blob: 5631dd9f8201488935799adf5e413611e238d1bd [file] [log] [blame]
/*********************************************************************
* Author: Cavium Networks
*
* Contact: support@caviumnetworks.com
* This file is part of the OCTEON SDK
*
* Copyright (c) 2003-2010 Cavium Networks
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, Version 2, as
* published by the Free Software Foundation.
*
* This file is distributed in the hope that it will be useful, but
* AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
* NONINFRINGEMENT. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License
* along with this file; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
* or visit http://www.gnu.org/licenses/.
*
* This file may also be available under a different license from Cavium.
* Contact Cavium Networks for more information
*********************************************************************/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/init.h>
#include <linux/etherdevice.h>
#include <linux/ip.h>
#include <linux/ratelimit.h>
#include <linux/string.h>
#include <linux/interrupt.h>
#include <net/dst.h>
#ifdef CONFIG_XFRM
#include <linux/xfrm.h>
#include <net/xfrm.h>
#endif /* CONFIG_XFRM */
#include <linux/atomic.h>
#include <asm/octeon/octeon.h>
#include "ethernet-defines.h"
#include "octeon-ethernet.h"
#include "ethernet-tx.h"
#include "ethernet-util.h"
#include <asm/octeon/cvmx-wqe.h>
#include <asm/octeon/cvmx-fau.h>
#include <asm/octeon/cvmx-pip.h>
#include <asm/octeon/cvmx-pko.h>
#include <asm/octeon/cvmx-helper.h>
#include <asm/octeon/cvmx-gmxx-defs.h>
#define CVM_OCT_SKB_CB(skb) ((u64 *)((skb)->cb))
/*
* You can define GET_SKBUFF_QOS() to override how the skbuff output
* function determines which output queue is used. The default
* implementation always uses the base queue for the port. If, for
* example, you wanted to use the skb->priority field, define
* GET_SKBUFF_QOS as: #define GET_SKBUFF_QOS(skb) ((skb)->priority)
*/
#ifndef GET_SKBUFF_QOS
#define GET_SKBUFF_QOS(skb) 0
#endif
static void cvm_oct_tx_do_cleanup(unsigned long arg);
static DECLARE_TASKLET(cvm_oct_tx_cleanup_tasklet, cvm_oct_tx_do_cleanup, 0);
/* Maximum number of SKBs to try to free per xmit packet. */
#define MAX_SKB_TO_FREE (MAX_OUT_QUEUE_DEPTH * 2)
static inline int32_t cvm_oct_adjust_skb_to_free(int32_t skb_to_free, int fau)
{
int32_t undo;
undo = skb_to_free > 0 ? MAX_SKB_TO_FREE : skb_to_free + MAX_SKB_TO_FREE;
if (undo > 0)
cvmx_fau_atomic_add32(fau, -undo);
skb_to_free = -skb_to_free > MAX_SKB_TO_FREE ? MAX_SKB_TO_FREE : -skb_to_free;
return skb_to_free;
}
static void cvm_oct_kick_tx_poll_watchdog(void)
{
union cvmx_ciu_timx ciu_timx;
ciu_timx.u64 = 0;
ciu_timx.s.one_shot = 1;
ciu_timx.s.len = cvm_oct_tx_poll_interval;
cvmx_write_csr(CVMX_CIU_TIMX(1), ciu_timx.u64);
}
void cvm_oct_free_tx_skbs(struct net_device *dev)
{
int32_t skb_to_free;
int qos, queues_per_port;
int total_freed = 0;
int total_remaining = 0;
unsigned long flags;
struct octeon_ethernet *priv = netdev_priv(dev);
queues_per_port = cvmx_pko_get_num_queues(priv->port);
/* Drain any pending packets in the free list */
for (qos = 0; qos < queues_per_port; qos++) {
if (skb_queue_len(&priv->tx_free_list[qos]) == 0)
continue;
skb_to_free = cvmx_fau_fetch_and_add32(priv->fau+qos*4, MAX_SKB_TO_FREE);
skb_to_free = cvm_oct_adjust_skb_to_free(skb_to_free, priv->fau+qos*4);
total_freed += skb_to_free;
if (skb_to_free > 0) {
struct sk_buff *to_free_list = NULL;
spin_lock_irqsave(&priv->tx_free_list[qos].lock, flags);
while (skb_to_free > 0) {
struct sk_buff *t = __skb_dequeue(&priv->tx_free_list[qos]);
t->next = to_free_list;
to_free_list = t;
skb_to_free--;
}
spin_unlock_irqrestore(&priv->tx_free_list[qos].lock, flags);
/* Do the actual freeing outside of the lock. */
while (to_free_list) {
struct sk_buff *t = to_free_list;
to_free_list = to_free_list->next;
dev_kfree_skb_any(t);
}
}
total_remaining += skb_queue_len(&priv->tx_free_list[qos]);
}
if (total_freed >= 0 && netif_queue_stopped(dev))
netif_wake_queue(dev);
if (total_remaining)
cvm_oct_kick_tx_poll_watchdog();
}
/**
* cvm_oct_xmit - transmit a packet
* @skb: Packet to send
* @dev: Device info structure
*
* Returns Always returns NETDEV_TX_OK
*/
int cvm_oct_xmit(struct sk_buff *skb, struct net_device *dev)
{
cvmx_pko_command_word0_t pko_command;
union cvmx_buf_ptr hw_buffer;
uint64_t old_scratch;
uint64_t old_scratch2;
int qos;
int i;
enum {QUEUE_CORE, QUEUE_HW, QUEUE_DROP} queue_type;
struct octeon_ethernet *priv = netdev_priv(dev);
struct sk_buff *to_free_list;
int32_t skb_to_free;
int32_t buffers_to_free;
u32 total_to_clean;
unsigned long flags;
#if REUSE_SKBUFFS_WITHOUT_FREE
unsigned char *fpa_head;
#endif
/*
* Prefetch the private data structure. It is larger than the
* one cache line.
*/
prefetch(priv);
/*
* The check on CVMX_PKO_QUEUES_PER_PORT_* is designed to
* completely remove "qos" in the event neither interface
* supports multiple queues per port.
*/
if ((CVMX_PKO_QUEUES_PER_PORT_INTERFACE0 > 1) ||
(CVMX_PKO_QUEUES_PER_PORT_INTERFACE1 > 1)) {
qos = GET_SKBUFF_QOS(skb);
if (qos <= 0)
qos = 0;
else if (qos >= cvmx_pko_get_num_queues(priv->port))
qos = 0;
} else
qos = 0;
if (USE_ASYNC_IOBDMA) {
/* Save scratch in case userspace is using it */
CVMX_SYNCIOBDMA;
old_scratch = cvmx_scratch_read64(CVMX_SCR_SCRATCH);
old_scratch2 = cvmx_scratch_read64(CVMX_SCR_SCRATCH + 8);
/*
* Fetch and increment the number of packets to be
* freed.
*/
cvmx_fau_async_fetch_and_add32(CVMX_SCR_SCRATCH + 8,
FAU_NUM_PACKET_BUFFERS_TO_FREE,
0);
cvmx_fau_async_fetch_and_add32(CVMX_SCR_SCRATCH,
priv->fau + qos * 4,
MAX_SKB_TO_FREE);
}
/*
* We have space for 6 segment pointers, If there will be more
* than that, we must linearize.
*/
if (unlikely(skb_shinfo(skb)->nr_frags > 5)) {
if (unlikely(__skb_linearize(skb))) {
queue_type = QUEUE_DROP;
if (USE_ASYNC_IOBDMA) {
/* Get the number of skbuffs in use by the hardware */
CVMX_SYNCIOBDMA;
skb_to_free = cvmx_scratch_read64(CVMX_SCR_SCRATCH);
} else {
/* Get the number of skbuffs in use by the hardware */
skb_to_free = cvmx_fau_fetch_and_add32(priv->fau + qos * 4,
MAX_SKB_TO_FREE);
}
skb_to_free = cvm_oct_adjust_skb_to_free(skb_to_free, priv->fau + qos * 4);
spin_lock_irqsave(&priv->tx_free_list[qos].lock, flags);
goto skip_xmit;
}
}
/*
* The CN3XXX series of parts has an errata (GMX-401) which
* causes the GMX block to hang if a collision occurs towards
* the end of a <68 byte packet. As a workaround for this, we
* pad packets to be 68 bytes whenever we are in half duplex
* mode. We don't handle the case of having a small packet but
* no room to add the padding. The kernel should always give
* us at least a cache line
*/
if ((skb->len < 64) && OCTEON_IS_MODEL(OCTEON_CN3XXX)) {
union cvmx_gmxx_prtx_cfg gmx_prt_cfg;
int interface = INTERFACE(priv->port);
int index = INDEX(priv->port);
if (interface < 2) {
/* We only need to pad packet in half duplex mode */
gmx_prt_cfg.u64 =
cvmx_read_csr(CVMX_GMXX_PRTX_CFG(index, interface));
if (gmx_prt_cfg.s.duplex == 0) {
int add_bytes = 64 - skb->len;
if ((skb_tail_pointer(skb) + add_bytes) <=
skb_end_pointer(skb))
memset(__skb_put(skb, add_bytes), 0,
add_bytes);
}
}
}
/* Build the PKO command */
pko_command.u64 = 0;
pko_command.s.n2 = 1; /* Don't pollute L2 with the outgoing packet */
pko_command.s.segs = 1;
pko_command.s.total_bytes = skb->len;
pko_command.s.size0 = CVMX_FAU_OP_SIZE_32;
pko_command.s.subone0 = 1;
pko_command.s.dontfree = 1;
/* Build the PKO buffer pointer */
hw_buffer.u64 = 0;
if (skb_shinfo(skb)->nr_frags == 0) {
hw_buffer.s.addr = XKPHYS_TO_PHYS((u64)skb->data);
hw_buffer.s.pool = 0;
hw_buffer.s.size = skb->len;
} else {
hw_buffer.s.addr = XKPHYS_TO_PHYS((u64)skb->data);
hw_buffer.s.pool = 0;
hw_buffer.s.size = skb_headlen(skb);
CVM_OCT_SKB_CB(skb)[0] = hw_buffer.u64;
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
struct skb_frag_struct *fs = skb_shinfo(skb)->frags + i;
hw_buffer.s.addr = XKPHYS_TO_PHYS((u64)(page_address(fs->page.p) + fs->page_offset));
hw_buffer.s.size = fs->size;
CVM_OCT_SKB_CB(skb)[i + 1] = hw_buffer.u64;
}
hw_buffer.s.addr = XKPHYS_TO_PHYS((u64)CVM_OCT_SKB_CB(skb));
hw_buffer.s.size = skb_shinfo(skb)->nr_frags + 1;
pko_command.s.segs = skb_shinfo(skb)->nr_frags + 1;
pko_command.s.gather = 1;
goto dont_put_skbuff_in_hw;
}
/*
* See if we can put this skb in the FPA pool. Any strange
* behavior from the Linux networking stack will most likely
* be caused by a bug in the following code. If some field is
* in use by the network stack and gets carried over when a
* buffer is reused, bad things may happen. If in doubt and
* you dont need the absolute best performance, disable the
* define REUSE_SKBUFFS_WITHOUT_FREE. The reuse of buffers has
* shown a 25% increase in performance under some loads.
*/
#if REUSE_SKBUFFS_WITHOUT_FREE
fpa_head = skb->head + 256 - ((unsigned long)skb->head & 0x7f);
if (unlikely(skb->data < fpa_head)) {
/*
* printk("TX buffer beginning can't meet FPA
* alignment constraints\n");
*/
goto dont_put_skbuff_in_hw;
}
if (unlikely
((skb_end_pointer(skb) - fpa_head) < CVMX_FPA_PACKET_POOL_SIZE)) {
/*
printk("TX buffer isn't large enough for the FPA\n");
*/
goto dont_put_skbuff_in_hw;
}
if (unlikely(skb_shared(skb))) {
/*
printk("TX buffer sharing data with someone else\n");
*/
goto dont_put_skbuff_in_hw;
}
if (unlikely(skb_cloned(skb))) {
/*
printk("TX buffer has been cloned\n");
*/
goto dont_put_skbuff_in_hw;
}
if (unlikely(skb_header_cloned(skb))) {
/*
printk("TX buffer header has been cloned\n");
*/
goto dont_put_skbuff_in_hw;
}
if (unlikely(skb->destructor)) {
/*
printk("TX buffer has a destructor\n");
*/
goto dont_put_skbuff_in_hw;
}
if (unlikely(skb_shinfo(skb)->nr_frags)) {
/*
printk("TX buffer has fragments\n");
*/
goto dont_put_skbuff_in_hw;
}
if (unlikely
(skb->truesize !=
sizeof(*skb) + skb_end_offset(skb))) {
/*
printk("TX buffer truesize has been changed\n");
*/
goto dont_put_skbuff_in_hw;
}
/*
* We can use this buffer in the FPA. We don't need the FAU
* update anymore
*/
pko_command.s.dontfree = 0;
hw_buffer.s.back = ((unsigned long)skb->data >> 7) - ((unsigned long)fpa_head >> 7);
*(struct sk_buff **)(fpa_head - sizeof(void *)) = skb;
/*
* The skbuff will be reused without ever being freed. We must
* cleanup a bunch of core things.
*/
dst_release(skb_dst(skb));
skb_dst_set(skb, NULL);
#ifdef CONFIG_XFRM
secpath_put(skb->sp);
skb->sp = NULL;
#endif
nf_reset(skb);
#ifdef CONFIG_NET_SCHED
skb->tc_index = 0;
#ifdef CONFIG_NET_CLS_ACT
skb->tc_verd = 0;
#endif /* CONFIG_NET_CLS_ACT */
#endif /* CONFIG_NET_SCHED */
#endif /* REUSE_SKBUFFS_WITHOUT_FREE */
dont_put_skbuff_in_hw:
/* Check if we can use the hardware checksumming */
if (USE_HW_TCPUDP_CHECKSUM && (skb->protocol == htons(ETH_P_IP)) &&
(ip_hdr(skb)->version == 4) && (ip_hdr(skb)->ihl == 5) &&
((ip_hdr(skb)->frag_off == 0) || (ip_hdr(skb)->frag_off == 1 << 14))
&& ((ip_hdr(skb)->protocol == IPPROTO_TCP)
|| (ip_hdr(skb)->protocol == IPPROTO_UDP))) {
/* Use hardware checksum calc */
pko_command.s.ipoffp1 = sizeof(struct ethhdr) + 1;
}
if (USE_ASYNC_IOBDMA) {
/* Get the number of skbuffs in use by the hardware */
CVMX_SYNCIOBDMA;
skb_to_free = cvmx_scratch_read64(CVMX_SCR_SCRATCH);
buffers_to_free = cvmx_scratch_read64(CVMX_SCR_SCRATCH + 8);
} else {
/* Get the number of skbuffs in use by the hardware */
skb_to_free = cvmx_fau_fetch_and_add32(priv->fau + qos * 4,
MAX_SKB_TO_FREE);
buffers_to_free =
cvmx_fau_fetch_and_add32(FAU_NUM_PACKET_BUFFERS_TO_FREE, 0);
}
skb_to_free = cvm_oct_adjust_skb_to_free(skb_to_free, priv->fau+qos*4);
/*
* If we're sending faster than the receive can free them then
* don't do the HW free.
*/
if ((buffers_to_free < -100) && !pko_command.s.dontfree)
pko_command.s.dontfree = 1;
if (pko_command.s.dontfree) {
queue_type = QUEUE_CORE;
pko_command.s.reg0 = priv->fau+qos*4;
} else {
queue_type = QUEUE_HW;
}
if (USE_ASYNC_IOBDMA)
cvmx_fau_async_fetch_and_add32(CVMX_SCR_SCRATCH, FAU_TOTAL_TX_TO_CLEAN, 1);
spin_lock_irqsave(&priv->tx_free_list[qos].lock, flags);
/* Drop this packet if we have too many already queued to the HW */
if (unlikely(skb_queue_len(&priv->tx_free_list[qos]) >= MAX_OUT_QUEUE_DEPTH)) {
if (dev->tx_queue_len != 0) {
/* Drop the lock when notifying the core. */
spin_unlock_irqrestore(&priv->tx_free_list[qos].lock, flags);
netif_stop_queue(dev);
spin_lock_irqsave(&priv->tx_free_list[qos].lock, flags);
} else {
/* If not using normal queueing. */
queue_type = QUEUE_DROP;
goto skip_xmit;
}
}
cvmx_pko_send_packet_prepare(priv->port, priv->queue + qos,
CVMX_PKO_LOCK_NONE);
/* Send the packet to the output queue */
if (unlikely(cvmx_pko_send_packet_finish(priv->port,
priv->queue + qos,
pko_command, hw_buffer,
CVMX_PKO_LOCK_NONE))) {
printk_ratelimited("%s: Failed to send the packet\n", dev->name);
queue_type = QUEUE_DROP;
}
skip_xmit:
to_free_list = NULL;
switch (queue_type) {
case QUEUE_DROP:
skb->next = to_free_list;
to_free_list = skb;
priv->stats.tx_dropped++;
break;
case QUEUE_HW:
cvmx_fau_atomic_add32(FAU_NUM_PACKET_BUFFERS_TO_FREE, -1);
break;
case QUEUE_CORE:
__skb_queue_tail(&priv->tx_free_list[qos], skb);
break;
default:
BUG();
}
while (skb_to_free > 0) {
struct sk_buff *t = __skb_dequeue(&priv->tx_free_list[qos]);
t->next = to_free_list;
to_free_list = t;
skb_to_free--;
}
spin_unlock_irqrestore(&priv->tx_free_list[qos].lock, flags);
/* Do the actual freeing outside of the lock. */
while (to_free_list) {
struct sk_buff *t = to_free_list;
to_free_list = to_free_list->next;
dev_kfree_skb_any(t);
}
if (USE_ASYNC_IOBDMA) {
CVMX_SYNCIOBDMA;
total_to_clean = cvmx_scratch_read64(CVMX_SCR_SCRATCH);
/* Restore the scratch area */
cvmx_scratch_write64(CVMX_SCR_SCRATCH, old_scratch);
cvmx_scratch_write64(CVMX_SCR_SCRATCH + 8, old_scratch2);
} else {
total_to_clean = cvmx_fau_fetch_and_add32(FAU_TOTAL_TX_TO_CLEAN, 1);
}
if (total_to_clean & 0x3ff) {
/*
* Schedule the cleanup tasklet every 1024 packets for
* the pathological case of high traffic on one port
* delaying clean up of packets on a different port
* that is blocked waiting for the cleanup.
*/
tasklet_schedule(&cvm_oct_tx_cleanup_tasklet);
}
cvm_oct_kick_tx_poll_watchdog();
return NETDEV_TX_OK;
}
/**
* cvm_oct_xmit_pow - transmit a packet to the POW
* @skb: Packet to send
* @dev: Device info structure
* Returns Always returns zero
*/
int cvm_oct_xmit_pow(struct sk_buff *skb, struct net_device *dev)
{
struct octeon_ethernet *priv = netdev_priv(dev);
void *packet_buffer;
void *copy_location;
/* Get a work queue entry */
cvmx_wqe_t *work = cvmx_fpa_alloc(CVMX_FPA_WQE_POOL);
if (unlikely(work == NULL)) {
printk_ratelimited("%s: Failed to allocate a work "
"queue entry\n", dev->name);
priv->stats.tx_dropped++;
dev_kfree_skb(skb);
return 0;
}
/* Get a packet buffer */
packet_buffer = cvmx_fpa_alloc(CVMX_FPA_PACKET_POOL);
if (unlikely(packet_buffer == NULL)) {
printk_ratelimited("%s: Failed to allocate a packet buffer\n",
dev->name);
cvmx_fpa_free(work, CVMX_FPA_WQE_POOL, DONT_WRITEBACK(1));
priv->stats.tx_dropped++;
dev_kfree_skb(skb);
return 0;
}
/*
* Calculate where we need to copy the data to. We need to
* leave 8 bytes for a next pointer (unused). We also need to
* include any configure skip. Then we need to align the IP
* packet src and dest into the same 64bit word. The below
* calculation may add a little extra, but that doesn't
* hurt.
*/
copy_location = packet_buffer + sizeof(uint64_t);
copy_location += ((CVMX_HELPER_FIRST_MBUFF_SKIP + 7) & 0xfff8) + 6;
/*
* We have to copy the packet since whoever processes this
* packet will free it to a hardware pool. We can't use the
* trick of counting outstanding packets like in
* cvm_oct_xmit.
*/
memcpy(copy_location, skb->data, skb->len);
/*
* Fill in some of the work queue fields. We may need to add
* more if the software at the other end needs them.
*/
work->hw_chksum = skb->csum;
work->len = skb->len;
work->ipprt = priv->port;
work->qos = priv->port & 0x7;
work->grp = pow_send_group;
work->tag_type = CVMX_HELPER_INPUT_TAG_TYPE;
work->tag = pow_send_group; /* FIXME */
/* Default to zero. Sets of zero later are commented out */
work->word2.u64 = 0;
work->word2.s.bufs = 1;
work->packet_ptr.u64 = 0;
work->packet_ptr.s.addr = cvmx_ptr_to_phys(copy_location);
work->packet_ptr.s.pool = CVMX_FPA_PACKET_POOL;
work->packet_ptr.s.size = CVMX_FPA_PACKET_POOL_SIZE;
work->packet_ptr.s.back = (copy_location - packet_buffer) >> 7;
if (skb->protocol == htons(ETH_P_IP)) {
work->word2.s.ip_offset = 14;
#if 0
work->word2.s.vlan_valid = 0; /* FIXME */
work->word2.s.vlan_cfi = 0; /* FIXME */
work->word2.s.vlan_id = 0; /* FIXME */
work->word2.s.dec_ipcomp = 0; /* FIXME */
#endif
work->word2.s.tcp_or_udp =
(ip_hdr(skb)->protocol == IPPROTO_TCP)
|| (ip_hdr(skb)->protocol == IPPROTO_UDP);
#if 0
/* FIXME */
work->word2.s.dec_ipsec = 0;
/* We only support IPv4 right now */
work->word2.s.is_v6 = 0;
/* Hardware would set to zero */
work->word2.s.software = 0;
/* No error, packet is internal */
work->word2.s.L4_error = 0;
#endif
work->word2.s.is_frag = !((ip_hdr(skb)->frag_off == 0)
|| (ip_hdr(skb)->frag_off ==
1 << 14));
#if 0
/* Assume Linux is sending a good packet */
work->word2.s.IP_exc = 0;
#endif
work->word2.s.is_bcast = (skb->pkt_type == PACKET_BROADCAST);
work->word2.s.is_mcast = (skb->pkt_type == PACKET_MULTICAST);
#if 0
/* This is an IP packet */
work->word2.s.not_IP = 0;
/* No error, packet is internal */
work->word2.s.rcv_error = 0;
/* No error, packet is internal */
work->word2.s.err_code = 0;
#endif
/*
* When copying the data, include 4 bytes of the
* ethernet header to align the same way hardware
* does.
*/
memcpy(work->packet_data, skb->data + 10,
sizeof(work->packet_data));
} else {
#if 0
work->word2.snoip.vlan_valid = 0; /* FIXME */
work->word2.snoip.vlan_cfi = 0; /* FIXME */
work->word2.snoip.vlan_id = 0; /* FIXME */
work->word2.snoip.software = 0; /* Hardware would set to zero */
#endif
work->word2.snoip.is_rarp = skb->protocol == htons(ETH_P_RARP);
work->word2.snoip.is_arp = skb->protocol == htons(ETH_P_ARP);
work->word2.snoip.is_bcast =
(skb->pkt_type == PACKET_BROADCAST);
work->word2.snoip.is_mcast =
(skb->pkt_type == PACKET_MULTICAST);
work->word2.snoip.not_IP = 1; /* IP was done up above */
#if 0
/* No error, packet is internal */
work->word2.snoip.rcv_error = 0;
/* No error, packet is internal */
work->word2.snoip.err_code = 0;
#endif
memcpy(work->packet_data, skb->data, sizeof(work->packet_data));
}
/* Submit the packet to the POW */
cvmx_pow_work_submit(work, work->tag, work->tag_type, work->qos,
work->grp);
priv->stats.tx_packets++;
priv->stats.tx_bytes += skb->len;
dev_kfree_skb(skb);
return 0;
}
/**
* cvm_oct_tx_shutdown_dev - free all skb that are currently queued for TX.
* @dev: Device being shutdown
*
*/
void cvm_oct_tx_shutdown_dev(struct net_device *dev)
{
struct octeon_ethernet *priv = netdev_priv(dev);
unsigned long flags;
int qos;
for (qos = 0; qos < 16; qos++) {
spin_lock_irqsave(&priv->tx_free_list[qos].lock, flags);
while (skb_queue_len(&priv->tx_free_list[qos]))
dev_kfree_skb_any(__skb_dequeue
(&priv->tx_free_list[qos]));
spin_unlock_irqrestore(&priv->tx_free_list[qos].lock, flags);
}
}
static void cvm_oct_tx_do_cleanup(unsigned long arg)
{
int port;
for (port = 0; port < TOTAL_NUMBER_OF_PORTS; port++) {
if (cvm_oct_device[port]) {
struct net_device *dev = cvm_oct_device[port];
cvm_oct_free_tx_skbs(dev);
}
}
}
static irqreturn_t cvm_oct_tx_cleanup_watchdog(int cpl, void *dev_id)
{
/* Disable the interrupt. */
cvmx_write_csr(CVMX_CIU_TIMX(1), 0);
/* Do the work in the tasklet. */
tasklet_schedule(&cvm_oct_tx_cleanup_tasklet);
return IRQ_HANDLED;
}
void cvm_oct_tx_initialize(void)
{
int i;
/* Disable the interrupt. */
cvmx_write_csr(CVMX_CIU_TIMX(1), 0);
/* Register an IRQ hander for to receive CIU_TIMX(1) interrupts */
i = request_irq(OCTEON_IRQ_TIMER1,
cvm_oct_tx_cleanup_watchdog, 0,
"Ethernet", cvm_oct_device);
if (i)
panic("Could not acquire Ethernet IRQ %d\n", OCTEON_IRQ_TIMER1);
}
void cvm_oct_tx_shutdown(void)
{
/* Free the interrupt handler */
free_irq(OCTEON_IRQ_TIMER1, cvm_oct_device);
}