| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Generic Reed Solomon encoder / decoder library |
| * |
| * Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de) |
| * |
| * Reed Solomon code lifted from reed solomon library written by Phil Karn |
| * Copyright 2002 Phil Karn, KA9Q |
| * |
| * Description: |
| * |
| * The generic Reed Solomon library provides runtime configurable |
| * encoding / decoding of RS codes. |
| * |
| * Each user must call init_rs to get a pointer to a rs_control structure |
| * for the given rs parameters. The control struct is unique per instance. |
| * It points to a codec which can be shared by multiple control structures. |
| * If a codec is newly allocated then the polynomial arrays for fast |
| * encoding / decoding are built. This can take some time so make sure not |
| * to call this function from a time critical path. Usually a module / |
| * driver should initialize the necessary rs_control structure on module / |
| * driver init and release it on exit. |
| * |
| * The encoding puts the calculated syndrome into a given syndrome buffer. |
| * |
| * The decoding is a two step process. The first step calculates the |
| * syndrome over the received (data + syndrome) and calls the second stage, |
| * which does the decoding / error correction itself. Many hw encoders |
| * provide a syndrome calculation over the received data + syndrome and can |
| * call the second stage directly. |
| */ |
| #include <linux/errno.h> |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/rslib.h> |
| #include <linux/slab.h> |
| #include <linux/mutex.h> |
| |
| enum { |
| RS_DECODE_LAMBDA, |
| RS_DECODE_SYN, |
| RS_DECODE_B, |
| RS_DECODE_T, |
| RS_DECODE_OMEGA, |
| RS_DECODE_ROOT, |
| RS_DECODE_REG, |
| RS_DECODE_LOC, |
| RS_DECODE_NUM_BUFFERS |
| }; |
| |
| /* This list holds all currently allocated rs codec structures */ |
| static LIST_HEAD(codec_list); |
| /* Protection for the list */ |
| static DEFINE_MUTEX(rslistlock); |
| |
| /** |
| * codec_init - Initialize a Reed-Solomon codec |
| * @symsize: symbol size, bits (1-8) |
| * @gfpoly: Field generator polynomial coefficients |
| * @gffunc: Field generator function |
| * @fcr: first root of RS code generator polynomial, index form |
| * @prim: primitive element to generate polynomial roots |
| * @nroots: RS code generator polynomial degree (number of roots) |
| * @gfp: GFP_ flags for allocations |
| * |
| * Allocate a codec structure and the polynom arrays for faster |
| * en/decoding. Fill the arrays according to the given parameters. |
| */ |
| static struct rs_codec *codec_init(int symsize, int gfpoly, int (*gffunc)(int), |
| int fcr, int prim, int nroots, gfp_t gfp) |
| { |
| int i, j, sr, root, iprim; |
| struct rs_codec *rs; |
| |
| rs = kzalloc(sizeof(*rs), gfp); |
| if (!rs) |
| return NULL; |
| |
| INIT_LIST_HEAD(&rs->list); |
| |
| rs->mm = symsize; |
| rs->nn = (1 << symsize) - 1; |
| rs->fcr = fcr; |
| rs->prim = prim; |
| rs->nroots = nroots; |
| rs->gfpoly = gfpoly; |
| rs->gffunc = gffunc; |
| |
| /* Allocate the arrays */ |
| rs->alpha_to = kmalloc_array(rs->nn + 1, sizeof(uint16_t), gfp); |
| if (rs->alpha_to == NULL) |
| goto err; |
| |
| rs->index_of = kmalloc_array(rs->nn + 1, sizeof(uint16_t), gfp); |
| if (rs->index_of == NULL) |
| goto err; |
| |
| rs->genpoly = kmalloc_array(rs->nroots + 1, sizeof(uint16_t), gfp); |
| if(rs->genpoly == NULL) |
| goto err; |
| |
| /* Generate Galois field lookup tables */ |
| rs->index_of[0] = rs->nn; /* log(zero) = -inf */ |
| rs->alpha_to[rs->nn] = 0; /* alpha**-inf = 0 */ |
| if (gfpoly) { |
| sr = 1; |
| for (i = 0; i < rs->nn; i++) { |
| rs->index_of[sr] = i; |
| rs->alpha_to[i] = sr; |
| sr <<= 1; |
| if (sr & (1 << symsize)) |
| sr ^= gfpoly; |
| sr &= rs->nn; |
| } |
| } else { |
| sr = gffunc(0); |
| for (i = 0; i < rs->nn; i++) { |
| rs->index_of[sr] = i; |
| rs->alpha_to[i] = sr; |
| sr = gffunc(sr); |
| } |
| } |
| /* If it's not primitive, exit */ |
| if(sr != rs->alpha_to[0]) |
| goto err; |
| |
| /* Find prim-th root of 1, used in decoding */ |
| for(iprim = 1; (iprim % prim) != 0; iprim += rs->nn); |
| /* prim-th root of 1, index form */ |
| rs->iprim = iprim / prim; |
| |
| /* Form RS code generator polynomial from its roots */ |
| rs->genpoly[0] = 1; |
| for (i = 0, root = fcr * prim; i < nroots; i++, root += prim) { |
| rs->genpoly[i + 1] = 1; |
| /* Multiply rs->genpoly[] by @**(root + x) */ |
| for (j = i; j > 0; j--) { |
| if (rs->genpoly[j] != 0) { |
| rs->genpoly[j] = rs->genpoly[j -1] ^ |
| rs->alpha_to[rs_modnn(rs, |
| rs->index_of[rs->genpoly[j]] + root)]; |
| } else |
| rs->genpoly[j] = rs->genpoly[j - 1]; |
| } |
| /* rs->genpoly[0] can never be zero */ |
| rs->genpoly[0] = |
| rs->alpha_to[rs_modnn(rs, |
| rs->index_of[rs->genpoly[0]] + root)]; |
| } |
| /* convert rs->genpoly[] to index form for quicker encoding */ |
| for (i = 0; i <= nroots; i++) |
| rs->genpoly[i] = rs->index_of[rs->genpoly[i]]; |
| |
| rs->users = 1; |
| list_add(&rs->list, &codec_list); |
| return rs; |
| |
| err: |
| kfree(rs->genpoly); |
| kfree(rs->index_of); |
| kfree(rs->alpha_to); |
| kfree(rs); |
| return NULL; |
| } |
| |
| |
| /** |
| * free_rs - Free the rs control structure |
| * @rs: The control structure which is not longer used by the |
| * caller |
| * |
| * Free the control structure. If @rs is the last user of the associated |
| * codec, free the codec as well. |
| */ |
| void free_rs(struct rs_control *rs) |
| { |
| struct rs_codec *cd; |
| |
| if (!rs) |
| return; |
| |
| cd = rs->codec; |
| mutex_lock(&rslistlock); |
| cd->users--; |
| if(!cd->users) { |
| list_del(&cd->list); |
| kfree(cd->alpha_to); |
| kfree(cd->index_of); |
| kfree(cd->genpoly); |
| kfree(cd); |
| } |
| mutex_unlock(&rslistlock); |
| kfree(rs); |
| } |
| EXPORT_SYMBOL_GPL(free_rs); |
| |
| /** |
| * init_rs_internal - Allocate rs control, find a matching codec or allocate a new one |
| * @symsize: the symbol size (number of bits) |
| * @gfpoly: the extended Galois field generator polynomial coefficients, |
| * with the 0th coefficient in the low order bit. The polynomial |
| * must be primitive; |
| * @gffunc: pointer to function to generate the next field element, |
| * or the multiplicative identity element if given 0. Used |
| * instead of gfpoly if gfpoly is 0 |
| * @fcr: the first consecutive root of the rs code generator polynomial |
| * in index form |
| * @prim: primitive element to generate polynomial roots |
| * @nroots: RS code generator polynomial degree (number of roots) |
| * @gfp: GFP_ flags for allocations |
| */ |
| static struct rs_control *init_rs_internal(int symsize, int gfpoly, |
| int (*gffunc)(int), int fcr, |
| int prim, int nroots, gfp_t gfp) |
| { |
| struct list_head *tmp; |
| struct rs_control *rs; |
| unsigned int bsize; |
| |
| /* Sanity checks */ |
| if (symsize < 1) |
| return NULL; |
| if (fcr < 0 || fcr >= (1<<symsize)) |
| return NULL; |
| if (prim <= 0 || prim >= (1<<symsize)) |
| return NULL; |
| if (nroots < 0 || nroots >= (1<<symsize)) |
| return NULL; |
| |
| /* |
| * The decoder needs buffers in each control struct instance to |
| * avoid variable size or large fixed size allocations on |
| * stack. Size the buffers to arrays of [nroots + 1]. |
| */ |
| bsize = sizeof(uint16_t) * RS_DECODE_NUM_BUFFERS * (nroots + 1); |
| rs = kzalloc(sizeof(*rs) + bsize, gfp); |
| if (!rs) |
| return NULL; |
| |
| mutex_lock(&rslistlock); |
| |
| /* Walk through the list and look for a matching entry */ |
| list_for_each(tmp, &codec_list) { |
| struct rs_codec *cd = list_entry(tmp, struct rs_codec, list); |
| |
| if (symsize != cd->mm) |
| continue; |
| if (gfpoly != cd->gfpoly) |
| continue; |
| if (gffunc != cd->gffunc) |
| continue; |
| if (fcr != cd->fcr) |
| continue; |
| if (prim != cd->prim) |
| continue; |
| if (nroots != cd->nroots) |
| continue; |
| /* We have a matching one already */ |
| cd->users++; |
| rs->codec = cd; |
| goto out; |
| } |
| |
| /* Create a new one */ |
| rs->codec = codec_init(symsize, gfpoly, gffunc, fcr, prim, nroots, gfp); |
| if (!rs->codec) { |
| kfree(rs); |
| rs = NULL; |
| } |
| out: |
| mutex_unlock(&rslistlock); |
| return rs; |
| } |
| |
| /** |
| * init_rs_gfp - Create a RS control struct and initialize it |
| * @symsize: the symbol size (number of bits) |
| * @gfpoly: the extended Galois field generator polynomial coefficients, |
| * with the 0th coefficient in the low order bit. The polynomial |
| * must be primitive; |
| * @fcr: the first consecutive root of the rs code generator polynomial |
| * in index form |
| * @prim: primitive element to generate polynomial roots |
| * @nroots: RS code generator polynomial degree (number of roots) |
| * @gfp: Memory allocation flags. |
| */ |
| struct rs_control *init_rs_gfp(int symsize, int gfpoly, int fcr, int prim, |
| int nroots, gfp_t gfp) |
| { |
| return init_rs_internal(symsize, gfpoly, NULL, fcr, prim, nroots, gfp); |
| } |
| EXPORT_SYMBOL_GPL(init_rs_gfp); |
| |
| /** |
| * init_rs_non_canonical - Allocate rs control struct for fields with |
| * non-canonical representation |
| * @symsize: the symbol size (number of bits) |
| * @gffunc: pointer to function to generate the next field element, |
| * or the multiplicative identity element if given 0. Used |
| * instead of gfpoly if gfpoly is 0 |
| * @fcr: the first consecutive root of the rs code generator polynomial |
| * in index form |
| * @prim: primitive element to generate polynomial roots |
| * @nroots: RS code generator polynomial degree (number of roots) |
| */ |
| struct rs_control *init_rs_non_canonical(int symsize, int (*gffunc)(int), |
| int fcr, int prim, int nroots) |
| { |
| return init_rs_internal(symsize, 0, gffunc, fcr, prim, nroots, |
| GFP_KERNEL); |
| } |
| EXPORT_SYMBOL_GPL(init_rs_non_canonical); |
| |
| #ifdef CONFIG_REED_SOLOMON_ENC8 |
| /** |
| * encode_rs8 - Calculate the parity for data values (8bit data width) |
| * @rsc: the rs control structure |
| * @data: data field of a given type |
| * @len: data length |
| * @par: parity data, must be initialized by caller (usually all 0) |
| * @invmsk: invert data mask (will be xored on data) |
| * |
| * The parity uses a uint16_t data type to enable |
| * symbol size > 8. The calling code must take care of encoding of the |
| * syndrome result for storage itself. |
| */ |
| int encode_rs8(struct rs_control *rsc, uint8_t *data, int len, uint16_t *par, |
| uint16_t invmsk) |
| { |
| #include "encode_rs.c" |
| } |
| EXPORT_SYMBOL_GPL(encode_rs8); |
| #endif |
| |
| #ifdef CONFIG_REED_SOLOMON_DEC8 |
| /** |
| * decode_rs8 - Decode codeword (8bit data width) |
| * @rsc: the rs control structure |
| * @data: data field of a given type |
| * @par: received parity data field |
| * @len: data length |
| * @s: syndrome data field, must be in index form |
| * (if NULL, syndrome is calculated) |
| * @no_eras: number of erasures |
| * @eras_pos: position of erasures, can be NULL |
| * @invmsk: invert data mask (will be xored on data, not on parity!) |
| * @corr: buffer to store correction bitmask on eras_pos |
| * |
| * The syndrome and parity uses a uint16_t data type to enable |
| * symbol size > 8. The calling code must take care of decoding of the |
| * syndrome result and the received parity before calling this code. |
| * |
| * Note: The rs_control struct @rsc contains buffers which are used for |
| * decoding, so the caller has to ensure that decoder invocations are |
| * serialized. |
| * |
| * Returns the number of corrected symbols or -EBADMSG for uncorrectable |
| * errors. The count includes errors in the parity. |
| */ |
| int decode_rs8(struct rs_control *rsc, uint8_t *data, uint16_t *par, int len, |
| uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk, |
| uint16_t *corr) |
| { |
| #include "decode_rs.c" |
| } |
| EXPORT_SYMBOL_GPL(decode_rs8); |
| #endif |
| |
| #ifdef CONFIG_REED_SOLOMON_ENC16 |
| /** |
| * encode_rs16 - Calculate the parity for data values (16bit data width) |
| * @rsc: the rs control structure |
| * @data: data field of a given type |
| * @len: data length |
| * @par: parity data, must be initialized by caller (usually all 0) |
| * @invmsk: invert data mask (will be xored on data, not on parity!) |
| * |
| * Each field in the data array contains up to symbol size bits of valid data. |
| */ |
| int encode_rs16(struct rs_control *rsc, uint16_t *data, int len, uint16_t *par, |
| uint16_t invmsk) |
| { |
| #include "encode_rs.c" |
| } |
| EXPORT_SYMBOL_GPL(encode_rs16); |
| #endif |
| |
| #ifdef CONFIG_REED_SOLOMON_DEC16 |
| /** |
| * decode_rs16 - Decode codeword (16bit data width) |
| * @rsc: the rs control structure |
| * @data: data field of a given type |
| * @par: received parity data field |
| * @len: data length |
| * @s: syndrome data field, must be in index form |
| * (if NULL, syndrome is calculated) |
| * @no_eras: number of erasures |
| * @eras_pos: position of erasures, can be NULL |
| * @invmsk: invert data mask (will be xored on data, not on parity!) |
| * @corr: buffer to store correction bitmask on eras_pos |
| * |
| * Each field in the data array contains up to symbol size bits of valid data. |
| * |
| * Note: The rc_control struct @rsc contains buffers which are used for |
| * decoding, so the caller has to ensure that decoder invocations are |
| * serialized. |
| * |
| * Returns the number of corrected symbols or -EBADMSG for uncorrectable |
| * errors. The count includes errors in the parity. |
| */ |
| int decode_rs16(struct rs_control *rsc, uint16_t *data, uint16_t *par, int len, |
| uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk, |
| uint16_t *corr) |
| { |
| #include "decode_rs.c" |
| } |
| EXPORT_SYMBOL_GPL(decode_rs16); |
| #endif |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_DESCRIPTION("Reed Solomon encoder/decoder"); |
| MODULE_AUTHOR("Phil Karn, Thomas Gleixner"); |
| |