| /* |
| * Page table handling routines for radix page table. |
| * |
| * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #define pr_fmt(fmt) "radix-mmu: " fmt |
| |
| #include <linux/kernel.h> |
| #include <linux/sched/mm.h> |
| #include <linux/memblock.h> |
| #include <linux/of_fdt.h> |
| #include <linux/mm.h> |
| #include <linux/string_helpers.h> |
| #include <linux/stop_machine.h> |
| |
| #include <asm/pgtable.h> |
| #include <asm/pgalloc.h> |
| #include <asm/mmu_context.h> |
| #include <asm/dma.h> |
| #include <asm/machdep.h> |
| #include <asm/mmu.h> |
| #include <asm/firmware.h> |
| #include <asm/powernv.h> |
| #include <asm/sections.h> |
| #include <asm/trace.h> |
| |
| #include <trace/events/thp.h> |
| |
| unsigned int mmu_pid_bits; |
| unsigned int mmu_base_pid; |
| |
| static int native_register_process_table(unsigned long base, unsigned long pg_sz, |
| unsigned long table_size) |
| { |
| unsigned long patb0, patb1; |
| |
| patb0 = be64_to_cpu(partition_tb[0].patb0); |
| patb1 = base | table_size | PATB_GR; |
| |
| mmu_partition_table_set_entry(0, patb0, patb1); |
| |
| return 0; |
| } |
| |
| static __ref void *early_alloc_pgtable(unsigned long size, int nid, |
| unsigned long region_start, unsigned long region_end) |
| { |
| unsigned long pa = 0; |
| void *pt; |
| |
| if (region_start || region_end) /* has region hint */ |
| pa = memblock_alloc_range(size, size, region_start, region_end, |
| MEMBLOCK_NONE); |
| else if (nid != -1) /* has node hint */ |
| pa = memblock_alloc_base_nid(size, size, |
| MEMBLOCK_ALLOC_ANYWHERE, |
| nid, MEMBLOCK_NONE); |
| |
| if (!pa) |
| pa = memblock_alloc_base(size, size, MEMBLOCK_ALLOC_ANYWHERE); |
| |
| BUG_ON(!pa); |
| |
| pt = __va(pa); |
| memset(pt, 0, size); |
| |
| return pt; |
| } |
| |
| static int early_map_kernel_page(unsigned long ea, unsigned long pa, |
| pgprot_t flags, |
| unsigned int map_page_size, |
| int nid, |
| unsigned long region_start, unsigned long region_end) |
| { |
| unsigned long pfn = pa >> PAGE_SHIFT; |
| pgd_t *pgdp; |
| pud_t *pudp; |
| pmd_t *pmdp; |
| pte_t *ptep; |
| |
| pgdp = pgd_offset_k(ea); |
| if (pgd_none(*pgdp)) { |
| pudp = early_alloc_pgtable(PUD_TABLE_SIZE, nid, |
| region_start, region_end); |
| pgd_populate(&init_mm, pgdp, pudp); |
| } |
| pudp = pud_offset(pgdp, ea); |
| if (map_page_size == PUD_SIZE) { |
| ptep = (pte_t *)pudp; |
| goto set_the_pte; |
| } |
| if (pud_none(*pudp)) { |
| pmdp = early_alloc_pgtable(PMD_TABLE_SIZE, nid, |
| region_start, region_end); |
| pud_populate(&init_mm, pudp, pmdp); |
| } |
| pmdp = pmd_offset(pudp, ea); |
| if (map_page_size == PMD_SIZE) { |
| ptep = pmdp_ptep(pmdp); |
| goto set_the_pte; |
| } |
| if (!pmd_present(*pmdp)) { |
| ptep = early_alloc_pgtable(PAGE_SIZE, nid, |
| region_start, region_end); |
| pmd_populate_kernel(&init_mm, pmdp, ptep); |
| } |
| ptep = pte_offset_kernel(pmdp, ea); |
| |
| set_the_pte: |
| set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags)); |
| smp_wmb(); |
| return 0; |
| } |
| |
| /* |
| * nid, region_start, and region_end are hints to try to place the page |
| * table memory in the same node or region. |
| */ |
| static int __map_kernel_page(unsigned long ea, unsigned long pa, |
| pgprot_t flags, |
| unsigned int map_page_size, |
| int nid, |
| unsigned long region_start, unsigned long region_end) |
| { |
| unsigned long pfn = pa >> PAGE_SHIFT; |
| pgd_t *pgdp; |
| pud_t *pudp; |
| pmd_t *pmdp; |
| pte_t *ptep; |
| /* |
| * Make sure task size is correct as per the max adddr |
| */ |
| BUILD_BUG_ON(TASK_SIZE_USER64 > RADIX_PGTABLE_RANGE); |
| |
| if (unlikely(!slab_is_available())) |
| return early_map_kernel_page(ea, pa, flags, map_page_size, |
| nid, region_start, region_end); |
| |
| /* |
| * Should make page table allocation functions be able to take a |
| * node, so we can place kernel page tables on the right nodes after |
| * boot. |
| */ |
| pgdp = pgd_offset_k(ea); |
| pudp = pud_alloc(&init_mm, pgdp, ea); |
| if (!pudp) |
| return -ENOMEM; |
| if (map_page_size == PUD_SIZE) { |
| ptep = (pte_t *)pudp; |
| goto set_the_pte; |
| } |
| pmdp = pmd_alloc(&init_mm, pudp, ea); |
| if (!pmdp) |
| return -ENOMEM; |
| if (map_page_size == PMD_SIZE) { |
| ptep = pmdp_ptep(pmdp); |
| goto set_the_pte; |
| } |
| ptep = pte_alloc_kernel(pmdp, ea); |
| if (!ptep) |
| return -ENOMEM; |
| |
| set_the_pte: |
| set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags)); |
| smp_wmb(); |
| return 0; |
| } |
| |
| int radix__map_kernel_page(unsigned long ea, unsigned long pa, |
| pgprot_t flags, |
| unsigned int map_page_size) |
| { |
| return __map_kernel_page(ea, pa, flags, map_page_size, -1, 0, 0); |
| } |
| |
| #ifdef CONFIG_STRICT_KERNEL_RWX |
| void radix__change_memory_range(unsigned long start, unsigned long end, |
| unsigned long clear) |
| { |
| unsigned long idx; |
| pgd_t *pgdp; |
| pud_t *pudp; |
| pmd_t *pmdp; |
| pte_t *ptep; |
| |
| start = ALIGN_DOWN(start, PAGE_SIZE); |
| end = PAGE_ALIGN(end); // aligns up |
| |
| pr_debug("Changing flags on range %lx-%lx removing 0x%lx\n", |
| start, end, clear); |
| |
| for (idx = start; idx < end; idx += PAGE_SIZE) { |
| pgdp = pgd_offset_k(idx); |
| pudp = pud_alloc(&init_mm, pgdp, idx); |
| if (!pudp) |
| continue; |
| if (pud_huge(*pudp)) { |
| ptep = (pte_t *)pudp; |
| goto update_the_pte; |
| } |
| pmdp = pmd_alloc(&init_mm, pudp, idx); |
| if (!pmdp) |
| continue; |
| if (pmd_huge(*pmdp)) { |
| ptep = pmdp_ptep(pmdp); |
| goto update_the_pte; |
| } |
| ptep = pte_alloc_kernel(pmdp, idx); |
| if (!ptep) |
| continue; |
| update_the_pte: |
| radix__pte_update(&init_mm, idx, ptep, clear, 0, 0); |
| } |
| |
| radix__flush_tlb_kernel_range(start, end); |
| } |
| |
| void radix__mark_rodata_ro(void) |
| { |
| unsigned long start, end; |
| |
| start = (unsigned long)_stext; |
| end = (unsigned long)__init_begin; |
| |
| radix__change_memory_range(start, end, _PAGE_WRITE); |
| } |
| |
| void radix__mark_initmem_nx(void) |
| { |
| unsigned long start = (unsigned long)__init_begin; |
| unsigned long end = (unsigned long)__init_end; |
| |
| radix__change_memory_range(start, end, _PAGE_EXEC); |
| } |
| #endif /* CONFIG_STRICT_KERNEL_RWX */ |
| |
| static inline void __meminit |
| print_mapping(unsigned long start, unsigned long end, unsigned long size, bool exec) |
| { |
| char buf[10]; |
| |
| if (end <= start) |
| return; |
| |
| string_get_size(size, 1, STRING_UNITS_2, buf, sizeof(buf)); |
| |
| pr_info("Mapped 0x%016lx-0x%016lx with %s pages%s\n", start, end, buf, |
| exec ? " (exec)" : ""); |
| } |
| |
| static unsigned long next_boundary(unsigned long addr, unsigned long end) |
| { |
| #ifdef CONFIG_STRICT_KERNEL_RWX |
| if (addr < __pa_symbol(__init_begin)) |
| return __pa_symbol(__init_begin); |
| #endif |
| return end; |
| } |
| |
| static int __meminit create_physical_mapping(unsigned long start, |
| unsigned long end, |
| int nid) |
| { |
| unsigned long vaddr, addr, mapping_size = 0; |
| bool prev_exec, exec = false; |
| pgprot_t prot; |
| int psize; |
| |
| start = _ALIGN_UP(start, PAGE_SIZE); |
| for (addr = start; addr < end; addr += mapping_size) { |
| unsigned long gap, previous_size; |
| int rc; |
| |
| gap = next_boundary(addr, end) - addr; |
| previous_size = mapping_size; |
| prev_exec = exec; |
| |
| if (IS_ALIGNED(addr, PUD_SIZE) && gap >= PUD_SIZE && |
| mmu_psize_defs[MMU_PAGE_1G].shift) { |
| mapping_size = PUD_SIZE; |
| psize = MMU_PAGE_1G; |
| } else if (IS_ALIGNED(addr, PMD_SIZE) && gap >= PMD_SIZE && |
| mmu_psize_defs[MMU_PAGE_2M].shift) { |
| mapping_size = PMD_SIZE; |
| psize = MMU_PAGE_2M; |
| } else { |
| mapping_size = PAGE_SIZE; |
| psize = mmu_virtual_psize; |
| } |
| |
| vaddr = (unsigned long)__va(addr); |
| |
| if (overlaps_kernel_text(vaddr, vaddr + mapping_size) || |
| overlaps_interrupt_vector_text(vaddr, vaddr + mapping_size)) { |
| prot = PAGE_KERNEL_X; |
| exec = true; |
| } else { |
| prot = PAGE_KERNEL; |
| exec = false; |
| } |
| |
| if (mapping_size != previous_size || exec != prev_exec) { |
| print_mapping(start, addr, previous_size, prev_exec); |
| start = addr; |
| } |
| |
| rc = __map_kernel_page(vaddr, addr, prot, mapping_size, nid, start, end); |
| if (rc) |
| return rc; |
| |
| update_page_count(psize, 1); |
| } |
| |
| print_mapping(start, addr, mapping_size, exec); |
| return 0; |
| } |
| |
| void __init radix_init_pgtable(void) |
| { |
| unsigned long rts_field; |
| struct memblock_region *reg; |
| |
| /* We don't support slb for radix */ |
| mmu_slb_size = 0; |
| /* |
| * Create the linear mapping, using standard page size for now |
| */ |
| for_each_memblock(memory, reg) { |
| /* |
| * The memblock allocator is up at this point, so the |
| * page tables will be allocated within the range. No |
| * need or a node (which we don't have yet). |
| */ |
| WARN_ON(create_physical_mapping(reg->base, |
| reg->base + reg->size, |
| -1)); |
| } |
| |
| /* Find out how many PID bits are supported */ |
| if (cpu_has_feature(CPU_FTR_HVMODE)) { |
| if (!mmu_pid_bits) |
| mmu_pid_bits = 20; |
| #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE |
| /* |
| * When KVM is possible, we only use the top half of the |
| * PID space to avoid collisions between host and guest PIDs |
| * which can cause problems due to prefetch when exiting the |
| * guest with AIL=3 |
| */ |
| mmu_base_pid = 1 << (mmu_pid_bits - 1); |
| #else |
| mmu_base_pid = 1; |
| #endif |
| } else { |
| /* The guest uses the bottom half of the PID space */ |
| if (!mmu_pid_bits) |
| mmu_pid_bits = 19; |
| mmu_base_pid = 1; |
| } |
| |
| /* |
| * Allocate Partition table and process table for the |
| * host. |
| */ |
| BUG_ON(PRTB_SIZE_SHIFT > 36); |
| process_tb = early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT, -1, 0, 0); |
| /* |
| * Fill in the process table. |
| */ |
| rts_field = radix__get_tree_size(); |
| process_tb->prtb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE); |
| /* |
| * Fill in the partition table. We are suppose to use effective address |
| * of process table here. But our linear mapping also enable us to use |
| * physical address here. |
| */ |
| register_process_table(__pa(process_tb), 0, PRTB_SIZE_SHIFT - 12); |
| pr_info("Process table %p and radix root for kernel: %p\n", process_tb, init_mm.pgd); |
| asm volatile("ptesync" : : : "memory"); |
| asm volatile(PPC_TLBIE_5(%0,%1,2,1,1) : : |
| "r" (TLBIEL_INVAL_SET_LPID), "r" (0)); |
| asm volatile("eieio; tlbsync; ptesync" : : : "memory"); |
| trace_tlbie(0, 0, TLBIEL_INVAL_SET_LPID, 0, 2, 1, 1); |
| |
| /* |
| * The init_mm context is given the first available (non-zero) PID, |
| * which is the "guard PID" and contains no page table. PIDR should |
| * never be set to zero because that duplicates the kernel address |
| * space at the 0x0... offset (quadrant 0)! |
| * |
| * An arbitrary PID that may later be allocated by the PID allocator |
| * for userspace processes must not be used either, because that |
| * would cause stale user mappings for that PID on CPUs outside of |
| * the TLB invalidation scheme (because it won't be in mm_cpumask). |
| * |
| * So permanently carve out one PID for the purpose of a guard PID. |
| */ |
| init_mm.context.id = mmu_base_pid; |
| mmu_base_pid++; |
| } |
| |
| static void __init radix_init_partition_table(void) |
| { |
| unsigned long rts_field, dw0; |
| |
| mmu_partition_table_init(); |
| rts_field = radix__get_tree_size(); |
| dw0 = rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE | PATB_HR; |
| mmu_partition_table_set_entry(0, dw0, 0); |
| |
| pr_info("Initializing Radix MMU\n"); |
| pr_info("Partition table %p\n", partition_tb); |
| } |
| |
| void __init radix_init_native(void) |
| { |
| register_process_table = native_register_process_table; |
| } |
| |
| static int __init get_idx_from_shift(unsigned int shift) |
| { |
| int idx = -1; |
| |
| switch (shift) { |
| case 0xc: |
| idx = MMU_PAGE_4K; |
| break; |
| case 0x10: |
| idx = MMU_PAGE_64K; |
| break; |
| case 0x15: |
| idx = MMU_PAGE_2M; |
| break; |
| case 0x1e: |
| idx = MMU_PAGE_1G; |
| break; |
| } |
| return idx; |
| } |
| |
| static int __init radix_dt_scan_page_sizes(unsigned long node, |
| const char *uname, int depth, |
| void *data) |
| { |
| int size = 0; |
| int shift, idx; |
| unsigned int ap; |
| const __be32 *prop; |
| const char *type = of_get_flat_dt_prop(node, "device_type", NULL); |
| |
| /* We are scanning "cpu" nodes only */ |
| if (type == NULL || strcmp(type, "cpu") != 0) |
| return 0; |
| |
| /* Find MMU PID size */ |
| prop = of_get_flat_dt_prop(node, "ibm,mmu-pid-bits", &size); |
| if (prop && size == 4) |
| mmu_pid_bits = be32_to_cpup(prop); |
| |
| /* Grab page size encodings */ |
| prop = of_get_flat_dt_prop(node, "ibm,processor-radix-AP-encodings", &size); |
| if (!prop) |
| return 0; |
| |
| pr_info("Page sizes from device-tree:\n"); |
| for (; size >= 4; size -= 4, ++prop) { |
| |
| struct mmu_psize_def *def; |
| |
| /* top 3 bit is AP encoding */ |
| shift = be32_to_cpu(prop[0]) & ~(0xe << 28); |
| ap = be32_to_cpu(prop[0]) >> 29; |
| pr_info("Page size shift = %d AP=0x%x\n", shift, ap); |
| |
| idx = get_idx_from_shift(shift); |
| if (idx < 0) |
| continue; |
| |
| def = &mmu_psize_defs[idx]; |
| def->shift = shift; |
| def->ap = ap; |
| } |
| |
| /* needed ? */ |
| cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B; |
| return 1; |
| } |
| |
| void __init radix__early_init_devtree(void) |
| { |
| int rc; |
| |
| /* |
| * Try to find the available page sizes in the device-tree |
| */ |
| rc = of_scan_flat_dt(radix_dt_scan_page_sizes, NULL); |
| if (rc != 0) /* Found */ |
| goto found; |
| /* |
| * let's assume we have page 4k and 64k support |
| */ |
| mmu_psize_defs[MMU_PAGE_4K].shift = 12; |
| mmu_psize_defs[MMU_PAGE_4K].ap = 0x0; |
| |
| mmu_psize_defs[MMU_PAGE_64K].shift = 16; |
| mmu_psize_defs[MMU_PAGE_64K].ap = 0x5; |
| found: |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| if (mmu_psize_defs[MMU_PAGE_2M].shift) { |
| /* |
| * map vmemmap using 2M if available |
| */ |
| mmu_vmemmap_psize = MMU_PAGE_2M; |
| } |
| #endif /* CONFIG_SPARSEMEM_VMEMMAP */ |
| return; |
| } |
| |
| static void radix_init_amor(void) |
| { |
| /* |
| * In HV mode, we init AMOR (Authority Mask Override Register) so that |
| * the hypervisor and guest can setup IAMR (Instruction Authority Mask |
| * Register), enable key 0 and set it to 1. |
| * |
| * AMOR = 0b1100 .... 0000 (Mask for key 0 is 11) |
| */ |
| mtspr(SPRN_AMOR, (3ul << 62)); |
| } |
| |
| static void radix_init_iamr(void) |
| { |
| /* |
| * Radix always uses key0 of the IAMR to determine if an access is |
| * allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction |
| * fetch. |
| */ |
| mtspr(SPRN_IAMR, (1ul << 62)); |
| } |
| |
| void __init radix__early_init_mmu(void) |
| { |
| unsigned long lpcr; |
| |
| #ifdef CONFIG_PPC_64K_PAGES |
| /* PAGE_SIZE mappings */ |
| mmu_virtual_psize = MMU_PAGE_64K; |
| #else |
| mmu_virtual_psize = MMU_PAGE_4K; |
| #endif |
| |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| /* vmemmap mapping */ |
| mmu_vmemmap_psize = mmu_virtual_psize; |
| #endif |
| /* |
| * initialize page table size |
| */ |
| __pte_index_size = RADIX_PTE_INDEX_SIZE; |
| __pmd_index_size = RADIX_PMD_INDEX_SIZE; |
| __pud_index_size = RADIX_PUD_INDEX_SIZE; |
| __pgd_index_size = RADIX_PGD_INDEX_SIZE; |
| __pud_cache_index = RADIX_PUD_INDEX_SIZE; |
| __pte_table_size = RADIX_PTE_TABLE_SIZE; |
| __pmd_table_size = RADIX_PMD_TABLE_SIZE; |
| __pud_table_size = RADIX_PUD_TABLE_SIZE; |
| __pgd_table_size = RADIX_PGD_TABLE_SIZE; |
| |
| __pmd_val_bits = RADIX_PMD_VAL_BITS; |
| __pud_val_bits = RADIX_PUD_VAL_BITS; |
| __pgd_val_bits = RADIX_PGD_VAL_BITS; |
| |
| __kernel_virt_start = RADIX_KERN_VIRT_START; |
| __kernel_virt_size = RADIX_KERN_VIRT_SIZE; |
| __vmalloc_start = RADIX_VMALLOC_START; |
| __vmalloc_end = RADIX_VMALLOC_END; |
| __kernel_io_start = RADIX_KERN_IO_START; |
| vmemmap = (struct page *)RADIX_VMEMMAP_BASE; |
| ioremap_bot = IOREMAP_BASE; |
| |
| #ifdef CONFIG_PCI |
| pci_io_base = ISA_IO_BASE; |
| #endif |
| __pte_frag_nr = RADIX_PTE_FRAG_NR; |
| __pte_frag_size_shift = RADIX_PTE_FRAG_SIZE_SHIFT; |
| __pmd_frag_nr = RADIX_PMD_FRAG_NR; |
| __pmd_frag_size_shift = RADIX_PMD_FRAG_SIZE_SHIFT; |
| |
| if (!firmware_has_feature(FW_FEATURE_LPAR)) { |
| radix_init_native(); |
| lpcr = mfspr(SPRN_LPCR); |
| mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR); |
| radix_init_partition_table(); |
| radix_init_amor(); |
| } else { |
| radix_init_pseries(); |
| } |
| |
| memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE); |
| |
| radix_init_iamr(); |
| radix_init_pgtable(); |
| /* Switch to the guard PID before turning on MMU */ |
| radix__switch_mmu_context(NULL, &init_mm); |
| if (cpu_has_feature(CPU_FTR_HVMODE)) |
| tlbiel_all(); |
| } |
| |
| void radix__early_init_mmu_secondary(void) |
| { |
| unsigned long lpcr; |
| /* |
| * update partition table control register and UPRT |
| */ |
| if (!firmware_has_feature(FW_FEATURE_LPAR)) { |
| lpcr = mfspr(SPRN_LPCR); |
| mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR); |
| |
| mtspr(SPRN_PTCR, |
| __pa(partition_tb) | (PATB_SIZE_SHIFT - 12)); |
| radix_init_amor(); |
| } |
| radix_init_iamr(); |
| |
| radix__switch_mmu_context(NULL, &init_mm); |
| if (cpu_has_feature(CPU_FTR_HVMODE)) |
| tlbiel_all(); |
| } |
| |
| void radix__mmu_cleanup_all(void) |
| { |
| unsigned long lpcr; |
| |
| if (!firmware_has_feature(FW_FEATURE_LPAR)) { |
| lpcr = mfspr(SPRN_LPCR); |
| mtspr(SPRN_LPCR, lpcr & ~LPCR_UPRT); |
| mtspr(SPRN_PTCR, 0); |
| powernv_set_nmmu_ptcr(0); |
| radix__flush_tlb_all(); |
| } |
| } |
| |
| void radix__setup_initial_memory_limit(phys_addr_t first_memblock_base, |
| phys_addr_t first_memblock_size) |
| { |
| /* We don't currently support the first MEMBLOCK not mapping 0 |
| * physical on those processors |
| */ |
| BUG_ON(first_memblock_base != 0); |
| |
| /* |
| * Radix mode is not limited by RMA / VRMA addressing. |
| */ |
| ppc64_rma_size = ULONG_MAX; |
| } |
| |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| static void free_pte_table(pte_t *pte_start, pmd_t *pmd) |
| { |
| pte_t *pte; |
| int i; |
| |
| for (i = 0; i < PTRS_PER_PTE; i++) { |
| pte = pte_start + i; |
| if (!pte_none(*pte)) |
| return; |
| } |
| |
| pte_free_kernel(&init_mm, pte_start); |
| pmd_clear(pmd); |
| } |
| |
| static void free_pmd_table(pmd_t *pmd_start, pud_t *pud) |
| { |
| pmd_t *pmd; |
| int i; |
| |
| for (i = 0; i < PTRS_PER_PMD; i++) { |
| pmd = pmd_start + i; |
| if (!pmd_none(*pmd)) |
| return; |
| } |
| |
| pmd_free(&init_mm, pmd_start); |
| pud_clear(pud); |
| } |
| |
| struct change_mapping_params { |
| pte_t *pte; |
| unsigned long start; |
| unsigned long end; |
| unsigned long aligned_start; |
| unsigned long aligned_end; |
| }; |
| |
| static int __meminit stop_machine_change_mapping(void *data) |
| { |
| struct change_mapping_params *params = |
| (struct change_mapping_params *)data; |
| |
| if (!data) |
| return -1; |
| |
| spin_unlock(&init_mm.page_table_lock); |
| pte_clear(&init_mm, params->aligned_start, params->pte); |
| create_physical_mapping(params->aligned_start, params->start, -1); |
| create_physical_mapping(params->end, params->aligned_end, -1); |
| spin_lock(&init_mm.page_table_lock); |
| return 0; |
| } |
| |
| static void remove_pte_table(pte_t *pte_start, unsigned long addr, |
| unsigned long end) |
| { |
| unsigned long next; |
| pte_t *pte; |
| |
| pte = pte_start + pte_index(addr); |
| for (; addr < end; addr = next, pte++) { |
| next = (addr + PAGE_SIZE) & PAGE_MASK; |
| if (next > end) |
| next = end; |
| |
| if (!pte_present(*pte)) |
| continue; |
| |
| if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(next)) { |
| /* |
| * The vmemmap_free() and remove_section_mapping() |
| * codepaths call us with aligned addresses. |
| */ |
| WARN_ONCE(1, "%s: unaligned range\n", __func__); |
| continue; |
| } |
| |
| pte_clear(&init_mm, addr, pte); |
| } |
| } |
| |
| /* |
| * clear the pte and potentially split the mapping helper |
| */ |
| static void __meminit split_kernel_mapping(unsigned long addr, unsigned long end, |
| unsigned long size, pte_t *pte) |
| { |
| unsigned long mask = ~(size - 1); |
| unsigned long aligned_start = addr & mask; |
| unsigned long aligned_end = addr + size; |
| struct change_mapping_params params; |
| bool split_region = false; |
| |
| if ((end - addr) < size) { |
| /* |
| * We're going to clear the PTE, but not flushed |
| * the mapping, time to remap and flush. The |
| * effects if visible outside the processor or |
| * if we are running in code close to the |
| * mapping we cleared, we are in trouble. |
| */ |
| if (overlaps_kernel_text(aligned_start, addr) || |
| overlaps_kernel_text(end, aligned_end)) { |
| /* |
| * Hack, just return, don't pte_clear |
| */ |
| WARN_ONCE(1, "Linear mapping %lx->%lx overlaps kernel " |
| "text, not splitting\n", addr, end); |
| return; |
| } |
| split_region = true; |
| } |
| |
| if (split_region) { |
| params.pte = pte; |
| params.start = addr; |
| params.end = end; |
| params.aligned_start = addr & ~(size - 1); |
| params.aligned_end = min_t(unsigned long, aligned_end, |
| (unsigned long)__va(memblock_end_of_DRAM())); |
| stop_machine(stop_machine_change_mapping, ¶ms, NULL); |
| return; |
| } |
| |
| pte_clear(&init_mm, addr, pte); |
| } |
| |
| static void remove_pmd_table(pmd_t *pmd_start, unsigned long addr, |
| unsigned long end) |
| { |
| unsigned long next; |
| pte_t *pte_base; |
| pmd_t *pmd; |
| |
| pmd = pmd_start + pmd_index(addr); |
| for (; addr < end; addr = next, pmd++) { |
| next = pmd_addr_end(addr, end); |
| |
| if (!pmd_present(*pmd)) |
| continue; |
| |
| if (pmd_huge(*pmd)) { |
| split_kernel_mapping(addr, end, PMD_SIZE, (pte_t *)pmd); |
| continue; |
| } |
| |
| pte_base = (pte_t *)pmd_page_vaddr(*pmd); |
| remove_pte_table(pte_base, addr, next); |
| free_pte_table(pte_base, pmd); |
| } |
| } |
| |
| static void remove_pud_table(pud_t *pud_start, unsigned long addr, |
| unsigned long end) |
| { |
| unsigned long next; |
| pmd_t *pmd_base; |
| pud_t *pud; |
| |
| pud = pud_start + pud_index(addr); |
| for (; addr < end; addr = next, pud++) { |
| next = pud_addr_end(addr, end); |
| |
| if (!pud_present(*pud)) |
| continue; |
| |
| if (pud_huge(*pud)) { |
| split_kernel_mapping(addr, end, PUD_SIZE, (pte_t *)pud); |
| continue; |
| } |
| |
| pmd_base = (pmd_t *)pud_page_vaddr(*pud); |
| remove_pmd_table(pmd_base, addr, next); |
| free_pmd_table(pmd_base, pud); |
| } |
| } |
| |
| static void __meminit remove_pagetable(unsigned long start, unsigned long end) |
| { |
| unsigned long addr, next; |
| pud_t *pud_base; |
| pgd_t *pgd; |
| |
| spin_lock(&init_mm.page_table_lock); |
| |
| for (addr = start; addr < end; addr = next) { |
| next = pgd_addr_end(addr, end); |
| |
| pgd = pgd_offset_k(addr); |
| if (!pgd_present(*pgd)) |
| continue; |
| |
| if (pgd_huge(*pgd)) { |
| split_kernel_mapping(addr, end, PGDIR_SIZE, (pte_t *)pgd); |
| continue; |
| } |
| |
| pud_base = (pud_t *)pgd_page_vaddr(*pgd); |
| remove_pud_table(pud_base, addr, next); |
| } |
| |
| spin_unlock(&init_mm.page_table_lock); |
| radix__flush_tlb_kernel_range(start, end); |
| } |
| |
| int __meminit radix__create_section_mapping(unsigned long start, unsigned long end, int nid) |
| { |
| return create_physical_mapping(start, end, nid); |
| } |
| |
| int __meminit radix__remove_section_mapping(unsigned long start, unsigned long end) |
| { |
| remove_pagetable(start, end); |
| return 0; |
| } |
| #endif /* CONFIG_MEMORY_HOTPLUG */ |
| |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| static int __map_kernel_page_nid(unsigned long ea, unsigned long pa, |
| pgprot_t flags, unsigned int map_page_size, |
| int nid) |
| { |
| return __map_kernel_page(ea, pa, flags, map_page_size, nid, 0, 0); |
| } |
| |
| int __meminit radix__vmemmap_create_mapping(unsigned long start, |
| unsigned long page_size, |
| unsigned long phys) |
| { |
| /* Create a PTE encoding */ |
| unsigned long flags = _PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_KERNEL_RW; |
| int nid = early_pfn_to_nid(phys >> PAGE_SHIFT); |
| int ret; |
| |
| ret = __map_kernel_page_nid(start, phys, __pgprot(flags), page_size, nid); |
| BUG_ON(ret); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| void __meminit radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size) |
| { |
| remove_pagetable(start, start + page_size); |
| } |
| #endif |
| #endif |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| |
| unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, |
| pmd_t *pmdp, unsigned long clr, |
| unsigned long set) |
| { |
| unsigned long old; |
| |
| #ifdef CONFIG_DEBUG_VM |
| WARN_ON(!radix__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp)); |
| assert_spin_locked(pmd_lockptr(mm, pmdp)); |
| #endif |
| |
| old = radix__pte_update(mm, addr, (pte_t *)pmdp, clr, set, 1); |
| trace_hugepage_update(addr, old, clr, set); |
| |
| return old; |
| } |
| |
| pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address, |
| pmd_t *pmdp) |
| |
| { |
| pmd_t pmd; |
| |
| VM_BUG_ON(address & ~HPAGE_PMD_MASK); |
| VM_BUG_ON(radix__pmd_trans_huge(*pmdp)); |
| VM_BUG_ON(pmd_devmap(*pmdp)); |
| /* |
| * khugepaged calls this for normal pmd |
| */ |
| pmd = *pmdp; |
| pmd_clear(pmdp); |
| |
| /*FIXME!! Verify whether we need this kick below */ |
| serialize_against_pte_lookup(vma->vm_mm); |
| |
| radix__flush_tlb_collapsed_pmd(vma->vm_mm, address); |
| |
| return pmd; |
| } |
| |
| /* |
| * For us pgtable_t is pte_t *. Inorder to save the deposisted |
| * page table, we consider the allocated page table as a list |
| * head. On withdraw we need to make sure we zero out the used |
| * list_head memory area. |
| */ |
| void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, |
| pgtable_t pgtable) |
| { |
| struct list_head *lh = (struct list_head *) pgtable; |
| |
| assert_spin_locked(pmd_lockptr(mm, pmdp)); |
| |
| /* FIFO */ |
| if (!pmd_huge_pte(mm, pmdp)) |
| INIT_LIST_HEAD(lh); |
| else |
| list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp)); |
| pmd_huge_pte(mm, pmdp) = pgtable; |
| } |
| |
| pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp) |
| { |
| pte_t *ptep; |
| pgtable_t pgtable; |
| struct list_head *lh; |
| |
| assert_spin_locked(pmd_lockptr(mm, pmdp)); |
| |
| /* FIFO */ |
| pgtable = pmd_huge_pte(mm, pmdp); |
| lh = (struct list_head *) pgtable; |
| if (list_empty(lh)) |
| pmd_huge_pte(mm, pmdp) = NULL; |
| else { |
| pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next; |
| list_del(lh); |
| } |
| ptep = (pte_t *) pgtable; |
| *ptep = __pte(0); |
| ptep++; |
| *ptep = __pte(0); |
| return pgtable; |
| } |
| |
| |
| pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm, |
| unsigned long addr, pmd_t *pmdp) |
| { |
| pmd_t old_pmd; |
| unsigned long old; |
| |
| old = radix__pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0); |
| old_pmd = __pmd(old); |
| /* |
| * Serialize against find_current_mm_pte which does lock-less |
| * lookup in page tables with local interrupts disabled. For huge pages |
| * it casts pmd_t to pte_t. Since format of pte_t is different from |
| * pmd_t we want to prevent transit from pmd pointing to page table |
| * to pmd pointing to huge page (and back) while interrupts are disabled. |
| * We clear pmd to possibly replace it with page table pointer in |
| * different code paths. So make sure we wait for the parallel |
| * find_current_mm_pte to finish. |
| */ |
| serialize_against_pte_lookup(mm); |
| return old_pmd; |
| } |
| |
| int radix__has_transparent_hugepage(void) |
| { |
| /* For radix 2M at PMD level means thp */ |
| if (mmu_psize_defs[MMU_PAGE_2M].shift == PMD_SHIFT) |
| return 1; |
| return 0; |
| } |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| |
| void radix__ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep, |
| pte_t entry, unsigned long address, int psize) |
| { |
| struct mm_struct *mm = vma->vm_mm; |
| unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED | |
| _PAGE_RW | _PAGE_EXEC); |
| |
| unsigned long change = pte_val(entry) ^ pte_val(*ptep); |
| /* |
| * To avoid NMMU hang while relaxing access, we need mark |
| * the pte invalid in between. |
| */ |
| if ((change & _PAGE_RW) && atomic_read(&mm->context.copros) > 0) { |
| unsigned long old_pte, new_pte; |
| |
| old_pte = __radix_pte_update(ptep, _PAGE_PRESENT, _PAGE_INVALID); |
| /* |
| * new value of pte |
| */ |
| new_pte = old_pte | set; |
| radix__flush_tlb_page_psize(mm, address, psize); |
| __radix_pte_update(ptep, _PAGE_INVALID, new_pte); |
| } else { |
| __radix_pte_update(ptep, 0, set); |
| /* |
| * Book3S does not require a TLB flush when relaxing access |
| * restrictions when the address space is not attached to a |
| * NMMU, because the core MMU will reload the pte after taking |
| * an access fault, which is defined by the architectue. |
| */ |
| } |
| /* See ptesync comment in radix__set_pte_at */ |
| } |