blob: 77a0751a31ad8cc8b251ff267eeb497be0e707c2 [file] [log] [blame]
/**************************************************************************
*
* Copyright 2000-2006 Alacritech, Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* THIS SOFTWARE IS PROVIDED BY ALACRITECH, INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ALACRITECH, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The views and conclusions contained in the software and documentation
* are those of the authors and should not be interpreted as representing
* official policies, either expressed or implied, of Alacritech, Inc.
*
**************************************************************************/
/*
* FILENAME: slicoss.c
*
* The SLICOSS driver for Alacritech's IS-NIC products.
*
* This driver is supposed to support:
*
* Mojave cards (single port PCI Gigabit) both copper and fiber
* Oasis cards (single and dual port PCI-x Gigabit) copper and fiber
* Kalahari cards (dual and quad port PCI-e Gigabit) copper and fiber
*
* The driver was acutally tested on Oasis and Kalahari cards.
*
*
* NOTE: This is the standard, non-accelerated version of Alacritech's
* IS-NIC driver.
*/
#define KLUDGE_FOR_4GB_BOUNDARY 1
#define DEBUG_MICROCODE 1
#define DBG 1
#define SLIC_INTERRUPT_PROCESS_LIMIT 1
#define SLIC_OFFLOAD_IP_CHECKSUM 1
#define STATS_TIMER_INTERVAL 2
#define PING_TIMER_INTERVAL 1
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/timer.h>
#include <linux/pci.h>
#include <linux/spinlock.h>
#include <linux/init.h>
#include <linux/bitops.h>
#include <linux/io.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/delay.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/kthread.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/firmware.h>
#include <linux/types.h>
#include <linux/dma-mapping.h>
#include <linux/mii.h>
#include <linux/if_vlan.h>
#include <asm/unaligned.h>
#include <linux/ethtool.h>
#include <linux/uaccess.h>
#include "slichw.h"
#include "slic.h"
static uint slic_first_init = 1;
static char *slic_banner = "Alacritech SLIC Technology(tm) Server "\
"and Storage Accelerator (Non-Accelerated)";
static char *slic_proc_version = "2.0.351 2006/07/14 12:26:00";
static char *slic_product_name = "SLIC Technology(tm) Server "\
"and Storage Accelerator (Non-Accelerated)";
static char *slic_vendor = "Alacritech, Inc.";
static int slic_debug = 1;
static int debug = -1;
static struct net_device *head_netdevice;
static struct base_driver slic_global = { {}, 0, 0, 0, 1, NULL, NULL };
static int intagg_delay = 100;
static u32 dynamic_intagg;
static unsigned int rcv_count;
static struct dentry *slic_debugfs;
#define DRV_NAME "slicoss"
#define DRV_VERSION "2.0.1"
#define DRV_AUTHOR "Alacritech, Inc. Engineering"
#define DRV_DESCRIPTION "Alacritech SLIC Techonology(tm) "\
"Non-Accelerated Driver"
#define DRV_COPYRIGHT "Copyright 2000-2006 Alacritech, Inc. "\
"All rights reserved."
#define PFX DRV_NAME " "
MODULE_AUTHOR(DRV_AUTHOR);
MODULE_DESCRIPTION(DRV_DESCRIPTION);
MODULE_LICENSE("Dual BSD/GPL");
module_param(dynamic_intagg, int, 0);
MODULE_PARM_DESC(dynamic_intagg, "Dynamic Interrupt Aggregation Setting");
module_param(intagg_delay, int, 0);
MODULE_PARM_DESC(intagg_delay, "uSec Interrupt Aggregation Delay");
static DEFINE_PCI_DEVICE_TABLE(slic_pci_tbl) = {
{ PCI_DEVICE(PCI_VENDOR_ID_ALACRITECH, SLIC_1GB_DEVICE_ID) },
{ PCI_DEVICE(PCI_VENDOR_ID_ALACRITECH, SLIC_2GB_DEVICE_ID) },
{ 0 }
};
MODULE_DEVICE_TABLE(pci, slic_pci_tbl);
#ifdef ASSERT
#undef ASSERT
#endif
static void slic_assert_fail(void)
{
u32 cpuid;
u32 curr_pid;
cpuid = smp_processor_id();
curr_pid = current->pid;
printk(KERN_ERR "%s CPU # %d ---- PID # %d\n",
__func__, cpuid, curr_pid);
}
#ifndef ASSERT
#define ASSERT(a) do { \
if (!(a)) { \
printk(KERN_ERR "slicoss ASSERT() Failure: function %s" \
"line %d\n", __func__, __LINE__); \
slic_assert_fail(); \
} \
} while (0)
#endif
#define SLIC_GET_SLIC_HANDLE(_adapter, _pslic_handle) \
{ \
spin_lock_irqsave(&_adapter->handle_lock.lock, \
_adapter->handle_lock.flags); \
_pslic_handle = _adapter->pfree_slic_handles; \
if (_pslic_handle) { \
ASSERT(_pslic_handle->type == SLIC_HANDLE_FREE); \
_adapter->pfree_slic_handles = _pslic_handle->next; \
} \
spin_unlock_irqrestore(&_adapter->handle_lock.lock, \
_adapter->handle_lock.flags); \
}
#define SLIC_FREE_SLIC_HANDLE(_adapter, _pslic_handle) \
{ \
_pslic_handle->type = SLIC_HANDLE_FREE; \
spin_lock_irqsave(&_adapter->handle_lock.lock, \
_adapter->handle_lock.flags); \
_pslic_handle->next = _adapter->pfree_slic_handles; \
_adapter->pfree_slic_handles = _pslic_handle; \
spin_unlock_irqrestore(&_adapter->handle_lock.lock, \
_adapter->handle_lock.flags); \
}
static inline void slic_reg32_write(void __iomem *reg, u32 value, bool flush)
{
writel(value, reg);
if (flush)
mb();
}
static inline void slic_reg64_write(struct adapter *adapter, void __iomem *reg,
u32 value, void __iomem *regh, u32 paddrh,
bool flush)
{
spin_lock_irqsave(&adapter->bit64reglock.lock,
adapter->bit64reglock.flags);
if (paddrh != adapter->curaddrupper) {
adapter->curaddrupper = paddrh;
writel(paddrh, regh);
}
writel(value, reg);
if (flush)
mb();
spin_unlock_irqrestore(&adapter->bit64reglock.lock,
adapter->bit64reglock.flags);
}
/*
* Functions to obtain the CRC corresponding to the destination mac address.
* This is a standard ethernet CRC in that it is a 32-bit, reflected CRC using
* the polynomial:
* x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^11 + x^10 + x^8 + x^7 + x^5 +
* x^4 + x^2 + x^1.
*
* After the CRC for the 6 bytes is generated (but before the value is
* complemented),
* we must then transpose the value and return bits 30-23.
*
*/
static u32 slic_crc_table[256]; /* Table of CRCs for all possible byte values */
static u32 slic_crc_init; /* Is table initialized */
/*
* Contruct the CRC32 table
*/
static void slic_mcast_init_crc32(void)
{
u32 c; /* CRC shit reg */
u32 e = 0; /* Poly X-or pattern */
int i; /* counter */
int k; /* byte being shifted into crc */
static int p[] = { 0, 1, 2, 4, 5, 7, 8, 10, 11, 12, 16, 22, 23, 26 };
for (i = 0; i < ARRAY_SIZE(p); i++)
e |= 1L << (31 - p[i]);
for (i = 1; i < 256; i++) {
c = i;
for (k = 8; k; k--)
c = c & 1 ? (c >> 1) ^ e : c >> 1;
slic_crc_table[i] = c;
}
}
/*
* Return the MAC hast as described above.
*/
static unsigned char slic_mcast_get_mac_hash(char *macaddr)
{
u32 crc;
char *p;
int i;
unsigned char machash = 0;
if (!slic_crc_init) {
slic_mcast_init_crc32();
slic_crc_init = 1;
}
crc = 0xFFFFFFFF; /* Preload shift register, per crc-32 spec */
for (i = 0, p = macaddr; i < 6; ++p, ++i)
crc = (crc >> 8) ^ slic_crc_table[(crc ^ *p) & 0xFF];
/* Return bits 1-8, transposed */
for (i = 1; i < 9; i++)
machash |= (((crc >> i) & 1) << (8 - i));
return machash;
}
static void slic_mcast_set_bit(struct adapter *adapter, char *address)
{
unsigned char crcpoly;
/* Get the CRC polynomial for the mac address */
crcpoly = slic_mcast_get_mac_hash(address);
/* We only have space on the SLIC for 64 entries. Lop
* off the top two bits. (2^6 = 64)
*/
crcpoly &= 0x3F;
/* OR in the new bit into our 64 bit mask. */
adapter->mcastmask |= (u64) 1 << crcpoly;
}
static void slic_mcast_set_mask(struct adapter *adapter)
{
__iomem struct slic_regs *slic_regs = adapter->slic_regs;
if (adapter->macopts & (MAC_ALLMCAST | MAC_PROMISC)) {
/* Turn on all multicast addresses. We have to do this for
* promiscuous mode as well as ALLMCAST mode. It saves the
* Microcode from having to keep state about the MAC
* configuration.
*/
slic_reg32_write(&slic_regs->slic_mcastlow, 0xFFFFFFFF, FLUSH);
slic_reg32_write(&slic_regs->slic_mcasthigh, 0xFFFFFFFF,
FLUSH);
} else {
/* Commit our multicast mast to the SLIC by writing to the
* multicast address mask registers
*/
slic_reg32_write(&slic_regs->slic_mcastlow,
(u32)(adapter->mcastmask & 0xFFFFFFFF), FLUSH);
slic_reg32_write(&slic_regs->slic_mcasthigh,
(u32)((adapter->mcastmask >> 32) & 0xFFFFFFFF), FLUSH);
}
}
static void slic_timer_ping(ulong dev)
{
struct adapter *adapter;
struct sliccard *card;
ASSERT(dev);
adapter = netdev_priv((struct net_device *)dev);
ASSERT(adapter);
card = adapter->card;
ASSERT(card);
adapter->pingtimer.expires = jiffies + (PING_TIMER_INTERVAL * HZ);
add_timer(&adapter->pingtimer);
}
static void slic_unmap_mmio_space(struct adapter *adapter)
{
if (adapter->slic_regs)
iounmap(adapter->slic_regs);
adapter->slic_regs = NULL;
}
/*
* slic_link_config
*
* Write phy control to configure link duplex/speed
*
*/
static void slic_link_config(struct adapter *adapter,
u32 linkspeed, u32 linkduplex)
{
u32 __iomem *wphy;
u32 speed;
u32 duplex;
u32 phy_config;
u32 phy_advreg;
u32 phy_gctlreg;
if (adapter->state != ADAPT_UP)
return;
ASSERT((adapter->devid == SLIC_1GB_DEVICE_ID)
|| (adapter->devid == SLIC_2GB_DEVICE_ID));
if (linkspeed > LINK_1000MB)
linkspeed = LINK_AUTOSPEED;
if (linkduplex > LINK_AUTOD)
linkduplex = LINK_AUTOD;
wphy = &adapter->slic_regs->slic_wphy;
if ((linkspeed == LINK_AUTOSPEED) || (linkspeed == LINK_1000MB)) {
if (adapter->flags & ADAPT_FLAGS_FIBERMEDIA) {
/* We've got a fiber gigabit interface, and register
* 4 is different in fiber mode than in copper mode
*/
/* advertise FD only @1000 Mb */
phy_advreg = (MIICR_REG_4 | (PAR_ADV1000XFD));
/* enable PAUSE frames */
phy_advreg |= PAR_ASYMPAUSE_FIBER;
slic_reg32_write(wphy, phy_advreg, FLUSH);
if (linkspeed == LINK_AUTOSPEED) {
/* reset phy, enable auto-neg */
phy_config =
(MIICR_REG_PCR |
(PCR_RESET | PCR_AUTONEG |
PCR_AUTONEG_RST));
slic_reg32_write(wphy, phy_config, FLUSH);
} else { /* forced 1000 Mb FD*/
/* power down phy to break link
this may not work) */
phy_config = (MIICR_REG_PCR | PCR_POWERDOWN);
slic_reg32_write(wphy, phy_config, FLUSH);
/* wait, Marvell says 1 sec,
try to get away with 10 ms */
mdelay(10);
/* disable auto-neg, set speed/duplex,
soft reset phy, powerup */
phy_config =
(MIICR_REG_PCR |
(PCR_RESET | PCR_SPEED_1000 |
PCR_DUPLEX_FULL));
slic_reg32_write(wphy, phy_config, FLUSH);
}
} else { /* copper gigabit */
/* Auto-Negotiate or 1000 Mb must be auto negotiated
* We've got a copper gigabit interface, and
* register 4 is different in copper mode than
* in fiber mode
*/
if (linkspeed == LINK_AUTOSPEED) {
/* advertise 10/100 Mb modes */
phy_advreg =
(MIICR_REG_4 |
(PAR_ADV100FD | PAR_ADV100HD | PAR_ADV10FD
| PAR_ADV10HD));
} else {
/* linkspeed == LINK_1000MB -
don't advertise 10/100 Mb modes */
phy_advreg = MIICR_REG_4;
}
/* enable PAUSE frames */
phy_advreg |= PAR_ASYMPAUSE;
/* required by the Cicada PHY */
phy_advreg |= PAR_802_3;
slic_reg32_write(wphy, phy_advreg, FLUSH);
/* advertise FD only @1000 Mb */
phy_gctlreg = (MIICR_REG_9 | (PGC_ADV1000FD));
slic_reg32_write(wphy, phy_gctlreg, FLUSH);
if (adapter->subsysid != SLIC_1GB_CICADA_SUBSYS_ID) {
/* if a Marvell PHY
enable auto crossover */
phy_config =
(MIICR_REG_16 | (MRV_REG16_XOVERON));
slic_reg32_write(wphy, phy_config, FLUSH);
/* reset phy, enable auto-neg */
phy_config =
(MIICR_REG_PCR |
(PCR_RESET | PCR_AUTONEG |
PCR_AUTONEG_RST));
slic_reg32_write(wphy, phy_config, FLUSH);
} else { /* it's a Cicada PHY */
/* enable and restart auto-neg (don't reset) */
phy_config =
(MIICR_REG_PCR |
(PCR_AUTONEG | PCR_AUTONEG_RST));
slic_reg32_write(wphy, phy_config, FLUSH);
}
}
} else {
/* Forced 10/100 */
if (linkspeed == LINK_10MB)
speed = 0;
else
speed = PCR_SPEED_100;
if (linkduplex == LINK_HALFD)
duplex = 0;
else
duplex = PCR_DUPLEX_FULL;
if (adapter->subsysid != SLIC_1GB_CICADA_SUBSYS_ID) {
/* if a Marvell PHY
disable auto crossover */
phy_config = (MIICR_REG_16 | (MRV_REG16_XOVEROFF));
slic_reg32_write(wphy, phy_config, FLUSH);
}
/* power down phy to break link (this may not work) */
phy_config = (MIICR_REG_PCR | (PCR_POWERDOWN | speed | duplex));
slic_reg32_write(wphy, phy_config, FLUSH);
/* wait, Marvell says 1 sec, try to get away with 10 ms */
mdelay(10);
if (adapter->subsysid != SLIC_1GB_CICADA_SUBSYS_ID) {
/* if a Marvell PHY
disable auto-neg, set speed,
soft reset phy, powerup */
phy_config =
(MIICR_REG_PCR | (PCR_RESET | speed | duplex));
slic_reg32_write(wphy, phy_config, FLUSH);
} else { /* it's a Cicada PHY */
/* disable auto-neg, set speed, powerup */
phy_config = (MIICR_REG_PCR | (speed | duplex));
slic_reg32_write(wphy, phy_config, FLUSH);
}
}
}
static int slic_card_download_gbrcv(struct adapter *adapter)
{
const struct firmware *fw;
const char *file = "";
int ret;
__iomem struct slic_regs *slic_regs = adapter->slic_regs;
u32 codeaddr;
u32 instruction;
int index = 0;
u32 rcvucodelen = 0;
switch (adapter->devid) {
case SLIC_2GB_DEVICE_ID:
file = "slicoss/oasisrcvucode.sys";
break;
case SLIC_1GB_DEVICE_ID:
file = "slicoss/gbrcvucode.sys";
break;
default:
ASSERT(0);
break;
}
ret = request_firmware(&fw, file, &adapter->pcidev->dev);
if (ret) {
dev_err(&adapter->pcidev->dev,
"SLICOSS: Failed to load firmware %s\n", file);
return ret;
}
rcvucodelen = *(u32 *)(fw->data + index);
index += 4;
switch (adapter->devid) {
case SLIC_2GB_DEVICE_ID:
if (rcvucodelen != OasisRcvUCodeLen)
return -EINVAL;
break;
case SLIC_1GB_DEVICE_ID:
if (rcvucodelen != GBRcvUCodeLen)
return -EINVAL;
break;
default:
ASSERT(0);
break;
}
/* start download */
slic_reg32_write(&slic_regs->slic_rcv_wcs, SLIC_RCVWCS_BEGIN, FLUSH);
/* download the rcv sequencer ucode */
for (codeaddr = 0; codeaddr < rcvucodelen; codeaddr++) {
/* write out instruction address */
slic_reg32_write(&slic_regs->slic_rcv_wcs, codeaddr, FLUSH);
instruction = *(u32 *)(fw->data + index);
index += 4;
/* write out the instruction data low addr */
slic_reg32_write(&slic_regs->slic_rcv_wcs, instruction, FLUSH);
instruction = *(u8 *)(fw->data + index);
index++;
/* write out the instruction data high addr */
slic_reg32_write(&slic_regs->slic_rcv_wcs, (u8)instruction,
FLUSH);
}
/* download finished */
release_firmware(fw);
slic_reg32_write(&slic_regs->slic_rcv_wcs, SLIC_RCVWCS_FINISH, FLUSH);
return 0;
}
MODULE_FIRMWARE("slicoss/oasisrcvucode.sys");
MODULE_FIRMWARE("slicoss/gbrcvucode.sys");
static int slic_card_download(struct adapter *adapter)
{
const struct firmware *fw;
const char *file = "";
int ret;
u32 section;
int thissectionsize;
int codeaddr;
__iomem struct slic_regs *slic_regs = adapter->slic_regs;
u32 instruction;
u32 baseaddress;
u32 i;
u32 numsects = 0;
u32 sectsize[3];
u32 sectstart[3];
int ucode_start, index = 0;
switch (adapter->devid) {
case SLIC_2GB_DEVICE_ID:
file = "slicoss/oasisdownload.sys";
break;
case SLIC_1GB_DEVICE_ID:
file = "slicoss/gbdownload.sys";
break;
default:
ASSERT(0);
break;
}
ret = request_firmware(&fw, file, &adapter->pcidev->dev);
if (ret) {
dev_err(&adapter->pcidev->dev,
"SLICOSS: Failed to load firmware %s\n", file);
return ret;
}
numsects = *(u32 *)(fw->data + index);
index += 4;
ASSERT(numsects <= 3);
for (i = 0; i < numsects; i++) {
sectsize[i] = *(u32 *)(fw->data + index);
index += 4;
}
for (i = 0; i < numsects; i++) {
sectstart[i] = *(u32 *)(fw->data + index);
index += 4;
}
ucode_start = index;
instruction = *(u32 *)(fw->data + index);
index += 4;
for (section = 0; section < numsects; section++) {
baseaddress = sectstart[section];
thissectionsize = sectsize[section] >> 3;
for (codeaddr = 0; codeaddr < thissectionsize; codeaddr++) {
/* Write out instruction address */
slic_reg32_write(&slic_regs->slic_wcs,
baseaddress + codeaddr, FLUSH);
/* Write out instruction to low addr */
slic_reg32_write(&slic_regs->slic_wcs, instruction, FLUSH);
instruction = *(u32 *)(fw->data + index);
index += 4;
/* Write out instruction to high addr */
slic_reg32_write(&slic_regs->slic_wcs, instruction, FLUSH);
instruction = *(u32 *)(fw->data + index);
index += 4;
}
}
index = ucode_start;
for (section = 0; section < numsects; section++) {
instruction = *(u32 *)(fw->data + index);
baseaddress = sectstart[section];
if (baseaddress < 0x8000)
continue;
thissectionsize = sectsize[section] >> 3;
for (codeaddr = 0; codeaddr < thissectionsize; codeaddr++) {
/* Write out instruction address */
slic_reg32_write(&slic_regs->slic_wcs,
SLIC_WCS_COMPARE | (baseaddress + codeaddr),
FLUSH);
/* Write out instruction to low addr */
slic_reg32_write(&slic_regs->slic_wcs, instruction,
FLUSH);
instruction = *(u32 *)(fw->data + index);
index += 4;
/* Write out instruction to high addr */
slic_reg32_write(&slic_regs->slic_wcs, instruction,
FLUSH);
instruction = *(u32 *)(fw->data + index);
index += 4;
/* Check SRAM location zero. If it is non-zero. Abort.*/
/* failure = readl((u32 __iomem *)&slic_regs->slic_reset);
if (failure) {
release_firmware(fw);
return -EIO;
}*/
}
}
release_firmware(fw);
/* Everything OK, kick off the card */
mdelay(10);
slic_reg32_write(&slic_regs->slic_wcs, SLIC_WCS_START, FLUSH);
/* stall for 20 ms, long enough for ucode to init card
and reach mainloop */
mdelay(20);
return 0;
}
MODULE_FIRMWARE("slicoss/oasisdownload.sys");
MODULE_FIRMWARE("slicoss/gbdownload.sys");
static void slic_adapter_set_hwaddr(struct adapter *adapter)
{
struct sliccard *card = adapter->card;
if ((adapter->card) && (card->config_set)) {
memcpy(adapter->macaddr,
card->config.MacInfo[adapter->functionnumber].macaddrA,
sizeof(struct slic_config_mac));
if (!(adapter->currmacaddr[0] || adapter->currmacaddr[1] ||
adapter->currmacaddr[2] || adapter->currmacaddr[3] ||
adapter->currmacaddr[4] || adapter->currmacaddr[5])) {
memcpy(adapter->currmacaddr, adapter->macaddr, 6);
}
if (adapter->netdev) {
memcpy(adapter->netdev->dev_addr, adapter->currmacaddr,
6);
}
}
}
static void slic_intagg_set(struct adapter *adapter, u32 value)
{
slic_reg32_write(&adapter->slic_regs->slic_intagg, value, FLUSH);
adapter->card->loadlevel_current = value;
}
static void slic_soft_reset(struct adapter *adapter)
{
if (adapter->card->state == CARD_UP) {
slic_reg32_write(&adapter->slic_regs->slic_quiesce, 0, FLUSH);
mdelay(1);
}
slic_reg32_write(&adapter->slic_regs->slic_reset, SLIC_RESET_MAGIC,
FLUSH);
mdelay(1);
}
static void slic_mac_address_config(struct adapter *adapter)
{
u32 value;
u32 value2;
__iomem struct slic_regs *slic_regs = adapter->slic_regs;
value = *(u32 *) &adapter->currmacaddr[2];
value = ntohl(value);
slic_reg32_write(&slic_regs->slic_wraddral, value, FLUSH);
slic_reg32_write(&slic_regs->slic_wraddrbl, value, FLUSH);
value2 = (u32) ((adapter->currmacaddr[0] << 8 |
adapter->currmacaddr[1]) & 0xFFFF);
slic_reg32_write(&slic_regs->slic_wraddrah, value2, FLUSH);
slic_reg32_write(&slic_regs->slic_wraddrbh, value2, FLUSH);
/* Write our multicast mask out to the card. This is done */
/* here in addition to the slic_mcast_addr_set routine */
/* because ALL_MCAST may have been enabled or disabled */
slic_mcast_set_mask(adapter);
}
static void slic_mac_config(struct adapter *adapter)
{
u32 value;
__iomem struct slic_regs *slic_regs = adapter->slic_regs;
/* Setup GMAC gaps */
if (adapter->linkspeed == LINK_1000MB) {
value = ((GMCR_GAPBB_1000 << GMCR_GAPBB_SHIFT) |
(GMCR_GAPR1_1000 << GMCR_GAPR1_SHIFT) |
(GMCR_GAPR2_1000 << GMCR_GAPR2_SHIFT));
} else {
value = ((GMCR_GAPBB_100 << GMCR_GAPBB_SHIFT) |
(GMCR_GAPR1_100 << GMCR_GAPR1_SHIFT) |
(GMCR_GAPR2_100 << GMCR_GAPR2_SHIFT));
}
/* enable GMII */
if (adapter->linkspeed == LINK_1000MB)
value |= GMCR_GBIT;
/* enable fullduplex */
if ((adapter->linkduplex == LINK_FULLD)
|| (adapter->macopts & MAC_LOOPBACK)) {
value |= GMCR_FULLD;
}
/* write mac config */
slic_reg32_write(&slic_regs->slic_wmcfg, value, FLUSH);
/* setup mac addresses */
slic_mac_address_config(adapter);
}
static void slic_config_set(struct adapter *adapter, bool linkchange)
{
u32 value;
u32 RcrReset;
__iomem struct slic_regs *slic_regs = adapter->slic_regs;
if (linkchange) {
/* Setup MAC */
slic_mac_config(adapter);
RcrReset = GRCR_RESET;
} else {
slic_mac_address_config(adapter);
RcrReset = 0;
}
if (adapter->linkduplex == LINK_FULLD) {
/* setup xmtcfg */
value = (GXCR_RESET | /* Always reset */
GXCR_XMTEN | /* Enable transmit */
GXCR_PAUSEEN); /* Enable pause */
slic_reg32_write(&slic_regs->slic_wxcfg, value, FLUSH);
/* Setup rcvcfg last */
value = (RcrReset | /* Reset, if linkchange */
GRCR_CTLEN | /* Enable CTL frames */
GRCR_ADDRAEN | /* Address A enable */
GRCR_RCVBAD | /* Rcv bad frames */
(GRCR_HASHSIZE << GRCR_HASHSIZE_SHIFT));
} else {
/* setup xmtcfg */
value = (GXCR_RESET | /* Always reset */
GXCR_XMTEN); /* Enable transmit */
slic_reg32_write(&slic_regs->slic_wxcfg, value, FLUSH);
/* Setup rcvcfg last */
value = (RcrReset | /* Reset, if linkchange */
GRCR_ADDRAEN | /* Address A enable */
GRCR_RCVBAD | /* Rcv bad frames */
(GRCR_HASHSIZE << GRCR_HASHSIZE_SHIFT));
}
if (adapter->state != ADAPT_DOWN) {
/* Only enable receive if we are restarting or running */
value |= GRCR_RCVEN;
}
if (adapter->macopts & MAC_PROMISC)
value |= GRCR_RCVALL;
slic_reg32_write(&slic_regs->slic_wrcfg, value, FLUSH);
}
/*
* Turn off RCV and XMT, power down PHY
*/
static void slic_config_clear(struct adapter *adapter)
{
u32 value;
u32 phy_config;
__iomem struct slic_regs *slic_regs = adapter->slic_regs;
/* Setup xmtcfg */
value = (GXCR_RESET | /* Always reset */
GXCR_PAUSEEN); /* Enable pause */
slic_reg32_write(&slic_regs->slic_wxcfg, value, FLUSH);
value = (GRCR_RESET | /* Always reset */
GRCR_CTLEN | /* Enable CTL frames */
GRCR_ADDRAEN | /* Address A enable */
(GRCR_HASHSIZE << GRCR_HASHSIZE_SHIFT));
slic_reg32_write(&slic_regs->slic_wrcfg, value, FLUSH);
/* power down phy */
phy_config = (MIICR_REG_PCR | (PCR_POWERDOWN));
slic_reg32_write(&slic_regs->slic_wphy, phy_config, FLUSH);
}
static bool slic_mac_filter(struct adapter *adapter,
struct ether_header *ether_frame)
{
struct net_device *netdev = adapter->netdev;
u32 opts = adapter->macopts;
u32 *dhost4 = (u32 *)&ether_frame->ether_dhost[0];
u16 *dhost2 = (u16 *)&ether_frame->ether_dhost[4];
if (opts & MAC_PROMISC)
return true;
if ((*dhost4 == 0xFFFFFFFF) && (*dhost2 == 0xFFFF)) {
if (opts & MAC_BCAST) {
adapter->rcv_broadcasts++;
return true;
} else {
return false;
}
}
if (ether_frame->ether_dhost[0] & 0x01) {
if (opts & MAC_ALLMCAST) {
adapter->rcv_multicasts++;
netdev->stats.multicast++;
return true;
}
if (opts & MAC_MCAST) {
struct mcast_address *mcaddr = adapter->mcastaddrs;
while (mcaddr) {
if (!compare_ether_addr(mcaddr->address,
ether_frame->ether_dhost)) {
adapter->rcv_multicasts++;
netdev->stats.multicast++;
return true;
}
mcaddr = mcaddr->next;
}
return false;
} else {
return false;
}
}
if (opts & MAC_DIRECTED) {
adapter->rcv_unicasts++;
return true;
}
return false;
}
static int slic_mac_set_address(struct net_device *dev, void *ptr)
{
struct adapter *adapter = netdev_priv(dev);
struct sockaddr *addr = ptr;
if (netif_running(dev))
return -EBUSY;
if (!adapter)
return -EBUSY;
if (!is_valid_ether_addr(addr->sa_data))
return -EINVAL;
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
memcpy(adapter->currmacaddr, addr->sa_data, dev->addr_len);
slic_config_set(adapter, true);
return 0;
}
static void slic_timer_load_check(ulong cardaddr)
{
struct sliccard *card = (struct sliccard *)cardaddr;
struct adapter *adapter = card->master;
u32 __iomem *intagg;
u32 load = card->events;
u32 level = 0;
intagg = &adapter->slic_regs->slic_intagg;
if ((adapter) && (adapter->state == ADAPT_UP) &&
(card->state == CARD_UP) && (slic_global.dynamic_intagg)) {
if (adapter->devid == SLIC_1GB_DEVICE_ID) {
if (adapter->linkspeed == LINK_1000MB)
level = 100;
else {
if (load > SLIC_LOAD_5)
level = SLIC_INTAGG_5;
else if (load > SLIC_LOAD_4)
level = SLIC_INTAGG_4;
else if (load > SLIC_LOAD_3)
level = SLIC_INTAGG_3;
else if (load > SLIC_LOAD_2)
level = SLIC_INTAGG_2;
else if (load > SLIC_LOAD_1)
level = SLIC_INTAGG_1;
else
level = SLIC_INTAGG_0;
}
if (card->loadlevel_current != level) {
card->loadlevel_current = level;
slic_reg32_write(intagg, level, FLUSH);
}
} else {
if (load > SLIC_LOAD_5)
level = SLIC_INTAGG_5;
else if (load > SLIC_LOAD_4)
level = SLIC_INTAGG_4;
else if (load > SLIC_LOAD_3)
level = SLIC_INTAGG_3;
else if (load > SLIC_LOAD_2)
level = SLIC_INTAGG_2;
else if (load > SLIC_LOAD_1)
level = SLIC_INTAGG_1;
else
level = SLIC_INTAGG_0;
if (card->loadlevel_current != level) {
card->loadlevel_current = level;
slic_reg32_write(intagg, level, FLUSH);
}
}
}
card->events = 0;
card->loadtimer.expires = jiffies + (SLIC_LOADTIMER_PERIOD * HZ);
add_timer(&card->loadtimer);
}
static int slic_upr_queue_request(struct adapter *adapter,
u32 upr_request,
u32 upr_data,
u32 upr_data_h,
u32 upr_buffer, u32 upr_buffer_h)
{
struct slic_upr *upr;
struct slic_upr *uprqueue;
upr = kmalloc(sizeof(struct slic_upr), GFP_ATOMIC);
if (!upr)
return -ENOMEM;
upr->adapter = adapter->port;
upr->upr_request = upr_request;
upr->upr_data = upr_data;
upr->upr_buffer = upr_buffer;
upr->upr_data_h = upr_data_h;
upr->upr_buffer_h = upr_buffer_h;
upr->next = NULL;
if (adapter->upr_list) {
uprqueue = adapter->upr_list;
while (uprqueue->next)
uprqueue = uprqueue->next;
uprqueue->next = upr;
} else {
adapter->upr_list = upr;
}
return 0;
}
static void slic_upr_start(struct adapter *adapter)
{
struct slic_upr *upr;
__iomem struct slic_regs *slic_regs = adapter->slic_regs;
/*
char * ptr1;
char * ptr2;
uint cmdoffset;
*/
upr = adapter->upr_list;
if (!upr)
return;
if (adapter->upr_busy)
return;
adapter->upr_busy = 1;
switch (upr->upr_request) {
case SLIC_UPR_STATS:
if (upr->upr_data_h == 0) {
slic_reg32_write(&slic_regs->slic_stats, upr->upr_data,
FLUSH);
} else {
slic_reg64_write(adapter, &slic_regs->slic_stats64,
upr->upr_data,
&slic_regs->slic_addr_upper,
upr->upr_data_h, FLUSH);
}
break;
case SLIC_UPR_RLSR:
slic_reg64_write(adapter, &slic_regs->slic_rlsr, upr->upr_data,
&slic_regs->slic_addr_upper, upr->upr_data_h,
FLUSH);
break;
case SLIC_UPR_RCONFIG:
slic_reg64_write(adapter, &slic_regs->slic_rconfig,
upr->upr_data, &slic_regs->slic_addr_upper,
upr->upr_data_h, FLUSH);
break;
case SLIC_UPR_PING:
slic_reg32_write(&slic_regs->slic_ping, 1, FLUSH);
break;
default:
ASSERT(0);
}
}
static int slic_upr_request(struct adapter *adapter,
u32 upr_request,
u32 upr_data,
u32 upr_data_h,
u32 upr_buffer, u32 upr_buffer_h)
{
int rc;
spin_lock_irqsave(&adapter->upr_lock.lock, adapter->upr_lock.flags);
rc = slic_upr_queue_request(adapter,
upr_request,
upr_data,
upr_data_h, upr_buffer, upr_buffer_h);
if (rc)
goto err_unlock_irq;
slic_upr_start(adapter);
err_unlock_irq:
spin_unlock_irqrestore(&adapter->upr_lock.lock,
adapter->upr_lock.flags);
return rc;
}
static void slic_link_upr_complete(struct adapter *adapter, u32 isr)
{
u32 linkstatus = adapter->pshmem->linkstatus;
uint linkup;
unsigned char linkspeed;
unsigned char linkduplex;
if ((isr & ISR_UPCERR) || (isr & ISR_UPCBSY)) {
struct slic_shmem *pshmem;
pshmem = (struct slic_shmem *)adapter->phys_shmem;
#if BITS_PER_LONG == 64
slic_upr_queue_request(adapter,
SLIC_UPR_RLSR,
SLIC_GET_ADDR_LOW(&pshmem->linkstatus),
SLIC_GET_ADDR_HIGH(&pshmem->linkstatus),
0, 0);
#else
slic_upr_queue_request(adapter,
SLIC_UPR_RLSR,
(u32) &pshmem->linkstatus,
SLIC_GET_ADDR_HIGH(pshmem), 0, 0);
#endif
return;
}
if (adapter->state != ADAPT_UP)
return;
ASSERT((adapter->devid == SLIC_1GB_DEVICE_ID)
|| (adapter->devid == SLIC_2GB_DEVICE_ID));
linkup = linkstatus & GIG_LINKUP ? LINK_UP : LINK_DOWN;
if (linkstatus & GIG_SPEED_1000)
linkspeed = LINK_1000MB;
else if (linkstatus & GIG_SPEED_100)
linkspeed = LINK_100MB;
else
linkspeed = LINK_10MB;
if (linkstatus & GIG_FULLDUPLEX)
linkduplex = LINK_FULLD;
else
linkduplex = LINK_HALFD;
if ((adapter->linkstate == LINK_DOWN) && (linkup == LINK_DOWN))
return;
/* link up event, but nothing has changed */
if ((adapter->linkstate == LINK_UP) &&
(linkup == LINK_UP) &&
(adapter->linkspeed == linkspeed) &&
(adapter->linkduplex == linkduplex))
return;
/* link has changed at this point */
/* link has gone from up to down */
if (linkup == LINK_DOWN) {
adapter->linkstate = LINK_DOWN;
return;
}
/* link has gone from down to up */
adapter->linkspeed = linkspeed;
adapter->linkduplex = linkduplex;
if (adapter->linkstate != LINK_UP) {
/* setup the mac */
slic_config_set(adapter, true);
adapter->linkstate = LINK_UP;
netif_start_queue(adapter->netdev);
}
}
static void slic_upr_request_complete(struct adapter *adapter, u32 isr)
{
struct sliccard *card = adapter->card;
struct slic_upr *upr;
spin_lock_irqsave(&adapter->upr_lock.lock, adapter->upr_lock.flags);
upr = adapter->upr_list;
if (!upr) {
ASSERT(0);
spin_unlock_irqrestore(&adapter->upr_lock.lock,
adapter->upr_lock.flags);
return;
}
adapter->upr_list = upr->next;
upr->next = NULL;
adapter->upr_busy = 0;
ASSERT(adapter->port == upr->adapter);
switch (upr->upr_request) {
case SLIC_UPR_STATS:
{
struct slic_stats *slicstats =
(struct slic_stats *) &adapter->pshmem->inicstats;
struct slic_stats *newstats = slicstats;
struct slic_stats *old = &adapter->inicstats_prev;
struct slicnet_stats *stst = &adapter->slic_stats;
if (isr & ISR_UPCERR) {
dev_err(&adapter->netdev->dev,
"SLIC_UPR_STATS command failed isr[%x]\n",
isr);
break;
}
UPDATE_STATS_GB(stst->tcp.xmit_tcp_segs,
newstats->xmit_tcp_segs_gb,
old->xmit_tcp_segs_gb);
UPDATE_STATS_GB(stst->tcp.xmit_tcp_bytes,
newstats->xmit_tcp_bytes_gb,
old->xmit_tcp_bytes_gb);
UPDATE_STATS_GB(stst->tcp.rcv_tcp_segs,
newstats->rcv_tcp_segs_gb,
old->rcv_tcp_segs_gb);
UPDATE_STATS_GB(stst->tcp.rcv_tcp_bytes,
newstats->rcv_tcp_bytes_gb,
old->rcv_tcp_bytes_gb);
UPDATE_STATS_GB(stst->iface.xmt_bytes,
newstats->xmit_bytes_gb,
old->xmit_bytes_gb);
UPDATE_STATS_GB(stst->iface.xmt_ucast,
newstats->xmit_unicasts_gb,
old->xmit_unicasts_gb);
UPDATE_STATS_GB(stst->iface.rcv_bytes,
newstats->rcv_bytes_gb,
old->rcv_bytes_gb);
UPDATE_STATS_GB(stst->iface.rcv_ucast,
newstats->rcv_unicasts_gb,
old->rcv_unicasts_gb);
UPDATE_STATS_GB(stst->iface.xmt_errors,
newstats->xmit_collisions_gb,
old->xmit_collisions_gb);
UPDATE_STATS_GB(stst->iface.xmt_errors,
newstats->xmit_excess_collisions_gb,
old->xmit_excess_collisions_gb);
UPDATE_STATS_GB(stst->iface.xmt_errors,
newstats->xmit_other_error_gb,
old->xmit_other_error_gb);
UPDATE_STATS_GB(stst->iface.rcv_errors,
newstats->rcv_other_error_gb,
old->rcv_other_error_gb);
UPDATE_STATS_GB(stst->iface.rcv_discards,
newstats->rcv_drops_gb,
old->rcv_drops_gb);
if (newstats->rcv_drops_gb > old->rcv_drops_gb) {
adapter->rcv_drops +=
(newstats->rcv_drops_gb -
old->rcv_drops_gb);
}
memcpy(old, newstats, sizeof(struct slic_stats));
break;
}
case SLIC_UPR_RLSR:
slic_link_upr_complete(adapter, isr);
break;
case SLIC_UPR_RCONFIG:
break;
case SLIC_UPR_RPHY:
ASSERT(0);
break;
case SLIC_UPR_ENLB:
ASSERT(0);
break;
case SLIC_UPR_ENCT:
ASSERT(0);
break;
case SLIC_UPR_PDWN:
ASSERT(0);
break;
case SLIC_UPR_PING:
card->pingstatus |= (isr & ISR_PINGDSMASK);
break;
default:
ASSERT(0);
}
kfree(upr);
slic_upr_start(adapter);
spin_unlock_irqrestore(&adapter->upr_lock.lock,
adapter->upr_lock.flags);
}
static void slic_config_get(struct adapter *adapter, u32 config,
u32 config_h)
{
int status;
status = slic_upr_request(adapter,
SLIC_UPR_RCONFIG,
(u32) config, (u32) config_h, 0, 0);
ASSERT(status == 0);
}
/*
* this is here to checksum the eeprom, there is some ucode bug
* which prevens us from using the ucode result.
* remove this once ucode is fixed.
*/
static ushort slic_eeprom_cksum(char *m, int len)
{
#define ADDCARRY(x) (x > 65535 ? x -= 65535 : x)
#define REDUCE {l_util.l = sum; sum = l_util.s[0] + l_util.s[1]; ADDCARRY(sum);\
}
u16 *w;
u32 sum = 0;
u32 byte_swapped = 0;
u32 w_int;
union {
char c[2];
ushort s;
} s_util;
union {
ushort s[2];
int l;
} l_util;
l_util.l = 0;
s_util.s = 0;
w = (u16 *)m;
#if BITS_PER_LONG == 64
w_int = (u32) ((ulong) w & 0x00000000FFFFFFFF);
#else
w_int = (u32) (w);
#endif
if ((1 & w_int) && (len > 0)) {
REDUCE;
sum <<= 8;
s_util.c[0] = *(unsigned char *)w;
w = (u16 *)((char *)w + 1);
len--;
byte_swapped = 1;
}
/* Unroll the loop to make overhead from branches &c small. */
while ((len -= 32) >= 0) {
sum += w[0];
sum += w[1];
sum += w[2];
sum += w[3];
sum += w[4];
sum += w[5];
sum += w[6];
sum += w[7];
sum += w[8];
sum += w[9];
sum += w[10];
sum += w[11];
sum += w[12];
sum += w[13];
sum += w[14];
sum += w[15];
w = (u16 *)((ulong) w + 16); /* verify */
}
len += 32;
while ((len -= 8) >= 0) {
sum += w[0];
sum += w[1];
sum += w[2];
sum += w[3];
w = (u16 *)((ulong) w + 4); /* verify */
}
len += 8;
if (len != 0 || byte_swapped != 0) {
REDUCE;
while ((len -= 2) >= 0)
sum += *w++; /* verify */
if (byte_swapped) {
REDUCE;
sum <<= 8;
byte_swapped = 0;
if (len == -1) {
s_util.c[1] = *(char *) w;
sum += s_util.s;
len = 0;
} else {
len = -1;
}
} else if (len == -1) {
s_util.c[0] = *(char *) w;
}
if (len == -1) {
s_util.c[1] = 0;
sum += s_util.s;
}
}
REDUCE;
return (ushort) sum;
}
static void slic_rspqueue_free(struct adapter *adapter)
{
int i;
struct slic_rspqueue *rspq = &adapter->rspqueue;
for (i = 0; i < rspq->num_pages; i++) {
if (rspq->vaddr[i]) {
pci_free_consistent(adapter->pcidev, PAGE_SIZE,
rspq->vaddr[i], rspq->paddr[i]);
}
rspq->vaddr[i] = NULL;
rspq->paddr[i] = 0;
}
rspq->offset = 0;
rspq->pageindex = 0;
rspq->rspbuf = NULL;
}
static int slic_rspqueue_init(struct adapter *adapter)
{
int i;
struct slic_rspqueue *rspq = &adapter->rspqueue;
__iomem struct slic_regs *slic_regs = adapter->slic_regs;
u32 paddrh = 0;
ASSERT(adapter->state == ADAPT_DOWN);
memset(rspq, 0, sizeof(struct slic_rspqueue));
rspq->num_pages = SLIC_RSPQ_PAGES_GB;
for (i = 0; i < rspq->num_pages; i++) {
rspq->vaddr[i] = pci_alloc_consistent(adapter->pcidev,
PAGE_SIZE,
&rspq->paddr[i]);
if (!rspq->vaddr[i]) {
dev_err(&adapter->pcidev->dev,
"pci_alloc_consistent failed\n");
slic_rspqueue_free(adapter);
return -ENOMEM;
}
/* FIXME:
* do we really need this assertions (4K PAGE_SIZE aligned addr)? */
#if 0
#ifndef CONFIG_X86_64
ASSERT(((u32) rspq->vaddr[i] & 0xFFFFF000) ==
(u32) rspq->vaddr[i]);
ASSERT(((u32) rspq->paddr[i] & 0xFFFFF000) ==
(u32) rspq->paddr[i]);
#endif
#endif
memset(rspq->vaddr[i], 0, PAGE_SIZE);
if (paddrh == 0) {
slic_reg32_write(&slic_regs->slic_rbar,
(rspq->paddr[i] | SLIC_RSPQ_BUFSINPAGE),
DONT_FLUSH);
} else {
slic_reg64_write(adapter, &slic_regs->slic_rbar64,
(rspq->paddr[i] | SLIC_RSPQ_BUFSINPAGE),
&slic_regs->slic_addr_upper,
paddrh, DONT_FLUSH);
}
}
rspq->offset = 0;
rspq->pageindex = 0;
rspq->rspbuf = (struct slic_rspbuf *)rspq->vaddr[0];
return 0;
}
static struct slic_rspbuf *slic_rspqueue_getnext(struct adapter *adapter)
{
struct slic_rspqueue *rspq = &adapter->rspqueue;
struct slic_rspbuf *buf;
if (!(rspq->rspbuf->status))
return NULL;
buf = rspq->rspbuf;
#if BITS_PER_LONG == 32
ASSERT((buf->status & 0xFFFFFFE0) == 0);
#endif
ASSERT(buf->hosthandle);
if (++rspq->offset < SLIC_RSPQ_BUFSINPAGE) {
rspq->rspbuf++;
#if BITS_PER_LONG == 32
ASSERT(((u32) rspq->rspbuf & 0xFFFFFFE0) ==
(u32) rspq->rspbuf);
#endif
} else {
ASSERT(rspq->offset == SLIC_RSPQ_BUFSINPAGE);
slic_reg64_write(adapter, &adapter->slic_regs->slic_rbar64,
(rspq->paddr[rspq->pageindex] | SLIC_RSPQ_BUFSINPAGE),
&adapter->slic_regs->slic_addr_upper, 0, DONT_FLUSH);
rspq->pageindex = (++rspq->pageindex) % rspq->num_pages;
rspq->offset = 0;
rspq->rspbuf = (struct slic_rspbuf *)
rspq->vaddr[rspq->pageindex];
#if BITS_PER_LONG == 32
ASSERT(((u32) rspq->rspbuf & 0xFFFFF000) ==
(u32) rspq->rspbuf);
#endif
}
#if BITS_PER_LONG == 32
ASSERT(((u32) buf & 0xFFFFFFE0) == (u32) buf);
#endif
return buf;
}
static void slic_cmdqmem_init(struct adapter *adapter)
{
struct slic_cmdqmem *cmdqmem = &adapter->cmdqmem;
memset(cmdqmem, 0, sizeof(struct slic_cmdqmem));
}
static void slic_cmdqmem_free(struct adapter *adapter)
{
struct slic_cmdqmem *cmdqmem = &adapter->cmdqmem;
int i;
for (i = 0; i < SLIC_CMDQ_MAXPAGES; i++) {
if (cmdqmem->pages[i]) {
pci_free_consistent(adapter->pcidev,
PAGE_SIZE,
(void *) cmdqmem->pages[i],
cmdqmem->dma_pages[i]);
}
}
memset(cmdqmem, 0, sizeof(struct slic_cmdqmem));
}
static u32 *slic_cmdqmem_addpage(struct adapter *adapter)
{
struct slic_cmdqmem *cmdqmem = &adapter->cmdqmem;
u32 *pageaddr;
if (cmdqmem->pagecnt >= SLIC_CMDQ_MAXPAGES)
return NULL;
pageaddr = pci_alloc_consistent(adapter->pcidev,
PAGE_SIZE,
&cmdqmem->dma_pages[cmdqmem->pagecnt]);
if (!pageaddr)
return NULL;
#if BITS_PER_LONG == 32
ASSERT(((u32) pageaddr & 0xFFFFF000) == (u32) pageaddr);
#endif
cmdqmem->pages[cmdqmem->pagecnt] = pageaddr;
cmdqmem->pagecnt++;
return pageaddr;
}
static void slic_cmdq_free(struct adapter *adapter)
{
struct slic_hostcmd *cmd;
cmd = adapter->cmdq_all.head;
while (cmd) {
if (cmd->busy) {
struct sk_buff *tempskb;
tempskb = cmd->skb;
if (tempskb) {
cmd->skb = NULL;
dev_kfree_skb_irq(tempskb);
}
}
cmd = cmd->next_all;
}
memset(&adapter->cmdq_all, 0, sizeof(struct slic_cmdqueue));
memset(&adapter->cmdq_free, 0, sizeof(struct slic_cmdqueue));
memset(&adapter->cmdq_done, 0, sizeof(struct slic_cmdqueue));
slic_cmdqmem_free(adapter);
}
static void slic_cmdq_addcmdpage(struct adapter *adapter, u32 *page)
{
struct slic_hostcmd *cmd;
struct slic_hostcmd *prev;
struct slic_hostcmd *tail;
struct slic_cmdqueue *cmdq;
int cmdcnt;
void *cmdaddr;
ulong phys_addr;
u32 phys_addrl;
u32 phys_addrh;
struct slic_handle *pslic_handle;
cmdaddr = page;
cmd = (struct slic_hostcmd *)cmdaddr;
cmdcnt = 0;
phys_addr = virt_to_bus((void *)page);
phys_addrl = SLIC_GET_ADDR_LOW(phys_addr);
phys_addrh = SLIC_GET_ADDR_HIGH(phys_addr);
prev = NULL;
tail = cmd;
while ((cmdcnt < SLIC_CMDQ_CMDSINPAGE) &&
(adapter->slic_handle_ix < 256)) {
/* Allocate and initialize a SLIC_HANDLE for this command */
SLIC_GET_SLIC_HANDLE(adapter, pslic_handle);
if (pslic_handle == NULL)
ASSERT(0);
ASSERT(pslic_handle ==
&adapter->slic_handles[pslic_handle->token.
handle_index]);
pslic_handle->type = SLIC_HANDLE_CMD;
pslic_handle->address = (void *) cmd;
pslic_handle->offset = (ushort) adapter->slic_handle_ix++;
pslic_handle->other_handle = NULL;
pslic_handle->next = NULL;
cmd->pslic_handle = pslic_handle;
cmd->cmd64.hosthandle = pslic_handle->token.handle_token;
cmd->busy = false;
cmd->paddrl = phys_addrl;
cmd->paddrh = phys_addrh;
cmd->next_all = prev;
cmd->next = prev;
prev = cmd;
phys_addrl += SLIC_HOSTCMD_SIZE;
cmdaddr += SLIC_HOSTCMD_SIZE;
cmd = (struct slic_hostcmd *)cmdaddr;
cmdcnt++;
}
cmdq = &adapter->cmdq_all;
cmdq->count += cmdcnt; /* SLIC_CMDQ_CMDSINPAGE; mooktodo */
tail->next_all = cmdq->head;
cmdq->head = prev;
cmdq = &adapter->cmdq_free;
spin_lock_irqsave(&cmdq->lock.lock, cmdq->lock.flags);
cmdq->count += cmdcnt; /* SLIC_CMDQ_CMDSINPAGE; mooktodo */
tail->next = cmdq->head;
cmdq->head = prev;
spin_unlock_irqrestore(&cmdq->lock.lock, cmdq->lock.flags);
}
static int slic_cmdq_init(struct adapter *adapter)
{
int i;
u32 *pageaddr;
ASSERT(adapter->state == ADAPT_DOWN);
memset(&adapter->cmdq_all, 0, sizeof(struct slic_cmdqueue));
memset(&adapter->cmdq_free, 0, sizeof(struct slic_cmdqueue));
memset(&adapter->cmdq_done, 0, sizeof(struct slic_cmdqueue));
spin_lock_init(&adapter->cmdq_all.lock.lock);
spin_lock_init(&adapter->cmdq_free.lock.lock);
spin_lock_init(&adapter->cmdq_done.lock.lock);
slic_cmdqmem_init(adapter);
adapter->slic_handle_ix = 1;
for (i = 0; i < SLIC_CMDQ_INITPAGES; i++) {
pageaddr = slic_cmdqmem_addpage(adapter);
#if BITS_PER_LONG == 32
ASSERT(((u32) pageaddr & 0xFFFFF000) == (u32) pageaddr);
#endif
if (!pageaddr) {
slic_cmdq_free(adapter);
return -ENOMEM;
}
slic_cmdq_addcmdpage(adapter, pageaddr);
}
adapter->slic_handle_ix = 1;
return 0;
}
static void slic_cmdq_reset(struct adapter *adapter)
{
struct slic_hostcmd *hcmd;
struct sk_buff *skb;
u32 outstanding;
spin_lock_irqsave(&adapter->cmdq_free.lock.lock,
adapter->cmdq_free.lock.flags);
spin_lock_irqsave(&adapter->cmdq_done.lock.lock,
adapter->cmdq_done.lock.flags);
outstanding = adapter->cmdq_all.count - adapter->cmdq_done.count;
outstanding -= adapter->cmdq_free.count;
hcmd = adapter->cmdq_all.head;
while (hcmd) {
if (hcmd->busy) {
skb = hcmd->skb;
ASSERT(skb);
hcmd->busy = 0;
hcmd->skb = NULL;
dev_kfree_skb_irq(skb);
}
hcmd = hcmd->next_all;
}
adapter->cmdq_free.count = 0;
adapter->cmdq_free.head = NULL;
adapter->cmdq_free.tail = NULL;
adapter->cmdq_done.count = 0;
adapter->cmdq_done.head = NULL;
adapter->cmdq_done.tail = NULL;
adapter->cmdq_free.head = adapter->cmdq_all.head;
hcmd = adapter->cmdq_all.head;
while (hcmd) {
adapter->cmdq_free.count++;
hcmd->next = hcmd->next_all;
hcmd = hcmd->next_all;
}
if (adapter->cmdq_free.count != adapter->cmdq_all.count) {
dev_err(&adapter->netdev->dev,
"free_count %d != all count %d\n",
adapter->cmdq_free.count, adapter->cmdq_all.count);
}
spin_unlock_irqrestore(&adapter->cmdq_done.lock.lock,
adapter->cmdq_done.lock.flags);
spin_unlock_irqrestore(&adapter->cmdq_free.lock.lock,
adapter->cmdq_free.lock.flags);
}
static void slic_cmdq_getdone(struct adapter *adapter)
{
struct slic_cmdqueue *done_cmdq = &adapter->cmdq_done;
struct slic_cmdqueue *free_cmdq = &adapter->cmdq_free;
ASSERT(free_cmdq->head == NULL);
spin_lock_irqsave(&done_cmdq->lock.lock, done_cmdq->lock.flags);
free_cmdq->head = done_cmdq->head;
free_cmdq->count = done_cmdq->count;
done_cmdq->head = NULL;
done_cmdq->tail = NULL;
done_cmdq->count = 0;
spin_unlock_irqrestore(&done_cmdq->lock.lock, done_cmdq->lock.flags);
}
static struct slic_hostcmd *slic_cmdq_getfree(struct adapter *adapter)
{
struct slic_cmdqueue *cmdq = &adapter->cmdq_free;
struct slic_hostcmd *cmd = NULL;
lock_and_retry:
spin_lock_irqsave(&cmdq->lock.lock, cmdq->lock.flags);
retry:
cmd = cmdq->head;
if (cmd) {
cmdq->head = cmd->next;
cmdq->count--;
spin_unlock_irqrestore(&cmdq->lock.lock, cmdq->lock.flags);
} else {
slic_cmdq_getdone(adapter);
cmd = cmdq->head;
if (cmd) {
goto retry;
} else {
u32 *pageaddr;
spin_unlock_irqrestore(&cmdq->lock.lock,
cmdq->lock.flags);
pageaddr = slic_cmdqmem_addpage(adapter);
if (pageaddr) {
slic_cmdq_addcmdpage(adapter, pageaddr);
goto lock_and_retry;
}
}
}
return cmd;
}
static void slic_cmdq_putdone_irq(struct adapter *adapter,
struct slic_hostcmd *cmd)
{
struct slic_cmdqueue *cmdq = &adapter->cmdq_done;
spin_lock(&cmdq->lock.lock);
cmd->busy = 0;
cmd->next = cmdq->head;
cmdq->head = cmd;
cmdq->count++;
if ((adapter->xmitq_full) && (cmdq->count > 10))
netif_wake_queue(adapter->netdev);
spin_unlock(&cmdq->lock.lock);
}
static int slic_rcvqueue_fill(struct adapter *adapter)
{
void *paddr;
u32 paddrl;
u32 paddrh;
struct slic_rcvqueue *rcvq = &adapter->rcvqueue;
int i = 0;
struct device *dev = &adapter->netdev->dev;
while (i < SLIC_RCVQ_FILLENTRIES) {
struct slic_rcvbuf *rcvbuf;
struct sk_buff *skb;
#ifdef KLUDGE_FOR_4GB_BOUNDARY
retry_rcvqfill:
#endif
skb = alloc_skb(SLIC_RCVQ_RCVBUFSIZE, GFP_ATOMIC);
if (skb) {
paddr = (void *)pci_map_single(adapter->pcidev,
skb->data,
SLIC_RCVQ_RCVBUFSIZE,
PCI_DMA_FROMDEVICE);
paddrl = SLIC_GET_ADDR_LOW(paddr);
paddrh = SLIC_GET_ADDR_HIGH(paddr);
skb->len = SLIC_RCVBUF_HEADSIZE;
rcvbuf = (struct slic_rcvbuf *)skb->head;
rcvbuf->status = 0;
skb->next = NULL;
#ifdef KLUDGE_FOR_4GB_BOUNDARY
if (paddrl == 0) {
dev_err(dev, "%s: LOW 32bits PHYSICAL ADDRESS == 0\n",
__func__);
dev_err(dev, "skb[%p] PROBLEM\n", skb);
dev_err(dev, " skbdata[%p]\n", skb->data);
dev_err(dev, " skblen[%x]\n", skb->len);
dev_err(dev, " paddr[%p]\n", paddr);
dev_err(dev, " paddrl[%x]\n", paddrl);
dev_err(dev, " paddrh[%x]\n", paddrh);
dev_err(dev, " rcvq->head[%p]\n", rcvq->head);
dev_err(dev, " rcvq->tail[%p]\n", rcvq->tail);
dev_err(dev, " rcvq->count[%x]\n", rcvq->count);
dev_err(dev, "SKIP THIS SKB!!!!!!!!\n");
goto retry_rcvqfill;
}
#else
if (paddrl == 0) {
dev_err(dev, "%s: LOW 32bits PHYSICAL ADDRESS == 0\n",
__func__);
dev_err(dev, "skb[%p] PROBLEM\n", skb);
dev_err(dev, " skbdata[%p]\n", skb->data);
dev_err(dev, " skblen[%x]\n", skb->len);
dev_err(dev, " paddr[%p]\n", paddr);
dev_err(dev, " paddrl[%x]\n", paddrl);
dev_err(dev, " paddrh[%x]\n", paddrh);
dev_err(dev, " rcvq->head[%p]\n", rcvq->head);
dev_err(dev, " rcvq->tail[%p]\n", rcvq->tail);
dev_err(dev, " rcvq->count[%x]\n", rcvq->count);
dev_err(dev, "GIVE TO CARD ANYWAY\n");
}
#endif
if (paddrh == 0) {
slic_reg32_write(&adapter->slic_regs->slic_hbar,
(u32)paddrl, DONT_FLUSH);
} else {
slic_reg64_write(adapter,
&adapter->slic_regs->slic_hbar64,
paddrl,
&adapter->slic_regs->slic_addr_upper,
paddrh, DONT_FLUSH);
}
if (rcvq->head)
rcvq->tail->next = skb;
else
rcvq->head = skb;
rcvq->tail = skb;
rcvq->count++;
i++;
} else {
dev_err(&adapter->netdev->dev,
"slic_rcvqueue_fill could only get [%d] skbuffs\n",
i);
break;
}
}
return i;
}
static void slic_rcvqueue_free(struct adapter *adapter)
{
struct slic_rcvqueue *rcvq = &adapter->rcvqueue;
struct sk_buff *skb;
while (rcvq->head) {
skb = rcvq->head;
rcvq->head = rcvq->head->next;
dev_kfree_skb(skb);
}
rcvq->tail = NULL;
rcvq->head = NULL;
rcvq->count = 0;
}
static int slic_rcvqueue_init(struct adapter *adapter)
{
int i, count;
struct slic_rcvqueue *rcvq = &adapter->rcvqueue;
ASSERT(adapter->state == ADAPT_DOWN);
rcvq->tail = NULL;
rcvq->head = NULL;
rcvq->size = SLIC_RCVQ_ENTRIES;
rcvq->errors = 0;
rcvq->count = 0;
i = (SLIC_RCVQ_ENTRIES / SLIC_RCVQ_FILLENTRIES);
count = 0;
while (i) {
count += slic_rcvqueue_fill(adapter);
i--;
}
if (rcvq->count < SLIC_RCVQ_MINENTRIES) {
slic_rcvqueue_free(adapter);
return -ENOMEM;
}
return 0;
}
static struct sk_buff *slic_rcvqueue_getnext(struct adapter *adapter)
{
struct slic_rcvqueue *rcvq = &adapter->rcvqueue;
struct sk_buff *skb;
struct slic_rcvbuf *rcvbuf;
int count;
if (rcvq->count) {
skb = rcvq->head;
rcvbuf = (struct slic_rcvbuf *)skb->head;
ASSERT(rcvbuf);
if (rcvbuf->status & IRHDDR_SVALID) {
rcvq->head = rcvq->head->next;
skb->next = NULL;
rcvq->count--;
} else {
skb = NULL;
}
} else {
dev_err(&adapter->netdev->dev,
"RcvQ Empty!! rcvq[%p] count[%x]\n", rcvq, rcvq->count);
skb = NULL;
}
while (rcvq->count < SLIC_RCVQ_FILLTHRESH) {
count = slic_rcvqueue_fill(adapter);
if (!count)
break;
}
if (skb)
rcvq->errors = 0;
return skb;
}
static u32 slic_rcvqueue_reinsert(struct adapter *adapter, struct sk_buff *skb)
{
struct slic_rcvqueue *rcvq = &adapter->rcvqueue;
void *paddr;
u32 paddrl;
u32 paddrh;
struct slic_rcvbuf *rcvbuf = (struct slic_rcvbuf *)skb->head;
struct device *dev;
ASSERT(skb->len == SLIC_RCVBUF_HEADSIZE);
paddr = (void *)pci_map_single(adapter->pcidev, skb->head,
SLIC_RCVQ_RCVBUFSIZE, PCI_DMA_FROMDEVICE);
rcvbuf->status = 0;
skb->next = NULL;
paddrl = SLIC_GET_ADDR_LOW(paddr);
paddrh = SLIC_GET_ADDR_HIGH(paddr);
if (paddrl == 0) {
dev = &adapter->netdev->dev;
dev_err(dev, "%s: LOW 32bits PHYSICAL ADDRESS == 0\n",
__func__);
dev_err(dev, "skb[%p] PROBLEM\n", skb);
dev_err(dev, " skbdata[%p]\n", skb->data);
dev_err(dev, " skblen[%x]\n", skb->len);
dev_err(dev, " paddr[%p]\n", paddr);
dev_err(dev, " paddrl[%x]\n", paddrl);
dev_err(dev, " paddrh[%x]\n", paddrh);
dev_err(dev, " rcvq->head[%p]\n", rcvq->head);
dev_err(dev, " rcvq->tail[%p]\n", rcvq->tail);
dev_err(dev, " rcvq->count[%x]\n", rcvq->count);
}
if (paddrh == 0) {
slic_reg32_write(&adapter->slic_regs->slic_hbar, (u32)paddrl,
DONT_FLUSH);
} else {
slic_reg64_write(adapter, &adapter->slic_regs->slic_hbar64,
paddrl, &adapter->slic_regs->slic_addr_upper,
paddrh, DONT_FLUSH);
}
if (rcvq->head)
rcvq->tail->next = skb;
else
rcvq->head = skb;
rcvq->tail = skb;
rcvq->count++;
return rcvq->count;
}
static int slic_debug_card_show(struct seq_file *seq, void *v)
{
#ifdef MOOKTODO
int i;
struct sliccard *card = seq->private;
struct slic_config *config = &card->config;
unsigned char *fru = (unsigned char *)(&card->config.atk_fru);
unsigned char *oemfru = (unsigned char *)(&card->config.OemFru);
#endif
seq_printf(seq, "driver_version : %s\n", slic_proc_version);
seq_printf(seq, "Microcode versions: \n");
seq_printf(seq, " Gigabit (gb) : %s %s\n",
MOJAVE_UCODE_VERS_STRING, MOJAVE_UCODE_VERS_DATE);
seq_printf(seq, " Gigabit Receiver : %s %s\n",
GB_RCVUCODE_VERS_STRING, GB_RCVUCODE_VERS_DATE);
seq_printf(seq, "Vendor : %s\n", slic_vendor);
seq_printf(seq, "Product Name : %s\n", slic_product_name);
#ifdef MOOKTODO
seq_printf(seq, "VendorId : %4.4X\n",
config->VendorId);
seq_printf(seq, "DeviceId : %4.4X\n",
config->DeviceId);
seq_printf(seq, "RevisionId : %2.2x\n",
config->RevisionId);
seq_printf(seq, "Bus # : %d\n", card->busnumber);
seq_printf(seq, "Device # : %d\n", card->slotnumber);
seq_printf(seq, "Interfaces : %d\n", card->card_size);
seq_printf(seq, " Initialized : %d\n",
card->adapters_activated);
seq_printf(seq, " Allocated : %d\n",
card->adapters_allocated);
ASSERT(card->card_size <= SLIC_NBR_MACS);
for (i = 0; i < card->card_size; i++) {
seq_printf(seq,
" MAC%d : %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
i, config->macinfo[i].macaddrA[0],
config->macinfo[i].macaddrA[1],
config->macinfo[i].macaddrA[2],
config->macinfo[i].macaddrA[3],
config->macinfo[i].macaddrA[4],
config->macinfo[i].macaddrA[5]);
}
seq_printf(seq, " IF Init State Duplex/Speed irq\n");
seq_printf(seq, " -------------------------------\n");
for (i = 0; i < card->adapters_allocated; i++) {
struct adapter *adapter;
adapter = card->adapter[i];
if (adapter) {
seq_printf(seq,
" %d %d %s %s %s 0x%X\n",
adapter->physport, adapter->state,
SLIC_LINKSTATE(adapter->linkstate),
SLIC_DUPLEX(adapter->linkduplex),
SLIC_SPEED(adapter->linkspeed),
(uint) adapter->irq);
}
}
seq_printf(seq, "Generation # : %4.4X\n", card->gennumber);
seq_printf(seq, "RcvQ max entries : %4.4X\n",
SLIC_RCVQ_ENTRIES);
seq_printf(seq, "Ping Status : %8.8X\n",
card->pingstatus);
seq_printf(seq, "Minimum grant : %2.2x\n",
config->MinGrant);
seq_printf(seq, "Maximum Latency : %2.2x\n", config->MaxLat);
seq_printf(seq, "PciStatus : %4.4x\n",
config->Pcistatus);
seq_printf(seq, "Debug Device Id : %4.4x\n",
config->DbgDevId);
seq_printf(seq, "DRAM ROM Function : %4.4x\n",
config->DramRomFn);
seq_printf(seq, "Network interface Pin 1 : %2.2x\n",
config->NetIntPin1);
seq_printf(seq, "Network interface Pin 2 : %2.2x\n",
config->NetIntPin1);
seq_printf(seq, "Network interface Pin 3 : %2.2x\n",
config->NetIntPin1);
seq_printf(seq, "PM capabilities : %4.4X\n",
config->PMECapab);
seq_printf(seq, "Network Clock Controls : %4.4X\n",
config->NwClkCtrls);
switch (config->FruFormat) {
case ATK_FRU_FORMAT:
{
seq_printf(seq,
"Vendor : Alacritech, Inc.\n");
seq_printf(seq,
"Assembly # : %c%c%c%c%c%c\n",
fru[0], fru[1], fru[2], fru[3], fru[4],
fru[5]);
seq_printf(seq,
"Revision # : %c%c\n",
fru[6], fru[7]);
if (config->OEMFruFormat == VENDOR4_FRU_FORMAT) {
seq_printf(seq,
"Serial # : "
"%c%c%c%c%c%c%c%c%c%c%c%c\n",
fru[8], fru[9], fru[10],
fru[11], fru[12], fru[13],
fru[16], fru[17], fru[18],
fru[19], fru[20], fru[21]);
} else {
seq_printf(seq,
"Serial # : "
"%c%c%c%c%c%c%c%c%c%c%c%c%c%c\n",
fru[8], fru[9], fru[10],
fru[11], fru[12], fru[13],
fru[14], fru[15], fru[16],
fru[17], fru[18], fru[19],
fru[20], fru[21]);
}
break;
}
default:
{
seq_printf(seq,
"Vendor : Alacritech, Inc.\n");
seq_printf(seq,
"Serial # : Empty FRU\n");
break;
}
}
switch (config->OEMFruFormat) {
case VENDOR1_FRU_FORMAT:
{
seq_printf(seq, "FRU Information:\n");
seq_printf(seq, " Commodity # : %c\n",
oemfru[0]);
seq_printf(seq,
" Assembly # : %c%c%c%c\n",
oemfru[1], oemfru[2], oemfru[3], oemfru[4]);
seq_printf(seq,
" Revision # : %c%c\n",
oemfru[5], oemfru[6]);
seq_printf(seq,
" Supplier # : %c%c\n",
oemfru[7], oemfru[8]);
seq_printf(seq,
" Date : %c%c\n",
oemfru[9], oemfru[10]);
seq_sprintf(seq,
" Sequence # : %c%c%c\n",
oemfru[11], oemfru[12], oemfru[13]);
break;
}
case VENDOR2_FRU_FORMAT:
{
seq_printf(seq, "FRU Information:\n");
seq_printf(seq,
" Part # : "
"%c%c%c%c%c%c%c%c\n",
oemfru[0], oemfru[1], oemfru[2],
oemfru[3], oemfru[4], oemfru[5],
oemfru[6], oemfru[7]);
seq_printf(seq,
" Supplier # : %c%c%c%c%c\n",
oemfru[8], oemfru[9], oemfru[10],
oemfru[11], oemfru[12]);
seq_printf(seq,
" Date : %c%c%c\n",
oemfru[13], oemfru[14], oemfru[15]);
seq_sprintf(seq,
" Sequence # : %c%c%c%c\n",
oemfru[16], oemfru[17], oemfru[18],
oemfru[19]);
break;
}
case VENDOR3_FRU_FORMAT:
{
seq_printf(seq, "FRU Information:\n");
}
case VENDOR4_FRU_FORMAT:
{
seq_printf(seq, "FRU Information:\n");
seq_printf(seq,
" FRU Number : "
"%c%c%c%c%c%c%c%c\n",
oemfru[0], oemfru[1], oemfru[2],
oemfru[3], oemfru[4], oemfru[5],
oemfru[6], oemfru[7]);
seq_sprintf(seq,
" Part Number : "
"%c%c%c%c%c%c%c%c\n",
oemfru[8], oemfru[9], oemfru[10],
oemfru[11], oemfru[12], oemfru[13],
oemfru[14], oemfru[15]);
seq_printf(seq,
" EC Level : "
"%c%c%c%c%c%c%c%c\n",
oemfru[16], oemfru[17], oemfru[18],
oemfru[19], oemfru[20], oemfru[21],
oemfru[22], oemfru[23]);
break;
}
default:
break;
}
#endif
return 0;
}
static int slic_debug_adapter_show(struct seq_file *seq, void *v)
{
struct adapter *adapter = seq->private;
struct net_device *netdev = adapter->netdev;
seq_printf(seq, "info: interface : %s\n",
adapter->netdev->name);
seq_printf(seq, "info: status : %s\n",
SLIC_LINKSTATE(adapter->linkstate));
seq_printf(seq, "info: port : %d\n",
adapter->physport);
seq_printf(seq, "info: speed : %s\n",
SLIC_SPEED(adapter->linkspeed));
seq_printf(seq, "info: duplex : %s\n",
SLIC_DUPLEX(adapter->linkduplex));
seq_printf(seq, "info: irq : 0x%X\n",
(uint) adapter->irq);
seq_printf(seq, "info: Interrupt Agg Delay: %d usec\n",
adapter->card->loadlevel_current);
seq_printf(seq, "info: RcvQ max entries : %4.4X\n",
SLIC_RCVQ_ENTRIES);
seq_printf(seq, "info: RcvQ current : %4.4X\n",
adapter->rcvqueue.count);
seq_printf(seq, "rx stats: packets : %8.8lX\n",
netdev->stats.rx_packets);
seq_printf(seq, "rx stats: bytes : %8.8lX\n",
netdev->stats.rx_bytes);
seq_printf(seq, "rx stats: broadcasts : %8.8X\n",
adapter->rcv_broadcasts);
seq_printf(seq, "rx stats: multicasts : %8.8X\n",
adapter->rcv_multicasts);
seq_printf(seq, "rx stats: unicasts : %8.8X\n",
adapter->rcv_unicasts);
seq_printf(seq, "rx stats: errors : %8.8X\n",
(u32) adapter->slic_stats.iface.rcv_errors);
seq_printf(seq, "rx stats: Missed errors : %8.8X\n",
(u32) adapter->slic_stats.iface.rcv_discards);
seq_printf(seq, "rx stats: drops : %8.8X\n",
(u32) adapter->rcv_drops);
seq_printf(seq, "tx stats: packets : %8.8lX\n",
netdev->stats.tx_packets);
seq_printf(seq, "tx stats: bytes : %8.8lX\n",
netdev->stats.tx_bytes);
seq_printf(seq, "tx stats: errors : %8.8X\n",
(u32) adapter->slic_stats.iface.xmt_errors);
seq_printf(seq, "rx stats: multicasts : %8.8lX\n",
netdev->stats.multicast);
seq_printf(seq, "tx stats: collision errors : %8.8X\n",
(u32) adapter->slic_stats.iface.xmit_collisions);
seq_printf(seq, "perf: Max rcv frames/isr : %8.8X\n",
adapter->max_isr_rcvs);
seq_printf(seq, "perf: Rcv interrupt yields : %8.8X\n",
adapter->rcv_interrupt_yields);
seq_printf(seq, "perf: Max xmit complete/isr : %8.8X\n",
adapter->max_isr_xmits);
seq_printf(seq, "perf: error interrupts : %8.8X\n",
adapter->error_interrupts);
seq_printf(seq, "perf: error rmiss interrupts : %8.8X\n",
adapter->error_rmiss_interrupts);
seq_printf(seq, "perf: rcv interrupts : %8.8X\n",
adapter->rcv_interrupts);
seq_printf(seq, "perf: xmit interrupts : %8.8X\n",
adapter->xmit_interrupts);
seq_printf(seq, "perf: link event interrupts : %8.8X\n",
adapter->linkevent_interrupts);
seq_printf(seq, "perf: UPR interrupts : %8.8X\n",
adapter->upr_interrupts);
seq_printf(seq, "perf: interrupt count : %8.8X\n",
adapter->num_isrs);
seq_printf(seq, "perf: false interrupts : %8.8X\n",
adapter->false_interrupts);
seq_printf(seq, "perf: All register writes : %8.8X\n",
adapter->all_reg_writes);
seq_printf(seq, "perf: ICR register writes : %8.8X\n",
adapter->icr_reg_writes);
seq_printf(seq, "perf: ISR register writes : %8.8X\n",
adapter->isr_reg_writes);
seq_printf(seq, "ifevents: overflow 802 errors : %8.8X\n",
adapter->if_events.oflow802);
seq_printf(seq, "ifevents: transport overflow errors: %8.8X\n",
adapter->if_events.Tprtoflow);
seq_printf(seq, "ifevents: underflow errors : %8.8X\n",
adapter->if_events.uflow802);
seq_printf(seq, "ifevents: receive early : %8.8X\n",
adapter->if_events.rcvearly);
seq_printf(seq, "ifevents: buffer overflows : %8.8X\n",
adapter->if_events.Bufov);
seq_printf(seq, "ifevents: carrier errors : %8.8X\n",
adapter->if_events.Carre);
seq_printf(seq, "ifevents: Long : %8.8X\n",
adapter->if_events.Longe);
seq_printf(seq, "ifevents: invalid preambles : %8.8X\n",
adapter->if_events.Invp);
seq_printf(seq, "ifevents: CRC errors : %8.8X\n",
adapter->if_events.Crc);
seq_printf(seq, "ifevents: dribble nibbles : %8.8X\n",
adapter->if_events.Drbl);
seq_printf(seq, "ifevents: Code violations : %8.8X\n",
adapter->if_events.Code);
seq_printf(seq, "ifevents: TCP checksum errors : %8.8X\n",
adapter->if_events.TpCsum);
seq_printf(seq, "ifevents: TCP header short errors : %8.8X\n",
adapter->if_events.TpHlen);
seq_printf(seq, "ifevents: IP checksum errors : %8.8X\n",
adapter->if_events.IpCsum);
seq_printf(seq, "ifevents: IP frame incompletes : %8.8X\n",
adapter->if_events.IpLen);
seq_printf(seq, "ifevents: IP headers shorts : %8.8X\n",
adapter->if_events.IpHlen);
return 0;
}
static int slic_debug_adapter_open(struct inode *inode, struct file *file)
{
return single_open(file, slic_debug_adapter_show, inode->i_private);
}
static int slic_debug_card_open(struct inode *inode, struct file *file)
{
return single_open(file, slic_debug_card_show, inode->i_private);
}
static const struct file_operations slic_debug_adapter_fops = {
.owner = THIS_MODULE,
.open = slic_debug_adapter_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static const struct file_operations slic_debug_card_fops = {
.owner = THIS_MODULE,
.open = slic_debug_card_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static void slic_debug_adapter_create(struct adapter *adapter)
{
struct dentry *d;
char name[7];
struct sliccard *card = adapter->card;
if (!card->debugfs_dir)
return;
sprintf(name, "port%d", adapter->port);
d = debugfs_create_file(name, S_IRUGO,
card->debugfs_dir, adapter,
&slic_debug_adapter_fops);
if (!d || IS_ERR(d))
pr_info(PFX "%s: debugfs create failed\n", name);
else
adapter->debugfs_entry = d;
}
static void slic_debug_adapter_destroy(struct adapter *adapter)
{
debugfs_remove(adapter->debugfs_entry);
adapter->debugfs_entry = NULL;
}
static void slic_debug_card_create(struct sliccard *card)
{
struct dentry *d;
char name[IFNAMSIZ];
snprintf(name, sizeof(name), "slic%d", card->cardnum);
d = debugfs_create_dir(name, slic_debugfs);
if (!d || IS_ERR(d))
pr_info(PFX "%s: debugfs create dir failed\n",
name);
else {
card->debugfs_dir = d;
d = debugfs_create_file("cardinfo", S_IRUGO,
slic_debugfs, card,
&slic_debug_card_fops);
if (!d || IS_ERR(d))
pr_info(PFX "%s: debugfs create failed\n",
name);
else
card->debugfs_cardinfo = d;
}
}
static void slic_debug_card_destroy(struct sliccard *card)
{
int i;
for (i = 0; i < card->card_size; i++) {
struct adapter *adapter;
adapter = card->adapter[i];
if (adapter)
slic_debug_adapter_destroy(adapter);
}
if (card->debugfs_cardinfo) {
debugfs_remove(card->debugfs_cardinfo);
card->debugfs_cardinfo = NULL;
}
if (card->debugfs_dir) {
debugfs_remove(card->debugfs_dir);
card->debugfs_dir = NULL;
}
}
static void slic_debug_init(void)
{
struct dentry *ent;
ent = debugfs_create_dir("slic", NULL);
if (!ent || IS_ERR(ent)) {
pr_info(PFX "debugfs create directory failed\n");
return;
}
slic_debugfs = ent;
}
static void slic_debug_cleanup(void)
{
if (slic_debugfs) {
debugfs_remove(slic_debugfs);
slic_debugfs = NULL;
}
}
/*
* slic_link_event_handler -
*
* Initiate a link configuration sequence. The link configuration begins
* by issuing a READ_LINK_STATUS command to the Utility Processor on the
* SLIC. Since the command finishes asynchronously, the slic_upr_comlete
* routine will follow it up witha UP configuration write command, which
* will also complete asynchronously.
*
*/
static void slic_link_event_handler(struct adapter *adapter)
{
int status;
struct slic_shmem *pshmem;
if (adapter->state != ADAPT_UP) {
/* Adapter is not operational. Ignore. */
return;
}
pshmem = (struct slic_shmem *)adapter->phys_shmem;
#if BITS_PER_LONG == 64
status = slic_upr_request(adapter,
SLIC_UPR_RLSR,
SLIC_GET_ADDR_LOW(&pshmem->linkstatus),
SLIC_GET_ADDR_HIGH(&pshmem->linkstatus),
0, 0);
#else
status = slic_upr_request(adapter, SLIC_UPR_RLSR,
(u32) &pshmem->linkstatus, /* no 4GB wrap guaranteed */
0, 0, 0);
#endif
ASSERT(status == 0);
}
static void slic_init_cleanup(struct adapter *adapter)
{
if (adapter->intrregistered) {
adapter->intrregistered = 0;
free_irq(adapter->netdev->irq, adapter->netdev);
}
if (adapter->pshmem) {
pci_free_consistent(adapter->pcidev,
sizeof(struct slic_shmem),
adapter->pshmem, adapter->phys_shmem);
adapter->pshmem = NULL;
adapter->phys_shmem = (dma_addr_t) NULL;
}
if (adapter->pingtimerset) {
adapter->pingtimerset = 0;
del_timer(&adapter->pingtimer);
}
slic_rspqueue_free(adapter);
slic_cmdq_free(adapter);
slic_rcvqueue_free(adapter);
}
/*
* Allocate a mcast_address structure to hold the multicast address.
* Link it in.
*/
static int slic_mcast_add_list(struct adapter *adapter, char *address)
{
struct mcast_address *mcaddr, *mlist;
/* Check to see if it already exists */
mlist = adapter->mcastaddrs;
while (mlist) {
if (!compare_ether_addr(mlist->address, address))
return 0;
mlist = mlist->next;
}
/* Doesn't already exist. Allocate a structure to hold it */
mcaddr = kmalloc(sizeof(struct mcast_address), GFP_ATOMIC);
if (mcaddr == NULL)
return 1;
memcpy(mcaddr->address, address, 6);
mcaddr->next = adapter->mcastaddrs;
adapter->mcastaddrs = mcaddr;
return 0;
}
static void slic_mcast_set_list(struct net_device *dev)
{
struct adapter *adapter = netdev_priv(dev);
int status = 0;
char *addresses;
struct netdev_hw_addr *ha;
ASSERT(adapter);
netdev_for_each_mc_addr(ha, dev) {
addresses = (char *) &ha->addr;
status = slic_mcast_add_list(adapter, addresses);
if (status != 0)
break;
slic_mcast_set_bit(adapter, addresses);
}
if (adapter->devflags_prev != dev->flags) {
adapter->macopts = MAC_DIRECTED;
if (dev->flags) {
if (dev->flags & IFF_BROADCAST)
adapter->macopts |= MAC_BCAST;
if (dev->flags & IFF_PROMISC)
adapter->macopts |= MAC_PROMISC;
if (dev->flags & IFF_ALLMULTI)
adapter->macopts |= MAC_ALLMCAST;
if (dev->flags & IFF_MULTICAST)
adapter->macopts |= MAC_MCAST;
}
adapter->devflags_prev = dev->flags;
slic_config_set(adapter, true);
} else {
if (status == 0)
slic_mcast_set_mask(adapter);
}
return;
}
#define XMIT_FAIL_LINK_STATE 1
#define XMIT_FAIL_ZERO_LENGTH 2
#define XMIT_FAIL_HOSTCMD_FAIL 3
static void slic_xmit_build_request(struct adapter *adapter,
struct slic_hostcmd *hcmd, struct sk_buff *skb)
{
struct slic_host64_cmd *ihcmd;
ulong phys_addr;
ihcmd = &hcmd->cmd64;
ihcmd->flags = (adapter->port << IHFLG_IFSHFT);
ihcmd->command = IHCMD_XMT_REQ;
ihcmd->u.slic_buffers.totlen = skb->len;
phys_addr = pci_map_single(adapter->pcidev, skb->data, skb->len,
PCI_DMA_TODEVICE);
ihcmd->u.slic_buffers.bufs[0].paddrl = SLIC_GET_ADDR_LOW(phys_addr);
ihcmd->u.slic_buffers.bufs[0].paddrh = SLIC_GET_ADDR_HIGH(phys_addr);
ihcmd->u.slic_buffers.bufs[0].length = skb->len;
#if BITS_PER_LONG == 64
hcmd->cmdsize = (u32) ((((u64)&ihcmd->u.slic_buffers.bufs[1] -
(u64) hcmd) + 31) >> 5);
#else
hcmd->cmdsize = ((((u32) &ihcmd->u.slic_buffers.bufs[1] -
(u32) hcmd) + 31) >> 5);
#endif
}
static void slic_xmit_fail(struct adapter *adapter,
struct sk_buff *skb,
void *cmd, u32 skbtype, u32 status)
{
if (adapter->xmitq_full)
netif_stop_queue(adapter->netdev);
if ((cmd == NULL) && (status <= XMIT_FAIL_HOSTCMD_FAIL)) {
switch (status) {
case XMIT_FAIL_LINK_STATE:
dev_err(&adapter->netdev->dev,
"reject xmit skb[%p: %x] linkstate[%s] "
"adapter[%s:%d] card[%s:%d]\n",
skb, skb->pkt_type,
SLIC_LINKSTATE(adapter->linkstate),
SLIC_ADAPTER_STATE(adapter->state),
adapter->state,
SLIC_CARD_STATE(adapter->card->state),
adapter->card->state);
break;
case XMIT_FAIL_ZERO_LENGTH:
dev_err(&adapter->netdev->dev,
"xmit_start skb->len == 0 skb[%p] type[%x]\n",
skb, skb->pkt_type);
break;
case XMIT_FAIL_HOSTCMD_FAIL:
dev_err(&adapter->netdev->dev,
"xmit_start skb[%p] type[%x] No host commands "
"available\n", skb, skb->pkt_type);
break;
default:
ASSERT(0);
}
}
dev_kfree_skb(skb);
adapter->netdev->stats.tx_dropped++;
}
static void slic_rcv_handle_error(struct adapter *adapter,
struct slic_rcvbuf *rcvbuf)
{
struct slic_hddr_wds *hdr = (struct slic_hddr_wds *)rcvbuf->data;
struct net_device *netdev = adapter->netdev;
if (adapter->devid != SLIC_1GB_DEVICE_ID) {
if (hdr->frame_status14 & VRHSTAT_802OE)
adapter->if_events.oflow802++;
if (hdr->frame_status14 & VRHSTAT_TPOFLO)
adapter->if_events.Tprtoflow++;
if (hdr->frame_status_b14 & VRHSTATB_802UE)
adapter->if_events.uflow802++;
if (hdr->frame_status_b14 & VRHSTATB_RCVE) {
adapter->if_events.rcvearly++;
netdev->stats.rx_fifo_errors++;
}
if (hdr->frame_status_b14 & VRHSTATB_BUFF) {
adapter->if_events.Bufov++;
netdev->stats.rx_over_errors++;
}
if (hdr->frame_status_b14 & VRHSTATB_CARRE) {
adapter->if_events.Carre++;
netdev->stats.tx_carrier_errors++;
}
if (hdr->frame_status_b14 & VRHSTATB_LONGE)
adapter->if_events.Longe++;
if (hdr->frame_status_b14 & VRHSTATB_PREA)
adapter->if_events.Invp++;
if (hdr->frame_status_b14 & VRHSTATB_CRC) {
adapter->if_events.Crc++;
netdev->stats.rx_crc_errors++;
}
if (hdr->frame_status_b14 & VRHSTATB_DRBL)
adapter->if_events.Drbl++;
if (hdr->frame_status_b14 & VRHSTATB_CODE)
adapter->if_events.Code++;
if (hdr->frame_status_b14 & VRHSTATB_TPCSUM)
adapter->if_events.TpCsum++;
if (hdr->frame_status_b14 & VRHSTATB_TPHLEN)
adapter->if_events.TpHlen++;
if (hdr->frame_status_b14 & VRHSTATB_IPCSUM)
adapter->if_events.IpCsum++;
if (hdr->frame_status_b14 & VRHSTATB_IPLERR)
adapter->if_events.IpLen++;
if (hdr->frame_status_b14 & VRHSTATB_IPHERR)
adapter->if_events.IpHlen++;
} else {
if (hdr->frame_statusGB & VGBSTAT_XPERR) {
u32 xerr = hdr->frame_statusGB >> VGBSTAT_XERRSHFT;
if (xerr == VGBSTAT_XCSERR)
adapter->if_events.TpCsum++;
if (xerr == VGBSTAT_XUFLOW)
adapter->if_events.Tprtoflow++;
if (xerr == VGBSTAT_XHLEN)
adapter->if_events.TpHlen++;
}
if (hdr->frame_statusGB & VGBSTAT_NETERR) {
u32 nerr =
(hdr->
frame_statusGB >> VGBSTAT_NERRSHFT) &
VGBSTAT_NERRMSK;
if (nerr == VGBSTAT_NCSERR)
adapter->if_events.IpCsum++;
if (nerr == VGBSTAT_NUFLOW)
adapter->if_events.IpLen++;
if (nerr == VGBSTAT_NHLEN)
adapter->if_events.IpHlen++;
}
if (hdr->frame_statusGB & VGBSTAT_LNKERR) {
u32 lerr = hdr->frame_statusGB & VGBSTAT_LERRMSK;
if (lerr == VGBSTAT_LDEARLY)
adapter->if_events.rcvearly++;
if (lerr == VGBSTAT_LBOFLO)
adapter->if_events.Bufov++;
if (lerr == VGBSTAT_LCODERR)
adapter->if_events.Code++;
if (lerr == VGBSTAT_LDBLNBL)
adapter->if_events.Drbl++;
if (lerr == VGBSTAT_LCRCERR)
adapter->if_events.Crc++;
if (lerr == VGBSTAT_LOFLO)
adapter->if_events.oflow802++;
if (lerr == VGBSTAT_LUFLO)
adapter->if_events.uflow802++;
}
}
return;
}
#define TCP_OFFLOAD_FRAME_PUSHFLAG 0x10000000
#define M_FAST_PATH 0x0040
static void slic_rcv_handler(struct adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct sk_buff *skb;
struct slic_rcvbuf *rcvbuf;
u32 frames = 0;
while ((skb = slic_rcvqueue_getnext(adapter))) {
u32 rx_bytes;
ASSERT(skb->head);
rcvbuf = (struct slic_rcvbuf *)skb->head;
adapter->card->events++;
if (rcvbuf->status & IRHDDR_ERR) {
adapter->rx_errors++;
slic_rcv_handle_error(adapter, rcvbuf);
slic_rcvqueue_reinsert(adapter, skb);
continue;
}
if (!slic_mac_filter(adapter, (struct ether_header *)
rcvbuf->data)) {
slic_rcvqueue_reinsert(adapter, skb);
continue;
}
skb_pull(skb, SLIC_RCVBUF_HEADSIZE);
rx_bytes = (rcvbuf->length & IRHDDR_FLEN_MSK);
skb_put(skb, rx_bytes);
netdev->stats.rx_packets++;
netdev->stats.rx_bytes += rx_bytes;
#if SLIC_OFFLOAD_IP_CHECKSUM
skb->ip_summed = CHECKSUM_UNNECESSARY;
#endif
skb->dev = adapter->netdev;
skb->protocol = eth_type_trans(skb, skb->dev);
netif_rx(skb);
++frames;
#if SLIC_INTERRUPT_PROCESS_LIMIT
if (frames >= SLIC_RCVQ_MAX_PROCESS_ISR) {
adapter->rcv_interrupt_yields++;
break;
}
#endif
}
adapter->max_isr_rcvs = max(adapter->max_isr_rcvs, frames);
}
static void slic_xmit_complete(struct adapter *adapter)
{
struct slic_hostcmd *hcmd;
struct slic_rspbuf *rspbuf;
u32 frames = 0;
struct slic_handle_word slic_handle_word;
do {
rspbuf = slic_rspqueue_getnext(adapter);
if (!rspbuf)
break;
adapter->xmit_completes++;
adapter->card->events++;
/*
Get the complete host command buffer
*/
slic_handle_word.handle_token = rspbuf->hosthandle;
ASSERT(slic_handle_word.handle_index);
ASSERT(slic_handle_word.handle_index <= SLIC_CMDQ_MAXCMDS);
hcmd =
(struct slic_hostcmd *)
adapter->slic_handles[slic_handle_word.handle_index].
address;
/* hcmd = (struct slic_hostcmd *) rspbuf->hosthandle; */
ASSERT(hcmd);
ASSERT(hcmd->pslic_handle ==
&adapter->slic_handles[slic_handle_word.handle_index]);
if (hcmd->type == SLIC_CMD_DUMB) {
if (hcmd->skb)
dev_kfree_skb_irq(hcmd->skb);
slic_cmdq_putdone_irq(adapter, hcmd);
}
rspbuf->status = 0;
rspbuf->hosthandle = 0;
frames++;
} while (1);
adapter->max_isr_xmits = max(adapter->max_isr_xmits, frames);
}
static irqreturn_t slic_interrupt(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *)dev_id;
struct adapter *adapter = netdev_priv(dev);
u32 isr;
if ((adapter->pshmem) && (adapter->pshmem->isr)) {
slic_reg32_write(&adapter->slic_regs->slic_icr,
ICR_INT_MASK, FLUSH);
isr = adapter->isrcopy = adapter->pshmem->isr;
adapter->pshmem->isr = 0;
adapter->num_isrs++;
switch (adapter->card->state) {
case CARD_UP:
if (isr & ~ISR_IO) {
if (isr & ISR_ERR) {
adapter->error_interrupts++;
if (isr & ISR_RMISS) {
int count;
int pre_count;
int errors;
struct slic_rcvqueue *rcvq =
&adapter->rcvqueue;
adapter->
error_rmiss_interrupts++;
if (!rcvq->errors)
rcv_count = rcvq->count;
pre_count = rcvq->count;
errors = rcvq->errors;
while (rcvq->count <
SLIC_RCVQ_FILLTHRESH) {
count =
slic_rcvqueue_fill
(adapter);
if (!count)
break;
}
} else if (isr & ISR_XDROP) {
dev_err(&dev->dev,
"isr & ISR_ERR [%x] "
"ISR_XDROP \n", isr);
} else {
dev_err(&dev->dev,
"isr & ISR_ERR [%x]\n",
isr);
}
}
if (isr & ISR_LEVENT) {
adapter->linkevent_interrupts++;
slic_link_event_handler(adapter);
}
if ((isr & ISR_UPC) ||
(isr & ISR_UPCERR) || (isr & ISR_UPCBSY)) {
adapter->upr_interrupts++;
slic_upr_request_complete(adapter, isr);
}
}
if (isr & ISR_RCV) {
adapter->rcv_interrupts++;
slic_rcv_handler(adapter);
}
if (isr & ISR_CMD) {
adapter->xmit_interrupts++;
slic_xmit_complete(adapter);
}
break;
case CARD_DOWN:
if ((isr & ISR_UPC) ||
(isr & ISR_UPCERR) || (isr & ISR_UPCBSY)) {
adapter->upr_interrupts++;
slic_upr_request_complete(adapter, isr);
}
break;
default:
break;
}
adapter->isrcopy = 0;
adapter->all_reg_writes += 2;
adapter->isr_reg_writes++;
slic_reg32_write(&adapter->slic_regs->slic_isr, 0, FLUSH);
} else {
adapter->false_interrupts++;
}
return IRQ_HANDLED;
}
#define NORMAL_ETHFRAME 0
static netdev_tx_t slic_xmit_start(struct sk_buff *skb, struct net_device *dev)
{
struct sliccard *card;
struct adapter *adapter = netdev_priv(dev);
struct slic_hostcmd *hcmd = NULL;
u32 status = 0;
u32 skbtype = NORMAL_ETHFRAME;
void *offloadcmd = NULL;
card = adapter->card;
ASSERT(card);
if ((adapter->linkstate != LINK_UP) ||
(adapter->state != ADAPT_UP) || (card->state != CARD_UP)) {
status = XMIT_FAIL_LINK_STATE;
goto xmit_fail;
} else if (skb->len == 0) {
status = XMIT_FAIL_ZERO_LENGTH;
goto xmit_fail;
}
if (skbtype == NORMAL_ETHFRAME) {
hcmd = slic_cmdq_getfree(adapter);
if (!hcmd) {
adapter->xmitq_full = 1;
status = XMIT_FAIL_HOSTCMD_FAIL;
goto xmit_fail;
}
ASSERT(hcmd->pslic_handle);
ASSERT(hcmd->cmd64.hosthandle ==
hcmd->pslic_handle->token.handle_token);
hcmd->skb = skb;
hcmd->busy = 1;
hcmd->type = SLIC_CMD_DUMB;
if (skbtype == NORMAL_ETHFRAME)
slic_xmit_build_request(adapter, hcmd, skb);
}
dev->stats.tx_packets++;
dev->stats.tx_bytes += skb->len;
#ifdef DEBUG_DUMP
if (adapter->kill_card) {
struct slic_host64_cmd ihcmd;
ihcmd = &hcmd->cmd64;
ihcmd->flags |= 0x40;
adapter->kill_card = 0; /* only do this once */
}
#endif
if (hcmd->paddrh == 0) {
slic_reg32_write(&adapter->slic_regs->slic_cbar,
(hcmd->paddrl | hcmd->cmdsize), DONT_FLUSH);
} else {
slic_reg64_write(adapter, &adapter->slic_regs->slic_cbar64,
(hcmd->paddrl | hcmd->cmdsize),
&adapter->slic_regs->slic_addr_upper,
hcmd->paddrh, DONT_FLUSH);
}
xmit_done:
return NETDEV_TX_OK;
xmit_fail:
slic_xmit_fail(adapter, skb, offloadcmd, skbtype, status);
goto xmit_done;
}
static void slic_adapter_freeresources(struct adapter *adapter)
{
slic_init_cleanup(adapter);
adapter->error_interrupts = 0;
adapter->rcv_interrupts = 0;
adapter->xmit_interrupts = 0;
adapter->linkevent_interrupts = 0;
adapter->upr_interrupts = 0;
adapter->num_isrs = 0;
adapter->xmit_completes = 0;
adapter->rcv_broadcasts = 0;
adapter->rcv_multicasts = 0;
adapter->rcv_unicasts = 0;
}
static int slic_adapter_allocresources(struct adapter *adapter)
{
if (!adapter->intrregistered) {
int retval;
spin_unlock_irqrestore(&slic_global.driver_lock.lock,
slic_global.driver_lock.flags);
retval = request_irq(adapter->netdev->irq,
&slic_interrupt,
IRQF_SHARED,
adapter->netdev->name, adapter->netdev);
spin_lock_irqsave(&slic_global.driver_lock.lock,
slic_global.driver_lock.flags);
if (retval) {
dev_err(&adapter->netdev->dev,
"request_irq (%s) FAILED [%x]\n",
adapter->netdev->name, retval);
return retval;
}
adapter->intrregistered = 1;
}
return 0;
}
/*
* slic_if_init
*
* Perform initialization of our slic interface.
*
*/
static int slic_if_init(struct adapter *adapter)
{
struct sliccard *card = adapter->card;
struct net_device *dev = adapter->netdev;
__iomem struct slic_regs *slic_regs = adapter->slic_regs;
struct slic_shmem *pshmem;
int rc;
ASSERT(card);
/* adapter should be down at this point */
if (adapter->state != ADAPT_DOWN) {
dev_err(&dev->dev, "%s: adapter->state != ADAPT_DOWN\n",
__func__);
rc = -EIO;
goto err;
}
ASSERT(adapter->linkstate == LINK_DOWN);
adapter->devflags_prev = dev->flags;
adapter->macopts = MAC_DIRECTED;
if (dev->flags) {
if (dev->flags & IFF_BROADCAST)
adapter->macopts |= MAC_BCAST;
if (dev->flags & IFF_PROMISC)
adapter->macopts |= MAC_PROMISC;
if (dev->flags & IFF_ALLMULTI)
adapter->macopts |= MAC_ALLMCAST;
if (dev->flags & IFF_MULTICAST)
adapter->macopts |= MAC_MCAST;
}
rc = slic_adapter_allocresources(adapter);
if (rc) {
dev_err(&dev->dev,
"%s: slic_adapter_allocresources FAILED %x\n",
__func__, rc);
slic_adapter_freeresources(adapter);
goto err;
}
if (!adapter->queues_initialized) {
if ((rc = slic_rspqueue_init(adapter)))
goto err;
if ((rc = slic_cmdq_init(adapter)))
goto err;
if ((rc = slic_rcvqueue_init(adapter)))
goto err;
adapter->queues_initialized = 1;
}
slic_reg32_write(&slic_regs->slic_icr, ICR_INT_OFF, FLUSH);
mdelay(1);
if (!adapter->isp_initialized) {
pshmem = (struct slic_shmem *)adapter->phys_shmem;
spin_lock_irqsave(&adapter->bit64reglock.lock,
adapter->bit64reglock.flags);
#if BITS_PER_LONG == 64
slic_reg32_write(&slic_regs->slic_addr_upper,
SLIC_GET_ADDR_HIGH(&pshmem->isr), DONT_FLUSH);
slic_reg32_write(&slic_regs->slic_isp,
SLIC_GET_ADDR_LOW(&pshmem->isr), FLUSH);
#else
slic_reg32_write(&slic_regs->slic_addr_upper, 0, DONT_FLUSH);
slic_reg32_write(&slic_regs->slic_isp, (u32)&pshmem->isr, FLUSH);
#endif
spin_unlock_irqrestore(&adapter->bit64reglock.lock,
adapter->bit64reglock.flags);
adapter->isp_initialized = 1;
}
adapter->state = ADAPT_UP;
if (!card->loadtimerset) {
init_timer(&card->loadtimer);
card->loadtimer.expires =
jiffies + (SLIC_LOADTIMER_PERIOD * HZ);
card->loadtimer.data = (ulong) card;
card->loadtimer.function = &slic_timer_load_check;
add_timer(&card->loadtimer);
card->loadtimerset = 1;
}
if (!adapter->pingtimerset) {
init_timer(&adapter->pingtimer);
adapter->pingtimer.expires =
jiffies + (PING_TIMER_INTERVAL * HZ);
adapter->pingtimer.data = (ulong) dev;
adapter->pingtimer.function = &slic_timer_ping;
add_timer(&adapter->pingtimer);
adapter->pingtimerset = 1;
adapter->card->pingstatus = ISR_PINGMASK;
}
/*
* clear any pending events, then enable interrupts
*/
adapter->isrcopy = 0;
adapter->pshmem->isr = 0;
slic_reg32_write(&slic_regs->slic_isr, 0, FLUSH);
slic_reg32_write(&slic_regs->slic_icr, ICR_INT_ON, FLUSH);
slic_link_config(adapter, LINK_AUTOSPEED, LINK_AUTOD);
slic_link_event_handler(adapter);
err:
return rc;
}
static int slic_entry_open(struct net_device *dev)
{
struct adapter *adapter = netdev_priv(dev);
struct sliccard *card = adapter->card;
u32 locked = 0;
int status;
ASSERT(adapter);
ASSERT(card);
netif_stop_queue(adapter->netdev);
spin_lock_irqsave(&slic_global.driver_lock.lock,
slic_global.driver_lock.flags);
locked = 1;
if (!adapter->activated) {
card->adapters_activated++;
slic_global.num_slic_ports_active++;
adapter->activated = 1;
}
status = slic_if_init(adapter);
if (status != 0) {
if (adapter->activated) {
card->adapters_activated--;
slic_global.num_slic_ports_active--;
adapter->activated = 0;
}
if (locked) {
spin_unlock_irqrestore(&slic_global.driver_lock.lock,
slic_global.driver_lock.flags);
locked = 0;
}
return status;
}
if (!card->master)
card->master = adapter;
if (locked) {
spin_unlock_irqrestore(&slic_global.driver_lock.lock,
slic_global.driver_lock.flags);
locked = 0;
}
return 0;
}
static void slic_card_cleanup(struct sliccard *card)
{
if (card->loadtimerset) {
card->loadtimerset = 0;
del_timer(&card->loadtimer);
}
slic_debug_card_destroy(card);
kfree(card);
}
static void __devexit slic_entry_remove(struct pci_dev *pcidev)
{
struct net_device *dev = pci_get_drvdata(pcidev);
u32 mmio_start = 0;
uint mmio_len = 0;
struct adapter *adapter = netdev_priv(dev);
struct sliccard *card;
struct mcast_address *mcaddr, *mlist;
ASSERT(adapter);
slic_adapter_freeresources(adapter);
slic_unmap_mmio_space(adapter);
unregister_netdev(dev);
mmio_start = pci_resource_start(pcidev, 0);
mmio_len = pci_resource_len(pcidev, 0);
release_mem_region(mmio_start, mmio_len);
iounmap((void __iomem *)dev->base_addr);
/* free multicast addresses */
mlist = adapter->mcastaddrs;
while (mlist) {
mcaddr = mlist;
mlist = mlist->next;
kfree(mcaddr);
}
ASSERT(adapter->card);
card = adapter->card;
ASSERT(card->adapters_allocated);
card->adapters_allocated--;
adapter->allocated = 0;
if (!card->adapters_allocated) {
struct sliccard *curr_card = slic_global.slic_card;
if (curr_card == card) {
slic_global.slic_card = card->next;
} else {
while (curr_card->next != card)
curr_card = curr_card->next;
ASSERT(curr_card);
curr_card->next = card->next;
}
ASSERT(slic_global.num_slic_cards);
slic_global.num_slic_cards--;
slic_card_cleanup(card);
}
free_netdev(dev);
pci_release_regions(pcidev);
}
static int slic_entry_halt(struct net_device *dev)
{
struct adapter *adapter = netdev_priv(dev);
struct sliccard *card = adapter->card;
__iomem struct slic_regs *slic_regs = adapter->slic_regs;
spin_lock_irqsave(&slic_global.driver_lock.lock,
slic_global.driver_lock.flags);
ASSERT(card);
netif_stop_queue(adapter->netdev);
adapter->state = ADAPT_DOWN;
adapter->linkstate = LINK_DOWN;
adapter->upr_list = NULL;
adapter->upr_busy = 0;
adapter->devflags_prev = 0;
ASSERT(card->adapter[adapter->cardindex] == adapter);
slic_reg32_write(&slic_regs->slic_icr, ICR_INT_OFF, FLUSH);
adapter->all_reg_writes++;
adapter->icr_reg_writes++;
slic_config_clear(adapter);
if (adapter->activated) {
card->adapters_activated--;
slic_global.num_slic_ports_active--;
adapter->activated = 0;
}
#ifdef AUTOMATIC_RESET
slic_reg32_write(&slic_regs->slic_reset_iface, 0, FLUSH);
#endif
/*
* Reset the adapter's cmd queues
*/
slic_cmdq_reset(adapter);
#ifdef AUTOMATIC_RESET
if (!card->adapters_activated)
slic_card_init(card, adapter);
#endif
spin_unlock_irqrestore(&slic_global.driver_lock.lock,
slic_global.driver_lock.flags);
return 0;
}
static struct net_device_stats *slic_get_stats(struct net_device *dev)
{
struct adapter *adapter = netdev_priv(dev);
ASSERT(adapter);
dev->stats.collisions = adapter->slic_stats.iface.xmit_collisions;
dev->stats.rx_errors = adapter->slic_stats.iface.rcv_errors;
dev->stats.tx_errors = adapter->slic_stats.iface.xmt_errors;
dev->stats.rx_missed_errors = adapter->slic_stats.iface.rcv_discards;
dev->stats.tx_heartbeat_errors = 0;
dev->stats.tx_aborted_errors = 0;
dev->stats.tx_window_errors = 0;
dev->stats.tx_fifo_errors = 0;
dev->stats.rx_frame_errors = 0;
dev->stats.rx_length_errors = 0;
return &dev->stats;
}
static int slic_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct adapter *adapter = netdev_priv(dev);
struct ethtool_cmd edata;
struct ethtool_cmd ecmd;
u32 data[7];
u32 intagg;
ASSERT(rq);
switch (cmd) {
case SIOCSLICSETINTAGG:
if (copy_from_user(data, rq->ifr_data, 28))
return -EFAULT;
intagg = data[0];
dev_err(&dev->dev, "%s: set interrupt aggregation to %d\n",
__func__, intagg);
slic_intagg_set(adapter, intagg);
return 0;
#ifdef SLIC_TRACE_DUMP_ENABLED
case SIOCSLICTRACEDUMP:
{
u32 value;
DBG_IOCTL("slic_ioctl SIOCSLIC_TRACE_DUMP\n");
if (copy_from_user(data, rq->ifr_data, 28)) {
PRINT_ERROR
("slic: copy_from_user FAILED getting initial simba param\n");
return -EFAULT;
}
value = data[0];
if (tracemon_request == SLIC_DUMP_DONE) {
PRINT_ERROR
("ATK Diagnostic Trace Dump Requested\n");
tracemon_request = SLIC_DUMP_REQUESTED;
tracemon_request_type = value;
tracemon_timestamp = jiffies;
} else if ((tracemon_request == SLIC_DUMP_REQUESTED) ||
(tracemon_request ==
SLIC_DUMP_IN_PROGRESS)) {
PRINT_ERROR
("ATK Diagnostic Trace Dump Requested but already in progress... ignore\n");
} else {
PRINT_ERROR
("ATK Diagnostic Trace Dump Requested\n");
tracemon_request = SLIC_DUMP_REQUESTED;
tracemon_request_type = value;
tracemon_timestamp = jiffies;
}
return 0;
}
#endif
case SIOCETHTOOL:
ASSERT(adapter);
if (copy_from_user(&ecmd, rq->ifr_data, sizeof(ecmd)))
return -EFAULT;
if (ecmd.cmd == ETHTOOL_GSET) {
edata.supported = (SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full |
SUPPORTED_100baseT_Half |
SUPPORTED_100baseT_Full |
SUPPORTED_Autoneg | SUPPORTED_MII);
edata.port = PORT_MII;
edata.transceiver = XCVR_INTERNAL;
edata.phy_address = 0;
if (adapter->linkspeed == LINK_100MB)
edata.speed = SPEED_100;
else if (adapter->linkspeed == LINK_10MB)
edata.speed = SPEED_10;
else
edata.speed = 0;
if (adapter->linkduplex == LINK_FULLD)
edata.duplex = DUPLEX_FULL;
else
edata.duplex = DUPLEX_HALF;
edata.autoneg = AUTONEG_ENABLE;
edata.maxtxpkt = 1;
edata.maxrxpkt = 1;
if (copy_to_user(rq->ifr_data, &edata, sizeof(edata)))
return -EFAULT;
} else if (ecmd.cmd == ETHTOOL_SSET) {
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (adapter->linkspeed == LINK_100MB)
edata.speed = SPEED_100;
else if (adapter->linkspeed == LINK_10MB)
edata.speed = SPEED_10;
else
edata.speed = 0;
if (adapter->linkduplex == LINK_FULLD)
edata.duplex = DUPLEX_FULL;
else
edata.duplex = DUPLEX_HALF;
edata.autoneg = AUTONEG_ENABLE;
edata.maxtxpkt = 1;
edata.maxrxpkt = 1;
if ((ecmd.speed != edata.speed) ||
(ecmd.duplex != edata.duplex)) {
u32 speed;
u32 duplex;
if (ecmd.speed == SPEED_10)
speed = 0;
else
speed = PCR_SPEED_100;
if (ecmd.duplex == DUPLEX_FULL)
duplex = PCR_DUPLEX_FULL;
else
duplex = 0;
slic_link_config(adapter, speed, duplex);
slic_link_event_handler(adapter);
}
}
return 0;
default:
return -EOPNOTSUPP;
}
}
static void slic_config_pci(struct pci_dev *pcidev)
{
u16 pci_command;
u16 new_command;
pci_read_config_word(pcidev, PCI_COMMAND, &pci_command);
new_command = pci_command | PCI_COMMAND_MASTER
| PCI_COMMAND_MEMORY
| PCI_COMMAND_INVALIDATE
| PCI_COMMAND_PARITY | PCI_COMMAND_SERR | PCI_COMMAND_FAST_BACK;
if (pci_command != new_command)
pci_write_config_word(pcidev, PCI_COMMAND, new_command);
}
static int slic_card_init(struct sliccard *card, struct adapter *adapter)
{
__iomem struct slic_regs *slic_regs = adapter->slic_regs;
struct slic_eeprom *peeprom;
struct oslic_eeprom *pOeeprom;
dma_addr_t phys_config;
u32 phys_configh;
u32 phys_configl;
u32 i = 0;
struct slic_shmem *pshmem;
int status;
uint macaddrs = card->card_size;
ushort eecodesize;
ushort dramsize;
ushort ee_chksum;
ushort calc_chksum;
struct slic_config_mac *pmac;
unsigned char fruformat;
unsigned char oemfruformat;
struct atk_fru *patkfru;
union oemfru *poemfru;
/* Reset everything except PCI configuration space */
slic_soft_reset(adapter);
/* Download the microcode */
status = slic_card_download(adapter);
if (status != 0) {
dev_err(&adapter->pcidev->dev,
"download failed bus %d slot %d\n",
adapter->busnumber, adapter->slotnumber);
return status;
}
if (!card->config_set) {
peeprom = pci_alloc_consistent(adapter->pcidev,
sizeof(struct slic_eeprom),
&phys_config);
phys_configl = SLIC_GET_ADDR_LOW(phys_config);
phys_configh = SLIC_GET_ADDR_HIGH(phys_config);
if (!peeprom) {
dev_err(&adapter->pcidev->dev,
"eeprom read failed to get memory "
"bus %d slot %d\n", adapter->busnumber,
adapter->slotnumber);
return -ENOMEM;
} else {
memset(peeprom, 0, sizeof(struct slic_eeprom));
}
slic_reg32_write(&slic_regs->slic_icr, ICR_INT_OFF, FLUSH);
mdelay(1);
pshmem = (struct slic_shmem *)adapter->phys_shmem;
spin_lock_irqsave(&adapter->bit64reglock.lock,
adapter->bit64reglock.flags);
slic_reg32_write(&slic_regs->slic_addr_upper, 0, DONT_FLUSH);
slic_reg32_write(&slic_regs->slic_isp,
SLIC_GET_ADDR_LOW(&pshmem->isr), FLUSH);
spin_unlock_irqrestore(&adapter->bit64reglock.lock,
adapter->bit64reglock.flags);
slic_config_get(adapter, phys_configl, phys_configh);
for (;;) {
if (adapter->pshmem->isr) {
if (adapter->pshmem->isr & ISR_UPC) {
adapter->pshmem->isr = 0;
slic_reg64_write(adapter,
&slic_regs->slic_isp, 0,
&slic_regs->slic_addr_upper,
0, FLUSH);
slic_reg32_write(&slic_regs->slic_isr,
0, FLUSH);
slic_upr_request_complete(adapter, 0);
break;
} else {
adapter->pshmem->isr = 0;
slic_reg32_write(&slic_regs->slic_isr,
0, FLUSH);
}
} else {
mdelay(1);
i++;
if (i > 5000) {
dev_err(&adapter->pcidev->dev,
"%d config data fetch timed out!\n",
adapter->port);
slic_reg64_write(adapter,
&slic_regs->slic_isp, 0,
&slic_regs->slic_addr_upper,
0, FLUSH);
return -EINVAL;
}
}
}
switch (adapter->devid) {
/* Oasis card */
case SLIC_2GB_DEVICE_ID:
/* extract EEPROM data and pointers to EEPROM data */
pOeeprom = (struct oslic_eeprom *) peeprom;
eecodesize = pOeeprom->EecodeSize;
dramsize = pOeeprom->DramSize;
pmac = pOeeprom->MacInfo;
fruformat = pOeeprom->FruFormat;
patkfru = &pOeeprom->AtkFru;
oemfruformat = pOeeprom->OemFruFormat;
poemfru = &pOeeprom->OemFru;
macaddrs = 2;
/* Minor kludge for Oasis card
get 2 MAC addresses from the
EEPROM to ensure that function 1
gets the Port 1 MAC address */
break;
default:
/* extract EEPROM data and pointers to EEPROM data */
eecodesize = peeprom->EecodeSize;
dramsize = peeprom->DramSize;
pmac = peeprom->u2.mac.MacInfo;
fruformat = peeprom->FruFormat;
patkfru = &peeprom->AtkFru;
oemfruformat = peeprom->OemFruFormat;
poemfru = &peeprom->OemFru;
break;
}
card->config.EepromValid = false;
/* see if the EEPROM is valid by checking it's checksum */
if ((eecodesize <= MAX_EECODE_SIZE) &&
(eecodesize >= MIN_EECODE_SIZE)) {
ee_chksum =
*(u16 *) ((char *) peeprom + (eecodesize - 2));
/*
calculate the EEPROM checksum
*/
calc_chksum =
~slic_eeprom_cksum((char *) peeprom,
(eecodesize - 2));
/*
if the ucdoe chksum flag bit worked,
we wouldn't need this shit
*/
if (ee_chksum == calc_chksum)
card->config.EepromValid = true;
}
/* copy in the DRAM size */
card->config.DramSize = dramsize;
/* copy in the MAC address(es) */
for (i = 0; i < macaddrs; i++) {
memcpy(&card->config.MacInfo[i],
&pmac[i], sizeof(struct slic_config_mac));
}
/* copy the Alacritech FRU information */
card->config.FruFormat = fruformat;
memcpy(&card->config.AtkFru, patkfru,
sizeof(struct atk_fru));
pci_free_consistent(adapter->pcidev,
sizeof(struct slic_eeprom),
peeprom, phys_config);
if ((!card->config.EepromValid) &&
(adapter->reg_params.fail_on_bad_eeprom)) {
slic_reg64_write(adapter, &slic_regs->slic_isp, 0,
&slic_regs->slic_addr_upper,
0, FLUSH);
dev_err(&adapter->pcidev->dev,
"unsupported CONFIGURATION EEPROM invalid\n");
return -EINVAL;
}
card->config_set = 1;
}
if (slic_card_download_gbrcv(adapter)) {
dev_err(&adapter->pcidev->dev,
"unable to download GB receive microcode\n");
return -EINVAL;
}
if (slic_global.dynamic_intagg)
slic_intagg_set(adapter, 0);
else
slic_intagg_set(adapter, intagg_delay);
/*
* Initialize ping status to "ok"
*/
card->pingstatus = ISR_PINGMASK;
/*
* Lastly, mark our card state as up and return success
*/
card->state = CARD_UP;
card->reset_in_progress = 0;
return 0;
}
static void slic_init_driver(void)
{
if (slic_first_init) {
slic_first_init = 0;
spin_lock_init(&slic_global.driver_lock.lock);
slic_debug_init();
}
}
static void slic_init_adapter(struct net_device *netdev,
struct pci_dev *pcidev,
const struct pci_device_id *pci_tbl_entry,
void __iomem *memaddr, int chip_idx)
{
ushort index;
struct slic_handle *pslic_handle;
struct adapter *adapter = netdev_priv(netdev);
/* adapter->pcidev = pcidev;*/
adapter->vendid = pci_tbl_entry->vendor;
adapter->devid = pci_tbl_entry->device;
adapter->subsysid = pci_tbl_entry->subdevice;
adapter->busnumber = pcidev->bus->number;
adapter->slotnumber = ((pcidev->devfn >> 3) & 0x1F);
adapter->functionnumber = (pcidev->devfn & 0x7);
adapter->memorylength = pci_resource_len(pcidev, 0);
adapter->slic_regs = (__iomem struct slic_regs *)memaddr;
adapter->irq = pcidev->irq;
/* adapter->netdev = netdev;*/
adapter->next_netdevice = head_netdevice;
head_netdevice = netdev;
adapter->chipid = chip_idx;
adapter->port = 0; /*adapter->functionnumber;*/
adapter->cardindex = adapter->port;
adapter->memorybase = memaddr;
spin_lock_init(&adapter->upr_lock.lock);
spin_lock_init(&adapter->bit64reglock.lock);
spin_lock_init(&adapter->adapter_lock.lock);
spin_lock_init(&adapter->reset_lock.lock);
spin_lock_init(&adapter->handle_lock.lock);
adapter->card_size = 1;
/*
Initialize slic_handle array
*/
ASSERT(SLIC_CMDQ_MAXCMDS <= 0xFFFF);
/*
Start with 1. 0 is an invalid host handle.
*/
for (index = 1, pslic_handle = &adapter->slic_handles[1];
index < SLIC_CMDQ_MAXCMDS; index++, pslic_handle++) {
pslic_handle->token.handle_index = index;
pslic_handle->type = SLIC_HANDLE_FREE;
pslic_handle->next = adapter->pfree_slic_handles;
adapter->pfree_slic_handles = pslic_handle;
}
adapter->pshmem = (struct slic_shmem *)
pci_alloc_consistent(adapter->pcidev,
sizeof(struct slic_shmem),
&adapter->
phys_shmem);
ASSERT(adapter->pshmem);
memset(adapter->pshmem, 0, sizeof(struct slic_shmem));
return;
}
static const struct net_device_ops slic_netdev_ops = {
.ndo_open = slic_entry_open,
.ndo_stop = slic_entry_halt,
.ndo_start_xmit = slic_xmit_start,
.ndo_do_ioctl = slic_ioctl,
.ndo_set_mac_address = slic_mac_set_address,
.ndo_get_stats = slic_get_stats,
.ndo_set_rx_mode = slic_mcast_set_list,
.ndo_validate_addr = eth_validate_addr,
.ndo_change_mtu = eth_change_mtu,
};
static u32 slic_card_locate(struct adapter *adapter)
{
struct sliccard *card = slic_global.slic_card;
struct physcard *physcard = slic_global.phys_card;
ushort card_hostid;
u16 __iomem *hostid_reg;
uint i;
uint rdhostid_offset = 0;
switch (adapter->devid) {
case SLIC_2GB_DEVICE_ID:
rdhostid_offset = SLIC_RDHOSTID_2GB;
break;
case SLIC_1GB_DEVICE_ID:
rdhostid_offset = SLIC_RDHOSTID_1GB;
break;
default:
ASSERT(0);
break;
}
hostid_reg =
(u16 __iomem *) (((u8 __iomem *) (adapter->slic_regs)) +
rdhostid_offset);
/* read the 16 bit hostid from SRAM */
card_hostid = (ushort) readw(hostid_reg);
/* Initialize a new card structure if need be */
if (card_hostid == SLIC_HOSTID_DEFAULT) {
card = kzalloc(sizeof(struct sliccard), GFP_KERNEL);
if (card == NULL)
return -ENOMEM;
card->next = slic_global.slic_card;
slic_global.slic_card = card;
card->busnumber = adapter->busnumber;
card->slotnumber = adapter->slotnumber;
/* Find an available cardnum */
for (i = 0; i < SLIC_MAX_CARDS; i++) {
if (slic_global.cardnuminuse[i] == 0) {
slic_global.cardnuminuse[i] = 1;
card->cardnum = i;
break;
}
}
slic_global.num_slic_cards++;
slic_debug_card_create(card);
} else {
/* Card exists, find the card this adapter belongs to */
while (card) {
if (card->cardnum == card_hostid)
break;
card = card->next;
}
}
ASSERT(card);
if (!card)
return -ENXIO;
/* Put the adapter in the card's adapter list */
ASSERT(card->adapter[adapter->port] == NULL);
if (!card->adapter[adapter->port]) {
card->adapter[adapter->port] = adapter;
adapter->card = card;
}
card->card_size = 1; /* one port per *logical* card */
while (physcard) {
for (i = 0; i < SLIC_MAX_PORTS; i++) {
if (!physcard->adapter[i])
continue;
else
break;
}
ASSERT(i != SLIC_MAX_PORTS);
if (physcard->adapter[i]->slotnumber == adapter->slotnumber)
break;
physcard = physcard->next;
}
if (!physcard) {
/* no structure allocated for this physical card yet */
physcard = kzalloc(sizeof(struct physcard), GFP_ATOMIC);
ASSERT(physcard);
physcard->next = slic_global.phys_card;
slic_global.phys_card = physcard;
physcard->adapters_allocd = 1;
} else {
physcard->adapters_allocd++;
}
/* Note - this is ZERO relative */
adapter->physport = physcard->adapters_allocd - 1;
ASSERT(physcard->adapter[adapter->physport] == NULL);
physcard->adapter[adapter->physport] = adapter;
adapter->physcard = physcard;
return 0;
}
static int __devinit slic_entry_probe(struct pci_dev *pcidev,
const struct pci_device_id *pci_tbl_entry)
{
static int cards_found;
static int did_version;
int err = -ENODEV;
struct net_device *netdev;
struct adapter *adapter;
void __iomem *memmapped_ioaddr = NULL;
u32 status = 0;
ulong mmio_start = 0;
ulong mmio_len = 0;
struct sliccard *card = NULL;
int pci_using_dac = 0;
slic_global.dynamic_intagg = dynamic_intagg;
err = pci_enable_device(pcidev);
if (err)
return err;
if (slic_debug > 0 && did_version++ == 0) {
printk(KERN_DEBUG "%s\n", slic_banner);
printk(KERN_DEBUG "%s\n", slic_proc_version);
}
if (!pci_set_dma_mask(pcidev, DMA_BIT_MASK(64))) {
pci_using_dac = 1;
if (pci_set_consistent_dma_mask(pcidev, DMA_BIT_MASK(64))) {
dev_err(&pcidev->dev, "unable to obtain 64-bit DMA for "
"consistent allocations\n");
goto err_out_disable_pci;
}
} else if (pci_set_dma_mask(pcidev, DMA_BIT_MASK(32))) {
pci_using_dac = 0;
pci_set_consistent_dma_mask(pcidev, DMA_BIT_MASK(32));
} else {
dev_err(&pcidev->dev, "no usable DMA configuration\n");
goto err_out_disable_pci;
}
err = pci_request_regions(pcidev, DRV_NAME);
if (err) {
dev_err(&pcidev->dev, "can't obtain PCI resources\n");
goto err_out_disable_pci;
}
pci_set_master(pcidev);
netdev = alloc_etherdev(sizeof(struct adapter));
if (!netdev) {
err = -ENOMEM;
goto err_out_exit_slic_probe;
}
SET_NETDEV_DEV(netdev, &pcidev->dev);
pci_set_drvdata(pcidev, netdev);
adapter = netdev_priv(netdev);
adapter->netdev = netdev;
adapter->pcidev = pcidev;
if (pci_using_dac)
netdev->features |= NETIF_F_HIGHDMA;
mmio_start = pci_resource_start(pcidev, 0);
mmio_len = pci_resource_len(pcidev, 0);
/* memmapped_ioaddr = (u32)ioremap_nocache(mmio_start, mmio_len);*/
memmapped_ioaddr = ioremap(mmio_start, mmio_len);
if (!memmapped_ioaddr) {
dev_err(&pcidev->dev, "cannot remap MMIO region %lx @ %lx\n",
mmio_len, mmio_start);
goto err_out_free_netdev;
}
slic_config_pci(pcidev);
slic_init_driver();
slic_init_adapter(netdev,
pcidev, pci_tbl_entry, memmapped_ioaddr, cards_found);
status = slic_card_locate(adapter);
if (status) {
dev_err(&pcidev->dev, "cannot locate card\n");
goto err_out_free_mmio_region;
}
card = adapter->card;
if (!adapter->allocated) {
card->adapters_allocated++;
adapter->allocated = 1;
}
status = slic_card_init(card, adapter);
if (status != 0) {
card->state = CARD_FAIL;
adapter->state = ADAPT_FAIL;
adapter->linkstate = LINK_DOWN;
dev_err(&pcidev->dev, "FAILED status[%x]\n", status);
} else {
slic_adapter_set_hwaddr(adapter);
}
netdev->base_addr = (unsigned long)adapter->memorybase;
netdev->irq = adapter->irq;
netdev->netdev_ops = &slic_netdev_ops;
slic_debug_adapter_create(adapter);
strcpy(netdev->name, "eth%d");
err = register_netdev(netdev);
if (err) {
dev_err(&pcidev->dev, "Cannot register net device, aborting.\n");
goto err_out_unmap;
}
cards_found++;
return status;
err_out_unmap:
iounmap(memmapped_ioaddr);
err_out_free_mmio_region:
release_mem_region(mmio_start, mmio_len);
err_out_free_netdev:
free_netdev(netdev);
err_out_exit_slic_probe:
pci_release_regions(pcidev);
err_out_disable_pci:
pci_disable_device(pcidev);
return err;
}
static struct pci_driver slic_driver = {
.name = DRV_NAME,
.id_table = slic_pci_tbl,
.probe = slic_entry_probe,
.remove = __devexit_p(slic_entry_remove),
};
static int __init slic_module_init(void)
{
slic_init_driver();
if (debug >= 0 && slic_debug != debug)
printk(KERN_DEBUG KBUILD_MODNAME ": debug level is %d.\n",
debug);
if (debug >= 0)
slic_debug = debug;
return pci_register_driver(&slic_driver);
}
static void __exit slic_module_cleanup(void)
{
pci_unregister_driver(&slic_driver);
slic_debug_cleanup();
}
module_init(slic_module_init);
module_exit(slic_module_cleanup);