| /* |
| * arch/xtensa/kernel/process.c |
| * |
| * Xtensa Processor version. |
| * |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Copyright (C) 2001 - 2005 Tensilica Inc. |
| * |
| * Joe Taylor <joe@tensilica.com, joetylr@yahoo.com> |
| * Chris Zankel <chris@zankel.net> |
| * Marc Gauthier <marc@tensilica.com, marc@alumni.uwaterloo.ca> |
| * Kevin Chea |
| */ |
| |
| #include <linux/errno.h> |
| #include <linux/sched.h> |
| #include <linux/sched/debug.h> |
| #include <linux/sched/task.h> |
| #include <linux/sched/task_stack.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/smp.h> |
| #include <linux/stddef.h> |
| #include <linux/unistd.h> |
| #include <linux/ptrace.h> |
| #include <linux/elf.h> |
| #include <linux/hw_breakpoint.h> |
| #include <linux/init.h> |
| #include <linux/prctl.h> |
| #include <linux/init_task.h> |
| #include <linux/module.h> |
| #include <linux/mqueue.h> |
| #include <linux/fs.h> |
| #include <linux/slab.h> |
| #include <linux/rcupdate.h> |
| |
| #include <asm/pgtable.h> |
| #include <linux/uaccess.h> |
| #include <asm/io.h> |
| #include <asm/processor.h> |
| #include <asm/platform.h> |
| #include <asm/mmu.h> |
| #include <asm/irq.h> |
| #include <linux/atomic.h> |
| #include <asm/asm-offsets.h> |
| #include <asm/regs.h> |
| #include <asm/hw_breakpoint.h> |
| |
| extern void ret_from_fork(void); |
| extern void ret_from_kernel_thread(void); |
| |
| struct task_struct *current_set[NR_CPUS] = {&init_task, }; |
| |
| void (*pm_power_off)(void) = NULL; |
| EXPORT_SYMBOL(pm_power_off); |
| |
| |
| #ifdef CONFIG_STACKPROTECTOR |
| #include <linux/stackprotector.h> |
| unsigned long __stack_chk_guard __read_mostly; |
| EXPORT_SYMBOL(__stack_chk_guard); |
| #endif |
| |
| #if XTENSA_HAVE_COPROCESSORS |
| |
| void coprocessor_release_all(struct thread_info *ti) |
| { |
| unsigned long cpenable; |
| int i; |
| |
| /* Make sure we don't switch tasks during this operation. */ |
| |
| preempt_disable(); |
| |
| /* Walk through all cp owners and release it for the requested one. */ |
| |
| cpenable = ti->cpenable; |
| |
| for (i = 0; i < XCHAL_CP_MAX; i++) { |
| if (coprocessor_owner[i] == ti) { |
| coprocessor_owner[i] = 0; |
| cpenable &= ~(1 << i); |
| } |
| } |
| |
| ti->cpenable = cpenable; |
| coprocessor_clear_cpenable(); |
| |
| preempt_enable(); |
| } |
| |
| void coprocessor_flush_all(struct thread_info *ti) |
| { |
| unsigned long cpenable; |
| int i; |
| |
| preempt_disable(); |
| |
| cpenable = ti->cpenable; |
| |
| for (i = 0; i < XCHAL_CP_MAX; i++) { |
| if ((cpenable & 1) != 0 && coprocessor_owner[i] == ti) |
| coprocessor_flush(ti, i); |
| cpenable >>= 1; |
| } |
| |
| preempt_enable(); |
| } |
| |
| #endif |
| |
| |
| /* |
| * Powermanagement idle function, if any is provided by the platform. |
| */ |
| void arch_cpu_idle(void) |
| { |
| platform_idle(); |
| } |
| |
| /* |
| * This is called when the thread calls exit(). |
| */ |
| void exit_thread(struct task_struct *tsk) |
| { |
| #if XTENSA_HAVE_COPROCESSORS |
| coprocessor_release_all(task_thread_info(tsk)); |
| #endif |
| } |
| |
| /* |
| * Flush thread state. This is called when a thread does an execve() |
| * Note that we flush coprocessor registers for the case execve fails. |
| */ |
| void flush_thread(void) |
| { |
| #if XTENSA_HAVE_COPROCESSORS |
| struct thread_info *ti = current_thread_info(); |
| coprocessor_flush_all(ti); |
| coprocessor_release_all(ti); |
| #endif |
| flush_ptrace_hw_breakpoint(current); |
| } |
| |
| /* |
| * this gets called so that we can store coprocessor state into memory and |
| * copy the current task into the new thread. |
| */ |
| int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) |
| { |
| #if XTENSA_HAVE_COPROCESSORS |
| coprocessor_flush_all(task_thread_info(src)); |
| #endif |
| *dst = *src; |
| return 0; |
| } |
| |
| /* |
| * Copy thread. |
| * |
| * There are two modes in which this function is called: |
| * 1) Userspace thread creation, |
| * regs != NULL, usp_thread_fn is userspace stack pointer. |
| * It is expected to copy parent regs (in case CLONE_VM is not set |
| * in the clone_flags) and set up passed usp in the childregs. |
| * 2) Kernel thread creation, |
| * regs == NULL, usp_thread_fn is the function to run in the new thread |
| * and thread_fn_arg is its parameter. |
| * childregs are not used for the kernel threads. |
| * |
| * The stack layout for the new thread looks like this: |
| * |
| * +------------------------+ |
| * | childregs | |
| * +------------------------+ <- thread.sp = sp in dummy-frame |
| * | dummy-frame | (saved in dummy-frame spill-area) |
| * +------------------------+ |
| * |
| * We create a dummy frame to return to either ret_from_fork or |
| * ret_from_kernel_thread: |
| * a0 points to ret_from_fork/ret_from_kernel_thread (simulating a call4) |
| * sp points to itself (thread.sp) |
| * a2, a3 are unused for userspace threads, |
| * a2 points to thread_fn, a3 holds thread_fn arg for kernel threads. |
| * |
| * Note: This is a pristine frame, so we don't need any spill region on top of |
| * childregs. |
| * |
| * The fun part: if we're keeping the same VM (i.e. cloning a thread, |
| * not an entire process), we're normally given a new usp, and we CANNOT share |
| * any live address register windows. If we just copy those live frames over, |
| * the two threads (parent and child) will overflow the same frames onto the |
| * parent stack at different times, likely corrupting the parent stack (esp. |
| * if the parent returns from functions that called clone() and calls new |
| * ones, before the child overflows its now old copies of its parent windows). |
| * One solution is to spill windows to the parent stack, but that's fairly |
| * involved. Much simpler to just not copy those live frames across. |
| */ |
| |
| int copy_thread(unsigned long clone_flags, unsigned long usp_thread_fn, |
| unsigned long thread_fn_arg, struct task_struct *p) |
| { |
| struct pt_regs *childregs = task_pt_regs(p); |
| |
| #if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS) |
| struct thread_info *ti; |
| #endif |
| |
| /* Create a call4 dummy-frame: a0 = 0, a1 = childregs. */ |
| SPILL_SLOT(childregs, 1) = (unsigned long)childregs; |
| SPILL_SLOT(childregs, 0) = 0; |
| |
| p->thread.sp = (unsigned long)childregs; |
| |
| if (!(p->flags & PF_KTHREAD)) { |
| struct pt_regs *regs = current_pt_regs(); |
| unsigned long usp = usp_thread_fn ? |
| usp_thread_fn : regs->areg[1]; |
| |
| p->thread.ra = MAKE_RA_FOR_CALL( |
| (unsigned long)ret_from_fork, 0x1); |
| |
| /* This does not copy all the regs. |
| * In a bout of brilliance or madness, |
| * ARs beyond a0-a15 exist past the end of the struct. |
| */ |
| *childregs = *regs; |
| childregs->areg[1] = usp; |
| childregs->areg[2] = 0; |
| |
| /* When sharing memory with the parent thread, the child |
| usually starts on a pristine stack, so we have to reset |
| windowbase, windowstart and wmask. |
| (Note that such a new thread is required to always create |
| an initial call4 frame) |
| The exception is vfork, where the new thread continues to |
| run on the parent's stack until it calls execve. This could |
| be a call8 or call12, which requires a legal stack frame |
| of the previous caller for the overflow handlers to work. |
| (Note that it's always legal to overflow live registers). |
| In this case, ensure to spill at least the stack pointer |
| of that frame. */ |
| |
| if (clone_flags & CLONE_VM) { |
| /* check that caller window is live and same stack */ |
| int len = childregs->wmask & ~0xf; |
| if (regs->areg[1] == usp && len != 0) { |
| int callinc = (regs->areg[0] >> 30) & 3; |
| int caller_ars = XCHAL_NUM_AREGS - callinc * 4; |
| put_user(regs->areg[caller_ars+1], |
| (unsigned __user*)(usp - 12)); |
| } |
| childregs->wmask = 1; |
| childregs->windowstart = 1; |
| childregs->windowbase = 0; |
| } else { |
| int len = childregs->wmask & ~0xf; |
| memcpy(&childregs->areg[XCHAL_NUM_AREGS - len/4], |
| ®s->areg[XCHAL_NUM_AREGS - len/4], len); |
| } |
| |
| /* The thread pointer is passed in the '4th argument' (= a5) */ |
| if (clone_flags & CLONE_SETTLS) |
| childregs->threadptr = childregs->areg[5]; |
| } else { |
| p->thread.ra = MAKE_RA_FOR_CALL( |
| (unsigned long)ret_from_kernel_thread, 1); |
| |
| /* pass parameters to ret_from_kernel_thread: |
| * a2 = thread_fn, a3 = thread_fn arg |
| */ |
| SPILL_SLOT(childregs, 3) = thread_fn_arg; |
| SPILL_SLOT(childregs, 2) = usp_thread_fn; |
| |
| /* Childregs are only used when we're going to userspace |
| * in which case start_thread will set them up. |
| */ |
| } |
| |
| #if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS) |
| ti = task_thread_info(p); |
| ti->cpenable = 0; |
| #endif |
| |
| clear_ptrace_hw_breakpoint(p); |
| |
| return 0; |
| } |
| |
| |
| /* |
| * These bracket the sleeping functions.. |
| */ |
| |
| unsigned long get_wchan(struct task_struct *p) |
| { |
| unsigned long sp, pc; |
| unsigned long stack_page = (unsigned long) task_stack_page(p); |
| int count = 0; |
| |
| if (!p || p == current || p->state == TASK_RUNNING) |
| return 0; |
| |
| sp = p->thread.sp; |
| pc = MAKE_PC_FROM_RA(p->thread.ra, p->thread.sp); |
| |
| do { |
| if (sp < stack_page + sizeof(struct task_struct) || |
| sp >= (stack_page + THREAD_SIZE) || |
| pc == 0) |
| return 0; |
| if (!in_sched_functions(pc)) |
| return pc; |
| |
| /* Stack layout: sp-4: ra, sp-3: sp' */ |
| |
| pc = MAKE_PC_FROM_RA(*(unsigned long*)sp - 4, sp); |
| sp = *(unsigned long *)sp - 3; |
| } while (count++ < 16); |
| return 0; |
| } |
| |
| /* |
| * xtensa_gregset_t and 'struct pt_regs' are vastly different formats |
| * of processor registers. Besides different ordering, |
| * xtensa_gregset_t contains non-live register information that |
| * 'struct pt_regs' does not. Exception handling (primarily) uses |
| * 'struct pt_regs'. Core files and ptrace use xtensa_gregset_t. |
| * |
| */ |
| |
| void xtensa_elf_core_copy_regs (xtensa_gregset_t *elfregs, struct pt_regs *regs) |
| { |
| unsigned long wb, ws, wm; |
| int live, last; |
| |
| wb = regs->windowbase; |
| ws = regs->windowstart; |
| wm = regs->wmask; |
| ws = ((ws >> wb) | (ws << (WSBITS - wb))) & ((1 << WSBITS) - 1); |
| |
| /* Don't leak any random bits. */ |
| |
| memset(elfregs, 0, sizeof(*elfregs)); |
| |
| /* Note: PS.EXCM is not set while user task is running; its |
| * being set in regs->ps is for exception handling convenience. |
| */ |
| |
| elfregs->pc = regs->pc; |
| elfregs->ps = (regs->ps & ~(1 << PS_EXCM_BIT)); |
| elfregs->lbeg = regs->lbeg; |
| elfregs->lend = regs->lend; |
| elfregs->lcount = regs->lcount; |
| elfregs->sar = regs->sar; |
| elfregs->windowstart = ws; |
| |
| live = (wm & 2) ? 4 : (wm & 4) ? 8 : (wm & 8) ? 12 : 16; |
| last = XCHAL_NUM_AREGS - (wm >> 4) * 4; |
| memcpy(elfregs->a, regs->areg, live * 4); |
| memcpy(elfregs->a + last, regs->areg + last, (wm >> 4) * 16); |
| } |
| |
| int dump_fpu(void) |
| { |
| return 0; |
| } |