| /* |
| * This file is part of the Chelsio FCoE driver for Linux. |
| * |
| * Copyright (c) 2008-2013 Chelsio Communications, Inc. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| #include "csio_hw.h" |
| #include "csio_init.h" |
| |
| static int |
| csio_t5_set_mem_win(struct csio_hw *hw, uint32_t win) |
| { |
| u32 mem_win_base; |
| /* |
| * Truncation intentional: we only read the bottom 32-bits of the |
| * 64-bit BAR0/BAR1 ... We use the hardware backdoor mechanism to |
| * read BAR0 instead of using pci_resource_start() because we could be |
| * operating from within a Virtual Machine which is trapping our |
| * accesses to our Configuration Space and we need to set up the PCI-E |
| * Memory Window decoders with the actual addresses which will be |
| * coming across the PCI-E link. |
| */ |
| |
| /* For T5, only relative offset inside the PCIe BAR is passed */ |
| mem_win_base = MEMWIN_BASE; |
| |
| /* |
| * Set up memory window for accessing adapter memory ranges. (Read |
| * back MA register to ensure that changes propagate before we attempt |
| * to use the new values.) |
| */ |
| csio_wr_reg32(hw, mem_win_base | BIR_V(0) | |
| WINDOW_V(ilog2(MEMWIN_APERTURE) - 10), |
| PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, win)); |
| csio_rd_reg32(hw, |
| PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, win)); |
| |
| return 0; |
| } |
| |
| /* |
| * Interrupt handler for the PCIE module. |
| */ |
| static void |
| csio_t5_pcie_intr_handler(struct csio_hw *hw) |
| { |
| static struct intr_info pcie_intr_info[] = { |
| { MSTGRPPERR_F, "Master Response Read Queue parity error", |
| -1, 1 }, |
| { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 }, |
| { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 }, |
| { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, |
| { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, |
| { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, |
| { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, |
| { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error", |
| -1, 1 }, |
| { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error", |
| -1, 1 }, |
| { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, |
| { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 }, |
| { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, |
| { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, |
| { DREQWRPERR_F, "PCI DMA channel write request parity error", |
| -1, 1 }, |
| { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, |
| { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, |
| { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 }, |
| { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, |
| { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, |
| { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, |
| { FIDPERR_F, "PCI FID parity error", -1, 1 }, |
| { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 }, |
| { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 }, |
| { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, |
| { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error", |
| -1, 1 }, |
| { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error", |
| -1, 1 }, |
| { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 }, |
| { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 }, |
| { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 }, |
| { READRSPERR_F, "Outbound read error", -1, 0 }, |
| { 0, NULL, 0, 0 } |
| }; |
| |
| int fat; |
| fat = csio_handle_intr_status(hw, PCIE_INT_CAUSE_A, pcie_intr_info); |
| if (fat) |
| csio_hw_fatal_err(hw); |
| } |
| |
| /* |
| * csio_t5_flash_cfg_addr - return the address of the flash configuration file |
| * @hw: the HW module |
| * |
| * Return the address within the flash where the Firmware Configuration |
| * File is stored. |
| */ |
| static unsigned int |
| csio_t5_flash_cfg_addr(struct csio_hw *hw) |
| { |
| return FLASH_CFG_START; |
| } |
| |
| /* |
| * csio_t5_mc_read - read from MC through backdoor accesses |
| * @hw: the hw module |
| * @idx: index to the register |
| * @addr: address of first byte requested |
| * @data: 64 bytes of data containing the requested address |
| * @ecc: where to store the corresponding 64-bit ECC word |
| * |
| * Read 64 bytes of data from MC starting at a 64-byte-aligned address |
| * that covers the requested address @addr. If @parity is not %NULL it |
| * is assigned the 64-bit ECC word for the read data. |
| */ |
| static int |
| csio_t5_mc_read(struct csio_hw *hw, int idx, uint32_t addr, __be32 *data, |
| uint64_t *ecc) |
| { |
| int i; |
| uint32_t mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg; |
| uint32_t mc_bist_status_rdata_reg, mc_bist_data_pattern_reg; |
| |
| mc_bist_cmd_reg = MC_REG(MC_P_BIST_CMD_A, idx); |
| mc_bist_cmd_addr_reg = MC_REG(MC_P_BIST_CMD_ADDR_A, idx); |
| mc_bist_cmd_len_reg = MC_REG(MC_P_BIST_CMD_LEN_A, idx); |
| mc_bist_status_rdata_reg = MC_REG(MC_P_BIST_STATUS_RDATA_A, idx); |
| mc_bist_data_pattern_reg = MC_REG(MC_P_BIST_DATA_PATTERN_A, idx); |
| |
| if (csio_rd_reg32(hw, mc_bist_cmd_reg) & START_BIST_F) |
| return -EBUSY; |
| csio_wr_reg32(hw, addr & ~0x3fU, mc_bist_cmd_addr_reg); |
| csio_wr_reg32(hw, 64, mc_bist_cmd_len_reg); |
| csio_wr_reg32(hw, 0xc, mc_bist_data_pattern_reg); |
| csio_wr_reg32(hw, BIST_OPCODE_V(1) | START_BIST_F | BIST_CMD_GAP_V(1), |
| mc_bist_cmd_reg); |
| i = csio_hw_wait_op_done_val(hw, mc_bist_cmd_reg, START_BIST_F, |
| 0, 10, 1, NULL); |
| if (i) |
| return i; |
| |
| #define MC_DATA(i) MC_BIST_STATUS_REG(MC_BIST_STATUS_RDATA_A, i) |
| |
| for (i = 15; i >= 0; i--) |
| *data++ = htonl(csio_rd_reg32(hw, MC_DATA(i))); |
| if (ecc) |
| *ecc = csio_rd_reg64(hw, MC_DATA(16)); |
| #undef MC_DATA |
| return 0; |
| } |
| |
| /* |
| * csio_t5_edc_read - read from EDC through backdoor accesses |
| * @hw: the hw module |
| * @idx: which EDC to access |
| * @addr: address of first byte requested |
| * @data: 64 bytes of data containing the requested address |
| * @ecc: where to store the corresponding 64-bit ECC word |
| * |
| * Read 64 bytes of data from EDC starting at a 64-byte-aligned address |
| * that covers the requested address @addr. If @parity is not %NULL it |
| * is assigned the 64-bit ECC word for the read data. |
| */ |
| static int |
| csio_t5_edc_read(struct csio_hw *hw, int idx, uint32_t addr, __be32 *data, |
| uint64_t *ecc) |
| { |
| int i; |
| uint32_t edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg; |
| uint32_t edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg; |
| |
| /* |
| * These macro are missing in t4_regs.h file. |
| */ |
| #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR) |
| #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx) |
| |
| edc_bist_cmd_reg = EDC_REG_T5(EDC_H_BIST_CMD_A, idx); |
| edc_bist_cmd_addr_reg = EDC_REG_T5(EDC_H_BIST_CMD_ADDR_A, idx); |
| edc_bist_cmd_len_reg = EDC_REG_T5(EDC_H_BIST_CMD_LEN_A, idx); |
| edc_bist_cmd_data_pattern = EDC_REG_T5(EDC_H_BIST_DATA_PATTERN_A, idx); |
| edc_bist_status_rdata_reg = EDC_REG_T5(EDC_H_BIST_STATUS_RDATA_A, idx); |
| #undef EDC_REG_T5 |
| #undef EDC_STRIDE_T5 |
| |
| if (csio_rd_reg32(hw, edc_bist_cmd_reg) & START_BIST_F) |
| return -EBUSY; |
| csio_wr_reg32(hw, addr & ~0x3fU, edc_bist_cmd_addr_reg); |
| csio_wr_reg32(hw, 64, edc_bist_cmd_len_reg); |
| csio_wr_reg32(hw, 0xc, edc_bist_cmd_data_pattern); |
| csio_wr_reg32(hw, BIST_OPCODE_V(1) | START_BIST_F | BIST_CMD_GAP_V(1), |
| edc_bist_cmd_reg); |
| i = csio_hw_wait_op_done_val(hw, edc_bist_cmd_reg, START_BIST_F, |
| 0, 10, 1, NULL); |
| if (i) |
| return i; |
| |
| #define EDC_DATA(i) (EDC_BIST_STATUS_REG(EDC_BIST_STATUS_RDATA_A, i) + idx) |
| |
| for (i = 15; i >= 0; i--) |
| *data++ = htonl(csio_rd_reg32(hw, EDC_DATA(i))); |
| if (ecc) |
| *ecc = csio_rd_reg64(hw, EDC_DATA(16)); |
| #undef EDC_DATA |
| return 0; |
| } |
| |
| /* |
| * csio_t5_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window |
| * @hw: the csio_hw |
| * @win: PCI-E memory Window to use |
| * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_MC0 (or MEM_MC) or MEM_MC1 |
| * @addr: address within indicated memory type |
| * @len: amount of memory to transfer |
| * @buf: host memory buffer |
| * @dir: direction of transfer 1 => read, 0 => write |
| * |
| * Reads/writes an [almost] arbitrary memory region in the firmware: the |
| * firmware memory address, length and host buffer must be aligned on |
| * 32-bit boudaries. The memory is transferred as a raw byte sequence |
| * from/to the firmware's memory. If this memory contains data |
| * structures which contain multi-byte integers, it's the callers |
| * responsibility to perform appropriate byte order conversions. |
| */ |
| static int |
| csio_t5_memory_rw(struct csio_hw *hw, u32 win, int mtype, u32 addr, |
| u32 len, uint32_t *buf, int dir) |
| { |
| u32 pos, start, offset, memoffset; |
| u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base; |
| |
| /* |
| * Argument sanity checks ... |
| */ |
| if ((addr & 0x3) || (len & 0x3)) |
| return -EINVAL; |
| |
| /* Offset into the region of memory which is being accessed |
| * MEM_EDC0 = 0 |
| * MEM_EDC1 = 1 |
| * MEM_MC = 2 -- T4 |
| * MEM_MC0 = 2 -- For T5 |
| * MEM_MC1 = 3 -- For T5 |
| */ |
| edc_size = EDRAM0_SIZE_G(csio_rd_reg32(hw, MA_EDRAM0_BAR_A)); |
| if (mtype != MEM_MC1) |
| memoffset = (mtype * (edc_size * 1024 * 1024)); |
| else { |
| mc_size = EXT_MEM_SIZE_G(csio_rd_reg32(hw, |
| MA_EXT_MEMORY_BAR_A)); |
| memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024; |
| } |
| |
| /* Determine the PCIE_MEM_ACCESS_OFFSET */ |
| addr = addr + memoffset; |
| |
| /* |
| * Each PCI-E Memory Window is programmed with a window size -- or |
| * "aperture" -- which controls the granularity of its mapping onto |
| * adapter memory. We need to grab that aperture in order to know |
| * how to use the specified window. The window is also programmed |
| * with the base address of the Memory Window in BAR0's address |
| * space. For T4 this is an absolute PCI-E Bus Address. For T5 |
| * the address is relative to BAR0. |
| */ |
| mem_reg = csio_rd_reg32(hw, |
| PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, win)); |
| mem_aperture = 1 << (WINDOW_V(mem_reg) + 10); |
| mem_base = PCIEOFST_G(mem_reg) << 10; |
| |
| start = addr & ~(mem_aperture-1); |
| offset = addr - start; |
| win_pf = PFNUM_V(hw->pfn); |
| |
| csio_dbg(hw, "csio_t5_memory_rw: mem_reg: 0x%x, mem_aperture: 0x%x\n", |
| mem_reg, mem_aperture); |
| csio_dbg(hw, "csio_t5_memory_rw: mem_base: 0x%x, mem_offset: 0x%x\n", |
| mem_base, memoffset); |
| csio_dbg(hw, "csio_t5_memory_rw: start:0x%x, offset:0x%x, win_pf:%d\n", |
| start, offset, win_pf); |
| csio_dbg(hw, "csio_t5_memory_rw: mtype: %d, addr: 0x%x, len: %d\n", |
| mtype, addr, len); |
| |
| for (pos = start; len > 0; pos += mem_aperture, offset = 0) { |
| /* |
| * Move PCI-E Memory Window to our current transfer |
| * position. Read it back to ensure that changes propagate |
| * before we attempt to use the new value. |
| */ |
| csio_wr_reg32(hw, pos | win_pf, |
| PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win)); |
| csio_rd_reg32(hw, |
| PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win)); |
| |
| while (offset < mem_aperture && len > 0) { |
| if (dir) |
| *buf++ = csio_rd_reg32(hw, mem_base + offset); |
| else |
| csio_wr_reg32(hw, *buf++, mem_base + offset); |
| |
| offset += sizeof(__be32); |
| len -= sizeof(__be32); |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| * csio_t5_dfs_create_ext_mem - setup debugfs for MC0 or MC1 to read the values |
| * @hw: the csio_hw |
| * |
| * This function creates files in the debugfs with external memory region |
| * MC0 & MC1. |
| */ |
| static void |
| csio_t5_dfs_create_ext_mem(struct csio_hw *hw) |
| { |
| u32 size; |
| int i = csio_rd_reg32(hw, MA_TARGET_MEM_ENABLE_A); |
| |
| if (i & EXT_MEM_ENABLE_F) { |
| size = csio_rd_reg32(hw, MA_EXT_MEMORY_BAR_A); |
| csio_add_debugfs_mem(hw, "mc0", MEM_MC0, |
| EXT_MEM_SIZE_G(size)); |
| } |
| if (i & EXT_MEM1_ENABLE_F) { |
| size = csio_rd_reg32(hw, MA_EXT_MEMORY1_BAR_A); |
| csio_add_debugfs_mem(hw, "mc1", MEM_MC1, |
| EXT_MEM_SIZE_G(size)); |
| } |
| } |
| |
| /* T5 adapter specific function */ |
| struct csio_hw_chip_ops t5_ops = { |
| .chip_set_mem_win = csio_t5_set_mem_win, |
| .chip_pcie_intr_handler = csio_t5_pcie_intr_handler, |
| .chip_flash_cfg_addr = csio_t5_flash_cfg_addr, |
| .chip_mc_read = csio_t5_mc_read, |
| .chip_edc_read = csio_t5_edc_read, |
| .chip_memory_rw = csio_t5_memory_rw, |
| .chip_dfs_create_ext_mem = csio_t5_dfs_create_ext_mem, |
| }; |