blob: 99524a3c9f382e580d40d4c8b8ad41df09471ab2 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Xilinx Zynq UltraScale+ MPSoC Quad-SPI (QSPI) controller driver
* (host mode only)
*
* Copyright (C) 2009 - 2015 Xilinx, Inc.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/firmware/xlnx-zynqmp.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/spi/spi.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
#include <linux/spi/spi-mem.h>
/* Generic QSPI register offsets */
#define GQSPI_CONFIG_OFST 0x00000100
#define GQSPI_ISR_OFST 0x00000104
#define GQSPI_IDR_OFST 0x0000010C
#define GQSPI_IER_OFST 0x00000108
#define GQSPI_IMASK_OFST 0x00000110
#define GQSPI_EN_OFST 0x00000114
#define GQSPI_TXD_OFST 0x0000011C
#define GQSPI_RXD_OFST 0x00000120
#define GQSPI_TX_THRESHOLD_OFST 0x00000128
#define GQSPI_RX_THRESHOLD_OFST 0x0000012C
#define IOU_TAPDLY_BYPASS_OFST 0x0000003C
#define GQSPI_LPBK_DLY_ADJ_OFST 0x00000138
#define GQSPI_GEN_FIFO_OFST 0x00000140
#define GQSPI_SEL_OFST 0x00000144
#define GQSPI_GF_THRESHOLD_OFST 0x00000150
#define GQSPI_FIFO_CTRL_OFST 0x0000014C
#define GQSPI_QSPIDMA_DST_CTRL_OFST 0x0000080C
#define GQSPI_QSPIDMA_DST_SIZE_OFST 0x00000804
#define GQSPI_QSPIDMA_DST_STS_OFST 0x00000808
#define GQSPI_QSPIDMA_DST_I_STS_OFST 0x00000814
#define GQSPI_QSPIDMA_DST_I_EN_OFST 0x00000818
#define GQSPI_QSPIDMA_DST_I_DIS_OFST 0x0000081C
#define GQSPI_QSPIDMA_DST_I_MASK_OFST 0x00000820
#define GQSPI_QSPIDMA_DST_ADDR_OFST 0x00000800
#define GQSPI_QSPIDMA_DST_ADDR_MSB_OFST 0x00000828
#define GQSPI_DATA_DLY_ADJ_OFST 0x000001F8
/* GQSPI register bit masks */
#define GQSPI_SEL_MASK 0x00000001
#define GQSPI_EN_MASK 0x00000001
#define GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK 0x00000020
#define GQSPI_ISR_WR_TO_CLR_MASK 0x00000002
#define GQSPI_IDR_ALL_MASK 0x00000FBE
#define GQSPI_CFG_MODE_EN_MASK 0xC0000000
#define GQSPI_CFG_GEN_FIFO_START_MODE_MASK 0x20000000
#define GQSPI_CFG_ENDIAN_MASK 0x04000000
#define GQSPI_CFG_EN_POLL_TO_MASK 0x00100000
#define GQSPI_CFG_WP_HOLD_MASK 0x00080000
#define GQSPI_CFG_BAUD_RATE_DIV_MASK 0x00000038
#define GQSPI_CFG_CLK_PHA_MASK 0x00000004
#define GQSPI_CFG_CLK_POL_MASK 0x00000002
#define GQSPI_CFG_START_GEN_FIFO_MASK 0x10000000
#define GQSPI_GENFIFO_IMM_DATA_MASK 0x000000FF
#define GQSPI_GENFIFO_DATA_XFER 0x00000100
#define GQSPI_GENFIFO_EXP 0x00000200
#define GQSPI_GENFIFO_MODE_SPI 0x00000400
#define GQSPI_GENFIFO_MODE_DUALSPI 0x00000800
#define GQSPI_GENFIFO_MODE_QUADSPI 0x00000C00
#define GQSPI_GENFIFO_MODE_MASK 0x00000C00
#define GQSPI_GENFIFO_CS_LOWER 0x00001000
#define GQSPI_GENFIFO_CS_UPPER 0x00002000
#define GQSPI_GENFIFO_BUS_LOWER 0x00004000
#define GQSPI_GENFIFO_BUS_UPPER 0x00008000
#define GQSPI_GENFIFO_BUS_BOTH 0x0000C000
#define GQSPI_GENFIFO_BUS_MASK 0x0000C000
#define GQSPI_GENFIFO_TX 0x00010000
#define GQSPI_GENFIFO_RX 0x00020000
#define GQSPI_GENFIFO_STRIPE 0x00040000
#define GQSPI_GENFIFO_POLL 0x00080000
#define GQSPI_GENFIFO_EXP_START 0x00000100
#define GQSPI_FIFO_CTRL_RST_RX_FIFO_MASK 0x00000004
#define GQSPI_FIFO_CTRL_RST_TX_FIFO_MASK 0x00000002
#define GQSPI_FIFO_CTRL_RST_GEN_FIFO_MASK 0x00000001
#define GQSPI_ISR_RXEMPTY_MASK 0x00000800
#define GQSPI_ISR_GENFIFOFULL_MASK 0x00000400
#define GQSPI_ISR_GENFIFONOT_FULL_MASK 0x00000200
#define GQSPI_ISR_TXEMPTY_MASK 0x00000100
#define GQSPI_ISR_GENFIFOEMPTY_MASK 0x00000080
#define GQSPI_ISR_RXFULL_MASK 0x00000020
#define GQSPI_ISR_RXNEMPTY_MASK 0x00000010
#define GQSPI_ISR_TXFULL_MASK 0x00000008
#define GQSPI_ISR_TXNOT_FULL_MASK 0x00000004
#define GQSPI_ISR_POLL_TIME_EXPIRE_MASK 0x00000002
#define GQSPI_IER_TXNOT_FULL_MASK 0x00000004
#define GQSPI_IER_RXEMPTY_MASK 0x00000800
#define GQSPI_IER_POLL_TIME_EXPIRE_MASK 0x00000002
#define GQSPI_IER_RXNEMPTY_MASK 0x00000010
#define GQSPI_IER_GENFIFOEMPTY_MASK 0x00000080
#define GQSPI_IER_TXEMPTY_MASK 0x00000100
#define GQSPI_QSPIDMA_DST_INTR_ALL_MASK 0x000000FE
#define GQSPI_QSPIDMA_DST_STS_WTC 0x0000E000
#define GQSPI_CFG_MODE_EN_DMA_MASK 0x80000000
#define GQSPI_ISR_IDR_MASK 0x00000994
#define GQSPI_QSPIDMA_DST_I_EN_DONE_MASK 0x00000002
#define GQSPI_QSPIDMA_DST_I_STS_DONE_MASK 0x00000002
#define GQSPI_IRQ_MASK 0x00000980
#define GQSPI_CFG_BAUD_RATE_DIV_SHIFT 3
#define GQSPI_GENFIFO_CS_SETUP 0x4
#define GQSPI_GENFIFO_CS_HOLD 0x3
#define GQSPI_TXD_DEPTH 64
#define GQSPI_RX_FIFO_THRESHOLD 32
#define GQSPI_RX_FIFO_FILL (GQSPI_RX_FIFO_THRESHOLD * 4)
#define GQSPI_TX_FIFO_THRESHOLD_RESET_VAL 32
#define GQSPI_TX_FIFO_FILL (GQSPI_TXD_DEPTH -\
GQSPI_TX_FIFO_THRESHOLD_RESET_VAL)
#define GQSPI_GEN_FIFO_THRESHOLD_RESET_VAL 0X10
#define GQSPI_QSPIDMA_DST_CTRL_RESET_VAL 0x803FFA00
#define GQSPI_SELECT_FLASH_CS_LOWER 0x1
#define GQSPI_SELECT_FLASH_CS_UPPER 0x2
#define GQSPI_SELECT_FLASH_CS_BOTH 0x3
#define GQSPI_SELECT_FLASH_BUS_LOWER 0x1
#define GQSPI_SELECT_FLASH_BUS_UPPER 0x2
#define GQSPI_SELECT_FLASH_BUS_BOTH 0x3
#define GQSPI_BAUD_DIV_MAX 7 /* Baud rate divisor maximum */
#define GQSPI_BAUD_DIV_SHIFT 2 /* Baud rate divisor shift */
#define GQSPI_SELECT_MODE_SPI 0x1
#define GQSPI_SELECT_MODE_DUALSPI 0x2
#define GQSPI_SELECT_MODE_QUADSPI 0x4
#define GQSPI_DMA_UNALIGN 0x3
#define GQSPI_DEFAULT_NUM_CS 1 /* Default number of chip selects */
#define GQSPI_MAX_NUM_CS 2 /* Maximum number of chip selects */
#define GQSPI_USE_DATA_DLY 0x1
#define GQSPI_USE_DATA_DLY_SHIFT 31
#define GQSPI_DATA_DLY_ADJ_VALUE 0x2
#define GQSPI_DATA_DLY_ADJ_SHIFT 28
#define GQSPI_LPBK_DLY_ADJ_DLY_1 0x1
#define GQSPI_LPBK_DLY_ADJ_DLY_1_SHIFT 0x3
#define TAP_DLY_BYPASS_LQSPI_RX_VALUE 0x1
#define TAP_DLY_BYPASS_LQSPI_RX_SHIFT 0x2
/* set to differentiate versal from zynqmp, 1=versal, 0=zynqmp */
#define QSPI_QUIRK_HAS_TAPDELAY BIT(0)
#define GQSPI_FREQ_37_5MHZ 37500000
#define GQSPI_FREQ_40MHZ 40000000
#define GQSPI_FREQ_100MHZ 100000000
#define GQSPI_FREQ_150MHZ 150000000
#define SPI_AUTOSUSPEND_TIMEOUT 3000
enum mode_type {GQSPI_MODE_IO, GQSPI_MODE_DMA};
/**
* struct qspi_platform_data - zynqmp qspi platform data structure
* @quirks: Flags is used to identify the platform
*/
struct qspi_platform_data {
u32 quirks;
};
/**
* struct zynqmp_qspi - Defines qspi driver instance
* @ctlr: Pointer to the spi controller information
* @regs: Virtual address of the QSPI controller registers
* @refclk: Pointer to the peripheral clock
* @pclk: Pointer to the APB clock
* @irq: IRQ number
* @dev: Pointer to struct device
* @txbuf: Pointer to the TX buffer
* @rxbuf: Pointer to the RX buffer
* @bytes_to_transfer: Number of bytes left to transfer
* @bytes_to_receive: Number of bytes left to receive
* @genfifocs: Used for chip select
* @genfifobus: Used to select the upper or lower bus
* @dma_rx_bytes: Remaining bytes to receive by DMA mode
* @dma_addr: DMA address after mapping the kernel buffer
* @genfifoentry: Used for storing the genfifoentry instruction.
* @mode: Defines the mode in which QSPI is operating
* @data_completion: completion structure
* @op_lock: Operational lock
* @speed_hz: Current SPI bus clock speed in hz
* @has_tapdelay: Used for tapdelay register available in qspi
*/
struct zynqmp_qspi {
struct spi_controller *ctlr;
void __iomem *regs;
struct clk *refclk;
struct clk *pclk;
int irq;
struct device *dev;
const void *txbuf;
void *rxbuf;
int bytes_to_transfer;
int bytes_to_receive;
u32 genfifocs;
u32 genfifobus;
u32 dma_rx_bytes;
dma_addr_t dma_addr;
u32 genfifoentry;
enum mode_type mode;
struct completion data_completion;
struct mutex op_lock;
u32 speed_hz;
bool has_tapdelay;
};
/**
* zynqmp_gqspi_read - For GQSPI controller read operation
* @xqspi: Pointer to the zynqmp_qspi structure
* @offset: Offset from where to read
* Return: Value at the offset
*/
static u32 zynqmp_gqspi_read(struct zynqmp_qspi *xqspi, u32 offset)
{
return readl_relaxed(xqspi->regs + offset);
}
/**
* zynqmp_gqspi_write - For GQSPI controller write operation
* @xqspi: Pointer to the zynqmp_qspi structure
* @offset: Offset where to write
* @val: Value to be written
*/
static inline void zynqmp_gqspi_write(struct zynqmp_qspi *xqspi, u32 offset,
u32 val)
{
writel_relaxed(val, (xqspi->regs + offset));
}
/**
* zynqmp_gqspi_selecttarget - For selection of target device
* @instanceptr: Pointer to the zynqmp_qspi structure
* @targetcs: For chip select
* @targetbus: To check which bus is selected- upper or lower
*/
static void zynqmp_gqspi_selecttarget(struct zynqmp_qspi *instanceptr,
u8 targetcs, u8 targetbus)
{
/*
* Bus and CS lines selected here will be updated in the instance and
* used for subsequent GENFIFO entries during transfer.
*/
/* Choose target select line */
switch (targetcs) {
case GQSPI_SELECT_FLASH_CS_BOTH:
instanceptr->genfifocs = GQSPI_GENFIFO_CS_LOWER |
GQSPI_GENFIFO_CS_UPPER;
break;
case GQSPI_SELECT_FLASH_CS_UPPER:
instanceptr->genfifocs = GQSPI_GENFIFO_CS_UPPER;
break;
case GQSPI_SELECT_FLASH_CS_LOWER:
instanceptr->genfifocs = GQSPI_GENFIFO_CS_LOWER;
break;
default:
dev_warn(instanceptr->dev, "Invalid target select\n");
}
/* Choose the bus */
switch (targetbus) {
case GQSPI_SELECT_FLASH_BUS_BOTH:
instanceptr->genfifobus = GQSPI_GENFIFO_BUS_LOWER |
GQSPI_GENFIFO_BUS_UPPER;
break;
case GQSPI_SELECT_FLASH_BUS_UPPER:
instanceptr->genfifobus = GQSPI_GENFIFO_BUS_UPPER;
break;
case GQSPI_SELECT_FLASH_BUS_LOWER:
instanceptr->genfifobus = GQSPI_GENFIFO_BUS_LOWER;
break;
default:
dev_warn(instanceptr->dev, "Invalid target bus\n");
}
}
/**
* zynqmp_qspi_set_tapdelay: To configure qspi tap delays
* @xqspi: Pointer to the zynqmp_qspi structure
* @baudrateval: Buadrate to configure
*/
static void zynqmp_qspi_set_tapdelay(struct zynqmp_qspi *xqspi, u32 baudrateval)
{
u32 tapdlybypass = 0, lpbkdlyadj = 0, datadlyadj = 0, clk_rate;
u32 reqhz = 0;
clk_rate = clk_get_rate(xqspi->refclk);
reqhz = (clk_rate / (GQSPI_BAUD_DIV_SHIFT << baudrateval));
if (!xqspi->has_tapdelay) {
if (reqhz <= GQSPI_FREQ_40MHZ) {
zynqmp_pm_set_tapdelay_bypass(PM_TAPDELAY_QSPI,
PM_TAPDELAY_BYPASS_ENABLE);
} else if (reqhz <= GQSPI_FREQ_100MHZ) {
zynqmp_pm_set_tapdelay_bypass(PM_TAPDELAY_QSPI,
PM_TAPDELAY_BYPASS_ENABLE);
lpbkdlyadj |= (GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK);
datadlyadj |= ((GQSPI_USE_DATA_DLY <<
GQSPI_USE_DATA_DLY_SHIFT)
| (GQSPI_DATA_DLY_ADJ_VALUE <<
GQSPI_DATA_DLY_ADJ_SHIFT));
} else if (reqhz <= GQSPI_FREQ_150MHZ) {
lpbkdlyadj |= GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK;
}
} else {
if (reqhz <= GQSPI_FREQ_37_5MHZ) {
tapdlybypass |= (TAP_DLY_BYPASS_LQSPI_RX_VALUE <<
TAP_DLY_BYPASS_LQSPI_RX_SHIFT);
} else if (reqhz <= GQSPI_FREQ_100MHZ) {
tapdlybypass |= (TAP_DLY_BYPASS_LQSPI_RX_VALUE <<
TAP_DLY_BYPASS_LQSPI_RX_SHIFT);
lpbkdlyadj |= (GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK);
datadlyadj |= (GQSPI_USE_DATA_DLY <<
GQSPI_USE_DATA_DLY_SHIFT);
} else if (reqhz <= GQSPI_FREQ_150MHZ) {
lpbkdlyadj |= (GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK
| (GQSPI_LPBK_DLY_ADJ_DLY_1 <<
GQSPI_LPBK_DLY_ADJ_DLY_1_SHIFT));
}
zynqmp_gqspi_write(xqspi,
IOU_TAPDLY_BYPASS_OFST, tapdlybypass);
}
zynqmp_gqspi_write(xqspi, GQSPI_LPBK_DLY_ADJ_OFST, lpbkdlyadj);
zynqmp_gqspi_write(xqspi, GQSPI_DATA_DLY_ADJ_OFST, datadlyadj);
}
/**
* zynqmp_qspi_init_hw - Initialize the hardware
* @xqspi: Pointer to the zynqmp_qspi structure
*
* The default settings of the QSPI controller's configurable parameters on
* reset are
* - Host mode
* - TX threshold set to 1
* - RX threshold set to 1
* - Flash memory interface mode enabled
* This function performs the following actions
* - Disable and clear all the interrupts
* - Enable manual target select
* - Enable manual start
* - Deselect all the chip select lines
* - Set the little endian mode of TX FIFO
* - Set clock phase
* - Set clock polarity and
* - Enable the QSPI controller
*/
static void zynqmp_qspi_init_hw(struct zynqmp_qspi *xqspi)
{
u32 config_reg, baud_rate_val = 0;
ulong clk_rate;
/* Select the GQSPI mode */
zynqmp_gqspi_write(xqspi, GQSPI_SEL_OFST, GQSPI_SEL_MASK);
/* Clear and disable interrupts */
zynqmp_gqspi_write(xqspi, GQSPI_ISR_OFST,
zynqmp_gqspi_read(xqspi, GQSPI_ISR_OFST) |
GQSPI_ISR_WR_TO_CLR_MASK);
/* Clear the DMA STS */
zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_I_STS_OFST,
zynqmp_gqspi_read(xqspi,
GQSPI_QSPIDMA_DST_I_STS_OFST));
zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_STS_OFST,
zynqmp_gqspi_read(xqspi,
GQSPI_QSPIDMA_DST_STS_OFST) |
GQSPI_QSPIDMA_DST_STS_WTC);
zynqmp_gqspi_write(xqspi, GQSPI_IDR_OFST, GQSPI_IDR_ALL_MASK);
zynqmp_gqspi_write(xqspi,
GQSPI_QSPIDMA_DST_I_DIS_OFST,
GQSPI_QSPIDMA_DST_INTR_ALL_MASK);
/* Disable the GQSPI */
zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, 0x0);
config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
/* Manual start */
config_reg |= GQSPI_CFG_GEN_FIFO_START_MODE_MASK;
/* Little endian by default */
config_reg &= ~GQSPI_CFG_ENDIAN_MASK;
/* Disable poll time out */
config_reg &= ~GQSPI_CFG_EN_POLL_TO_MASK;
/* Set hold bit */
config_reg |= GQSPI_CFG_WP_HOLD_MASK;
/* Clear pre-scalar by default */
config_reg &= ~GQSPI_CFG_BAUD_RATE_DIV_MASK;
/* Set CPHA */
if (xqspi->ctlr->mode_bits & SPI_CPHA)
config_reg |= GQSPI_CFG_CLK_PHA_MASK;
else
config_reg &= ~GQSPI_CFG_CLK_PHA_MASK;
/* Set CPOL */
if (xqspi->ctlr->mode_bits & SPI_CPOL)
config_reg |= GQSPI_CFG_CLK_POL_MASK;
else
config_reg &= ~GQSPI_CFG_CLK_POL_MASK;
/* Set the clock frequency */
clk_rate = clk_get_rate(xqspi->refclk);
while ((baud_rate_val < GQSPI_BAUD_DIV_MAX) &&
(clk_rate /
(GQSPI_BAUD_DIV_SHIFT << baud_rate_val)) > xqspi->speed_hz)
baud_rate_val++;
config_reg &= ~GQSPI_CFG_BAUD_RATE_DIV_MASK;
config_reg |= (baud_rate_val << GQSPI_CFG_BAUD_RATE_DIV_SHIFT);
zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
/* Set the tapdelay for clock frequency */
zynqmp_qspi_set_tapdelay(xqspi, baud_rate_val);
/* Clear the TX and RX FIFO */
zynqmp_gqspi_write(xqspi, GQSPI_FIFO_CTRL_OFST,
GQSPI_FIFO_CTRL_RST_RX_FIFO_MASK |
GQSPI_FIFO_CTRL_RST_TX_FIFO_MASK |
GQSPI_FIFO_CTRL_RST_GEN_FIFO_MASK);
/* Reset thresholds */
zynqmp_gqspi_write(xqspi, GQSPI_TX_THRESHOLD_OFST,
GQSPI_TX_FIFO_THRESHOLD_RESET_VAL);
zynqmp_gqspi_write(xqspi, GQSPI_RX_THRESHOLD_OFST,
GQSPI_RX_FIFO_THRESHOLD);
zynqmp_gqspi_write(xqspi, GQSPI_GF_THRESHOLD_OFST,
GQSPI_GEN_FIFO_THRESHOLD_RESET_VAL);
zynqmp_gqspi_selecttarget(xqspi,
GQSPI_SELECT_FLASH_CS_LOWER,
GQSPI_SELECT_FLASH_BUS_LOWER);
/* Initialize DMA */
zynqmp_gqspi_write(xqspi,
GQSPI_QSPIDMA_DST_CTRL_OFST,
GQSPI_QSPIDMA_DST_CTRL_RESET_VAL);
/* Enable the GQSPI */
zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, GQSPI_EN_MASK);
}
/**
* zynqmp_qspi_copy_read_data - Copy data to RX buffer
* @xqspi: Pointer to the zynqmp_qspi structure
* @data: The variable where data is stored
* @size: Number of bytes to be copied from data to RX buffer
*/
static void zynqmp_qspi_copy_read_data(struct zynqmp_qspi *xqspi,
ulong data, u8 size)
{
memcpy(xqspi->rxbuf, &data, size);
xqspi->rxbuf += size;
xqspi->bytes_to_receive -= size;
}
/**
* zynqmp_qspi_chipselect - Select or deselect the chip select line
* @qspi: Pointer to the spi_device structure
* @is_high: Select(0) or deselect (1) the chip select line
*/
static void zynqmp_qspi_chipselect(struct spi_device *qspi, bool is_high)
{
struct zynqmp_qspi *xqspi = spi_controller_get_devdata(qspi->controller);
ulong timeout;
u32 genfifoentry = 0, statusreg;
genfifoentry |= GQSPI_GENFIFO_MODE_SPI;
if (!is_high) {
if (!spi_get_chipselect(qspi, 0)) {
xqspi->genfifobus = GQSPI_GENFIFO_BUS_LOWER;
xqspi->genfifocs = GQSPI_GENFIFO_CS_LOWER;
} else {
xqspi->genfifobus = GQSPI_GENFIFO_BUS_UPPER;
xqspi->genfifocs = GQSPI_GENFIFO_CS_UPPER;
}
genfifoentry |= xqspi->genfifobus;
genfifoentry |= xqspi->genfifocs;
genfifoentry |= GQSPI_GENFIFO_CS_SETUP;
} else {
genfifoentry |= GQSPI_GENFIFO_CS_HOLD;
}
zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, genfifoentry);
/* Manually start the generic FIFO command */
zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST) |
GQSPI_CFG_START_GEN_FIFO_MASK);
timeout = jiffies + msecs_to_jiffies(1000);
/* Wait until the generic FIFO command is empty */
do {
statusreg = zynqmp_gqspi_read(xqspi, GQSPI_ISR_OFST);
if ((statusreg & GQSPI_ISR_GENFIFOEMPTY_MASK) &&
(statusreg & GQSPI_ISR_TXEMPTY_MASK))
break;
cpu_relax();
} while (!time_after_eq(jiffies, timeout));
if (time_after_eq(jiffies, timeout))
dev_err(xqspi->dev, "Chip select timed out\n");
}
/**
* zynqmp_qspi_selectspimode - Selects SPI mode - x1 or x2 or x4.
* @xqspi: xqspi is a pointer to the GQSPI instance
* @spimode: spimode - SPI or DUAL or QUAD.
* Return: Mask to set desired SPI mode in GENFIFO entry.
*/
static inline u32 zynqmp_qspi_selectspimode(struct zynqmp_qspi *xqspi,
u8 spimode)
{
u32 mask = 0;
switch (spimode) {
case GQSPI_SELECT_MODE_DUALSPI:
mask = GQSPI_GENFIFO_MODE_DUALSPI;
break;
case GQSPI_SELECT_MODE_QUADSPI:
mask = GQSPI_GENFIFO_MODE_QUADSPI;
break;
case GQSPI_SELECT_MODE_SPI:
mask = GQSPI_GENFIFO_MODE_SPI;
break;
default:
dev_warn(xqspi->dev, "Invalid SPI mode\n");
}
return mask;
}
/**
* zynqmp_qspi_config_op - Configure QSPI controller for specified
* transfer
* @xqspi: Pointer to the zynqmp_qspi structure
* @qspi: Pointer to the spi_device structure
*
* Sets the operational mode of QSPI controller for the next QSPI transfer and
* sets the requested clock frequency.
*
* Return: Always 0
*
* Note:
* If the requested frequency is not an exact match with what can be
* obtained using the pre-scalar value, the driver sets the clock
* frequency which is lower than the requested frequency (maximum lower)
* for the transfer.
*
* If the requested frequency is higher or lower than that is supported
* by the QSPI controller the driver will set the highest or lowest
* frequency supported by controller.
*/
static int zynqmp_qspi_config_op(struct zynqmp_qspi *xqspi,
struct spi_device *qspi)
{
ulong clk_rate;
u32 config_reg, req_speed_hz, baud_rate_val = 0;
req_speed_hz = qspi->max_speed_hz;
if (xqspi->speed_hz != req_speed_hz) {
xqspi->speed_hz = req_speed_hz;
/* Set the clock frequency */
/* If req_speed_hz == 0, default to lowest speed */
clk_rate = clk_get_rate(xqspi->refclk);
while ((baud_rate_val < GQSPI_BAUD_DIV_MAX) &&
(clk_rate /
(GQSPI_BAUD_DIV_SHIFT << baud_rate_val)) >
req_speed_hz)
baud_rate_val++;
config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
config_reg &= ~GQSPI_CFG_BAUD_RATE_DIV_MASK;
config_reg |= (baud_rate_val << GQSPI_CFG_BAUD_RATE_DIV_SHIFT);
zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
zynqmp_qspi_set_tapdelay(xqspi, baud_rate_val);
}
return 0;
}
/**
* zynqmp_qspi_setup_op - Configure the QSPI controller
* @qspi: Pointer to the spi_device structure
*
* Sets the operational mode of QSPI controller for the next QSPI transfer,
* baud rate and divisor value to setup the requested qspi clock.
*
* Return: 0 on success; error value otherwise.
*/
static int zynqmp_qspi_setup_op(struct spi_device *qspi)
{
struct spi_controller *ctlr = qspi->controller;
struct zynqmp_qspi *xqspi = spi_controller_get_devdata(ctlr);
if (ctlr->busy)
return -EBUSY;
zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, GQSPI_EN_MASK);
return 0;
}
/**
* zynqmp_qspi_filltxfifo - Fills the TX FIFO as long as there is room in
* the FIFO or the bytes required to be
* transmitted.
* @xqspi: Pointer to the zynqmp_qspi structure
* @size: Number of bytes to be copied from TX buffer to TX FIFO
*/
static void zynqmp_qspi_filltxfifo(struct zynqmp_qspi *xqspi, int size)
{
u32 count = 0, intermediate;
while ((xqspi->bytes_to_transfer > 0) && (count < size) && (xqspi->txbuf)) {
if (xqspi->bytes_to_transfer >= 4) {
memcpy(&intermediate, xqspi->txbuf, 4);
xqspi->txbuf += 4;
xqspi->bytes_to_transfer -= 4;
count += 4;
} else {
memcpy(&intermediate, xqspi->txbuf,
xqspi->bytes_to_transfer);
xqspi->txbuf += xqspi->bytes_to_transfer;
xqspi->bytes_to_transfer = 0;
count += xqspi->bytes_to_transfer;
}
zynqmp_gqspi_write(xqspi, GQSPI_TXD_OFST, intermediate);
}
}
/**
* zynqmp_qspi_readrxfifo - Fills the RX FIFO as long as there is room in
* the FIFO.
* @xqspi: Pointer to the zynqmp_qspi structure
* @size: Number of bytes to be copied from RX buffer to RX FIFO
*/
static void zynqmp_qspi_readrxfifo(struct zynqmp_qspi *xqspi, u32 size)
{
ulong data;
int count = 0;
while ((count < size) && (xqspi->bytes_to_receive > 0)) {
if (xqspi->bytes_to_receive >= 4) {
(*(u32 *)xqspi->rxbuf) =
zynqmp_gqspi_read(xqspi, GQSPI_RXD_OFST);
xqspi->rxbuf += 4;
xqspi->bytes_to_receive -= 4;
count += 4;
} else {
data = zynqmp_gqspi_read(xqspi, GQSPI_RXD_OFST);
count += xqspi->bytes_to_receive;
zynqmp_qspi_copy_read_data(xqspi, data,
xqspi->bytes_to_receive);
xqspi->bytes_to_receive = 0;
}
}
}
/**
* zynqmp_qspi_fillgenfifo - Fills the GENFIFO.
* @xqspi: Pointer to the zynqmp_qspi structure
* @nbits: Transfer/Receive buswidth.
* @genfifoentry: Variable in which GENFIFO mask is saved
*/
static void zynqmp_qspi_fillgenfifo(struct zynqmp_qspi *xqspi, u8 nbits,
u32 genfifoentry)
{
u32 transfer_len = 0;
if (xqspi->txbuf) {
genfifoentry &= ~GQSPI_GENFIFO_RX;
genfifoentry |= GQSPI_GENFIFO_DATA_XFER;
genfifoentry |= GQSPI_GENFIFO_TX;
transfer_len = xqspi->bytes_to_transfer;
} else if (xqspi->rxbuf) {
genfifoentry &= ~GQSPI_GENFIFO_TX;
genfifoentry |= GQSPI_GENFIFO_DATA_XFER;
genfifoentry |= GQSPI_GENFIFO_RX;
if (xqspi->mode == GQSPI_MODE_DMA)
transfer_len = xqspi->dma_rx_bytes;
else
transfer_len = xqspi->bytes_to_receive;
} else {
/* Sending dummy circles here */
genfifoentry &= ~(GQSPI_GENFIFO_TX | GQSPI_GENFIFO_RX);
genfifoentry |= GQSPI_GENFIFO_DATA_XFER;
transfer_len = xqspi->bytes_to_transfer;
}
genfifoentry |= zynqmp_qspi_selectspimode(xqspi, nbits);
xqspi->genfifoentry = genfifoentry;
if ((transfer_len) < GQSPI_GENFIFO_IMM_DATA_MASK) {
genfifoentry &= ~GQSPI_GENFIFO_IMM_DATA_MASK;
genfifoentry |= transfer_len;
zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, genfifoentry);
} else {
int tempcount = transfer_len;
u32 exponent = 8; /* 2^8 = 256 */
u8 imm_data = tempcount & 0xFF;
tempcount &= ~(tempcount & 0xFF);
/* Immediate entry */
if (tempcount != 0) {
/* Exponent entries */
genfifoentry |= GQSPI_GENFIFO_EXP;
while (tempcount != 0) {
if (tempcount & GQSPI_GENFIFO_EXP_START) {
genfifoentry &=
~GQSPI_GENFIFO_IMM_DATA_MASK;
genfifoentry |= exponent;
zynqmp_gqspi_write(xqspi,
GQSPI_GEN_FIFO_OFST,
genfifoentry);
}
tempcount = tempcount >> 1;
exponent++;
}
}
if (imm_data != 0) {
genfifoentry &= ~GQSPI_GENFIFO_EXP;
genfifoentry &= ~GQSPI_GENFIFO_IMM_DATA_MASK;
genfifoentry |= (u8)(imm_data & 0xFF);
zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST,
genfifoentry);
}
}
if (xqspi->mode == GQSPI_MODE_IO && xqspi->rxbuf) {
/* Dummy generic FIFO entry */
zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, 0x0);
}
}
/**
* zynqmp_process_dma_irq - Handler for DMA done interrupt of QSPI
* controller
* @xqspi: zynqmp_qspi instance pointer
*
* This function handles DMA interrupt only.
*/
static void zynqmp_process_dma_irq(struct zynqmp_qspi *xqspi)
{
u32 config_reg, genfifoentry;
dma_unmap_single(xqspi->dev, xqspi->dma_addr,
xqspi->dma_rx_bytes, DMA_FROM_DEVICE);
xqspi->rxbuf += xqspi->dma_rx_bytes;
xqspi->bytes_to_receive -= xqspi->dma_rx_bytes;
xqspi->dma_rx_bytes = 0;
/* Disabling the DMA interrupts */
zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_I_DIS_OFST,
GQSPI_QSPIDMA_DST_I_EN_DONE_MASK);
if (xqspi->bytes_to_receive > 0) {
/* Switch to IO mode,for remaining bytes to receive */
config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
/* Initiate the transfer of remaining bytes */
genfifoentry = xqspi->genfifoentry;
genfifoentry |= xqspi->bytes_to_receive;
zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, genfifoentry);
/* Dummy generic FIFO entry */
zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, 0x0);
/* Manual start */
zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
(zynqmp_gqspi_read(xqspi,
GQSPI_CONFIG_OFST) |
GQSPI_CFG_START_GEN_FIFO_MASK));
/* Enable the RX interrupts for IO mode */
zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
GQSPI_IER_GENFIFOEMPTY_MASK |
GQSPI_IER_RXNEMPTY_MASK |
GQSPI_IER_RXEMPTY_MASK);
}
}
/**
* zynqmp_qspi_irq - Interrupt service routine of the QSPI controller
* @irq: IRQ number
* @dev_id: Pointer to the xqspi structure
*
* This function handles TX empty only.
* On TX empty interrupt this function reads the received data from RX FIFO
* and fills the TX FIFO if there is any data remaining to be transferred.
*
* Return: IRQ_HANDLED when interrupt is handled
* IRQ_NONE otherwise.
*/
static irqreturn_t zynqmp_qspi_irq(int irq, void *dev_id)
{
struct zynqmp_qspi *xqspi = (struct zynqmp_qspi *)dev_id;
irqreturn_t ret = IRQ_NONE;
u32 status, mask, dma_status = 0;
status = zynqmp_gqspi_read(xqspi, GQSPI_ISR_OFST);
zynqmp_gqspi_write(xqspi, GQSPI_ISR_OFST, status);
mask = (status & ~(zynqmp_gqspi_read(xqspi, GQSPI_IMASK_OFST)));
/* Read and clear DMA status */
if (xqspi->mode == GQSPI_MODE_DMA) {
dma_status =
zynqmp_gqspi_read(xqspi, GQSPI_QSPIDMA_DST_I_STS_OFST);
zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_I_STS_OFST,
dma_status);
}
if (mask & GQSPI_ISR_TXNOT_FULL_MASK) {
zynqmp_qspi_filltxfifo(xqspi, GQSPI_TX_FIFO_FILL);
ret = IRQ_HANDLED;
}
if (dma_status & GQSPI_QSPIDMA_DST_I_STS_DONE_MASK) {
zynqmp_process_dma_irq(xqspi);
ret = IRQ_HANDLED;
} else if (!(mask & GQSPI_IER_RXEMPTY_MASK) &&
(mask & GQSPI_IER_GENFIFOEMPTY_MASK)) {
zynqmp_qspi_readrxfifo(xqspi, GQSPI_RX_FIFO_FILL);
ret = IRQ_HANDLED;
}
if (xqspi->bytes_to_receive == 0 && xqspi->bytes_to_transfer == 0 &&
((status & GQSPI_IRQ_MASK) == GQSPI_IRQ_MASK)) {
zynqmp_gqspi_write(xqspi, GQSPI_IDR_OFST, GQSPI_ISR_IDR_MASK);
complete(&xqspi->data_completion);
ret = IRQ_HANDLED;
}
return ret;
}
/**
* zynqmp_qspi_setuprxdma - This function sets up the RX DMA operation
* @xqspi: xqspi is a pointer to the GQSPI instance.
*
* Return: 0 on success; error value otherwise.
*/
static int zynqmp_qspi_setuprxdma(struct zynqmp_qspi *xqspi)
{
u32 rx_bytes, rx_rem, config_reg;
dma_addr_t addr;
u64 dma_align = (u64)(uintptr_t)xqspi->rxbuf;
if (xqspi->bytes_to_receive < 8 ||
((dma_align & GQSPI_DMA_UNALIGN) != 0x0)) {
/* Setting to IO mode */
config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
xqspi->mode = GQSPI_MODE_IO;
xqspi->dma_rx_bytes = 0;
return 0;
}
rx_rem = xqspi->bytes_to_receive % 4;
rx_bytes = (xqspi->bytes_to_receive - rx_rem);
addr = dma_map_single(xqspi->dev, (void *)xqspi->rxbuf,
rx_bytes, DMA_FROM_DEVICE);
if (dma_mapping_error(xqspi->dev, addr)) {
dev_err(xqspi->dev, "ERR:rxdma:memory not mapped\n");
return -ENOMEM;
}
xqspi->dma_rx_bytes = rx_bytes;
xqspi->dma_addr = addr;
zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_ADDR_OFST,
(u32)(addr & 0xffffffff));
addr = ((addr >> 16) >> 16);
zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_ADDR_MSB_OFST,
((u32)addr) & 0xfff);
/* Enabling the DMA mode */
config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
config_reg |= GQSPI_CFG_MODE_EN_DMA_MASK;
zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
/* Switch to DMA mode */
xqspi->mode = GQSPI_MODE_DMA;
/* Write the number of bytes to transfer */
zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_SIZE_OFST, rx_bytes);
return 0;
}
/**
* zynqmp_qspi_write_op - This function sets up the GENFIFO entries,
* TX FIFO, and fills the TX FIFO with as many
* bytes as possible.
* @xqspi: Pointer to the GQSPI instance.
* @tx_nbits: Transfer buswidth.
* @genfifoentry: Variable in which GENFIFO mask is returned
* to calling function
*/
static void zynqmp_qspi_write_op(struct zynqmp_qspi *xqspi, u8 tx_nbits,
u32 genfifoentry)
{
u32 config_reg;
zynqmp_qspi_fillgenfifo(xqspi, tx_nbits, genfifoentry);
zynqmp_qspi_filltxfifo(xqspi, GQSPI_TXD_DEPTH);
if (xqspi->mode == GQSPI_MODE_DMA) {
config_reg = zynqmp_gqspi_read(xqspi,
GQSPI_CONFIG_OFST);
config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
config_reg);
xqspi->mode = GQSPI_MODE_IO;
}
}
/**
* zynqmp_qspi_read_op - This function sets up the GENFIFO entries and
* RX DMA operation.
* @xqspi: xqspi is a pointer to the GQSPI instance.
* @rx_nbits: Receive buswidth.
* @genfifoentry: genfifoentry is pointer to the variable in which
* GENFIFO mask is returned to calling function
*
* Return: 0 on success; error value otherwise.
*/
static int zynqmp_qspi_read_op(struct zynqmp_qspi *xqspi, u8 rx_nbits,
u32 genfifoentry)
{
int ret;
ret = zynqmp_qspi_setuprxdma(xqspi);
if (ret)
return ret;
zynqmp_qspi_fillgenfifo(xqspi, rx_nbits, genfifoentry);
return 0;
}
/**
* zynqmp_qspi_suspend - Suspend method for the QSPI driver
* @dev: Address of the platform_device structure
*
* This function stops the QSPI driver queue and disables the QSPI controller
*
* Return: Always 0
*/
static int __maybe_unused zynqmp_qspi_suspend(struct device *dev)
{
struct zynqmp_qspi *xqspi = dev_get_drvdata(dev);
struct spi_controller *ctlr = xqspi->ctlr;
int ret;
ret = spi_controller_suspend(ctlr);
if (ret)
return ret;
zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, 0x0);
return 0;
}
/**
* zynqmp_qspi_resume - Resume method for the QSPI driver
* @dev: Address of the platform_device structure
*
* The function starts the QSPI driver queue and initializes the QSPI
* controller
*
* Return: 0 on success; error value otherwise
*/
static int __maybe_unused zynqmp_qspi_resume(struct device *dev)
{
struct zynqmp_qspi *xqspi = dev_get_drvdata(dev);
struct spi_controller *ctlr = xqspi->ctlr;
zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, GQSPI_EN_MASK);
spi_controller_resume(ctlr);
return 0;
}
/**
* zynqmp_runtime_suspend - Runtime suspend method for the SPI driver
* @dev: Address of the platform_device structure
*
* This function disables the clocks
*
* Return: Always 0
*/
static int __maybe_unused zynqmp_runtime_suspend(struct device *dev)
{
struct zynqmp_qspi *xqspi = dev_get_drvdata(dev);
clk_disable_unprepare(xqspi->refclk);
clk_disable_unprepare(xqspi->pclk);
return 0;
}
/**
* zynqmp_runtime_resume - Runtime resume method for the SPI driver
* @dev: Address of the platform_device structure
*
* This function enables the clocks
*
* Return: 0 on success and error value on error
*/
static int __maybe_unused zynqmp_runtime_resume(struct device *dev)
{
struct zynqmp_qspi *xqspi = dev_get_drvdata(dev);
int ret;
ret = clk_prepare_enable(xqspi->pclk);
if (ret) {
dev_err(dev, "Cannot enable APB clock.\n");
return ret;
}
ret = clk_prepare_enable(xqspi->refclk);
if (ret) {
dev_err(dev, "Cannot enable device clock.\n");
clk_disable_unprepare(xqspi->pclk);
return ret;
}
return 0;
}
/**
* zynqmp_qspi_exec_op() - Initiates the QSPI transfer
* @mem: The SPI memory
* @op: The memory operation to execute
*
* Executes a memory operation.
*
* This function first selects the chip and starts the memory operation.
*
* Return: 0 in case of success, a negative error code otherwise.
*/
static int zynqmp_qspi_exec_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
struct zynqmp_qspi *xqspi = spi_controller_get_devdata
(mem->spi->controller);
int err = 0, i;
u32 genfifoentry = 0;
u16 opcode = op->cmd.opcode;
u64 opaddr;
dev_dbg(xqspi->dev, "cmd:%#x mode:%d.%d.%d.%d\n",
op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth,
op->dummy.buswidth, op->data.buswidth);
mutex_lock(&xqspi->op_lock);
zynqmp_qspi_config_op(xqspi, mem->spi);
zynqmp_qspi_chipselect(mem->spi, false);
genfifoentry |= xqspi->genfifocs;
genfifoentry |= xqspi->genfifobus;
if (op->cmd.opcode) {
reinit_completion(&xqspi->data_completion);
xqspi->txbuf = &opcode;
xqspi->rxbuf = NULL;
xqspi->bytes_to_transfer = op->cmd.nbytes;
xqspi->bytes_to_receive = 0;
zynqmp_qspi_write_op(xqspi, op->cmd.buswidth, genfifoentry);
zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST) |
GQSPI_CFG_START_GEN_FIFO_MASK);
zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
GQSPI_IER_GENFIFOEMPTY_MASK |
GQSPI_IER_TXNOT_FULL_MASK);
if (!wait_for_completion_timeout
(&xqspi->data_completion, msecs_to_jiffies(1000))) {
err = -ETIMEDOUT;
goto return_err;
}
}
if (op->addr.nbytes) {
xqspi->txbuf = &opaddr;
for (i = 0; i < op->addr.nbytes; i++) {
*(((u8 *)xqspi->txbuf) + i) = op->addr.val >>
(8 * (op->addr.nbytes - i - 1));
}
reinit_completion(&xqspi->data_completion);
xqspi->rxbuf = NULL;
xqspi->bytes_to_transfer = op->addr.nbytes;
xqspi->bytes_to_receive = 0;
zynqmp_qspi_write_op(xqspi, op->addr.buswidth, genfifoentry);
zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
zynqmp_gqspi_read(xqspi,
GQSPI_CONFIG_OFST) |
GQSPI_CFG_START_GEN_FIFO_MASK);
zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
GQSPI_IER_TXEMPTY_MASK |
GQSPI_IER_GENFIFOEMPTY_MASK |
GQSPI_IER_TXNOT_FULL_MASK);
if (!wait_for_completion_timeout
(&xqspi->data_completion, msecs_to_jiffies(1000))) {
err = -ETIMEDOUT;
goto return_err;
}
}
if (op->dummy.nbytes) {
xqspi->txbuf = NULL;
xqspi->rxbuf = NULL;
/*
* xqspi->bytes_to_transfer here represents the dummy circles
* which need to be sent.
*/
xqspi->bytes_to_transfer = op->dummy.nbytes * 8 / op->dummy.buswidth;
xqspi->bytes_to_receive = 0;
/*
* Using op->data.buswidth instead of op->dummy.buswidth here because
* we need to use it to configure the correct SPI mode.
*/
zynqmp_qspi_write_op(xqspi, op->data.buswidth,
genfifoentry);
zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST) |
GQSPI_CFG_START_GEN_FIFO_MASK);
}
if (op->data.nbytes) {
reinit_completion(&xqspi->data_completion);
if (op->data.dir == SPI_MEM_DATA_OUT) {
xqspi->txbuf = (u8 *)op->data.buf.out;
xqspi->rxbuf = NULL;
xqspi->bytes_to_transfer = op->data.nbytes;
xqspi->bytes_to_receive = 0;
zynqmp_qspi_write_op(xqspi, op->data.buswidth,
genfifoentry);
zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
zynqmp_gqspi_read
(xqspi, GQSPI_CONFIG_OFST) |
GQSPI_CFG_START_GEN_FIFO_MASK);
zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
GQSPI_IER_TXEMPTY_MASK |
GQSPI_IER_GENFIFOEMPTY_MASK |
GQSPI_IER_TXNOT_FULL_MASK);
} else {
xqspi->txbuf = NULL;
xqspi->rxbuf = (u8 *)op->data.buf.in;
xqspi->bytes_to_receive = op->data.nbytes;
xqspi->bytes_to_transfer = 0;
err = zynqmp_qspi_read_op(xqspi, op->data.buswidth,
genfifoentry);
if (err)
goto return_err;
zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
zynqmp_gqspi_read
(xqspi, GQSPI_CONFIG_OFST) |
GQSPI_CFG_START_GEN_FIFO_MASK);
if (xqspi->mode == GQSPI_MODE_DMA) {
zynqmp_gqspi_write
(xqspi, GQSPI_QSPIDMA_DST_I_EN_OFST,
GQSPI_QSPIDMA_DST_I_EN_DONE_MASK);
} else {
zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
GQSPI_IER_GENFIFOEMPTY_MASK |
GQSPI_IER_RXNEMPTY_MASK |
GQSPI_IER_RXEMPTY_MASK);
}
}
if (!wait_for_completion_timeout
(&xqspi->data_completion, msecs_to_jiffies(1000)))
err = -ETIMEDOUT;
}
return_err:
zynqmp_qspi_chipselect(mem->spi, true);
mutex_unlock(&xqspi->op_lock);
return err;
}
static const struct dev_pm_ops zynqmp_qspi_dev_pm_ops = {
SET_RUNTIME_PM_OPS(zynqmp_runtime_suspend,
zynqmp_runtime_resume, NULL)
SET_SYSTEM_SLEEP_PM_OPS(zynqmp_qspi_suspend, zynqmp_qspi_resume)
};
static const struct qspi_platform_data versal_qspi_def = {
.quirks = QSPI_QUIRK_HAS_TAPDELAY,
};
static const struct of_device_id zynqmp_qspi_of_match[] = {
{ .compatible = "xlnx,zynqmp-qspi-1.0"},
{ .compatible = "xlnx,versal-qspi-1.0", .data = &versal_qspi_def },
{ /* End of table */ }
};
static const struct spi_controller_mem_ops zynqmp_qspi_mem_ops = {
.exec_op = zynqmp_qspi_exec_op,
};
/**
* zynqmp_qspi_probe - Probe method for the QSPI driver
* @pdev: Pointer to the platform_device structure
*
* This function initializes the driver data structures and the hardware.
*
* Return: 0 on success; error value otherwise
*/
static int zynqmp_qspi_probe(struct platform_device *pdev)
{
int ret = 0;
struct spi_controller *ctlr;
struct zynqmp_qspi *xqspi;
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
u32 num_cs;
const struct qspi_platform_data *p_data;
ctlr = spi_alloc_host(&pdev->dev, sizeof(*xqspi));
if (!ctlr)
return -ENOMEM;
xqspi = spi_controller_get_devdata(ctlr);
xqspi->dev = dev;
xqspi->ctlr = ctlr;
platform_set_drvdata(pdev, xqspi);
p_data = of_device_get_match_data(&pdev->dev);
if (p_data && (p_data->quirks & QSPI_QUIRK_HAS_TAPDELAY))
xqspi->has_tapdelay = true;
xqspi->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(xqspi->regs)) {
ret = PTR_ERR(xqspi->regs);
goto remove_ctlr;
}
xqspi->pclk = devm_clk_get(&pdev->dev, "pclk");
if (IS_ERR(xqspi->pclk)) {
dev_err(dev, "pclk clock not found.\n");
ret = PTR_ERR(xqspi->pclk);
goto remove_ctlr;
}
xqspi->refclk = devm_clk_get(&pdev->dev, "ref_clk");
if (IS_ERR(xqspi->refclk)) {
dev_err(dev, "ref_clk clock not found.\n");
ret = PTR_ERR(xqspi->refclk);
goto remove_ctlr;
}
ret = clk_prepare_enable(xqspi->pclk);
if (ret) {
dev_err(dev, "Unable to enable APB clock.\n");
goto remove_ctlr;
}
ret = clk_prepare_enable(xqspi->refclk);
if (ret) {
dev_err(dev, "Unable to enable device clock.\n");
goto clk_dis_pclk;
}
init_completion(&xqspi->data_completion);
mutex_init(&xqspi->op_lock);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
ret = pm_runtime_get_sync(&pdev->dev);
if (ret < 0) {
dev_err(&pdev->dev, "Failed to pm_runtime_get_sync: %d\n", ret);
goto clk_dis_all;
}
ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_RX_DUAL | SPI_RX_QUAD |
SPI_TX_DUAL | SPI_TX_QUAD;
ctlr->max_speed_hz = clk_get_rate(xqspi->refclk) / 2;
xqspi->speed_hz = ctlr->max_speed_hz;
/* QSPI controller initializations */
zynqmp_qspi_init_hw(xqspi);
xqspi->irq = platform_get_irq(pdev, 0);
if (xqspi->irq < 0) {
ret = xqspi->irq;
goto clk_dis_all;
}
ret = devm_request_irq(&pdev->dev, xqspi->irq, zynqmp_qspi_irq,
0, pdev->name, xqspi);
if (ret != 0) {
ret = -ENXIO;
dev_err(dev, "request_irq failed\n");
goto clk_dis_all;
}
ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(44));
if (ret)
goto clk_dis_all;
ret = of_property_read_u32(np, "num-cs", &num_cs);
if (ret < 0) {
ctlr->num_chipselect = GQSPI_DEFAULT_NUM_CS;
} else if (num_cs > GQSPI_MAX_NUM_CS) {
ret = -EINVAL;
dev_err(&pdev->dev, "only %d chip selects are available\n",
GQSPI_MAX_NUM_CS);
goto clk_dis_all;
} else {
ctlr->num_chipselect = num_cs;
}
ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
ctlr->mem_ops = &zynqmp_qspi_mem_ops;
ctlr->setup = zynqmp_qspi_setup_op;
ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
ctlr->dev.of_node = np;
ctlr->auto_runtime_pm = true;
ret = devm_spi_register_controller(&pdev->dev, ctlr);
if (ret) {
dev_err(&pdev->dev, "spi_register_controller failed\n");
goto clk_dis_all;
}
pm_runtime_mark_last_busy(&pdev->dev);
pm_runtime_put_autosuspend(&pdev->dev);
return 0;
clk_dis_all:
pm_runtime_disable(&pdev->dev);
pm_runtime_put_noidle(&pdev->dev);
pm_runtime_set_suspended(&pdev->dev);
clk_disable_unprepare(xqspi->refclk);
clk_dis_pclk:
clk_disable_unprepare(xqspi->pclk);
remove_ctlr:
spi_controller_put(ctlr);
return ret;
}
/**
* zynqmp_qspi_remove - Remove method for the QSPI driver
* @pdev: Pointer to the platform_device structure
*
* This function is called if a device is physically removed from the system or
* if the driver module is being unloaded. It frees all resources allocated to
* the device.
*
* Return: 0 Always
*/
static void zynqmp_qspi_remove(struct platform_device *pdev)
{
struct zynqmp_qspi *xqspi = platform_get_drvdata(pdev);
pm_runtime_get_sync(&pdev->dev);
zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, 0x0);
pm_runtime_disable(&pdev->dev);
pm_runtime_put_noidle(&pdev->dev);
pm_runtime_set_suspended(&pdev->dev);
clk_disable_unprepare(xqspi->refclk);
clk_disable_unprepare(xqspi->pclk);
}
MODULE_DEVICE_TABLE(of, zynqmp_qspi_of_match);
static struct platform_driver zynqmp_qspi_driver = {
.probe = zynqmp_qspi_probe,
.remove_new = zynqmp_qspi_remove,
.driver = {
.name = "zynqmp-qspi",
.of_match_table = zynqmp_qspi_of_match,
.pm = &zynqmp_qspi_dev_pm_ops,
},
};
module_platform_driver(zynqmp_qspi_driver);
MODULE_AUTHOR("Xilinx, Inc.");
MODULE_DESCRIPTION("Xilinx Zynqmp QSPI driver");
MODULE_LICENSE("GPL");