| // SPDX-License-Identifier: GPL-2.0 OR MIT |
| /* |
| * Rockchip NAND Flash controller driver. |
| * Copyright (C) 2020 Rockchip Inc. |
| * Author: Yifeng Zhao <yifeng.zhao@rock-chips.com> |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/delay.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/dmaengine.h> |
| #include <linux/interrupt.h> |
| #include <linux/iopoll.h> |
| #include <linux/module.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/rawnand.h> |
| #include <linux/of.h> |
| #include <linux/platform_device.h> |
| #include <linux/slab.h> |
| |
| /* |
| * NFC Page Data Layout: |
| * 1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data + |
| * 1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data + |
| * ...... |
| * NAND Page Data Layout: |
| * 1024 * n data + m Bytes oob |
| * Original Bad Block Mask Location: |
| * First byte of oob(spare). |
| * nand_chip->oob_poi data layout: |
| * 4Bytes sys data + .... + 4Bytes sys data + ECC data. |
| */ |
| |
| /* NAND controller register definition */ |
| #define NFC_READ (0) |
| #define NFC_WRITE (1) |
| |
| #define NFC_FMCTL (0x00) |
| #define FMCTL_CE_SEL_M 0xFF |
| #define FMCTL_CE_SEL(x) (1 << (x)) |
| #define FMCTL_WP BIT(8) |
| #define FMCTL_RDY BIT(9) |
| |
| #define NFC_FMWAIT (0x04) |
| #define FLCTL_RST BIT(0) |
| #define FLCTL_WR (1) /* 0: read, 1: write */ |
| #define FLCTL_XFER_ST BIT(2) |
| #define FLCTL_XFER_EN BIT(3) |
| #define FLCTL_ACORRECT BIT(10) /* Auto correct error bits. */ |
| #define FLCTL_XFER_READY BIT(20) |
| #define FLCTL_XFER_SECTOR (22) |
| #define FLCTL_TOG_FIX BIT(29) |
| |
| #define BCHCTL_BANK_M (7 << 5) |
| #define BCHCTL_BANK (5) |
| |
| #define DMA_ST BIT(0) |
| #define DMA_WR (1) /* 0: write, 1: read */ |
| #define DMA_EN BIT(2) |
| #define DMA_AHB_SIZE (3) /* 0: 1, 1: 2, 2: 4 */ |
| #define DMA_BURST_SIZE (6) /* 0: 1, 3: 4, 5: 8, 7: 16 */ |
| #define DMA_INC_NUM (9) /* 1 - 16 */ |
| |
| #define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) |\ |
| (((x) >> (e).high) & (e).high_mask) << (e).low_bn) |
| #define INT_DMA BIT(0) |
| #define NFC_BANK (0x800) |
| #define NFC_BANK_STEP (0x100) |
| #define BANK_DATA (0x00) |
| #define BANK_ADDR (0x04) |
| #define BANK_CMD (0x08) |
| #define NFC_SRAM0 (0x1000) |
| #define NFC_SRAM1 (0x1400) |
| #define NFC_SRAM_SIZE (0x400) |
| #define NFC_TIMEOUT (500000) |
| #define NFC_MAX_OOB_PER_STEP 128 |
| #define NFC_MIN_OOB_PER_STEP 64 |
| #define MAX_DATA_SIZE 0xFFFC |
| #define MAX_ADDRESS_CYC 6 |
| #define NFC_ECC_MAX_MODES 4 |
| #define NFC_MAX_NSELS (8) /* Some Socs only have 1 or 2 CSs. */ |
| #define NFC_SYS_DATA_SIZE (4) /* 4 bytes sys data in oob pre 1024 data.*/ |
| #define RK_DEFAULT_CLOCK_RATE (150 * 1000 * 1000) /* 150 Mhz */ |
| #define ACCTIMING(csrw, rwpw, rwcs) ((csrw) << 12 | (rwpw) << 5 | (rwcs)) |
| |
| enum nfc_type { |
| NFC_V6, |
| NFC_V8, |
| NFC_V9, |
| }; |
| |
| /** |
| * struct rk_ecc_cnt_status: represent a ecc status data. |
| * @err_flag_bit: error flag bit index at register. |
| * @low: ECC count low bit index at register. |
| * @low_mask: mask bit. |
| * @low_bn: ECC count low bit number. |
| * @high: ECC count high bit index at register. |
| * @high_mask: mask bit |
| */ |
| struct rk_ecc_cnt_status { |
| u8 err_flag_bit; |
| u8 low; |
| u8 low_mask; |
| u8 low_bn; |
| u8 high; |
| u8 high_mask; |
| }; |
| |
| /** |
| * struct nfc_cfg: Rockchip NAND controller configuration |
| * @type: NFC version |
| * @ecc_strengths: ECC strengths |
| * @ecc_cfgs: ECC config values |
| * @flctl_off: FLCTL register offset |
| * @bchctl_off: BCHCTL register offset |
| * @dma_data_buf_off: DMA_DATA_BUF register offset |
| * @dma_oob_buf_off: DMA_OOB_BUF register offset |
| * @dma_cfg_off: DMA_CFG register offset |
| * @dma_st_off: DMA_ST register offset |
| * @bch_st_off: BCG_ST register offset |
| * @randmz_off: RANDMZ register offset |
| * @int_en_off: interrupt enable register offset |
| * @int_clr_off: interrupt clean register offset |
| * @int_st_off: interrupt status register offset |
| * @oob0_off: oob0 register offset |
| * @oob1_off: oob1 register offset |
| * @ecc0: represent ECC0 status data |
| * @ecc1: represent ECC1 status data |
| */ |
| struct nfc_cfg { |
| enum nfc_type type; |
| u8 ecc_strengths[NFC_ECC_MAX_MODES]; |
| u32 ecc_cfgs[NFC_ECC_MAX_MODES]; |
| u32 flctl_off; |
| u32 bchctl_off; |
| u32 dma_cfg_off; |
| u32 dma_data_buf_off; |
| u32 dma_oob_buf_off; |
| u32 dma_st_off; |
| u32 bch_st_off; |
| u32 randmz_off; |
| u32 int_en_off; |
| u32 int_clr_off; |
| u32 int_st_off; |
| u32 oob0_off; |
| u32 oob1_off; |
| struct rk_ecc_cnt_status ecc0; |
| struct rk_ecc_cnt_status ecc1; |
| }; |
| |
| struct rk_nfc_nand_chip { |
| struct list_head node; |
| struct nand_chip chip; |
| |
| u16 boot_blks; |
| u16 metadata_size; |
| u32 boot_ecc; |
| u32 timing; |
| |
| u8 nsels; |
| u8 sels[] __counted_by(nsels); |
| }; |
| |
| struct rk_nfc { |
| struct nand_controller controller; |
| const struct nfc_cfg *cfg; |
| struct device *dev; |
| |
| struct clk *nfc_clk; |
| struct clk *ahb_clk; |
| void __iomem *regs; |
| |
| u32 selected_bank; |
| u32 band_offset; |
| u32 cur_ecc; |
| u32 cur_timing; |
| |
| struct completion done; |
| struct list_head chips; |
| |
| u8 *page_buf; |
| u32 *oob_buf; |
| u32 page_buf_size; |
| u32 oob_buf_size; |
| |
| unsigned long assigned_cs; |
| }; |
| |
| static inline struct rk_nfc_nand_chip *rk_nfc_to_rknand(struct nand_chip *chip) |
| { |
| return container_of(chip, struct rk_nfc_nand_chip, chip); |
| } |
| |
| static inline u8 *rk_nfc_buf_to_data_ptr(struct nand_chip *chip, const u8 *p, int i) |
| { |
| return (u8 *)p + i * chip->ecc.size; |
| } |
| |
| static inline u8 *rk_nfc_buf_to_oob_ptr(struct nand_chip *chip, int i) |
| { |
| u8 *poi; |
| |
| poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE; |
| |
| return poi; |
| } |
| |
| static inline u8 *rk_nfc_buf_to_oob_ecc_ptr(struct nand_chip *chip, int i) |
| { |
| struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); |
| u8 *poi; |
| |
| poi = chip->oob_poi + rknand->metadata_size + chip->ecc.bytes * i; |
| |
| return poi; |
| } |
| |
| static inline int rk_nfc_data_len(struct nand_chip *chip) |
| { |
| return chip->ecc.size + chip->ecc.bytes + NFC_SYS_DATA_SIZE; |
| } |
| |
| static inline u8 *rk_nfc_data_ptr(struct nand_chip *chip, int i) |
| { |
| struct rk_nfc *nfc = nand_get_controller_data(chip); |
| |
| return nfc->page_buf + i * rk_nfc_data_len(chip); |
| } |
| |
| static inline u8 *rk_nfc_oob_ptr(struct nand_chip *chip, int i) |
| { |
| struct rk_nfc *nfc = nand_get_controller_data(chip); |
| |
| return nfc->page_buf + i * rk_nfc_data_len(chip) + chip->ecc.size; |
| } |
| |
| static int rk_nfc_hw_ecc_setup(struct nand_chip *chip, u32 strength) |
| { |
| struct rk_nfc *nfc = nand_get_controller_data(chip); |
| u32 reg, i; |
| |
| for (i = 0; i < NFC_ECC_MAX_MODES; i++) { |
| if (strength == nfc->cfg->ecc_strengths[i]) { |
| reg = nfc->cfg->ecc_cfgs[i]; |
| break; |
| } |
| } |
| |
| if (i >= NFC_ECC_MAX_MODES) |
| return -EINVAL; |
| |
| writel(reg, nfc->regs + nfc->cfg->bchctl_off); |
| |
| /* Save chip ECC setting */ |
| nfc->cur_ecc = strength; |
| |
| return 0; |
| } |
| |
| static void rk_nfc_select_chip(struct nand_chip *chip, int cs) |
| { |
| struct rk_nfc *nfc = nand_get_controller_data(chip); |
| struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| u32 val; |
| |
| if (cs < 0) { |
| nfc->selected_bank = -1; |
| /* Deselect the currently selected target. */ |
| val = readl_relaxed(nfc->regs + NFC_FMCTL); |
| val &= ~FMCTL_CE_SEL_M; |
| writel(val, nfc->regs + NFC_FMCTL); |
| return; |
| } |
| |
| nfc->selected_bank = rknand->sels[cs]; |
| nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP; |
| |
| val = readl_relaxed(nfc->regs + NFC_FMCTL); |
| val &= ~FMCTL_CE_SEL_M; |
| val |= FMCTL_CE_SEL(nfc->selected_bank); |
| |
| writel(val, nfc->regs + NFC_FMCTL); |
| |
| /* |
| * Compare current chip timing with selected chip timing and |
| * change if needed. |
| */ |
| if (nfc->cur_timing != rknand->timing) { |
| writel(rknand->timing, nfc->regs + NFC_FMWAIT); |
| nfc->cur_timing = rknand->timing; |
| } |
| |
| /* |
| * Compare current chip ECC setting with selected chip ECC setting and |
| * change if needed. |
| */ |
| if (nfc->cur_ecc != ecc->strength) |
| rk_nfc_hw_ecc_setup(chip, ecc->strength); |
| } |
| |
| static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc) |
| { |
| int rc; |
| u32 val; |
| |
| rc = readl_relaxed_poll_timeout(nfc->regs + NFC_FMCTL, val, |
| val & FMCTL_RDY, 10, NFC_TIMEOUT); |
| |
| return rc; |
| } |
| |
| static void rk_nfc_read_buf(struct rk_nfc *nfc, u8 *buf, int len) |
| { |
| int i; |
| |
| for (i = 0; i < len; i++) |
| buf[i] = readb_relaxed(nfc->regs + nfc->band_offset + |
| BANK_DATA); |
| } |
| |
| static void rk_nfc_write_buf(struct rk_nfc *nfc, const u8 *buf, int len) |
| { |
| int i; |
| |
| for (i = 0; i < len; i++) |
| writeb(buf[i], nfc->regs + nfc->band_offset + BANK_DATA); |
| } |
| |
| static int rk_nfc_cmd(struct nand_chip *chip, |
| const struct nand_subop *subop) |
| { |
| struct rk_nfc *nfc = nand_get_controller_data(chip); |
| unsigned int i, j, remaining, start; |
| int reg_offset = nfc->band_offset; |
| u8 *inbuf = NULL; |
| const u8 *outbuf; |
| u32 cnt = 0; |
| int ret = 0; |
| |
| for (i = 0; i < subop->ninstrs; i++) { |
| const struct nand_op_instr *instr = &subop->instrs[i]; |
| |
| switch (instr->type) { |
| case NAND_OP_CMD_INSTR: |
| writeb(instr->ctx.cmd.opcode, |
| nfc->regs + reg_offset + BANK_CMD); |
| break; |
| |
| case NAND_OP_ADDR_INSTR: |
| remaining = nand_subop_get_num_addr_cyc(subop, i); |
| start = nand_subop_get_addr_start_off(subop, i); |
| |
| for (j = 0; j < 8 && j + start < remaining; j++) |
| writeb(instr->ctx.addr.addrs[j + start], |
| nfc->regs + reg_offset + BANK_ADDR); |
| break; |
| |
| case NAND_OP_DATA_IN_INSTR: |
| case NAND_OP_DATA_OUT_INSTR: |
| start = nand_subop_get_data_start_off(subop, i); |
| cnt = nand_subop_get_data_len(subop, i); |
| |
| if (instr->type == NAND_OP_DATA_OUT_INSTR) { |
| outbuf = instr->ctx.data.buf.out + start; |
| rk_nfc_write_buf(nfc, outbuf, cnt); |
| } else { |
| inbuf = instr->ctx.data.buf.in + start; |
| rk_nfc_read_buf(nfc, inbuf, cnt); |
| } |
| break; |
| |
| case NAND_OP_WAITRDY_INSTR: |
| if (rk_nfc_wait_ioready(nfc) < 0) { |
| ret = -ETIMEDOUT; |
| dev_err(nfc->dev, "IO not ready\n"); |
| } |
| break; |
| } |
| } |
| |
| return ret; |
| } |
| |
| static const struct nand_op_parser rk_nfc_op_parser = NAND_OP_PARSER( |
| NAND_OP_PARSER_PATTERN( |
| rk_nfc_cmd, |
| NAND_OP_PARSER_PAT_CMD_ELEM(true), |
| NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC), |
| NAND_OP_PARSER_PAT_CMD_ELEM(true), |
| NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), |
| NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, MAX_DATA_SIZE)), |
| NAND_OP_PARSER_PATTERN( |
| rk_nfc_cmd, |
| NAND_OP_PARSER_PAT_CMD_ELEM(true), |
| NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC), |
| NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, MAX_DATA_SIZE), |
| NAND_OP_PARSER_PAT_CMD_ELEM(true), |
| NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), |
| ); |
| |
| static int rk_nfc_exec_op(struct nand_chip *chip, |
| const struct nand_operation *op, |
| bool check_only) |
| { |
| if (!check_only) |
| rk_nfc_select_chip(chip, op->cs); |
| |
| return nand_op_parser_exec_op(chip, &rk_nfc_op_parser, op, |
| check_only); |
| } |
| |
| static int rk_nfc_setup_interface(struct nand_chip *chip, int target, |
| const struct nand_interface_config *conf) |
| { |
| struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); |
| struct rk_nfc *nfc = nand_get_controller_data(chip); |
| const struct nand_sdr_timings *timings; |
| u32 rate, tc2rw, trwpw, trw2c; |
| u32 temp; |
| |
| timings = nand_get_sdr_timings(conf); |
| if (IS_ERR(timings)) |
| return -EOPNOTSUPP; |
| |
| if (target < 0) |
| return 0; |
| |
| if (IS_ERR(nfc->nfc_clk)) |
| rate = clk_get_rate(nfc->ahb_clk); |
| else |
| rate = clk_get_rate(nfc->nfc_clk); |
| |
| /* Turn clock rate into kHz. */ |
| rate /= 1000; |
| |
| tc2rw = 1; |
| trw2c = 1; |
| |
| trwpw = max(timings->tWC_min, timings->tRC_min) / 1000; |
| trwpw = DIV_ROUND_UP(trwpw * rate, 1000000); |
| |
| temp = timings->tREA_max / 1000; |
| temp = DIV_ROUND_UP(temp * rate, 1000000); |
| |
| if (trwpw < temp) |
| trwpw = temp; |
| |
| /* |
| * ACCON: access timing control register |
| * ------------------------------------- |
| * 31:18: reserved |
| * 17:12: csrw, clock cycles from the falling edge of CSn to the |
| * falling edge of RDn or WRn |
| * 11:11: reserved |
| * 10:05: rwpw, the width of RDn or WRn in processor clock cycles |
| * 04:00: rwcs, clock cycles from the rising edge of RDn or WRn to the |
| * rising edge of CSn |
| */ |
| |
| /* Save chip timing */ |
| rknand->timing = ACCTIMING(tc2rw, trwpw, trw2c); |
| |
| return 0; |
| } |
| |
| static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB, |
| dma_addr_t dma_data, dma_addr_t dma_oob) |
| { |
| u32 dma_reg, fl_reg, bch_reg; |
| |
| dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) | |
| (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM); |
| |
| fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT | |
| (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX; |
| |
| if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) { |
| bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off); |
| bch_reg = (bch_reg & (~BCHCTL_BANK_M)) | |
| (nfc->selected_bank << BCHCTL_BANK); |
| writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off); |
| } |
| |
| writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off); |
| writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off); |
| writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off); |
| writel(fl_reg, nfc->regs + nfc->cfg->flctl_off); |
| fl_reg |= FLCTL_XFER_ST; |
| writel(fl_reg, nfc->regs + nfc->cfg->flctl_off); |
| } |
| |
| static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc) |
| { |
| void __iomem *ptr; |
| u32 reg; |
| |
| ptr = nfc->regs + nfc->cfg->flctl_off; |
| |
| return readl_relaxed_poll_timeout(ptr, reg, |
| reg & FLCTL_XFER_READY, |
| 10, NFC_TIMEOUT); |
| } |
| |
| static int rk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf, |
| int oob_on, int page) |
| { |
| struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); |
| struct rk_nfc *nfc = nand_get_controller_data(chip); |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| int i, pages_per_blk; |
| |
| pages_per_blk = mtd->erasesize / mtd->writesize; |
| if ((chip->options & NAND_IS_BOOT_MEDIUM) && |
| (page < (pages_per_blk * rknand->boot_blks)) && |
| rknand->boot_ecc != ecc->strength) { |
| /* |
| * There's currently no method to notify the MTD framework that |
| * a different ECC strength is in use for the boot blocks. |
| */ |
| return -EIO; |
| } |
| |
| if (!buf) |
| memset(nfc->page_buf, 0xff, mtd->writesize + mtd->oobsize); |
| |
| for (i = 0; i < ecc->steps; i++) { |
| /* Copy data to the NFC buffer. */ |
| if (buf) |
| memcpy(rk_nfc_data_ptr(chip, i), |
| rk_nfc_buf_to_data_ptr(chip, buf, i), |
| ecc->size); |
| /* |
| * The first four bytes of OOB are reserved for the |
| * boot ROM. In some debugging cases, such as with a |
| * read, erase and write back test these 4 bytes stored |
| * in OOB also need to be written back. |
| * |
| * The function nand_block_bad detects bad blocks like: |
| * |
| * bad = chip->oob_poi[chip->badblockpos]; |
| * |
| * chip->badblockpos == 0 for a large page NAND Flash, |
| * so chip->oob_poi[0] is the bad block mask (BBM). |
| * |
| * The OOB data layout on the NFC is: |
| * |
| * PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ... |
| * |
| * or |
| * |
| * 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ... |
| * |
| * The code here just swaps the first 4 bytes with the last |
| * 4 bytes without losing any data. |
| * |
| * The chip->oob_poi data layout: |
| * |
| * BBM OOB1 OOB2 OOB3 |......| PA0 PA1 PA2 PA3 |
| * |
| * The rk_nfc_ooblayout_free() function already has reserved |
| * these 4 bytes together with 2 bytes for BBM |
| * by reducing it's length: |
| * |
| * oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2; |
| */ |
| if (!i) |
| memcpy(rk_nfc_oob_ptr(chip, i), |
| rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1), |
| NFC_SYS_DATA_SIZE); |
| else |
| memcpy(rk_nfc_oob_ptr(chip, i), |
| rk_nfc_buf_to_oob_ptr(chip, i - 1), |
| NFC_SYS_DATA_SIZE); |
| /* Copy ECC data to the NFC buffer. */ |
| memcpy(rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE, |
| rk_nfc_buf_to_oob_ecc_ptr(chip, i), |
| ecc->bytes); |
| } |
| |
| nand_prog_page_begin_op(chip, page, 0, NULL, 0); |
| rk_nfc_write_buf(nfc, buf, mtd->writesize + mtd->oobsize); |
| return nand_prog_page_end_op(chip); |
| } |
| |
| static int rk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf, |
| int oob_on, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct rk_nfc *nfc = nand_get_controller_data(chip); |
| struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP : |
| NFC_MIN_OOB_PER_STEP; |
| int pages_per_blk = mtd->erasesize / mtd->writesize; |
| int ret = 0, i, boot_rom_mode = 0; |
| dma_addr_t dma_data, dma_oob; |
| u32 tmp; |
| u8 *oob; |
| |
| nand_prog_page_begin_op(chip, page, 0, NULL, 0); |
| |
| if (buf) |
| memcpy(nfc->page_buf, buf, mtd->writesize); |
| else |
| memset(nfc->page_buf, 0xFF, mtd->writesize); |
| |
| /* |
| * The first blocks (4, 8 or 16 depending on the device) are used |
| * by the boot ROM and the first 32 bits of OOB need to link to |
| * the next page address in the same block. We can't directly copy |
| * OOB data from the MTD framework, because this page address |
| * conflicts for example with the bad block marker (BBM), |
| * so we shift all OOB data including the BBM with 4 byte positions. |
| * As a consequence the OOB size available to the MTD framework is |
| * also reduced with 4 bytes. |
| * |
| * PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ... |
| * |
| * If a NAND is not a boot medium or the page is not a boot block, |
| * the first 4 bytes are left untouched by writing 0xFF to them. |
| * |
| * 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ... |
| * |
| * The code here just swaps the first 4 bytes with the last |
| * 4 bytes without losing any data. |
| * |
| * The chip->oob_poi data layout: |
| * |
| * BBM OOB1 OOB2 OOB3 |......| PA0 PA1 PA2 PA3 |
| * |
| * Configure the ECC algorithm supported by the boot ROM. |
| */ |
| if ((page < (pages_per_blk * rknand->boot_blks)) && |
| (chip->options & NAND_IS_BOOT_MEDIUM)) { |
| boot_rom_mode = 1; |
| if (rknand->boot_ecc != ecc->strength) |
| rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc); |
| } |
| |
| for (i = 0; i < ecc->steps; i++) { |
| if (!i) |
| oob = chip->oob_poi + (ecc->steps - 1) * NFC_SYS_DATA_SIZE; |
| else |
| oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE; |
| |
| tmp = oob[0] | oob[1] << 8 | oob[2] << 16 | oob[3] << 24; |
| |
| if (nfc->cfg->type == NFC_V9) |
| nfc->oob_buf[i] = tmp; |
| else |
| nfc->oob_buf[i * (oob_step / 4)] = tmp; |
| } |
| |
| dma_data = dma_map_single(nfc->dev, (void *)nfc->page_buf, |
| mtd->writesize, DMA_TO_DEVICE); |
| dma_oob = dma_map_single(nfc->dev, nfc->oob_buf, |
| ecc->steps * oob_step, |
| DMA_TO_DEVICE); |
| |
| reinit_completion(&nfc->done); |
| writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off); |
| |
| rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data, |
| dma_oob); |
| ret = wait_for_completion_timeout(&nfc->done, |
| msecs_to_jiffies(100)); |
| if (!ret) |
| dev_warn(nfc->dev, "write: wait dma done timeout.\n"); |
| /* |
| * Whether the DMA transfer is completed or not. The driver |
| * needs to check the NFC`s status register to see if the data |
| * transfer was completed. |
| */ |
| ret = rk_nfc_wait_for_xfer_done(nfc); |
| |
| dma_unmap_single(nfc->dev, dma_data, mtd->writesize, |
| DMA_TO_DEVICE); |
| dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step, |
| DMA_TO_DEVICE); |
| |
| if (boot_rom_mode && rknand->boot_ecc != ecc->strength) |
| rk_nfc_hw_ecc_setup(chip, ecc->strength); |
| |
| if (ret) { |
| dev_err(nfc->dev, "write: wait transfer done timeout.\n"); |
| return -ETIMEDOUT; |
| } |
| |
| return nand_prog_page_end_op(chip); |
| } |
| |
| static int rk_nfc_write_oob(struct nand_chip *chip, int page) |
| { |
| return rk_nfc_write_page_hwecc(chip, NULL, 1, page); |
| } |
| |
| static int rk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on, |
| int page) |
| { |
| struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); |
| struct rk_nfc *nfc = nand_get_controller_data(chip); |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| int i, pages_per_blk; |
| |
| pages_per_blk = mtd->erasesize / mtd->writesize; |
| if ((chip->options & NAND_IS_BOOT_MEDIUM) && |
| (page < (pages_per_blk * rknand->boot_blks)) && |
| rknand->boot_ecc != ecc->strength) { |
| /* |
| * There's currently no method to notify the MTD framework that |
| * a different ECC strength is in use for the boot blocks. |
| */ |
| return -EIO; |
| } |
| |
| nand_read_page_op(chip, page, 0, NULL, 0); |
| rk_nfc_read_buf(nfc, nfc->page_buf, mtd->writesize + mtd->oobsize); |
| for (i = 0; i < ecc->steps; i++) { |
| /* |
| * The first four bytes of OOB are reserved for the |
| * boot ROM. In some debugging cases, such as with a read, |
| * erase and write back test, these 4 bytes also must be |
| * saved somewhere, otherwise this information will be |
| * lost during a write back. |
| */ |
| if (!i) |
| memcpy(rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1), |
| rk_nfc_oob_ptr(chip, i), |
| NFC_SYS_DATA_SIZE); |
| else |
| memcpy(rk_nfc_buf_to_oob_ptr(chip, i - 1), |
| rk_nfc_oob_ptr(chip, i), |
| NFC_SYS_DATA_SIZE); |
| |
| /* Copy ECC data from the NFC buffer. */ |
| memcpy(rk_nfc_buf_to_oob_ecc_ptr(chip, i), |
| rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE, |
| ecc->bytes); |
| |
| /* Copy data from the NFC buffer. */ |
| if (buf) |
| memcpy(rk_nfc_buf_to_data_ptr(chip, buf, i), |
| rk_nfc_data_ptr(chip, i), |
| ecc->size); |
| } |
| |
| return 0; |
| } |
| |
| static int rk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *buf, int oob_on, |
| int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct rk_nfc *nfc = nand_get_controller_data(chip); |
| struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP : |
| NFC_MIN_OOB_PER_STEP; |
| int pages_per_blk = mtd->erasesize / mtd->writesize; |
| dma_addr_t dma_data, dma_oob; |
| int ret = 0, i, cnt, boot_rom_mode = 0; |
| int max_bitflips = 0, bch_st, ecc_fail = 0; |
| u8 *oob; |
| u32 tmp; |
| |
| nand_read_page_op(chip, page, 0, NULL, 0); |
| |
| dma_data = dma_map_single(nfc->dev, nfc->page_buf, |
| mtd->writesize, |
| DMA_FROM_DEVICE); |
| dma_oob = dma_map_single(nfc->dev, nfc->oob_buf, |
| ecc->steps * oob_step, |
| DMA_FROM_DEVICE); |
| |
| /* |
| * The first blocks (4, 8 or 16 depending on the device) |
| * are used by the boot ROM. |
| * Configure the ECC algorithm supported by the boot ROM. |
| */ |
| if ((page < (pages_per_blk * rknand->boot_blks)) && |
| (chip->options & NAND_IS_BOOT_MEDIUM)) { |
| boot_rom_mode = 1; |
| if (rknand->boot_ecc != ecc->strength) |
| rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc); |
| } |
| |
| reinit_completion(&nfc->done); |
| writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off); |
| rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data, |
| dma_oob); |
| ret = wait_for_completion_timeout(&nfc->done, |
| msecs_to_jiffies(100)); |
| if (!ret) |
| dev_warn(nfc->dev, "read: wait dma done timeout.\n"); |
| /* |
| * Whether the DMA transfer is completed or not. The driver |
| * needs to check the NFC`s status register to see if the data |
| * transfer was completed. |
| */ |
| ret = rk_nfc_wait_for_xfer_done(nfc); |
| |
| dma_unmap_single(nfc->dev, dma_data, mtd->writesize, |
| DMA_FROM_DEVICE); |
| dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step, |
| DMA_FROM_DEVICE); |
| |
| if (ret) { |
| ret = -ETIMEDOUT; |
| dev_err(nfc->dev, "read: wait transfer done timeout.\n"); |
| goto timeout_err; |
| } |
| |
| for (i = 0; i < ecc->steps; i++) { |
| if (!i) |
| oob = chip->oob_poi + (ecc->steps - 1) * NFC_SYS_DATA_SIZE; |
| else |
| oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE; |
| |
| if (nfc->cfg->type == NFC_V9) |
| tmp = nfc->oob_buf[i]; |
| else |
| tmp = nfc->oob_buf[i * (oob_step / 4)]; |
| |
| *oob++ = (u8)tmp; |
| *oob++ = (u8)(tmp >> 8); |
| *oob++ = (u8)(tmp >> 16); |
| *oob++ = (u8)(tmp >> 24); |
| } |
| |
| for (i = 0; i < (ecc->steps / 2); i++) { |
| bch_st = readl_relaxed(nfc->regs + |
| nfc->cfg->bch_st_off + i * 4); |
| if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) || |
| bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) { |
| mtd->ecc_stats.failed++; |
| ecc_fail = 1; |
| } else { |
| cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0); |
| mtd->ecc_stats.corrected += cnt; |
| max_bitflips = max_t(u32, max_bitflips, cnt); |
| |
| cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1); |
| mtd->ecc_stats.corrected += cnt; |
| max_bitflips = max_t(u32, max_bitflips, cnt); |
| } |
| } |
| |
| if (buf) |
| memcpy(buf, nfc->page_buf, mtd->writesize); |
| |
| timeout_err: |
| if (boot_rom_mode && rknand->boot_ecc != ecc->strength) |
| rk_nfc_hw_ecc_setup(chip, ecc->strength); |
| |
| if (ret) |
| return ret; |
| |
| if (ecc_fail) { |
| dev_err(nfc->dev, "read page: %x ecc error!\n", page); |
| return 0; |
| } |
| |
| return max_bitflips; |
| } |
| |
| static int rk_nfc_read_oob(struct nand_chip *chip, int page) |
| { |
| return rk_nfc_read_page_hwecc(chip, NULL, 1, page); |
| } |
| |
| static inline void rk_nfc_hw_init(struct rk_nfc *nfc) |
| { |
| /* Disable flash wp. */ |
| writel(FMCTL_WP, nfc->regs + NFC_FMCTL); |
| /* Config default timing 40ns at 150 Mhz NFC clock. */ |
| writel(0x1081, nfc->regs + NFC_FMWAIT); |
| nfc->cur_timing = 0x1081; |
| /* Disable randomizer and DMA. */ |
| writel(0, nfc->regs + nfc->cfg->randmz_off); |
| writel(0, nfc->regs + nfc->cfg->dma_cfg_off); |
| writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off); |
| } |
| |
| static irqreturn_t rk_nfc_irq(int irq, void *id) |
| { |
| struct rk_nfc *nfc = id; |
| u32 sta, ien; |
| |
| sta = readl_relaxed(nfc->regs + nfc->cfg->int_st_off); |
| ien = readl_relaxed(nfc->regs + nfc->cfg->int_en_off); |
| |
| if (!(sta & ien)) |
| return IRQ_NONE; |
| |
| writel(sta, nfc->regs + nfc->cfg->int_clr_off); |
| writel(~sta & ien, nfc->regs + nfc->cfg->int_en_off); |
| |
| complete(&nfc->done); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int rk_nfc_enable_clks(struct device *dev, struct rk_nfc *nfc) |
| { |
| int ret; |
| |
| if (!IS_ERR(nfc->nfc_clk)) { |
| ret = clk_prepare_enable(nfc->nfc_clk); |
| if (ret) { |
| dev_err(dev, "failed to enable NFC clk\n"); |
| return ret; |
| } |
| } |
| |
| ret = clk_prepare_enable(nfc->ahb_clk); |
| if (ret) { |
| dev_err(dev, "failed to enable ahb clk\n"); |
| clk_disable_unprepare(nfc->nfc_clk); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void rk_nfc_disable_clks(struct rk_nfc *nfc) |
| { |
| clk_disable_unprepare(nfc->nfc_clk); |
| clk_disable_unprepare(nfc->ahb_clk); |
| } |
| |
| static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oob_region) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); |
| |
| if (section) |
| return -ERANGE; |
| |
| oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2; |
| oob_region->offset = 2; |
| |
| return 0; |
| } |
| |
| static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oob_region) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); |
| |
| if (section) |
| return -ERANGE; |
| |
| oob_region->length = mtd->oobsize - rknand->metadata_size; |
| oob_region->offset = rknand->metadata_size; |
| |
| return 0; |
| } |
| |
| static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = { |
| .free = rk_nfc_ooblayout_free, |
| .ecc = rk_nfc_ooblayout_ecc, |
| }; |
| |
| static int rk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct rk_nfc *nfc = nand_get_controller_data(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| const u8 *strengths = nfc->cfg->ecc_strengths; |
| u8 max_strength, nfc_max_strength; |
| int i; |
| |
| nfc_max_strength = nfc->cfg->ecc_strengths[0]; |
| /* If optional dt settings not present. */ |
| if (!ecc->size || !ecc->strength || |
| ecc->strength > nfc_max_strength) { |
| chip->ecc.size = 1024; |
| ecc->steps = mtd->writesize / ecc->size; |
| |
| /* |
| * HW ECC always requests the number of ECC bytes per 1024 byte |
| * blocks. The first 4 OOB bytes are reserved for sys data. |
| */ |
| max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 / |
| fls(8 * 1024); |
| if (max_strength > nfc_max_strength) |
| max_strength = nfc_max_strength; |
| |
| for (i = 0; i < 4; i++) { |
| if (max_strength >= strengths[i]) |
| break; |
| } |
| |
| if (i >= 4) { |
| dev_err(nfc->dev, "unsupported ECC strength\n"); |
| return -EOPNOTSUPP; |
| } |
| |
| ecc->strength = strengths[i]; |
| } |
| ecc->steps = mtd->writesize / ecc->size; |
| ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * chip->ecc.size), 8); |
| |
| return 0; |
| } |
| |
| static int rk_nfc_attach_chip(struct nand_chip *chip) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct device *dev = mtd->dev.parent; |
| struct rk_nfc *nfc = nand_get_controller_data(chip); |
| struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| int new_page_len, new_oob_len; |
| void *buf; |
| int ret; |
| |
| if (chip->options & NAND_BUSWIDTH_16) { |
| dev_err(dev, "16 bits bus width not supported"); |
| return -EINVAL; |
| } |
| |
| if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) |
| return 0; |
| |
| ret = rk_nfc_ecc_init(dev, mtd); |
| if (ret) |
| return ret; |
| |
| rknand->metadata_size = NFC_SYS_DATA_SIZE * ecc->steps; |
| |
| if (rknand->metadata_size < NFC_SYS_DATA_SIZE + 2) { |
| dev_err(dev, |
| "driver needs at least %d bytes of meta data\n", |
| NFC_SYS_DATA_SIZE + 2); |
| return -EIO; |
| } |
| |
| /* Check buffer first, avoid duplicate alloc buffer. */ |
| new_page_len = mtd->writesize + mtd->oobsize; |
| if (nfc->page_buf && new_page_len > nfc->page_buf_size) { |
| buf = krealloc(nfc->page_buf, new_page_len, |
| GFP_KERNEL | GFP_DMA); |
| if (!buf) |
| return -ENOMEM; |
| nfc->page_buf = buf; |
| nfc->page_buf_size = new_page_len; |
| } |
| |
| new_oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP; |
| if (nfc->oob_buf && new_oob_len > nfc->oob_buf_size) { |
| buf = krealloc(nfc->oob_buf, new_oob_len, |
| GFP_KERNEL | GFP_DMA); |
| if (!buf) { |
| kfree(nfc->page_buf); |
| nfc->page_buf = NULL; |
| return -ENOMEM; |
| } |
| nfc->oob_buf = buf; |
| nfc->oob_buf_size = new_oob_len; |
| } |
| |
| if (!nfc->page_buf) { |
| nfc->page_buf = kzalloc(new_page_len, GFP_KERNEL | GFP_DMA); |
| if (!nfc->page_buf) |
| return -ENOMEM; |
| nfc->page_buf_size = new_page_len; |
| } |
| |
| if (!nfc->oob_buf) { |
| nfc->oob_buf = kzalloc(new_oob_len, GFP_KERNEL | GFP_DMA); |
| if (!nfc->oob_buf) { |
| kfree(nfc->page_buf); |
| nfc->page_buf = NULL; |
| return -ENOMEM; |
| } |
| nfc->oob_buf_size = new_oob_len; |
| } |
| |
| chip->ecc.write_page_raw = rk_nfc_write_page_raw; |
| chip->ecc.write_page = rk_nfc_write_page_hwecc; |
| chip->ecc.write_oob = rk_nfc_write_oob; |
| |
| chip->ecc.read_page_raw = rk_nfc_read_page_raw; |
| chip->ecc.read_page = rk_nfc_read_page_hwecc; |
| chip->ecc.read_oob = rk_nfc_read_oob; |
| |
| return 0; |
| } |
| |
| static const struct nand_controller_ops rk_nfc_controller_ops = { |
| .attach_chip = rk_nfc_attach_chip, |
| .exec_op = rk_nfc_exec_op, |
| .setup_interface = rk_nfc_setup_interface, |
| }; |
| |
| static int rk_nfc_nand_chip_init(struct device *dev, struct rk_nfc *nfc, |
| struct device_node *np) |
| { |
| struct rk_nfc_nand_chip *rknand; |
| struct nand_chip *chip; |
| struct mtd_info *mtd; |
| int nsels; |
| u32 tmp; |
| int ret; |
| int i; |
| |
| if (!of_get_property(np, "reg", &nsels)) |
| return -ENODEV; |
| nsels /= sizeof(u32); |
| if (!nsels || nsels > NFC_MAX_NSELS) { |
| dev_err(dev, "invalid reg property size %d\n", nsels); |
| return -EINVAL; |
| } |
| |
| rknand = devm_kzalloc(dev, struct_size(rknand, sels, nsels), |
| GFP_KERNEL); |
| if (!rknand) |
| return -ENOMEM; |
| |
| rknand->nsels = nsels; |
| for (i = 0; i < nsels; i++) { |
| ret = of_property_read_u32_index(np, "reg", i, &tmp); |
| if (ret) { |
| dev_err(dev, "reg property failure : %d\n", ret); |
| return ret; |
| } |
| |
| if (tmp >= NFC_MAX_NSELS) { |
| dev_err(dev, "invalid CS: %u\n", tmp); |
| return -EINVAL; |
| } |
| |
| if (test_and_set_bit(tmp, &nfc->assigned_cs)) { |
| dev_err(dev, "CS %u already assigned\n", tmp); |
| return -EINVAL; |
| } |
| |
| rknand->sels[i] = tmp; |
| } |
| |
| chip = &rknand->chip; |
| chip->controller = &nfc->controller; |
| |
| nand_set_flash_node(chip, np); |
| |
| nand_set_controller_data(chip, nfc); |
| |
| chip->options |= NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE; |
| chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB; |
| |
| /* Set default mode in case dt entry is missing. */ |
| chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; |
| |
| mtd = nand_to_mtd(chip); |
| mtd->owner = THIS_MODULE; |
| mtd->dev.parent = dev; |
| |
| if (!mtd->name) { |
| dev_err(nfc->dev, "NAND label property is mandatory\n"); |
| return -EINVAL; |
| } |
| |
| mtd_set_ooblayout(mtd, &rk_nfc_ooblayout_ops); |
| rk_nfc_hw_init(nfc); |
| ret = nand_scan(chip, nsels); |
| if (ret) |
| return ret; |
| |
| if (chip->options & NAND_IS_BOOT_MEDIUM) { |
| ret = of_property_read_u32(np, "rockchip,boot-blks", &tmp); |
| rknand->boot_blks = ret ? 0 : tmp; |
| |
| ret = of_property_read_u32(np, "rockchip,boot-ecc-strength", |
| &tmp); |
| rknand->boot_ecc = ret ? chip->ecc.strength : tmp; |
| } |
| |
| ret = mtd_device_register(mtd, NULL, 0); |
| if (ret) { |
| dev_err(dev, "MTD parse partition error\n"); |
| nand_cleanup(chip); |
| return ret; |
| } |
| |
| list_add_tail(&rknand->node, &nfc->chips); |
| |
| return 0; |
| } |
| |
| static void rk_nfc_chips_cleanup(struct rk_nfc *nfc) |
| { |
| struct rk_nfc_nand_chip *rknand, *tmp; |
| struct nand_chip *chip; |
| int ret; |
| |
| list_for_each_entry_safe(rknand, tmp, &nfc->chips, node) { |
| chip = &rknand->chip; |
| ret = mtd_device_unregister(nand_to_mtd(chip)); |
| WARN_ON(ret); |
| nand_cleanup(chip); |
| list_del(&rknand->node); |
| } |
| } |
| |
| static int rk_nfc_nand_chips_init(struct device *dev, struct rk_nfc *nfc) |
| { |
| struct device_node *np = dev->of_node, *nand_np; |
| int nchips = of_get_child_count(np); |
| int ret; |
| |
| if (!nchips || nchips > NFC_MAX_NSELS) { |
| dev_err(nfc->dev, "incorrect number of NAND chips (%d)\n", |
| nchips); |
| return -EINVAL; |
| } |
| |
| for_each_child_of_node(np, nand_np) { |
| ret = rk_nfc_nand_chip_init(dev, nfc, nand_np); |
| if (ret) { |
| of_node_put(nand_np); |
| rk_nfc_chips_cleanup(nfc); |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static struct nfc_cfg nfc_v6_cfg = { |
| .type = NFC_V6, |
| .ecc_strengths = {60, 40, 24, 16}, |
| .ecc_cfgs = { |
| 0x00040011, 0x00040001, 0x00000011, 0x00000001, |
| }, |
| .flctl_off = 0x08, |
| .bchctl_off = 0x0C, |
| .dma_cfg_off = 0x10, |
| .dma_data_buf_off = 0x14, |
| .dma_oob_buf_off = 0x18, |
| .dma_st_off = 0x1C, |
| .bch_st_off = 0x20, |
| .randmz_off = 0x150, |
| .int_en_off = 0x16C, |
| .int_clr_off = 0x170, |
| .int_st_off = 0x174, |
| .oob0_off = 0x200, |
| .oob1_off = 0x230, |
| .ecc0 = { |
| .err_flag_bit = 2, |
| .low = 3, |
| .low_mask = 0x1F, |
| .low_bn = 5, |
| .high = 27, |
| .high_mask = 0x1, |
| }, |
| .ecc1 = { |
| .err_flag_bit = 15, |
| .low = 16, |
| .low_mask = 0x1F, |
| .low_bn = 5, |
| .high = 29, |
| .high_mask = 0x1, |
| }, |
| }; |
| |
| static struct nfc_cfg nfc_v8_cfg = { |
| .type = NFC_V8, |
| .ecc_strengths = {16, 16, 16, 16}, |
| .ecc_cfgs = { |
| 0x00000001, 0x00000001, 0x00000001, 0x00000001, |
| }, |
| .flctl_off = 0x08, |
| .bchctl_off = 0x0C, |
| .dma_cfg_off = 0x10, |
| .dma_data_buf_off = 0x14, |
| .dma_oob_buf_off = 0x18, |
| .dma_st_off = 0x1C, |
| .bch_st_off = 0x20, |
| .randmz_off = 0x150, |
| .int_en_off = 0x16C, |
| .int_clr_off = 0x170, |
| .int_st_off = 0x174, |
| .oob0_off = 0x200, |
| .oob1_off = 0x230, |
| .ecc0 = { |
| .err_flag_bit = 2, |
| .low = 3, |
| .low_mask = 0x1F, |
| .low_bn = 5, |
| .high = 27, |
| .high_mask = 0x1, |
| }, |
| .ecc1 = { |
| .err_flag_bit = 15, |
| .low = 16, |
| .low_mask = 0x1F, |
| .low_bn = 5, |
| .high = 29, |
| .high_mask = 0x1, |
| }, |
| }; |
| |
| static struct nfc_cfg nfc_v9_cfg = { |
| .type = NFC_V9, |
| .ecc_strengths = {70, 60, 40, 16}, |
| .ecc_cfgs = { |
| 0x00000001, 0x06000001, 0x04000001, 0x02000001, |
| }, |
| .flctl_off = 0x10, |
| .bchctl_off = 0x20, |
| .dma_cfg_off = 0x30, |
| .dma_data_buf_off = 0x34, |
| .dma_oob_buf_off = 0x38, |
| .dma_st_off = 0x3C, |
| .bch_st_off = 0x150, |
| .randmz_off = 0x208, |
| .int_en_off = 0x120, |
| .int_clr_off = 0x124, |
| .int_st_off = 0x128, |
| .oob0_off = 0x200, |
| .oob1_off = 0x204, |
| .ecc0 = { |
| .err_flag_bit = 2, |
| .low = 3, |
| .low_mask = 0x7F, |
| .low_bn = 7, |
| .high = 0, |
| .high_mask = 0x0, |
| }, |
| .ecc1 = { |
| .err_flag_bit = 18, |
| .low = 19, |
| .low_mask = 0x7F, |
| .low_bn = 7, |
| .high = 0, |
| .high_mask = 0x0, |
| }, |
| }; |
| |
| static const struct of_device_id rk_nfc_id_table[] = { |
| { |
| .compatible = "rockchip,px30-nfc", |
| .data = &nfc_v9_cfg |
| }, |
| { |
| .compatible = "rockchip,rk2928-nfc", |
| .data = &nfc_v6_cfg |
| }, |
| { |
| .compatible = "rockchip,rv1108-nfc", |
| .data = &nfc_v8_cfg |
| }, |
| { /* sentinel */ } |
| }; |
| MODULE_DEVICE_TABLE(of, rk_nfc_id_table); |
| |
| static int rk_nfc_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct rk_nfc *nfc; |
| int ret, irq; |
| |
| nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); |
| if (!nfc) |
| return -ENOMEM; |
| |
| nand_controller_init(&nfc->controller); |
| INIT_LIST_HEAD(&nfc->chips); |
| nfc->controller.ops = &rk_nfc_controller_ops; |
| |
| nfc->cfg = of_device_get_match_data(dev); |
| nfc->dev = dev; |
| |
| init_completion(&nfc->done); |
| |
| nfc->regs = devm_platform_ioremap_resource(pdev, 0); |
| if (IS_ERR(nfc->regs)) { |
| ret = PTR_ERR(nfc->regs); |
| goto release_nfc; |
| } |
| |
| nfc->nfc_clk = devm_clk_get(dev, "nfc"); |
| if (IS_ERR(nfc->nfc_clk)) { |
| dev_dbg(dev, "no NFC clk\n"); |
| /* Some earlier models, such as rk3066, have no NFC clk. */ |
| } |
| |
| nfc->ahb_clk = devm_clk_get(dev, "ahb"); |
| if (IS_ERR(nfc->ahb_clk)) { |
| dev_err(dev, "no ahb clk\n"); |
| ret = PTR_ERR(nfc->ahb_clk); |
| goto release_nfc; |
| } |
| |
| ret = rk_nfc_enable_clks(dev, nfc); |
| if (ret) |
| goto release_nfc; |
| |
| irq = platform_get_irq(pdev, 0); |
| if (irq < 0) { |
| ret = -EINVAL; |
| goto clk_disable; |
| } |
| |
| writel(0, nfc->regs + nfc->cfg->int_en_off); |
| ret = devm_request_irq(dev, irq, rk_nfc_irq, 0x0, "rk-nand", nfc); |
| if (ret) { |
| dev_err(dev, "failed to request NFC irq\n"); |
| goto clk_disable; |
| } |
| |
| platform_set_drvdata(pdev, nfc); |
| |
| ret = rk_nfc_nand_chips_init(dev, nfc); |
| if (ret) { |
| dev_err(dev, "failed to init NAND chips\n"); |
| goto clk_disable; |
| } |
| return 0; |
| |
| clk_disable: |
| rk_nfc_disable_clks(nfc); |
| release_nfc: |
| return ret; |
| } |
| |
| static void rk_nfc_remove(struct platform_device *pdev) |
| { |
| struct rk_nfc *nfc = platform_get_drvdata(pdev); |
| |
| kfree(nfc->page_buf); |
| kfree(nfc->oob_buf); |
| rk_nfc_chips_cleanup(nfc); |
| rk_nfc_disable_clks(nfc); |
| } |
| |
| static int __maybe_unused rk_nfc_suspend(struct device *dev) |
| { |
| struct rk_nfc *nfc = dev_get_drvdata(dev); |
| |
| rk_nfc_disable_clks(nfc); |
| |
| return 0; |
| } |
| |
| static int __maybe_unused rk_nfc_resume(struct device *dev) |
| { |
| struct rk_nfc *nfc = dev_get_drvdata(dev); |
| struct rk_nfc_nand_chip *rknand; |
| struct nand_chip *chip; |
| int ret; |
| u32 i; |
| |
| ret = rk_nfc_enable_clks(dev, nfc); |
| if (ret) |
| return ret; |
| |
| /* Reset NAND chip if VCC was powered off. */ |
| list_for_each_entry(rknand, &nfc->chips, node) { |
| chip = &rknand->chip; |
| for (i = 0; i < rknand->nsels; i++) |
| nand_reset(chip, i); |
| } |
| |
| return 0; |
| } |
| |
| static const struct dev_pm_ops rk_nfc_pm_ops = { |
| SET_SYSTEM_SLEEP_PM_OPS(rk_nfc_suspend, rk_nfc_resume) |
| }; |
| |
| static struct platform_driver rk_nfc_driver = { |
| .probe = rk_nfc_probe, |
| .remove_new = rk_nfc_remove, |
| .driver = { |
| .name = "rockchip-nfc", |
| .of_match_table = rk_nfc_id_table, |
| .pm = &rk_nfc_pm_ops, |
| }, |
| }; |
| |
| module_platform_driver(rk_nfc_driver); |
| |
| MODULE_LICENSE("Dual MIT/GPL"); |
| MODULE_AUTHOR("Yifeng Zhao <yifeng.zhao@rock-chips.com>"); |
| MODULE_DESCRIPTION("Rockchip Nand Flash Controller Driver"); |
| MODULE_ALIAS("platform:rockchip-nand-controller"); |