset_num_car=5 */
dib8000_write_word(state, 351, (c->isdbt_sb_mode << 9) | (c->isdbt_sb_mode << 8) | (13 << 4) | 5);
if (c->isdbt_sb_mode) {
/* ---- SMALL ---- */
switch (c->transmission_mode) {
case TRANSMISSION_MODE_2K:
if (c->isdbt_partial_reception == 0) { /* 1-seg */
if (c->layer[0].modulation == DQPSK) /* DQPSK */
ncoeff = coeff_2k_sb_1seg_dqpsk;
else /* QPSK or QAM */
ncoeff = coeff_2k_sb_1seg;
} else { /* 3-segments */
if (c->layer[0].modulation == DQPSK) { /* DQPSK on central segment */
if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */
ncoeff = coeff_2k_sb_3seg_0dqpsk_1dqpsk;
else /* QPSK or QAM on external segments */
ncoeff = coeff_2k_sb_3seg_0dqpsk;
} else { /* QPSK or QAM on central segment */
if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */
ncoeff = coeff_2k_sb_3seg_1dqpsk;
else /* QPSK or QAM on external segments */
ncoeff = coeff_2k_sb_3seg;
}
}
break;
case TRANSMISSION_MODE_4K:
if (c->isdbt_partial_reception == 0) { /* 1-seg */
if (c->layer[0].modulation == DQPSK) /* DQPSK */
ncoeff = coeff_4k_sb_1seg_dqpsk;
else /* QPSK or QAM */
ncoeff = coeff_4k_sb_1seg;
} else { /* 3-segments */
if (c->layer[0].modulation == DQPSK) { /* DQPSK on central segment */
if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */
ncoeff = coeff_4k_sb_3seg_0dqpsk_1dqpsk;
else /* QPSK or QAM on external segments */
ncoeff = coeff_4k_sb_3seg_0dqpsk;
} else { /* QPSK or QAM on central segment */
if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */
ncoeff = coeff_4k_sb_3seg_1dqpsk;
else /* QPSK or QAM on external segments */
ncoeff = coeff_4k_sb_3seg;
}
}
break;
case TRANSMISSION_MODE_AUTO:
case TRANSMISSION_MODE_8K:
default:
if (c->isdbt_partial_reception == 0) { /* 1-seg */
if (c->layer[0].modulation == DQPSK) /* DQPSK */
ncoeff = coeff_8k_sb_1seg_dqpsk;
else /* QPSK or QAM */
ncoeff = coeff_8k_sb_1seg;
} else { /* 3-segments */
if (c->layer[0].modulation == DQPSK) { /* DQPSK on central segment */
if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */
ncoeff = coeff_8k_sb_3seg_0dqpsk_1dqpsk;
else /* QPSK or QAM on external segments */
ncoeff = coeff_8k_sb_3seg_0dqpsk;
} else { /* QPSK or QAM on central segment */
if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */
ncoeff = coeff_8k_sb_3seg_1dqpsk;
else /* QPSK or QAM on external segments */
ncoeff = coeff_8k_sb_3seg;
}
}
break;
}
for (i = 0; i < 8; i++)
dib8000_write_word(state, 343 + i, ncoeff[i]);
}
}
static const u16 coff_thres_1seg[3] = {300, 150, 80};
static const u16 coff_thres_3seg[3] = {350, 300, 250};
static void dib8000_set_sb_channel(struct dib8000_state *state)
{
struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
const u16 *coff;
u16 i;
if (c->transmission_mode == TRANSMISSION_MODE_2K || c->transmission_mode == TRANSMISSION_MODE_4K) {
dib8000_write_word(state, 219, dib8000_read_word(state, 219) | 0x1); /* adp_pass =1 */
dib8000_write_word(state, 190, dib8000_read_word(state, 190) | (0x1 << 14)); /* pha3_force_pha_shift = 1 */
} else {
dib8000_write_word(state, 219, dib8000_read_word(state, 219) & 0xfffe); /* adp_pass =0 */
dib8000_write_word(state, 190, dib8000_read_word(state, 190) & 0xbfff); /* pha3_force_pha_shift = 0 */
}
if (c->isdbt_partial_reception == 1) /* 3-segments */
state->seg_mask = 0x00E0;
else /* 1-segment */
state->seg_mask = 0x0040;
dib8000_write_word(state, 268, (dib8000_read_word(state, 268) & 0xF9FF) | 0x0200);
/* ---- COFF ---- Carloff, the most robust --- */
/* P_coff_cpil_alpha=4, P_coff_inh=0, P_coff_cpil_winlen=64, P_coff_narrow_band=1, P_coff_square_val=1, P_coff_one_seg=~partial_rcpt, P_coff_use_tmcc=1, P_coff_use_ac=1 */
dib8000_write_word(state, 187, (4 << 12) | (0 << 11) | (63 << 5) | (0x3 << 3) | ((~c->isdbt_partial_reception & 1) << 2) | 0x3);
dib8000_write_word(state, 340, (16 << 6) | (8 << 0)); /* P_ctrl_pre_freq_win_len=16, P_ctrl_pre_freq_thres_lockin=8 */
dib8000_write_word(state, 341, (6 << 3) | (1 << 2) | (1 << 1) | (1 << 0));/* P_ctrl_pre_freq_thres_lockout=6, P_small_use_tmcc/ac/cp=1 */
/* Sound Broadcasting mode 1 seg */
if (c->isdbt_partial_reception == 0) {
/* P_coff_winlen=63, P_coff_thres_lock=15, P_coff_one_seg_width = (P_mode == 3) , P_coff_one_seg_sym = (P_mode-1) */
if (state->mode == 3)
dib8000_write_word(state, 180, 0x1fcf | ((state->mode - 1) << 14));
else
dib8000_write_word(state, 180, 0x0fcf | ((state->mode - 1) << 14));
/* P_ctrl_corm_thres4pre_freq_inh=1,P_ctrl_pre_freq_mode_sat=1, P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 5, P_pre_freq_win_len=4 */
dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (5 << 5) | 4);
coff = &coff_thres_1seg[0];
} else { /* Sound Broadcasting mode 3 seg */
dib8000_write_word(state, 180, 0x1fcf | (1 << 14));
/* P_ctrl_corm_thres4pre_freq_inh = 1, P_ctrl_pre_freq_mode_sat=1, P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 4, P_pre_freq_win_len=4 */
dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (4 << 5) | 4);
coff = &coff_thres_3seg[0];
}
dib8000_write_word(state, 228, 1); /* P_2d_mode_byp=1 */
dib8000_write_word(state, 205, dib8000_read_word(state, 205) & 0xfff0); /* P_cspu_win_cut = 0 */
if (c->isdbt_partial_reception == 0 && c->transmission_mode == TRANSMISSION_MODE_2K)
dib8000_write_word(state, 265, 15); /* P_equal_noise_sel = 15 */
/* Write COFF thres */
for (i = 0 ; i < 3; i++) {
dib8000_write_word(state, 181+i, coff[i]);
dib8000_write_word(state, 184+i, coff[i]);
}
/*
* make the cpil_coff_lock more robust but slower p_coff_winlen
* 6bits; p_coff_thres_lock 6bits (for coff lock if needed)
*/
dib8000_write_word(state, 266, ~state->seg_mask | state->seg_diff_mask); /* P_equal_noise_seg_inh */
if (c->isdbt_partial_reception == 0)
dib8000_write_word(state, 178, 64); /* P_fft_powrange = 64 */
else
dib8000_write_word(state, 178, 32); /* P_fft_powrange = 32 */
}
static void dib8000_set_isdbt_common_channel(struct dib8000_state *state, u8 seq, u8 autosearching)
{
u16 p_cfr_left_edge = 0, p_cfr_right_edge = 0;
u16 tmcc_pow = 0, ana_gain = 0, tmp = 0, i = 0, nbseg_diff = 0 ;
u16 max_constellation = DQPSK;
int init_prbs;
struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
if (autosearching)
c->isdbt_partial_reception = 1;
/* P_mode */
dib8000_write_word(state, 10, (seq << 4));
/* init mode */
state->mode = fft_to_mode(state);
/* set guard */
tmp = dib8000_read_word(state, 1);
dib8000_write_word(state, 1, (tmp&0xfffc) | (c->guard_interval & 0x3));
dib8000_write_word(state, 274, (dib8000_read_word(state, 274) & 0xffcf) | ((c->isdbt_partial_reception & 1) << 5) | ((c->isdbt_sb_mode & 1) << 4));
/* signal optimization parameter */
if (c->isdbt_partial_reception) {
state->seg_diff_mask = (c->layer[0].modulation == DQPSK) << permu_seg[0];
for (i = 1; i < 3; i++)
nbseg_diff += (c->layer[i].modulation == DQPSK) * c->layer[i].segment_count;
for (i = 0; i < nbseg_diff; i++)
state->seg_diff_mask |= 1 << permu_seg[i+1];
} else {
for (i = 0; i < 3; i++)
nbseg_diff += (c->layer[i].modulation == DQPSK) * c->layer[i].segment_count;
for (i = 0; i < nbseg_diff; i++)
state->seg_diff_mask |= 1 << permu_seg[i];
}
if (state->seg_diff_mask)
dib8000_write_word(state, 268, (dib8000_read_word(state, 268) & 0xF9FF) | 0x0200);
else
dib8000_write_word(state, 268, (2 << 9) | 39); /*init value */
for (i = 0; i < 3; i++)
max_constellation = dib8000_set_layer(state, i, max_constellation);
if (autosearching == 0) {
state->layer_b_nb_seg = c->layer[1].segment_count;
state->layer_c_nb_seg = c->layer[2].segment_count;
}
/* WRITE: Mode & Diff mask */
dib8000_write_word(state, 0, (state->mode << 13) | state->seg_diff_mask);
state->differential_constellation = (state->seg_diff_mask != 0);
/* channel estimation fine configuration */
ana_gain = dib8000_adp_fine_tune(state, max_constellation);
/* update ana_gain depending on max constellation */
dib8000_update_ana_gain(state, ana_gain);
/* ---- ANA_FE ---- */
if (c->isdbt_partial_reception) /* 3-segments */
dib8000_load_ana_fe_coefs(state, ana_fe_coeff_3seg);
else
dib8000_load_ana_fe_coefs(state, ana_fe_coeff_1seg); /* 1-segment */
/* TSB or ISDBT ? apply it now */
if (c->isdbt_sb_mode) {
dib8000_set_sb_channel(state);
init_prbs = dib8000_get_init_prbs(state,
c->isdbt_sb_subchannel);
} else {
dib8000_set_13seg_channel(state);
init_prbs = 0xfff;
}
/* SMALL */
dib8000_small_fine_tune(state);
dib8000_set_subchannel_prbs(state, init_prbs);
/* ---- CHAN_BLK ---- */
for (i = 0; i < 13; i++) {
if ((((~state->seg_diff_mask) >> i) & 1) == 1) {
p_cfr_left_edge += (1 << i) * ((i == 0) || ((((state->seg_mask & (~state->seg_diff_mask)) >> (i - 1)) & 1) == 0));
p_cfr_right_edge += (1 << i) * ((i == 12) || ((((state->seg_mask & (~state->seg_diff_mask)) >> (i + 1)) & 1) == 0));
}
}
dib8000_write_word(state, 222, p_cfr_left_edge); /* p_cfr_left_edge */
dib8000_write_word(state, 223, p_cfr_right_edge); /* p_cfr_right_edge */
/* "P_cspu_left_edge" & "P_cspu_right_edge" not used => do not care */
dib8000_write_word(state, 189, ~state->seg_mask | state->seg_diff_mask); /* P_lmod4_seg_inh */
dib8000_write_word(state, 192, ~state->seg_mask | state->seg_diff_mask); /* P_pha3_seg_inh */
dib8000_write_word(state, 225, ~state->seg_mask | state->seg_diff_mask); /* P_tac_seg_inh */
if (!autosearching)
dib8000_write_word(state, 288, (~state->seg_mask | state->seg_diff_mask) & 0x1fff); /* P_tmcc_seg_eq_inh */
else
dib8000_write_word(state, 288, 0x1fff); /*disable equalisation of the tmcc when autosearch to be able to find the DQPSK channels. */
dib8000_write_word(state, 211, state->seg_mask & (~state->seg_diff_mask)); /* P_des_seg_enabled */
dib8000_write_word(state, 287, ~state->seg_mask | 0x1000); /* P_tmcc_seg_inh */
dib8000_write_word(state, 178, 32); /* P_fft_powrange = 32 */
/* ---- TMCC ---- */
for (i = 0; i < 3; i++)
tmcc_pow += (((c->layer[i].modulation == DQPSK) * 4 + 1) * c->layer[i].segment_count) ;
/* Quantif of "P_tmcc_dec_thres_?k" is (0, 5+mode, 9); */
/* Threshold is set at 1/4 of max power. */
tmcc_pow *= (1 << (9-2));
dib8000_write_word(state, 290, tmcc_pow); /* P_tmcc_dec_thres_2k */
dib8000_write_word(state, 291, tmcc_pow); /* P_tmcc_dec_thres_4k */
dib8000_write_word(state, 292, tmcc_pow); /* P_tmcc_dec_thres_8k */
/*dib8000_write_word(state, 287, (1 << 13) | 0x1000 ); */
/* ---- PHA3 ---- */
if (state->isdbt_cfg_loaded == 0)
dib8000_write_word(state, 250, 3285); /* p_2d_hspeed_thr0 */
state->isdbt_cfg_loaded = 0;
}
static u32 dib8000_wait_lock(struct dib8000_state *state, u32 internal,
u32 wait0_ms, u32 wait1_ms, u32 wait2_ms)
{
u32 value = 0; /* P_search_end0 wait time */
u16 reg = 11; /* P_search_end0 start addr */
for (reg = 11; reg < 16; reg += 2) {
if (reg == 11) {
if (state->revision == 0x8090)
value = internal * wait1_ms;
else
value = internal * wait0_ms;
} else if (reg == 13)
value = internal * wait1_ms;
else if (reg == 15)
value = internal * wait2_ms;
dib8000_write_word(state, reg, (u16)((value >> 16) & 0xffff));
dib8000_write_word(state, (reg + 1), (u16)(value & 0xffff));
}
return value;
}
static int dib8000_autosearch_start(struct dvb_frontend *fe)
{
struct dib8000_state *state = fe->demodulator_priv;
struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
u8 slist = 0;
u32 value, internal = state->cfg.pll->internal;
if (state->revision == 0x8090)
internal = dib8000_read32(state, 23) / 1000;
if ((state->revision >= 0x8002) &&
(state->autosearch_state == AS_SEARCHING_FFT)) {
dib8000_write_word(state, 37, 0x0065); /* P_ctrl_pha_off_max default values */
dib8000_write_word(state, 116, 0x0000); /* P_ana_gain to 0 */
dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x1fff) | (0 << 13) | (1 << 15)); /* P_mode = 0, P_restart_search=1 */
dib8000_write_word(state, 1, (dib8000_read_word(state, 1) & 0xfffc) | 0); /* P_guard = 0 */
dib8000_write_word(state, 6, 0); /* P_lock0_mask = 0 */
dib8000_write_word(state, 7, 0); /* P_lock1_mask = 0 */
dib8000_write_word(state, 8, 0); /* P_lock2_mask = 0 */
dib8000_write_word(state, 10, (dib8000_read_word(state, 10) & 0x200) | (16 << 4) | (0 << 0)); /* P_search_list=16, P_search_maxtrial=0 */
if (state->revision == 0x8090)
value = dib8000_wait_lock(state, internal, 10, 10, 10); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */
else
value = dib8000_wait_lock(state, internal, 20, 20, 20); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */
dib8000_write_word(state, 17, 0);
dib8000_write_word(state, 18, 200); /* P_search_rstst = 200 */
dib8000_write_word(state, 19, 0);
dib8000_write_word(state, 20, 400); /* P_search_rstend = 400 */
dib8000_write_word(state, 21, (value >> 16) & 0xffff); /* P_search_checkst */
dib8000_write_word(state, 22, value & 0xffff);
if (state->revision == 0x8090)
dib8000_write_word(state, 32, (dib8000_read_word(state, 32) & 0xf0ff) | (0 << 8)); /* P_corm_alpha = 0 */
else
dib8000_write_word(state, 32, (dib8000_read_word(state, 32) & 0xf0ff) | (9 << 8)); /* P_corm_alpha = 3 */
dib8000_write_word(state, 355, 2); /* P_search_param_max = 2 */
/* P_search_param_select = (1 | 1<<4 | 1 << 8) */
dib8000_write_word(state, 356, 0);
dib8000_write_word(state, 357, 0x111);
dib8000_write_word(state, 770, (dib8000_read_word(state, 770) & 0xdfff) | (1 << 13)); /* P_restart_ccg = 1 */
dib8000_write_word(state, 770, (dib8000_read_word(state, 770) & 0xdfff) | (0 << 13)); /* P_restart_ccg = 0 */
dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x7ff) | (0 << 15) | (1 << 13)); /* P_restart_search = 0; */
} else if ((state->revision >= 0x8002) &&
(state->autosearch_state == AS_SEARCHING_GUARD)) {
c->transmission_mode = TRANSMISSION_MODE_8K;
c->guard_interval = GUARD_INTERVAL_1_8;
c->inversion = 0;
c->layer[0].modulation = QAM_64;
c->layer[0].fec = FEC_2_3;
c->layer[0].interleaving = 0;
c->layer[0].segment_count = 13;
slist = 16;
c->transmission_mode = state->found_nfft;
dib8000_set_isdbt_common_channel(state, slist, 1);
/* set lock_mask values */
dib8000_write_word(state, 6, 0x4);
if (state->revision == 0x8090)
dib8000_write_word(state, 7, ((1 << 12) | (1 << 11) | (1 << 10)));/* tmcc_dec_lock, tmcc_sync_lock, tmcc_data_lock, tmcc_bch_uncor */
else
dib8000_write_word(state, 7, 0x8);
dib8000_write_word(state, 8, 0x1000);
/* set lock_mask wait time values */
if (state->revision == 0x8090)
dib8000_wait_lock(state, internal, 50, 100, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */
else
dib8000_wait_lock(state, internal, 50, 200, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */
dib8000_write_word(state, 355, 3); /* P_search_param_max = 3 */
/* P_search_param_select = 0xf; look for the 4 different guard intervals */
dib8000_write_word(state, 356, 0);
dib8000_write_word(state, 357, 0xf);
value = dib8000_read_word(state, 0);
dib8000_write_word(state, 0, (u16)((1 << 15) | value));
dib8000_read_word(state, 1284); /* reset the INT. n_irq_pending */
dib8000_write_word(state, 0, (u16)value);
} else {
c->inversion = 0;
c->layer[0].modulation = QAM_64;
c->layer[0].fec = FEC_2_3;
c->layer[0].interleaving = 0;
c->layer[0].segment_count = 13;
if (!c->isdbt_sb_mode)
c->layer[0].segment_count = 13;
/* choose the right list, in sb, always do everything */
if (c->isdbt_sb_mode) {
slist = 7;
dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13));
} else {
if (c->guard_interval == GUARD_INTERVAL_AUTO) {
if (c->transmission_mode == TRANSMISSION_MODE_AUTO) {
c->transmission_mode = TRANSMISSION_MODE_8K;
c->guard_interval = GUARD_INTERVAL_1_8;
slist = 7;
dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13)); /* P_mode = 1 to have autosearch start ok with mode2 */
} else {
c->guard_interval = GUARD_INTERVAL_1_8;
slist = 3;
}
} else {
if (c->transmission_mode == TRANSMISSION_MODE_AUTO) {
c->transmission_mode = TRANSMISSION_MODE_8K;
slist = 2;
dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13)); /* P_mode = 1 */
} else
slist = 0;
}
}
dprintk("Using list for autosearch : %d\n", slist);
dib8000_set_isdbt_common_channel(state, slist, 1);
/* set lock_mask values */
dib8000_write_word(state, 6, 0x4);
if (state->revision == 0x8090)
dib8000_write_word(state, 7, (1 << 12) | (1 << 11) | (1 << 10));
else
dib8000_write_word(state, 7, 0x8);
dib8000_write_word(state, 8, 0x1000);
/* set lock_mask wait time values */
if (state->revision == 0x8090)
dib8000_wait_lock(state, internal, 50, 200, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */
else
dib8000_wait_lock(state, internal, 50, 100, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */
value = dib8000_read_word(state, 0);
dib8000_write_word(state, 0, (u16)((1 << 15) | value));
dib8000_read_word(state, 1284); /* reset the INT. n_irq_pending */
dib8000_write_word(state, 0, (u16)value);
}
return 0;
}
static int dib8000_autosearch_irq(struct dvb_frontend *fe)
{
struct dib8000_state *state = fe->demodulator_priv;
u16 irq_pending = dib8000_read_word(state, 1284);
if ((state->revision >= 0x8002) &&
(state->autosearch_state == AS_SEARCHING_FFT)) {
if (irq_pending & 0x1) {
dprintk("dib8000_autosearch_irq: max correlation result available\n");
return 3;
}
} else {
if (irq_pending & 0x1) { /* failed */
dprintk("dib8000_autosearch_irq failed\n");
return 1;
}
if (irq_pending & 0x2) { /* succeeded */
dprintk("dib8000_autosearch_irq succeeded\n");
return 2;
}
}
return 0; // still pending
}
static void dib8000_viterbi_state(struct dib8000_state *state, u8 onoff)
{
u16 tmp;
tmp = dib8000_read_word(state, 771);
if (onoff) /* start P_restart_chd : channel_decoder */
dib8000_write_word(state, 771, tmp & 0xfffd);
else /* stop P_restart_chd : channel_decoder */
dib8000_write_word(state, 771, tmp | (1<<1));
}
static void dib8000_set_dds(struct dib8000_state *state, s32 offset_khz)
{
s16 unit_khz_dds_val;
u32 abs_offset_khz = abs(offset_khz);
u32 dds = state->cfg.pll->ifreq & 0x1ffffff;
u8 invert = !!(state->cfg.pll->ifreq & (1 << 25));
u8 ratio;
if (state->revision == 0x8090) {
ratio = 4;
unit_khz_dds_val = (1<<26) / (dib8000_read32(state, 23) / 1000);
if (offset_khz < 0)
dds = (1 << 26) - (abs_offset_khz * unit_khz_dds_val);
else
dds = (abs_offset_khz * unit_khz_dds_val);
if (invert)
dds = (1<<26) - dds;
} else {
ratio = 2;
unit_khz_dds_val = (u16) (67108864 / state->cfg.pll->internal);
if (offset_khz < 0)
unit_khz_dds_val *= -1;
/* IF tuner */
if (invert)
dds -= abs_offset_khz * unit_khz_dds_val;
else
dds += abs_offset_khz * unit_khz_dds_val;
}
dprintk("setting a DDS frequency offset of %c%dkHz\n", invert ? '-' : ' ', dds / unit_khz_dds_val);
if (abs_offset_khz <= (state->cfg.pll->internal / ratio)) {
/* Max dds offset is the half of the demod freq */
dib8000_write_word(state, 26, invert);
dib8000_write_word(state, 27, (u16)(dds >> 16) & 0x1ff);
dib8000_write_word(state, 28, (u16)(dds & 0xffff));
}
}
static void dib8000_set_frequency_offset(struct dib8000_state *state)
{
struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
int i;
u32 current_rf;
int total_dds_offset_khz;
if (state->fe[0]->ops.tuner_ops.get_frequency)
state->fe[0]->ops.tuner_ops.get_frequency(state->fe[0], &current_rf);
else
current_rf = c->frequency;
current_rf /= 1000;
total_dds_offset_khz = (int)current_rf - (int)c->frequency / 1000;
if (c->isdbt_sb_mode) {
state->subchannel = c->isdbt_sb_subchannel;
i = dib8000_read_word(state, 26) & 1; /* P_dds_invspec */
dib8000_write_word(state, 26, c->inversion ^ i);
if (state->cfg.pll->ifreq == 0) { /* low if tuner */
if ((c->inversion ^ i) == 0)
dib8000_write_word(state, 26, dib8000_read_word(state, 26) | 1);
} else {
if ((c->inversion ^ i) == 0)
total_dds_offset_khz *= -1;
}
}
dprintk("%dkhz tuner offset (frequency = %dHz & current_rf = %dHz) total_dds_offset_hz = %d\n", c->frequency - current_rf, c->frequency, current_rf, total_dds_offset_khz);
/* apply dds offset now */
dib8000_set_dds(state, total_dds_offset_khz);
}
static u16 LUT_isdbt_symbol_duration[4] = { 26, 101, 63 };
static u32 dib8000_get_symbol_duration(struct dib8000_state *state)
{
struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
u16 i;
switch (c->transmission_mode) {
case TRANSMISSION_MODE_2K:
i = 0;
break;
case TRANSMISSION_MODE_4K:
i = 2;
break;
default:
case TRANSMISSION_MODE_AUTO:
case TRANSMISSION_MODE_8K:
i = 1;
break;
}
return (LUT_isdbt_symbol_duration[i] / (c->bandwidth_hz / 1000)) + 1;
}
static void dib8000_set_isdbt_loop_params(struct dib8000_state *state, enum param_loop_step loop_step)
{
struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
u16 reg_32 = 0, reg_37 = 0;
switch (loop_step) {
case LOOP_TUNE_1:
if (c->isdbt_sb_mode) {
if (c->isdbt_partial_reception == 0) {
reg_32 = ((11 - state->mode) << 12) | (6 << 8) | 0x40; /* P_timf_alpha = (11-P_mode), P_corm_alpha=6, P_corm_thres=0x40 */
reg_37 = (3 << 5) | (0 << 4) | (10 - state->mode); /* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = (10-P_mode) */
} else { /* Sound Broadcasting mode 3 seg */
reg_32 = ((10 - state->mode) << 12) | (6 << 8) | 0x60; /* P_timf_alpha = (10-P_mode), P_corm_alpha=6, P_corm_thres=0x60 */
reg_37 = (3 << 5) | (0 << 4) | (9 - state->mode); /* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = (9-P_mode) */
}
} else { /* 13-seg start conf offset loop parameters */
reg_32 = ((9 - state->mode) << 12) | (6 << 8) | 0x80; /* P_timf_alpha = (9-P_mode, P_corm_alpha=6, P_corm_thres=0x80 */
reg_37 = (3 << 5) | (0 << 4) | (8 - state->mode); /* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = 9 */
}
break;
case LOOP_TUNE_2:
if (c->isdbt_sb_mode) {
if (c->isdbt_partial_reception == 0) { /* Sound Broadcasting mode 1 seg */
reg_32 = ((13-state->mode) << 12) | (6 << 8) | 0x40; /* P_timf_alpha = (13-P_mode) , P_corm_alpha=6, P_corm_thres=0x40*/
reg_37 = (12-state->mode) | ((5 + state->mode) << 5);
} else { /* Sound Broadcasting mode 3 seg */
reg_32 = ((12-state->mode) << 12) | (6 << 8) | 0x60; /* P_timf_alpha = (12-P_mode) , P_corm_alpha=6, P_corm_thres=0x60 */
reg_37 = (11-state->mode) | ((5 + state->mode) << 5);
}
} else { /* 13 seg */
reg_32 = ((11-state->mode) << 12) | (6 << 8) | 0x80; /* P_timf_alpha = 8 , P_corm_alpha=6, P_corm_thres=0x80 */
reg_37 = ((5+state->mode) << 5) | (10 - state->mode);
}
break;
}
dib8000_write_word(state, 32, reg_32);
dib8000_write_word(state, 37, reg_37);
}
static void dib8000_demod_restart(struct dib8000_state *state)
{
dib8000_write_word(state, 770, 0x4000);
dib8000_write_word(state, 770, 0x0000);
return;
}
static void dib8000_set_sync_wait(struct dib8000_state *state)
{
struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
u16 sync_wait = 64;
/* P_dvsy_sync_wait - reuse mode */
switch (c->transmission_mode) {
case TRANSMISSION_MODE_8K:
sync_wait = 256;
break;
case TRANSMISSION_MODE_4K:
sync_wait = 128;
break;
default:
case TRANSMISSION_MODE_2K:
sync_wait = 64;
break;
}
if (state->cfg.diversity_delay == 0)
sync_wait = (sync_wait * (1 << (c->guard_interval)) * 3) / 2 + 48; /* add 50% SFN margin + compensate for one DVSY-fifo */
else
sync_wait = (sync_wait * (1 << (c->guard_interval)) * 3) / 2 + state->cfg.diversity_delay; /* add 50% SFN margin + compensate for DVSY-fifo */
dib8000_write_word(state, 273, (dib8000_read_word(state, 273) & 0x000f) | (sync_wait << 4));
}
static unsigned long dib8000_get_timeout(struct dib8000_state *state, u32 delay, enum timeout_mode mode)
{
if (mode == SYMBOL_DEPENDENT_ON)
delay *= state->symbol_duration;
return jiffies + usecs_to_jiffies(delay * 100);
}
static s32 dib8000_get_status(struct dvb_frontend *fe)
{
struct dib8000_state *state = fe->demodulator_priv;
return state->status;
}
static enum frontend_tune_state dib8000_get_tune_state(struct dvb_frontend *fe)
{
struct dib8000_state *state = fe->demodulator_priv;
return state->tune_state;
}
static int dib8000_set_tune_state(struct dvb_frontend *fe, enum frontend_tune_state tune_state)
{
struct dib8000_state *state = fe->demodulator_priv;
state->tune_state = tune_state;
return 0;
}
static int dib8000_tune_restart_from_demod(struct dvb_frontend *fe)
{
struct dib8000_state *state = fe->demodulator_priv;
state->status = FE_STATUS_TUNE_PENDING;
state->tune_state = CT_DEMOD_START;
return 0;
}
static u16 dib8000_read_lock(struct dvb_frontend *fe)
{
struct dib8000_state *state = fe->demodulator_priv;
if (state->revision == 0x8090)
return dib8000_read_word(state, 570);
return dib8000_read_word(state, 568);
}
static int dib8090p_init_sdram(struct dib8000_state *state)
{
u16 reg = 0;
dprintk("init sdram\n");
reg = dib8000_read_word(state, 274) & 0xfff0;
dib8000_write_word(state, 274, reg | 0x7); /* P_dintlv_delay_ram = 7 because of MobileSdram */
dib8000_write_word(state, 1803, (7 << 2));
reg = dib8000_read_word(state, 1280);
dib8000_write_word(state, 1280, reg | (1 << 2)); /* force restart P_restart_sdram */
dib8000_write_word(state, 1280, reg); /* release restart P_restart_sdram */
return 0;
}
/**
* is_manual_mode - Check if TMCC should be used for parameters settings
* @c: struct dvb_frontend_properties
*
* By default, TMCC table should be used for parameter settings on most
* usercases. However, sometimes it is desirable to lock the demod to
* use the manual parameters.
*
* On manual mode, the current dib8000_tune state machine is very restrict:
* It requires that both per-layer and per-transponder parameters to be
* properly specified, otherwise the device won't lock.
*
* Check if all those conditions are properly satisfied before allowing
* the device to use the manual frequency lock mode.
*/
static int is_manual_mode(struct dtv_frontend_properties *c)
{
int i, n_segs = 0;
/* Use auto mode on DVB-T compat mode */
if (c->delivery_system != SYS_ISDBT)
return 0;
/*
* Transmission mode is only detected on auto mode, currently
*/
if (c->transmission_mode == TRANSMISSION_MODE_AUTO) {
dprintk("transmission mode auto\n");
return 0;
}
/*
* Guard interval is only detected on auto mode, currently
*/
if (c->guard_interval == GUARD_INTERVAL_AUTO) {
dprintk("guard interval auto\n");
return 0;
}
/*
* If no layer is enabled, assume auto mode, as at least one
* layer should be enabled
*/
if (!c->isdbt_layer_enabled) {
dprintk("no layer modulation specified\n");
return 0;
}
/*
* Check if the per-layer parameters aren't auto and
* disable a layer if segment count is 0 or invalid.
*/
for (i = 0; i < 3; i++) {
if (!(c->isdbt_layer_enabled & 1 << i))
continue;
if ((c->layer[i].segment_count > 13) ||
(c->layer[i].segment_count == 0)) {
c->isdbt_layer_enabled &= ~(1 << i);
continue;
}
n_segs += c->layer[i].segment_count;
if ((c->layer[i].modulation == QAM_AUTO) ||
(c->layer[i].fec == FEC_AUTO)) {
dprintk("layer %c has either modulation or FEC auto\n",
'A' + i);
return 0;
}
}
/*
* Userspace specified a wrong number of segments.
* fallback to auto mode.
*/
if (n_segs == 0 || n_segs > 13) {
dprintk("number of segments is invalid\n");
return 0;
}
/* Everything looks ok for manual mode */
return 1;
}
static int dib8000_tune(struct dvb_frontend *fe)
{
struct dib8000_state *state = fe->demodulator_priv;
struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
enum frontend_tune_state *tune_state = &state->tune_state;
u16 locks, deeper_interleaver = 0, i;
int ret = 1; /* 1 symbol duration (in 100us unit) delay most of the time */
unsigned long *timeout = &state->timeout;
unsigned long now = jiffies;
u16 init_prbs;
#ifdef DIB8000_AGC_FREEZE
u16 agc1, agc2;
#endif
u32 corm[4] = {0, 0, 0, 0};
u8 find_index, max_value;
#if 0
if (*tune_state < CT_DEMOD_STOP)
dprintk("IN: context status = %d, TUNE_STATE %d autosearch step = %u jiffies = %lu\n",
state->channel_parameters_set, *tune_state, state->autosearch_state, now);
#endif
switch (*tune_state) {
case CT_DEMOD_START: /* 30 */
dib8000_reset_stats(fe);
if (state->revision == 0x8090)
dib8090p_init_sdram(state);
state->status = FE_STATUS_TUNE_PENDING;
state->channel_parameters_set = is_manual_mode(c);
dprintk("Tuning channel on %s search mode\n",
state->channel_parameters_set ? "manual" : "auto");
dib8000_viterbi_state(state, 0); /* force chan dec in restart */
/* Layer monitor */
dib8000_write_word(state, 285, dib8000_read_word(state, 285) & 0x60);
dib8000_set_frequency_offset(state);
dib8000_set_bandwidth(fe, c->bandwidth_hz / 1000);
if (state->channel_parameters_set == 0) { /* The channel struct is unknown, search it ! */
#ifdef DIB8000_AGC_FREEZE
if (state->revision != 0x8090) {
state->agc1_max = dib8000_read_word(state, 108);
state->agc1_min = dib8000_read_word(state, 109);
state->agc2_max = dib8000_read_word(state, 110);
state->agc2_min = dib8000_read_word(state, 111);
agc1 = dib8000_read_word(state, 388);
agc2 = dib8000_read_word(state, 389);
dib8000_write_word(state, 108, agc1);
dib8000_write_word(state, 109, agc1);
dib8000_write_word(state, 110, agc2);
dib8000_write_word(state, 111, agc2);
}
#endif
state->autosearch_state = AS_SEARCHING_FFT;
state->found_nfft = TRANSMISSION_MODE_AUTO;
state->found_guard = GUARD_INTERVAL_AUTO;
*tune_state = CT_DEMOD_SEARCH_NEXT;
} else { /* we already know the channel struct so TUNE only ! */
state->autosearch_state = AS_DONE;
*tune_state = CT_DEMOD_STEP_3;
}
state->symbol_duration = dib8000_get_symbol_duration(state);
break;
case CT_DEMOD_SEARCH_NEXT: /* 51 */
dib8000_autosearch_start(fe);
if (state->revision == 0x8090)
ret = 50;
else
ret = 15;
*tune_state = CT_DEMOD_STEP_1;
break;
case CT_DEMOD_STEP_1: /* 31 */
switch (dib8000_autosearch_irq(fe)) {
case 1: /* fail */
state->status = FE_STATUS_TUNE_FAILED;
state->autosearch_state = AS_DONE;
*tune_state = CT_DEMOD_STOP; /* else we are done here */
break;
case 2: /* Success */
state->status = FE_STATUS_FFT_SUCCESS; /* signal to the upper layer, that there was a channel found and the parameters can be read */
*tune_state = CT_DEMOD_STEP_3;
if (state->autosearch_state == AS_SEARCHING_GUARD)
*tune_state = CT_DEMOD_STEP_2;
else
state->autosearch_state = AS_DONE;
break;
case 3: /* Autosearch FFT max correlation endded */
*tune_state = CT_DEMOD_STEP_2;
break;
}
break;
case CT_DEMOD_STEP_2:
switch (state->autosearch_state) {
case AS_SEARCHING_FFT:
/* searching for the correct FFT */
if (state->revision == 0x8090) {
corm[2] = (dib8000_read_word(state, 596) << 16) | (dib8000_read_word(state, 597));
corm[1] = (dib8000_read_word(state, 598) << 16) | (dib8000_read_word(state, 599));
corm[0] = (dib8000_read_word(state, 600) << 16) | (dib8000_read_word(state, 601));
} else {
corm[2] = (dib8000_read_word(state, 594) << 16) | (dib8000_read_word(state, 595));
corm[1] = (dib8000_read_word(state, 596) << 16) | (dib8000_read_word(state, 597));
corm[0] = (dib8000_read_word(state, 598) << 16) | (dib8000_read_word(state, 599));
}
/* dprintk("corm fft: %u %u %u\n", corm[0], corm[1], corm[2]); */
max_value = 0;
for (find_index = 1 ; find_index < 3 ; find_index++) {
if (corm[max_value] < corm[find_index])
max_value = find_index ;
}
switch (max_value) {
case 0:
state->found_nfft = TRANSMISSION_MODE_2K;
break;
case 1:
state->found_nfft = TRANSMISSION_MODE_4K;
break;
case 2:
default:
state->found_nfft = TRANSMISSION_MODE_8K;
break;
}
/* dprintk("Autosearch FFT has found Mode %d\n", max_value + 1); */
*tune_state = CT_DEMOD_SEARCH_NEXT;
state->autosearch_state = AS_SEARCHING_GUARD;
if (state->revision == 0x8090)
ret = 50;
else
ret = 10;
break;
case AS_SEARCHING_GUARD:
/* searching for the correct guard interval */
if (state->revision == 0x8090)
state->found_guard = dib8000_read_word(state, 572) & 0x3;
else
state->found_guard = dib8000_read_word(state, 570) & 0x3;
/* dprintk("guard interval found=%i\n", state->found_guard); */
*tune_state = CT_DEMOD_STEP_3;
break;
default:
/* the demod should never be in this state */
state->status = FE_STATUS_TUNE_FAILED;
state->autosearch_state = AS_DONE;
*tune_state = CT_DEMOD_STOP; /* else we are done here */
break;
}
break;
case CT_DEMOD_STEP_3: /* 33 */
dib8000_set_isdbt_loop_params(state, LOOP_TUNE_1);
dib8000_set_isdbt_common_channel(state, 0, 0);/* setting the known channel parameters here */
*tune_state = CT_DEMOD_STEP_4;
break;
case CT_DEMOD_STEP_4: /* (34) */
dib8000_demod_restart(state);
dib8000_set_sync_wait(state);
dib8000_set_diversity_in(state->fe[0], state->diversity_onoff);
locks = (dib8000_read_word(state, 180) >> 6) & 0x3f; /* P_coff_winlen ? */
/* coff should lock over P_coff_winlen ofdm symbols : give 3 times this length to lock */
*timeout = dib8000_get_timeout(state, 2 * locks, SYMBOL_DEPENDENT_ON);
*tune_state = CT_DEMOD_STEP_5;
break;
case CT_DEMOD_STEP_5: /* (35) */
locks = dib8000_read_lock(fe);
if (locks & (0x3 << 11)) { /* coff-lock and off_cpil_lock achieved */
dib8000_update_timf(state); /* we achieved a coff_cpil_lock - it's time to update the timf */
if (!state->differential_constellation) {
/* 2 times lmod4_win_len + 10 symbols (pipe delay after coff + nb to compute a 1st correlation) */
*timeout = dib8000_get_timeout(state, (20 * ((dib8000_read_word(state, 188)>>5)&0x1f)), SYMBOL_DEPENDENT_ON);
*tune_state = CT_DEMOD_STEP_7;
} else {
*tune_state = CT_DEMOD_STEP_8;
}
} else if (time_after(now, *timeout)) {
*tune_state = CT_DEMOD_STEP_6; /* goto check for diversity input connection */
}
break;
case CT_DEMOD_STEP_6: /* (36) if there is an input (diversity) */
if ((state->fe[1] != NULL) && (state->output_mode != OUTMODE_DIVERSITY)) {
/* if there is a diversity fe in input and this fe is has not already failed : wait here until this fe has succeeded or failed */
if (dib8000_get_status(state->fe[1]) <= FE_STATUS_STD_SUCCESS) /* Something is locked on the input fe */
*tune_state = CT_DEMOD_STEP_8; /* go for mpeg */
else if (dib8000_get_status(state->fe[1]) >= FE_STATUS_TUNE_TIME_TOO_SHORT) { /* fe in input failed also, break the current one */
*tune_state = CT_DEMOD_STOP; /* else we are done here ; step 8 will close the loops and exit */
dib8000_viterbi_state(state, 1); /* start viterbi chandec */
dib8000_set_isdbt_loop_params(state, LOOP_TUNE_2);
state->status = FE_STATUS_TUNE_FAILED;
}
} else {
dib8000_viterbi_state(state, 1); /* start viterbi chandec */
dib8000_set_isdbt_loop_params(state, LOOP_TUNE_2);
*tune_state = CT_DEMOD_STOP; /* else we are done here ; step 8 will close the loops and exit */
state->status = FE_STATUS_TUNE_FAILED;
}
break;
case CT_DEMOD_STEP_7: /* 37 */
locks = dib8000_read_lock(fe);
if (locks & (1<<10)) { /* lmod4_lock */
ret = 14; /* wait for 14 symbols */
*tune_state = CT_DEMOD_STEP_8;
} else if (time_after(now, *timeout))
*tune_state = CT_DEMOD_STEP_6; /* goto check for diversity input connection */
break;
case CT_DEMOD_STEP_8: /* 38 */
dib8000_viterbi_state(state, 1); /* start viterbi chandec */
dib8000_set_isdbt_loop_params(state, LOOP_TUNE_2);
/* mpeg will never lock on this condition because init_prbs is not set : search for it !*/
if (c->isdbt_sb_mode
&& c->isdbt_sb_subchannel < 14
&& !state->differential_constellation) {
state->subchannel = 0;
*tune_state = CT_DEMOD_STEP_11;
} else {
*tune_state = CT_DEMOD_STEP_9;
state->status = FE_STATUS_LOCKED;
}
break;
case CT_DEMOD_STEP_9: /* 39 */
if ((state->revision == 0x8090) || ((dib8000_read_word(state, 1291) >> 9) & 0x1)) { /* fe capable of deinterleaving : esram */
/* defines timeout for mpeg lock depending on interleaver length of longest layer */
for (i = 0; i < 3; i++) {
if (c->layer[i].interleaving >= deeper_interleaver) {
dprintk("layer%i: time interleaver = %d\n", i, c->layer[i].interleaving);
if (c->layer[i].segment_count > 0) { /* valid layer */
deeper_interleaver = c->layer[0].interleaving;
state->longest_intlv_layer = i;
}
}
}
if (deeper_interleaver == 0)
locks = 2; /* locks is the tmp local variable name */
else if (deeper_interleaver == 3)
locks = 8;
else
locks = 2 * deeper_interleaver;
if (state->diversity_onoff != 0) /* because of diversity sync */
locks *= 2;
*timeout = now + msecs_to_jiffies(200 * locks); /* give the mpeg lock 800ms if sram is present */
dprintk("Deeper interleaver mode = %d on layer %d : timeout mult factor = %d => will use timeout = %ld\n",
deeper_interleaver, state->longest_intlv_layer, locks, *timeout);
*tune_state = CT_DEMOD_STEP_10;
} else
*tune_state = CT_DEMOD_STOP;
break;
case CT_DEMOD_STEP_10: /* 40 */
locks = dib8000_read_lock(fe);
if (locks&(1<<(7-state->longest_intlv_layer))) { /* mpeg lock : check the longest one */
dprintk("ISDB-T layer locks: Layer A %s, Layer B %s, Layer C %s\n",
c->layer[0].segment_count ? (locks >> 7) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled",
c->layer[1].segment_count ? (locks >> 6) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled",
c->layer[2].segment_count ? (locks >> 5) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled");
if (c->isdbt_sb_mode
&& c->isdbt_sb_subchannel < 14
&& !state->differential_constellation)
/* signal to the upper layer, that there was a channel found and the parameters can be read */
state->status = FE_STATUS_DEMOD_SUCCESS;
else
state->status = FE_STATUS_DATA_LOCKED;
*tune_state = CT_DEMOD_STOP;
} else if (time_after(now, *timeout)) {
if (c->isdbt_sb_mode
&& c->isdbt_sb_subchannel < 14
&& !state->differential_constellation) { /* continue to try init prbs autosearch */
state->subchannel += 3;
*tune_state = CT_DEMOD_STEP_11;
} else { /* we are done mpeg of the longest interleaver xas not locking but let's try if an other layer has locked in the same time */
if (locks & (0x7 << 5)) {
dprintk("Not all ISDB-T layers locked in %d ms: Layer A %s, Layer B %s, Layer C %s\n",
jiffies_to_msecs(now - *timeout),
c->layer[0].segment_count ? (locks >> 7) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled",
c->layer[1].segment_count ? (locks >> 6) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled",
c->layer[2].segment_count ? (locks >> 5) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled");
state->status = FE_STATUS_DATA_LOCKED;
} else
state->status = FE_STATUS_TUNE_FAILED;
*tune_state = CT_DEMOD_STOP;
}
}
break;
case CT_DEMOD_STEP_11: /* 41 : init prbs autosearch */
init_prbs = dib8000_get_init_prbs(state, state->subchannel);
if (init_prbs) {
dib8000_set_subchannel_prbs(state, init_prbs);
*tune_state = CT_DEMOD_STEP_9;
} else {
*tune_state = CT_DEMOD_STOP;
state->status = FE_STATUS_TUNE_FAILED;
}
break;
default:
break;
}
/* tuning is finished - cleanup the demod */
switch (*tune_state) {
case CT_DEMOD_STOP: /* (42) */
#ifdef DIB8000_AGC_FREEZE
if ((state->revision != 0x8090) && (state->agc1_max != 0)) {
dib8000_write_word(state, 108, state->agc1_max);
dib8000_write_word(state, 109, state->agc1_min);
dib8000_write_word(state, 110, state->agc2_max);
dib8000_write_word(state, 111, state->agc2_min);
state->agc1_max = 0;
state->agc1_min = 0;
state->agc2_max = 0;
state->agc2_min = 0;
}
#endif
ret = 0;
break;
default:
break;
}
if ((ret > 0) && (*tune_state > CT_DEMOD_STEP_3))
return ret * state->symbol_duration;
if ((ret > 0) && (ret < state->symbol_duration))
return state->symbol_duration; /* at least one symbol */
return ret;
}
static int dib8000_wakeup(struct dvb_frontend *fe)
{
struct dib8000_state *state = fe->demodulator_priv;
u8 index_frontend;
int ret;
dib8000_set_power_mode(state, DIB8000_POWER_ALL);
dib8000_set_adc_state(state, DIBX000_ADC_ON);
if (dib8000_set_adc_state(state, DIBX000_SLOW_ADC_ON) != 0)
dprintk("could not start Slow ADC\n");
if (state->revision == 0x8090)
dib8000_sad_calib(state);
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
ret = state->fe[index_frontend]->ops.init(state->fe[index_frontend]);
if (ret < 0)
return ret;
}
return 0;
}
static int dib8000_sleep(struct dvb_frontend *fe)
{
struct dib8000_state *state = fe->demodulator_priv;
u8 index_frontend;
int ret;
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
ret = state->fe[index_frontend]->ops.sleep(state->fe[index_frontend]);
if (ret < 0)
return ret;
}
if (state->revision != 0x8090)
dib8000_set_output_mode(fe, OUTMODE_HIGH_Z);
dib8000_set_power_mode(state, DIB8000_POWER_INTERFACE_ONLY);
return dib8000_set_adc_state(state, DIBX000_SLOW_ADC_OFF) | dib8000_set_adc_state(state, DIBX000_ADC_OFF);
}
static int dib8000_read_status(struct dvb_frontend *fe, enum fe_status *stat);
static int dib8000_get_frontend(struct dvb_frontend *fe,
struct dtv_frontend_properties *c)
{
struct dib8000_state *state = fe->demodulator_priv;
u16 i, val = 0;
enum fe_status stat = 0;
u8 index_frontend, sub_index_frontend;
c->bandwidth_hz = 6000000;
/*
* If called to early, get_frontend makes dib8000_tune to either
* not lock or not sync. This causes dvbv5-scan/dvbv5-zap to fail.
* So, let's just return if frontend 0 has not locked.
*/
dib8000_read_status(fe, &stat);
if (!(stat & FE_HAS_SYNC))
return 0;
dprintk("dib8000_get_frontend: TMCC lock\n");
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
state->fe[index_frontend]->ops.read_status(state->fe[index_frontend], &stat);
if (stat&FE_HAS_SYNC) {
dprintk("TMCC lock on the slave%i\n", index_frontend);
/* synchronize the cache with the other frontends */
state->fe[index_frontend]->ops.get_frontend(state->fe[index_frontend], c);
for (sub_index_frontend = 0; (sub_index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[sub_index_frontend] != NULL); sub_index_frontend++) {
if (sub_index_frontend != index_frontend) {
state->fe[sub_index_frontend]->dtv_property_cache.isdbt_sb_mode = state->fe[index_frontend]->dtv_property_cache.isdbt_sb_mode;
state->fe[sub_index_frontend]->dtv_property_cache.inversion = state->fe[index_frontend]->dtv_property_cache.inversion;
state->fe[sub_index_frontend]->dtv_property_cache.transmission_mode = state->fe[index_frontend]->dtv_property_cache.transmission_mode;
state->fe[sub_index_frontend]->dtv_property_cache.guard_interval = state->fe[index_frontend]->dtv_property_cache.guard_interval;
state->fe[sub_index_frontend]->dtv_property_cache.isdbt_partial_reception = state->fe[index_frontend]->dtv_property_cache.isdbt_partial_reception;
for (i = 0; i < 3; i++) {
state->fe[sub_index_frontend]->dtv_property_cache.layer[i].segment_count = state->fe[index_frontend]->dtv_property_cache.layer[i].segment_count;
state->fe[sub_index_frontend]->dtv_property_cache.layer[i].interleaving = state->fe[index_frontend]->dtv_property_cache.layer[i].interleaving;
state->fe[sub_index_frontend]->dtv_property_cache.layer[i].fec = state->fe[index_frontend]->dtv_property_cache.layer[i].fec;
state->fe[sub_index_frontend]->dtv_property_cache.layer[i].modulation = state->fe[index_frontend]->dtv_property_cache.layer[i].modulation;
}
}
}
return 0;
}
}
c->isdbt_sb_mode = dib8000_read_word(state, 508) & 0x1;
if (state->revision == 0x8090)
val = dib8000_read_word(state, 572);
else
val = dib8000_read_word(state, 570);
c->inversion = (val & 0x40) >> 6;
switch ((val & 0x30) >> 4) {
case 1:
c->transmission_mode = TRANSMISSION_MODE_2K;
dprintk("dib8000_get_frontend: transmission mode 2K\n");
break;
case 2:
c->transmission_mode = TRANSMISSION_MODE_4K;
dprintk("dib8000_get_frontend: transmission mode 4K\n");
break;
case 3:
default:
c->transmission_mode = TRANSMISSION_MODE_8K;
dprintk("dib8000_get_frontend: transmission mode 8K\n");
break;
}
switch (val & 0x3) {
case 0:
c->guard_interval = GUARD_INTERVAL_1_32;
dprintk("dib8000_get_frontend: Guard Interval = 1/32\n");
break;
case 1:
c->guard_interval = GUARD_INTERVAL_1_16;
dprintk("dib8000_get_frontend: Guard Interval = 1/16\n");
break;
case 2:
dprintk("dib8000_get_frontend: Guard Interval = 1/8\n");
c->guard_interval = GUARD_INTERVAL_1_8;
break;
case 3:
dprintk("dib8000_get_frontend: Guard Interval = 1/4\n");
c->guard_interval = GUARD_INTERVAL_1_4;
break;
}
val = dib8000_read_word(state, 505);
c->isdbt_partial_reception = val & 1;
dprintk("dib8000_get_frontend: partial_reception = %d\n", c->isdbt_partial_reception);
for (i = 0; i < 3; i++) {
int show;
val = dib8000_read_word(state, 493 + i) & 0x0f;
c->layer[i].segment_count = val;
if (val == 0 || val > 13)
show = 0;
else
show = 1;
if (show)
dprintk("dib8000_get_frontend: Layer %d segments = %d\n",
i, c->layer[i].segment_count);
val = dib8000_read_word(state, 499 + i) & 0x3;
/* Interleaving can be 0, 1, 2 or 4 */
if (val == 3)
val = 4;
c->layer[i].interleaving = val;
if (show)
dprintk("dib8000_get_frontend: Layer %d time_intlv = %d\n",
i, c->layer[i].interleaving);
val = dib8000_read_word(state, 481 + i);
switch (val & 0x7) {
case 1:
c->layer[i].fec = FEC_1_2;
if (show)
dprintk("dib8000_get_frontend: Layer %d Code Rate = 1/2\n", i);
break;
case 2:
c->layer[i].fec = FEC_2_3;
if (show)
dprintk("dib8000_get_frontend: Layer %d Code Rate = 2/3\n", i);
break;
case 3:
c->layer[i].fec = FEC_3_4;
if (show)
dprintk("dib8000_get_frontend: Layer %d Code Rate = 3/4\n", i);
break;
case 5:
c->layer[i].fec = FEC_5_6;
if (show)
dprintk("dib8000_get_frontend: Layer %d Code Rate = 5/6\n", i);
break;
default:
c->layer[i].fec = FEC_7_8;
if (show)
dprintk("dib8000_get_frontend: Layer %d Code Rate = 7/8\n", i);
break;
}
val = dib8000_read_word(state, 487 + i);
switch (val & 0x3) {
case 0:
c->layer[i].modulation = DQPSK;
if (show)
dprintk("dib8000_get_frontend: Layer %d DQPSK\n", i);
break;
case 1:
c->layer[i].modulation = QPSK;
if (show)
dprintk("dib8000_get_frontend: Layer %d QPSK\n", i);
break;
case 2:
c->layer[i].modulation = QAM_16;
if (show)
dprintk("dib8000_get_frontend: Layer %d QAM16\n", i);
break;
case 3:
default:
c->layer[i].modulation = QAM_64;
if (show)
dprintk("dib8000_get_frontend: Layer %d QAM64\n", i);
break;
}
}
/* synchronize the cache with the other frontends */
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
state->fe[index_frontend]->dtv_property_cache.isdbt_sb_mode = c->isdbt_sb_mode;
state->fe[index_frontend]->dtv_property_cache.inversion = c->inversion;
state->fe[index_frontend]->dtv_property_cache.transmission_mode = c->transmission_mode;
state->fe[index_frontend]->dtv_property_cache.guard_interval = c->guard_interval;
state->fe[index_frontend]->dtv_property_cache.isdbt_partial_reception = c->isdbt_partial_reception;
for (i = 0; i < 3; i++) {
state->fe[index_frontend]->dtv_property_cache.layer[i].segment_count = c->layer[i].segment_count;
state->fe[index_frontend]->dtv_property_cache.layer[i].interleaving = c->layer[i].interleaving;
state->fe[index_frontend]->dtv_property_cache.layer[i].fec = c->layer[i].fec;
state->fe[index_frontend]->dtv_property_cache.layer[i].modulation = c->layer[i].modulation;
}
}
return 0;
}
static int dib8000_set_frontend(struct dvb_frontend *fe)
{
struct dib8000_state *state = fe->demodulator_priv;
struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
int l, i, active, time, time_slave = 0;
u8 exit_condition, index_frontend;
unsigned long delay, callback_time;
if (c->frequency == 0) {
dprintk("dib8000: must at least specify frequency\n");
return 0;
}
if (c->bandwidth_hz == 0) {
dprintk("dib8000: no bandwidth specified, set to default\n");
c->bandwidth_hz = 6000000;
}
for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
/* synchronization of the cache */
state->fe[index_frontend]->dtv_property_cache.delivery_system = SYS_ISDBT;
memcpy(&state->fe[index_frontend]->dtv_property_cache, &fe->dtv_property_cache, sizeof(struct dtv_frontend_properties));
/* set output mode and diversity input */
if (state->revision != 0x8090) {
dib8000_set_diversity_in(state->fe[index_frontend], 1);
if (index_frontend != 0)
dib8000_set_output_mode(state->fe[index_frontend],
OUTMODE_DIVERSITY);
else
dib8000_set_output_mode(state->fe[0], OUTMODE_HIGH_Z);
} else {
dib8096p_set_diversity_in(state->fe[index_frontend], 1);
if (index_frontend != 0)
dib8096p_set_output_mode(state->fe[index_frontend],
OUTMODE_DIVERSITY);
else
dib8096p_set_output_mode(state->fe[0], OUTMODE_HIGH_Z);
}
/* tune the tuner */
if (state->fe[index_frontend]->ops.tuner_ops.set_params)
state->fe[index_frontend]->ops.tuner_ops.set_params(state->fe[index_frontend]);
dib8000_set_tune_state(state->fe[index_frontend], CT_AGC_START);
}
/* turn off the diversity of the last chip */
if (state->revision != 0x8090)
dib8000_set_diversity_in(state->fe[index_frontend - 1], 0);
else
dib8096p_set_diversity_in(state->fe[index_frontend - 1], 0);
/* start up the AGC */
do {
time = dib8000_agc_startup(state->fe[0]);
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
time_slave = dib8000_agc_startup(state->fe[index_frontend]);
if (time == 0)
time = time_slave;
else if ((time_slave != 0) && (time_slave > time))
time = time_slave;
}
if (time == 0)
break;
/*
* Despite dib8000_agc_startup returns time at a 0.1 ms range,
* the actual sleep time depends on CONFIG_HZ. The worse case
* is when CONFIG_HZ=100. In such case, the minimum granularity
* is 10ms. On some real field tests, the tuner sometimes don't
* lock when this timer is lower than 10ms. So, enforce a 10ms
* granularity.
*/
time = 10 * (time + 99)/100;
usleep_range(time * 1000, (time + 1) * 1000);
exit_condition = 1;
for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
if (dib8000_get_tune_state(state->fe[index_frontend]) != CT_AGC_STOP) {
exit_condition = 0;
break;
}
}
} while (exit_condition == 0);
for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
dib8000_set_tune_state(state->fe[index_frontend], CT_DEMOD_START);
active = 1;
do {
callback_time = 0;
for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
delay = dib8000_tune(state->fe[index_frontend]);
if (delay != 0) {
delay = jiffies + usecs_to_jiffies(100 * delay);
if (!callback_time || delay < callback_time)
callback_time = delay;
}
/* we are in autosearch */
if (state->channel_parameters_set == 0) { /* searching */
if ((dib8000_get_status(state->fe[index_frontend]) == FE_STATUS_DEMOD_SUCCESS) || (dib8000_get_status(state->fe[index_frontend]) == FE_STATUS_FFT_SUCCESS)) {
dprintk("autosearch succeeded on fe%i\n", index_frontend);
dib8000_get_frontend(state->fe[index_frontend], c); /* we read the channel parameters from the frontend which was successful */
state->channel_parameters_set = 1;
for (l = 0; (l < MAX_NUMBER_OF_FRONTENDS) && (state->fe[l] != NULL); l++) {
if (l != index_frontend) { /* and for all frontend except the successful one */
dprintk("Restarting frontend %d\n", l);
dib8000_tune_restart_from_demod(state->fe[l]);
state->fe[l]->dtv_property_cache.isdbt_sb_mode = state->fe[index_frontend]->dtv_property_cache.isdbt_sb_mode;
state->fe[l]->dtv_property_cache.inversion = state->fe[index_frontend]->dtv_property_cache.inversion;
state->fe[l]->dtv_property_cache.transmission_mode = state->fe[index_frontend]->dtv_property_cache.transmission_mode;
state->fe[l]->dtv_property_cache.guard_interval = state->fe[index_frontend]->dtv_property_cache.guard_interval;
state->fe[l]->dtv_property_cache.isdbt_partial_reception = state->fe[index_frontend]->dtv_property_cache.isdbt_partial_reception;
for (i = 0; i < 3; i++) {
state->fe[l]->dtv_property_cache.layer[i].segment_count = state->fe[index_frontend]->dtv_property_cache.layer[i].segment_count;
state->fe[l]->dtv_property_cache.layer[i].interleaving = state->fe[index_frontend]->dtv_property_cache.layer[i].interleaving;
state->fe[l]->dtv_property_cache.layer[i].fec = state->fe[index_frontend]->dtv_property_cache.layer[i].fec;
state->fe[l]->dtv_property_cache.layer[i].modulation = state->fe[index_frontend]->dtv_property_cache.layer[i].modulation;
}
}
}
}
}
}
/* tuning is done when the master frontend is done (failed or success) */
if (dib8000_get_status(state->fe[0]) == FE_STATUS_TUNE_FAILED ||
dib8000_get_status(state->fe[0]) == FE_STATUS_LOCKED ||
dib8000_get_status(state->fe[0]) == FE_STATUS_DATA_LOCKED) {
active = 0;
/* we need to wait for all frontends to be finished */
for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
if (dib8000_get_tune_state(state->fe[index_frontend]) != CT_DEMOD_STOP)
active = 1;
}
if (active == 0)
dprintk("tuning done with status %d\n", dib8000_get_status(state->fe[0]));
}
if ((active == 1) && (callback_time == 0)) {
dprintk("strange callback time something went wrong\n");
active = 0;
}
while ((active == 1) && (time_before(jiffies, callback_time)))
msleep(100);
} while (active);
/* set output mode */
if (state->revision != 0x8090)
dib8000_set_output_mode(state->fe[0], state->cfg.output_mode);
else {
dib8096p_set_output_mode(state->fe[0], state->cfg.output_mode);
if (state->cfg.enMpegOutput == 0) {
dib8096p_setDibTxMux(state, MPEG_ON_DIBTX);
dib8096p_setHostBusMux(state, DIBTX_ON_HOSTBUS);
}
}
return 0;
}
static int dib8000_get_stats(struct dvb_frontend *fe, enum fe_status stat);
static int dib8000_read_status(struct dvb_frontend *fe, enum fe_status *stat)
{
struct dib8000_state *state = fe->demodulator_priv;
u16 lock_slave = 0, lock;
u8 index_frontend;
lock = dib8000_read_lock(fe);
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
lock_slave |= dib8000_read_lock(state->fe[index_frontend]);
*stat = 0;
if (((lock >> 13) & 1) || ((lock_slave >> 13) & 1))
*stat |= FE_HAS_SIGNAL;
if (((lock >> 8) & 1) || ((lock_slave >> 8) & 1)) /* Equal */
*stat |= FE_HAS_CARRIER;
if ((((lock >> 1) & 0xf) == 0xf) || (((lock_slave >> 1) & 0xf) == 0xf)) /* TMCC_SYNC */
*stat |= FE_HAS_SYNC;
if ((((lock >> 12) & 1) || ((lock_slave >> 12) & 1)) && ((lock >> 5) & 7)) /* FEC MPEG */
*stat |= FE_HAS_LOCK;
if (((lock >> 12) & 1) || ((lock_slave >> 12) & 1)) {
lock = dib8000_read_word(state, 554); /* Viterbi Layer A */
if (lock & 0x01)
*stat |= FE_HAS_VITERBI;
lock = dib8000_read_word(state, 555); /* Viterbi Layer B */
if (lock & 0x01)
*stat |= FE_HAS_VITERBI;
lock = dib8000_read_word(state, 556); /* Viterbi Layer C */
if (lock & 0x01)
*stat |= FE_HAS_VITERBI;
}
dib8000_get_stats(fe, *stat);
return 0;
}
static int dib8000_read_ber(struct dvb_frontend *fe, u32 * ber)
{
struct dib8000_state *state = fe->demodulator_priv;
/* 13 segments */
if (state->revision == 0x8090)
*ber = (dib8000_read_word(state, 562) << 16) |
dib8000_read_word(state, 563);
else
*ber = (dib8000_read_word(state, 560) << 16) |
dib8000_read_word(state, 561);
return 0;
}
static int dib8000_read_unc_blocks(struct dvb_frontend *fe, u32 * unc)
{
struct dib8000_state *state = fe->demodulator_priv;
/* packet error on 13 seg */
if (state->revision == 0x8090)
*unc = dib8000_read_word(state, 567);
else
*unc = dib8000_read_word(state, 565);
return 0;
}
static int dib8000_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
{
struct dib8000_state *state = fe->demodulator_priv;
u8 index_frontend;
u16 val;
*strength = 0;
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
state->fe[index_frontend]->ops.read_signal_strength(state->fe[index_frontend], &val);
if (val > 65535 - *strength)
*strength = 65535;
else
*strength += val;
}
val = 65535 - dib8000_read_word(state, 390);
if (val > 65535 - *strength)
*strength = 65535;
else
*strength += val;
return 0;
}
static u32 dib8000_get_snr(struct dvb_frontend *fe)
{
struct dib8000_state *state = fe->demodulator_priv;
u32 n, s, exp;
u16 val;
if (state->revision != 0x8090)
val = dib8000_read_word(state, 542);
else
val = dib8000_read_word(state, 544);
n = (val >> 6) & 0xff;
exp = (val & 0x3f);
if ((exp & 0x20) != 0)
exp -= 0x40;
n <<= exp+16;
if (state->revision != 0x8090)
val = dib8000_read_word(state, 543);
else
val = dib8000_read_word(state, 545);
s = (val >> 6) & 0xff;
exp = (val & 0x3f);
if ((exp & 0x20) != 0)
exp -= 0x40;
s <<= exp+16;
if (n > 0) {
u32 t = (s/n) << 16;
return t + ((s << 16) - n*t) / n;
}
return 0xffffffff;
}
static int dib8000_read_snr(struct dvb_frontend *fe, u16 * snr)
{
struct dib8000_state *state = fe->demodulator_priv;
u8 index_frontend;
u32 snr_master;
snr_master = dib8000_get_snr(fe);
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
snr_master += dib8000_get_snr(state->fe[index_frontend]);
if ((snr_master >> 16) != 0) {
snr_master = 10*intlog10(snr_master>>16);
*snr = snr_master / ((1 << 24) / 10);
}
else
*snr = 0;
return 0;
}
struct per_layer_regs {
u16 lock, ber, per;
};
static const struct per_layer_regs per_layer_regs[] = {
{ 554, 560, 562 },
{ 555, 576, 578 },
{ 556, 581, 583 },
};
struct linear_segments {
unsigned x;
signed y;
};
/*
* Table to estimate signal strength in dBm.
* This table was empirically determinated by measuring the signal
* strength generated by a DTA-2111 RF generator directly connected into
* a dib8076 device (a PixelView PV-D231U stick), using a good quality
* 3 meters RC6 cable and good RC6 connectors.
* The real value can actually be different on other devices, depending
* on several factors, like if LNA is enabled or not, if diversity is
* enabled, type of connectors, etc.
* Yet, it is better to use this measure in dB than a random non-linear
* percentage value, especially for antenna adjustments.
* On my tests, the precision of the measure using this table is about
* 0.5 dB, with sounds reasonable enough.
*/
static struct linear_segments strength_to_db_table[] = {
{ 55953, 108500 }, /* -22.5 dBm */
{ 55394, 108000 },
{ 53834, 107000 },
{ 52863, 106000 },
{ 52239, 105000 },
{ 52012, 104000 },
{ 51803, 103000 },
{ 51566, 102000 },
{ 51356, 101000 },
{ 51112, 100000 },
{ 50869, 99000 },
{ 50600, 98000 },
{ 50363, 97000 },
{ 50117, 96000 }, /* -35 dBm */
{ 49889, 95000 },
{ 49680, 94000 },
{ 49493, 93000 },
{ 49302, 92000 },
{ 48929, 91000 },
{ 48416, 90000 },
{ 48035, 89000 },
{ 47593, 88000 },
{ 47282, 87000 },
{ 46953, 86000 },
{ 46698, 85000 },
{ 45617, 84000 },
{ 44773, 83000 },
{ 43845, 82000 },
{ 43020, 81000 },
{ 42010, 80000 }, /* -51 dBm */
{ 0, 0 },
};
static u32 interpolate_value(u32 value, struct linear_segments *segments,
unsigned len)
{
u64 tmp64;
u32 dx;
s32 dy;
int i, ret;
if (value >= segments[0].x)
return segments[0].y;
if (value < segments[len-1].x)
return segments[len-1].y;
for (i = 1; i < len - 1; i++) {
/* If value is identical, no need to interpolate */
if (value == segments[i].x)
return segments[i].y;
if (value > segments[i].x)
break;
}
/* Linear interpolation between the two (x,y) points */
dy = segments[i - 1].y - segments[i].y;
dx = segments[i - 1].x - segments[i].x;
tmp64 = value - segments[i].x;
tmp64 *= dy;
do_div(tmp64, dx);
ret = segments[i].y + tmp64;
return ret;
}
static u32 dib8000_get_time_us(struct dvb_frontend *fe, int layer)
{
struct dib8000_state *state = fe->demodulator_priv;
struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
int ini_layer, end_layer, i;
u64 time_us, tmp64;
u32 tmp, denom;
int guard, rate_num, rate_denum = 1, bits_per_symbol, nsegs;
int interleaving = 0, fft_div;
if (layer >= 0) {
ini_layer = layer;
end_layer = layer + 1;
} else {
ini_layer = 0;
end_layer = 3;
}
switch (c->guard_interval) {
case GUARD_INTERVAL_1_4:
guard = 4;
break;
case GUARD_INTERVAL_1_8:
guard = 8;
break;
case GUARD_INTERVAL_1_16:
guard = 16;
break;
default:
case GUARD_INTERVAL_1_32:
guard = 32;
break;
}
switch (c->transmission_mode) {
case TRANSMISSION_MODE_2K:
fft_div = 4;
break;
case TRANSMISSION_MODE_4K:
fft_div = 2;
break;
default:
case TRANSMISSION_MODE_8K:
fft_div = 1;
break;
}
denom = 0;
for (i = ini_layer; i < end_layer; i++) {
nsegs = c->layer[i].segment_count;
if (nsegs == 0 || nsegs > 13)
continue;
switch (c->layer[i].modulation) {
case DQPSK:
case QPSK:
bits_per_symbol = 2;
break;
case QAM_16:
bits_per_symbol = 4;
break;
default:
case QAM_64:
bits_per_symbol = 6;
break;
}
switch (c->layer[i].fec) {
case FEC_1_2:
rate_num = 1;
rate_denum = 2;
break;
case FEC_2_3:
rate_num = 2;
rate_denum = 3;
break;
case FEC_3_4:
rate_num = 3;
rate_denum = 4;
break;
case FEC_5_6:
rate_num = 5;
rate_denum = 6;
break;
default:
case FEC_7_8:
rate_num = 7;
rate_denum = 8;
break;
}
interleaving = c->layer[i].interleaving;
denom += bits_per_symbol * rate_num * fft_div * nsegs * 384;
}
/* If all goes wrong, wait for 1s for the next stats */
if (!denom)
return 0;
/* Estimate the period for the total bit rate */
time_us = rate_denum * (1008 * 1562500L);
tmp64 = time_us;
do_div(tmp64, guard);
time_us = time_us + tmp64;
time_us += denom / 2;
do_div(time_us, denom);
tmp = 1008 * 96 * interleaving;
time_us += tmp + tmp / guard;
return time_us;
}
static int dib8000_get_stats(struct dvb_frontend *fe, enum fe_status stat)
{
struct dib8000_state *state = fe->demodulator_priv;
struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
int i;
int show_per_stats = 0;
u32 time_us = 0, snr, val;
u64 blocks;
s32 db;
u16 strength;
/* Get Signal strength */
dib8000_read_signal_strength(fe, &strength);
val = strength;
db = interpolate_value(val,
strength_to_db_table,
ARRAY_SIZE(strength_to_db_table)) - 131000;
c->strength.stat[0].svalue = db;
/* UCB/BER/CNR measures require lock */
if (!(stat & FE_HAS_LOCK)) {
c->cnr.len = 1;
c->block_count.len = 1;
c->block_error.len = 1;
c->post_bit_error.len = 1;
c->post_bit_count.len = 1;
c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
return 0;
}
/* Check if time for stats was elapsed */
if (time_after(jiffies, state->per_jiffies_stats)) {
state->per_jiffies_stats = jiffies + msecs_to_jiffies(1000);
/* Get SNR */
snr = dib8000_get_snr(fe);
for (i = 1; i < MAX_NUMBER_OF_FRONTENDS; i++) {
if (state->fe[i])
snr += dib8000_get_snr(state->fe[i]);
}
snr = snr >> 16;
if (snr) {
snr = 10 * intlog10(snr);
snr = (1000L * snr) >> 24;
} else {
snr = 0;
}
c->cnr.stat[0].svalue = snr;
c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
/* Get UCB measures */
dib8000_read_unc_blocks(fe, &val);
if (val < state->init_ucb)
state->init_ucb += 0x100000000LL;
c->block_error.stat[0].scale = FE_SCALE_COUNTER;
c->block_error.stat[0].uvalue = val + state->init_ucb;
/* Estimate the number of packets based on bitrate */
if (!time_us)
time_us = dib8000_get_time_us(fe, -1);
if (time_us) {
blocks = 1250000ULL * 1000000ULL;
do_div(blocks, time_us * 8 * 204);
c->block_count.stat[0].scale = FE_SCALE_COUNTER;
c->block_count.stat[0].uvalue += blocks;
}
show_per_stats = 1;
}
/* Get post-BER measures */
if (time_after(jiffies, state->ber_jiffies_stats)) {
time_us = dib8000_get_time_us(fe, -1);
state->ber_jiffies_stats = jiffies + msecs_to_jiffies((time_us + 500) / 1000);
dprintk("Next all layers stats available in %u us.\n", time_us);
dib8000_read_ber(fe, &val);
c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
c->post_bit_error.stat[0].uvalue += val;
c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
c->post_bit_count.stat[0].uvalue += 100000000;
}
if (state->revision < 0x8002)
return 0;
c->block_error.len = 4;
c->post_bit_error.len = 4;
c->post_bit_count.len = 4;
for (i = 0; i < 3; i++) {
unsigned nsegs = c->layer[i].segment_count;
if (nsegs == 0 || nsegs > 13)
continue;
time_us = 0;
if (time_after(jiffies, state->ber_jiffies_stats_layer[i])) {
time_us = dib8000_get_time_us(fe, i);
state->ber_jiffies_stats_layer[i] = jiffies + msecs_to_jiffies((time_us + 500) / 1000);
dprintk("Next layer %c stats will be available in %u us\n",
'A' + i, time_us);
val = dib8000_read_word(state, per_layer_regs[i].ber);
c->post_bit_error.stat[1 + i].scale = FE_SCALE_COUNTER;
c->post_bit_error.stat[1 + i].uvalue += val;
c->post_bit_count.stat[1 + i].scale = FE_SCALE_COUNTER;
c->post_bit_count.stat[1 + i].uvalue += 100000000;
}
if (show_per_stats) {
val = dib8000_read_word(state, per_layer_regs[i].per);
c->block_error.stat[1 + i].scale = FE_SCALE_COUNTER;
c->block_error.stat[1 + i].uvalue += val;
if (!time_us)
time_us = dib8000_get_time_us(fe, i);
if (time_us) {
blocks = 1250000ULL * 1000000ULL;
do_div(blocks, time_us * 8 * 204);
c->block_count.stat[0].scale = FE_SCALE_COUNTER;
c->block_count.stat[0].uvalue += blocks;
}
}
}
return 0;
}
static int dib8000_set_slave_frontend(struct dvb_frontend *fe, struct dvb_frontend *fe_slave)
{
struct dib8000_state *state = fe->demodulator_priv;
u8 index_frontend = 1;
while ((index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL))
index_frontend++;
if (index_frontend < MAX_NUMBER_OF_FRONTENDS) {
dprintk("set slave fe %p to index %i\n", fe_slave, index_frontend);
state->fe[index_frontend] = fe_slave;
return 0;
}
dprintk("too many slave frontend\n");
return -ENOMEM;
}
static struct dvb_frontend *dib8000_get_slave_frontend(struct dvb_frontend *fe, int slave_index)
{
struct dib8000_state *state = fe->demodulator_priv;
if (slave_index >= MAX_NUMBER_OF_FRONTENDS)
return NULL;
return state->fe[slave_index];
}
static int dib8000_i2c_enumeration(struct i2c_adapter *host, int no_of_demods,
u8 default_addr, u8 first_addr, u8 is_dib8096p)
{
int k = 0, ret = 0;
u8 new_addr = 0;
struct i2c_device client = {.adap = host };
client.i2c_write_buffer = kzalloc(4, GFP_KERNEL);
if (!client.i2c_write_buffer) {
dprintk("%s: not enough memory\n", __func__);
return -ENOMEM;
}
client.i2c_read_buffer = kzalloc(4, GFP_KERNEL);
if (!client.i2c_read_buffer) {
dprintk("%s: not enough memory\n", __func__);
ret = -ENOMEM;
goto error_memory_read;
}
client.i2c_buffer_lock = kzalloc(sizeof(struct mutex), GFP_KERNEL);
if (!client.i2c_buffer_lock) {
dprintk("%s: not enough memory\n", __func__);
ret = -ENOMEM;
goto error_memory_lock;
}
mutex_init(client.i2c_buffer_lock);
for (k = no_of_demods - 1; k >= 0; k--) {
/* designated i2c address */
new_addr = first_addr + (k << 1);
client.addr = new_addr;
if (!is_dib8096p)
dib8000_i2c_write16(&client, 1287, 0x0003); /* sram lead in, rdy */
if (dib8000_identify(&client) == 0) {
/* sram lead in, rdy */
if (!is_dib8096p)
dib8000_i2c_write16(&client, 1287, 0x0003);
client.addr = default_addr;
if (dib8000_identify(&client) == 0) {
dprintk("#%d: not identified\n", k);
ret = -EINVAL;
goto error;
}
}
/* start diversity to pull_down div_str - just for i2c-enumeration */
dib8000_i2c_write16(&client, 1286, (1 << 10) | (4 << 6));
/* set new i2c address and force divstart */
dib8000_i2c_write16(&client, 1285, (new_addr << 2) | 0x2);
client.addr = new_addr;
dib8000_identify(&client);
dprintk("IC %d initialized (to i2c_address 0x%x)\n", k, new_addr);
}
for (k = 0; k < no_of_demods; k++) {
new_addr = first_addr | (k << 1);
client.addr = new_addr;
// unforce divstr
dib8000_i2c_write16(&client, 1285, new_addr << 2);
/* deactivate div - it was just for i2c-enumeration */
dib8000_i2c_write16(&client, 1286, 0);
}
error:
kfree(client.i2c_buffer_lock);
error_memory_lock:
kfree(client.i2c_read_buffer);
error_memory_read:
kfree(client.i2c_write_buffer);
return ret;
}
static int dib8000_fe_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune)
{
tune->min_delay_ms = 1000;
tune->step_size = 0;
tune->max_drift = 0;
return 0;
}
static void dib8000_release(struct dvb_frontend *fe)
{
struct dib8000_state *st = fe->demodulator_priv;
u8 index_frontend;
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (st->fe[index_frontend] != NULL); index_frontend++)
dvb_frontend_detach(st->fe[index_frontend]);
dibx000_exit_i2c_master(&st->i2c_master);
i2c_del_adapter(&st->dib8096p_tuner_adap);
kfree(st->fe[0]);
kfree(st);
}
static struct i2c_adapter *dib8000_get_i2c_master(struct dvb_frontend *fe, enum dibx000_i2c_interface intf, int gating)
{
struct dib8000_state *st = fe->demodulator_priv;
return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating);
}
static int dib8000_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff)
{
struct dib8000_state *st = fe->demodulator_priv;
u16 val = dib8000_read_word(st, 299) & 0xffef;
val |= (onoff & 0x1) << 4;
dprintk("pid filter enabled %d\n", onoff);
return dib8000_write_word(st, 299, val);
}
static int dib8000_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff)
{
struct dib8000_state *st = fe->demodulator_priv;
dprintk("Index %x, PID %d, OnOff %d\n", id, pid, onoff);
return dib8000_write_word(st, 305 + id, onoff ? (1 << 13) | pid : 0);
}
static const struct dvb_frontend_ops dib8000_ops = {
.delsys = { SYS_ISDBT },
.info = {
.name = "DiBcom 8000 ISDB-T",
.frequency_min_hz = 44250 * kHz,
.frequency_max_hz = 867250 * kHz,
.frequency_stepsize_hz = 62500,
.caps = FE_CAN_INVERSION_AUTO |
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO,
},
.release = dib8000_release,
.init = dib8000_wakeup,
.sleep = dib8000_sleep,
.set_frontend = dib8000_set_frontend,
.get_tune_settings = dib8000_fe_get_tune_settings,
.get_frontend = dib8000_get_frontend,
.read_status = dib8000_read_status,
.read_ber = dib8000_read_ber,
.read_signal_strength = dib8000_read_signal_strength,
.read_snr = dib8000_read_snr,
.read_ucblocks = dib8000_read_unc_blocks,
};
static struct dvb_frontend *dib8000_init(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib8000_config *cfg)
{
struct dvb_frontend *fe;
struct dib8000_state *state;
dprintk("dib8000_init\n");
state = kzalloc(sizeof(struct dib8000_state), GFP_KERNEL);
if (state == NULL)
return NULL;
fe = kzalloc(sizeof(struct dvb_frontend), GFP_KERNEL);
if (fe == NULL)
goto error;
memcpy(&state->cfg, cfg, sizeof(struct dib8000_config));
state->i2c.adap = i2c_adap;
state->i2c.addr = i2c_addr;
state->i2c.i2c_write_buffer = state->i2c_write_buffer;
state->i2c.i2c_read_buffer = state->i2c_read_buffer;
mutex_init(&state->i2c_buffer_lock);
state->i2c.i2c_buffer_lock = &state->i2c_buffer_lock;
state->gpio_val = cfg->gpio_val;
state->gpio_dir = cfg->gpio_dir;
/* Ensure the output mode remains at the previous default if it's
* not specifically set by the caller.
*/
if ((state->cfg.output_mode != OUTMODE_MPEG2_SERIAL) && (state->cfg.output_mode != OUTMODE_MPEG2_PAR_GATED_CLK))
state->cfg.output_mode = OUTMODE_MPEG2_FIFO;
state->fe[0] = fe;
fe->demodulator_priv = state;
memcpy(&state->fe[0]->ops, &dib8000_ops, sizeof(struct dvb_frontend_ops));
state->timf_default = cfg->pll->timf;
if (dib8000_identify(&state->i2c) == 0) {
kfree(fe);
goto error;
}
dibx000_init_i2c_master(&state->i2c_master, DIB8000, state->i2c.adap, state->i2c.addr);
/* init 8096p tuner adapter */
strscpy(state->dib8096p_tuner_adap.name, "DiB8096P tuner interface",
sizeof(state->dib8096p_tuner_adap.name));
state->dib8096p_tuner_adap.algo = &dib8096p_tuner_xfer_algo;
state->dib8096p_tuner_adap.algo_data = NULL;
state->dib8096p_tuner_adap.dev.parent = state->i2c.adap->dev.parent;
i2c_set_adapdata(&state->dib8096p_tuner_adap, state);
i2c_add_adapter(&state->dib8096p_tuner_adap);
dib8000_reset(fe);
dib8000_write_word(state, 285, (dib8000_read_word(state, 285) & ~0x60) | (3 << 5)); /* ber_rs_len = 3 */
state->current_demod_bw = 6000;
return fe;
error:
kfree(state);
return NULL;
}
void *dib8000_attach(struct dib8000_ops *ops)
{
if (!ops)
return NULL;
ops->pwm_agc_reset = dib8000_pwm_agc_reset;
ops->get_dc_power = dib8090p_get_dc_power;
ops->set_gpio = dib8000_set_gpio;
ops->get_slave_frontend = dib8000_get_slave_frontend;
ops->set_tune_state = dib8000_set_tune_state;
ops->pid_filter_ctrl = dib8000_pid_filter_ctrl;
ops->get_adc_power = dib8000_get_adc_power;
ops->update_pll = dib8000_update_pll;
ops->tuner_sleep = dib8096p_tuner_sleep;
ops->get_tune_state = dib8000_get_tune_state;
ops->get_i2c_tuner = dib8096p_get_i2c_tuner;
ops->set_slave_frontend = dib8000_set_slave_frontend;
ops->pid_filter = dib8000_pid_filter;
ops->ctrl_timf = dib8000_ctrl_timf;
ops->init = dib8000_init;
ops->get_i2c_master = dib8000_get_i2c_master;
ops->i2c_enumeration = dib8000_i2c_enumeration;
ops->set_wbd_ref = dib8000_set_wbd_ref;
return ops;
}
EXPORT_SYMBOL_GPL(dib8000_attach);
MODULE_AUTHOR("Olivier Grenie <Olivier.Grenie@parrot.com, Patrick Boettcher <patrick.boettcher@posteo.de>");
MODULE_DESCRIPTION("Driver for the DiBcom 8000 ISDB-T demodulator");
MODULE_LICENSE("GPL");