| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2015 - ARM Ltd |
| * Author: Marc Zyngier <marc.zyngier@arm.com> |
| */ |
| |
| #include <hyp/switch.h> |
| #include <hyp/sysreg-sr.h> |
| |
| #include <linux/arm-smccc.h> |
| #include <linux/kvm_host.h> |
| #include <linux/types.h> |
| #include <linux/jump_label.h> |
| #include <uapi/linux/psci.h> |
| |
| #include <kvm/arm_psci.h> |
| |
| #include <asm/barrier.h> |
| #include <asm/cpufeature.h> |
| #include <asm/kprobes.h> |
| #include <asm/kvm_asm.h> |
| #include <asm/kvm_emulate.h> |
| #include <asm/kvm_hyp.h> |
| #include <asm/kvm_mmu.h> |
| #include <asm/fpsimd.h> |
| #include <asm/debug-monitors.h> |
| #include <asm/processor.h> |
| |
| #include <nvhe/fixed_config.h> |
| #include <nvhe/mem_protect.h> |
| |
| /* Non-VHE specific context */ |
| DEFINE_PER_CPU(struct kvm_host_data, kvm_host_data); |
| DEFINE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt); |
| DEFINE_PER_CPU(unsigned long, kvm_hyp_vector); |
| |
| extern void kvm_nvhe_prepare_backtrace(unsigned long fp, unsigned long pc); |
| |
| static void __activate_traps(struct kvm_vcpu *vcpu) |
| { |
| u64 val; |
| |
| ___activate_traps(vcpu); |
| __activate_traps_common(vcpu); |
| |
| val = vcpu->arch.cptr_el2; |
| val |= CPTR_EL2_TTA | CPTR_EL2_TAM; |
| if (!guest_owns_fp_regs(vcpu)) { |
| val |= CPTR_EL2_TFP | CPTR_EL2_TZ; |
| __activate_traps_fpsimd32(vcpu); |
| } |
| if (cpus_have_final_cap(ARM64_SME)) |
| val |= CPTR_EL2_TSM; |
| |
| write_sysreg(val, cptr_el2); |
| write_sysreg(__this_cpu_read(kvm_hyp_vector), vbar_el2); |
| |
| if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) { |
| struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt; |
| |
| isb(); |
| /* |
| * At this stage, and thanks to the above isb(), S2 is |
| * configured and enabled. We can now restore the guest's S1 |
| * configuration: SCTLR, and only then TCR. |
| */ |
| write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1), SYS_SCTLR); |
| isb(); |
| write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1), SYS_TCR); |
| } |
| } |
| |
| static void __deactivate_traps(struct kvm_vcpu *vcpu) |
| { |
| extern char __kvm_hyp_host_vector[]; |
| u64 cptr; |
| |
| ___deactivate_traps(vcpu); |
| |
| if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) { |
| u64 val; |
| |
| /* |
| * Set the TCR and SCTLR registers in the exact opposite |
| * sequence as __activate_traps (first prevent walks, |
| * then force the MMU on). A generous sprinkling of isb() |
| * ensure that things happen in this exact order. |
| */ |
| val = read_sysreg_el1(SYS_TCR); |
| write_sysreg_el1(val | TCR_EPD1_MASK | TCR_EPD0_MASK, SYS_TCR); |
| isb(); |
| val = read_sysreg_el1(SYS_SCTLR); |
| write_sysreg_el1(val | SCTLR_ELx_M, SYS_SCTLR); |
| isb(); |
| } |
| |
| __deactivate_traps_common(vcpu); |
| |
| write_sysreg(this_cpu_ptr(&kvm_init_params)->hcr_el2, hcr_el2); |
| |
| cptr = CPTR_EL2_DEFAULT; |
| if (vcpu_has_sve(vcpu) && (vcpu->arch.fp_state == FP_STATE_GUEST_OWNED)) |
| cptr |= CPTR_EL2_TZ; |
| if (cpus_have_final_cap(ARM64_SME)) |
| cptr &= ~CPTR_EL2_TSM; |
| |
| write_sysreg(cptr, cptr_el2); |
| write_sysreg(__kvm_hyp_host_vector, vbar_el2); |
| } |
| |
| /* Save VGICv3 state on non-VHE systems */ |
| static void __hyp_vgic_save_state(struct kvm_vcpu *vcpu) |
| { |
| if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) { |
| __vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3); |
| __vgic_v3_deactivate_traps(&vcpu->arch.vgic_cpu.vgic_v3); |
| } |
| } |
| |
| /* Restore VGICv3 state on non-VHE systems */ |
| static void __hyp_vgic_restore_state(struct kvm_vcpu *vcpu) |
| { |
| if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) { |
| __vgic_v3_activate_traps(&vcpu->arch.vgic_cpu.vgic_v3); |
| __vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3); |
| } |
| } |
| |
| /* |
| * Disable host events, enable guest events |
| */ |
| #ifdef CONFIG_HW_PERF_EVENTS |
| static bool __pmu_switch_to_guest(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events; |
| |
| if (pmu->events_host) |
| write_sysreg(pmu->events_host, pmcntenclr_el0); |
| |
| if (pmu->events_guest) |
| write_sysreg(pmu->events_guest, pmcntenset_el0); |
| |
| return (pmu->events_host || pmu->events_guest); |
| } |
| |
| /* |
| * Disable guest events, enable host events |
| */ |
| static void __pmu_switch_to_host(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events; |
| |
| if (pmu->events_guest) |
| write_sysreg(pmu->events_guest, pmcntenclr_el0); |
| |
| if (pmu->events_host) |
| write_sysreg(pmu->events_host, pmcntenset_el0); |
| } |
| #else |
| #define __pmu_switch_to_guest(v) ({ false; }) |
| #define __pmu_switch_to_host(v) do {} while (0) |
| #endif |
| |
| /* |
| * Handler for protected VM MSR, MRS or System instruction execution in AArch64. |
| * |
| * Returns true if the hypervisor has handled the exit, and control should go |
| * back to the guest, or false if it hasn't. |
| */ |
| static bool kvm_handle_pvm_sys64(struct kvm_vcpu *vcpu, u64 *exit_code) |
| { |
| /* |
| * Make sure we handle the exit for workarounds and ptrauth |
| * before the pKVM handling, as the latter could decide to |
| * UNDEF. |
| */ |
| return (kvm_hyp_handle_sysreg(vcpu, exit_code) || |
| kvm_handle_pvm_sysreg(vcpu, exit_code)); |
| } |
| |
| static const exit_handler_fn hyp_exit_handlers[] = { |
| [0 ... ESR_ELx_EC_MAX] = NULL, |
| [ESR_ELx_EC_CP15_32] = kvm_hyp_handle_cp15_32, |
| [ESR_ELx_EC_SYS64] = kvm_hyp_handle_sysreg, |
| [ESR_ELx_EC_SVE] = kvm_hyp_handle_fpsimd, |
| [ESR_ELx_EC_FP_ASIMD] = kvm_hyp_handle_fpsimd, |
| [ESR_ELx_EC_IABT_LOW] = kvm_hyp_handle_iabt_low, |
| [ESR_ELx_EC_DABT_LOW] = kvm_hyp_handle_dabt_low, |
| [ESR_ELx_EC_PAC] = kvm_hyp_handle_ptrauth, |
| }; |
| |
| static const exit_handler_fn pvm_exit_handlers[] = { |
| [0 ... ESR_ELx_EC_MAX] = NULL, |
| [ESR_ELx_EC_SYS64] = kvm_handle_pvm_sys64, |
| [ESR_ELx_EC_SVE] = kvm_handle_pvm_restricted, |
| [ESR_ELx_EC_FP_ASIMD] = kvm_hyp_handle_fpsimd, |
| [ESR_ELx_EC_IABT_LOW] = kvm_hyp_handle_iabt_low, |
| [ESR_ELx_EC_DABT_LOW] = kvm_hyp_handle_dabt_low, |
| [ESR_ELx_EC_PAC] = kvm_hyp_handle_ptrauth, |
| }; |
| |
| static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu) |
| { |
| if (unlikely(kvm_vm_is_protected(kern_hyp_va(vcpu->kvm)))) |
| return pvm_exit_handlers; |
| |
| return hyp_exit_handlers; |
| } |
| |
| /* |
| * Some guests (e.g., protected VMs) are not be allowed to run in AArch32. |
| * The ARMv8 architecture does not give the hypervisor a mechanism to prevent a |
| * guest from dropping to AArch32 EL0 if implemented by the CPU. If the |
| * hypervisor spots a guest in such a state ensure it is handled, and don't |
| * trust the host to spot or fix it. The check below is based on the one in |
| * kvm_arch_vcpu_ioctl_run(). |
| * |
| * Returns false if the guest ran in AArch32 when it shouldn't have, and |
| * thus should exit to the host, or true if a the guest run loop can continue. |
| */ |
| static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code) |
| { |
| struct kvm *kvm = kern_hyp_va(vcpu->kvm); |
| |
| if (kvm_vm_is_protected(kvm) && vcpu_mode_is_32bit(vcpu)) { |
| /* |
| * As we have caught the guest red-handed, decide that it isn't |
| * fit for purpose anymore by making the vcpu invalid. The VMM |
| * can try and fix it by re-initializing the vcpu with |
| * KVM_ARM_VCPU_INIT, however, this is likely not possible for |
| * protected VMs. |
| */ |
| vcpu->arch.target = -1; |
| *exit_code &= BIT(ARM_EXIT_WITH_SERROR_BIT); |
| *exit_code |= ARM_EXCEPTION_IL; |
| } |
| } |
| |
| /* Switch to the guest for legacy non-VHE systems */ |
| int __kvm_vcpu_run(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_cpu_context *host_ctxt; |
| struct kvm_cpu_context *guest_ctxt; |
| struct kvm_s2_mmu *mmu; |
| bool pmu_switch_needed; |
| u64 exit_code; |
| |
| /* |
| * Having IRQs masked via PMR when entering the guest means the GIC |
| * will not signal the CPU of interrupts of lower priority, and the |
| * only way to get out will be via guest exceptions. |
| * Naturally, we want to avoid this. |
| */ |
| if (system_uses_irq_prio_masking()) { |
| gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET); |
| pmr_sync(); |
| } |
| |
| host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt; |
| host_ctxt->__hyp_running_vcpu = vcpu; |
| guest_ctxt = &vcpu->arch.ctxt; |
| |
| pmu_switch_needed = __pmu_switch_to_guest(vcpu); |
| |
| __sysreg_save_state_nvhe(host_ctxt); |
| /* |
| * We must flush and disable the SPE buffer for nVHE, as |
| * the translation regime(EL1&0) is going to be loaded with |
| * that of the guest. And we must do this before we change the |
| * translation regime to EL2 (via MDCR_EL2_E2PB == 0) and |
| * before we load guest Stage1. |
| */ |
| __debug_save_host_buffers_nvhe(vcpu); |
| |
| __kvm_adjust_pc(vcpu); |
| |
| /* |
| * We must restore the 32-bit state before the sysregs, thanks |
| * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72). |
| * |
| * Also, and in order to be able to deal with erratum #1319537 (A57) |
| * and #1319367 (A72), we must ensure that all VM-related sysreg are |
| * restored before we enable S2 translation. |
| */ |
| __sysreg32_restore_state(vcpu); |
| __sysreg_restore_state_nvhe(guest_ctxt); |
| |
| mmu = kern_hyp_va(vcpu->arch.hw_mmu); |
| __load_stage2(mmu, kern_hyp_va(mmu->arch)); |
| __activate_traps(vcpu); |
| |
| __hyp_vgic_restore_state(vcpu); |
| __timer_enable_traps(vcpu); |
| |
| __debug_switch_to_guest(vcpu); |
| |
| do { |
| /* Jump in the fire! */ |
| exit_code = __guest_enter(vcpu); |
| |
| /* And we're baaack! */ |
| } while (fixup_guest_exit(vcpu, &exit_code)); |
| |
| __sysreg_save_state_nvhe(guest_ctxt); |
| __sysreg32_save_state(vcpu); |
| __timer_disable_traps(vcpu); |
| __hyp_vgic_save_state(vcpu); |
| |
| __deactivate_traps(vcpu); |
| __load_host_stage2(); |
| |
| __sysreg_restore_state_nvhe(host_ctxt); |
| |
| if (vcpu->arch.fp_state == FP_STATE_GUEST_OWNED) |
| __fpsimd_save_fpexc32(vcpu); |
| |
| __debug_switch_to_host(vcpu); |
| /* |
| * This must come after restoring the host sysregs, since a non-VHE |
| * system may enable SPE here and make use of the TTBRs. |
| */ |
| __debug_restore_host_buffers_nvhe(vcpu); |
| |
| if (pmu_switch_needed) |
| __pmu_switch_to_host(vcpu); |
| |
| /* Returning to host will clear PSR.I, remask PMR if needed */ |
| if (system_uses_irq_prio_masking()) |
| gic_write_pmr(GIC_PRIO_IRQOFF); |
| |
| host_ctxt->__hyp_running_vcpu = NULL; |
| |
| return exit_code; |
| } |
| |
| asmlinkage void __noreturn hyp_panic(void) |
| { |
| u64 spsr = read_sysreg_el2(SYS_SPSR); |
| u64 elr = read_sysreg_el2(SYS_ELR); |
| u64 par = read_sysreg_par(); |
| struct kvm_cpu_context *host_ctxt; |
| struct kvm_vcpu *vcpu; |
| |
| host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt; |
| vcpu = host_ctxt->__hyp_running_vcpu; |
| |
| if (vcpu) { |
| __timer_disable_traps(vcpu); |
| __deactivate_traps(vcpu); |
| __load_host_stage2(); |
| __sysreg_restore_state_nvhe(host_ctxt); |
| } |
| |
| /* Prepare to dump kvm nvhe hyp stacktrace */ |
| kvm_nvhe_prepare_backtrace((unsigned long)__builtin_frame_address(0), |
| _THIS_IP_); |
| |
| __hyp_do_panic(host_ctxt, spsr, elr, par); |
| unreachable(); |
| } |
| |
| asmlinkage void __noreturn hyp_panic_bad_stack(void) |
| { |
| hyp_panic(); |
| } |
| |
| asmlinkage void kvm_unexpected_el2_exception(void) |
| { |
| __kvm_unexpected_el2_exception(); |
| } |