| /* SPDX-License-Identifier: GPL-2.0-only */ |
| /* |
| * Based on arch/arm/include/asm/mmu_context.h |
| * |
| * Copyright (C) 1996 Russell King. |
| * Copyright (C) 2012 ARM Ltd. |
| */ |
| #ifndef __ASM_MMU_CONTEXT_H |
| #define __ASM_MMU_CONTEXT_H |
| |
| #ifndef __ASSEMBLY__ |
| |
| #include <linux/compiler.h> |
| #include <linux/sched.h> |
| #include <linux/sched/hotplug.h> |
| #include <linux/mm_types.h> |
| |
| #include <asm/cacheflush.h> |
| #include <asm/cpufeature.h> |
| #include <asm/proc-fns.h> |
| #include <asm-generic/mm_hooks.h> |
| #include <asm/cputype.h> |
| #include <linux/pgtable.h> |
| #include <asm/sysreg.h> |
| #include <asm/tlbflush.h> |
| |
| extern bool rodata_full; |
| |
| static inline void contextidr_thread_switch(struct task_struct *next) |
| { |
| if (!IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR)) |
| return; |
| |
| write_sysreg(task_pid_nr(next), contextidr_el1); |
| isb(); |
| } |
| |
| /* |
| * Set TTBR0 to empty_zero_page. No translations will be possible via TTBR0. |
| */ |
| static inline void cpu_set_reserved_ttbr0(void) |
| { |
| unsigned long ttbr = phys_to_ttbr(__pa_symbol(empty_zero_page)); |
| |
| write_sysreg(ttbr, ttbr0_el1); |
| isb(); |
| } |
| |
| void cpu_do_switch_mm(phys_addr_t pgd_phys, struct mm_struct *mm); |
| |
| static inline void cpu_switch_mm(pgd_t *pgd, struct mm_struct *mm) |
| { |
| BUG_ON(pgd == swapper_pg_dir); |
| cpu_set_reserved_ttbr0(); |
| cpu_do_switch_mm(virt_to_phys(pgd),mm); |
| } |
| |
| /* |
| * TCR.T0SZ value to use when the ID map is active. Usually equals |
| * TCR_T0SZ(VA_BITS), unless system RAM is positioned very high in |
| * physical memory, in which case it will be smaller. |
| */ |
| extern u64 idmap_t0sz; |
| extern u64 idmap_ptrs_per_pgd; |
| |
| static inline bool __cpu_uses_extended_idmap(void) |
| { |
| if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52)) |
| return false; |
| |
| return unlikely(idmap_t0sz != TCR_T0SZ(VA_BITS)); |
| } |
| |
| /* |
| * True if the extended ID map requires an extra level of translation table |
| * to be configured. |
| */ |
| static inline bool __cpu_uses_extended_idmap_level(void) |
| { |
| return ARM64_HW_PGTABLE_LEVELS(64 - idmap_t0sz) > CONFIG_PGTABLE_LEVELS; |
| } |
| |
| /* |
| * Set TCR.T0SZ to its default value (based on VA_BITS) |
| */ |
| static inline void __cpu_set_tcr_t0sz(unsigned long t0sz) |
| { |
| unsigned long tcr; |
| |
| if (!__cpu_uses_extended_idmap()) |
| return; |
| |
| tcr = read_sysreg(tcr_el1); |
| tcr &= ~TCR_T0SZ_MASK; |
| tcr |= t0sz << TCR_T0SZ_OFFSET; |
| write_sysreg(tcr, tcr_el1); |
| isb(); |
| } |
| |
| #define cpu_set_default_tcr_t0sz() __cpu_set_tcr_t0sz(TCR_T0SZ(vabits_actual)) |
| #define cpu_set_idmap_tcr_t0sz() __cpu_set_tcr_t0sz(idmap_t0sz) |
| |
| /* |
| * Remove the idmap from TTBR0_EL1 and install the pgd of the active mm. |
| * |
| * The idmap lives in the same VA range as userspace, but uses global entries |
| * and may use a different TCR_EL1.T0SZ. To avoid issues resulting from |
| * speculative TLB fetches, we must temporarily install the reserved page |
| * tables while we invalidate the TLBs and set up the correct TCR_EL1.T0SZ. |
| * |
| * If current is a not a user task, the mm covers the TTBR1_EL1 page tables, |
| * which should not be installed in TTBR0_EL1. In this case we can leave the |
| * reserved page tables in place. |
| */ |
| static inline void cpu_uninstall_idmap(void) |
| { |
| struct mm_struct *mm = current->active_mm; |
| |
| cpu_set_reserved_ttbr0(); |
| local_flush_tlb_all(); |
| cpu_set_default_tcr_t0sz(); |
| |
| if (mm != &init_mm && !system_uses_ttbr0_pan()) |
| cpu_switch_mm(mm->pgd, mm); |
| } |
| |
| static inline void cpu_install_idmap(void) |
| { |
| cpu_set_reserved_ttbr0(); |
| local_flush_tlb_all(); |
| cpu_set_idmap_tcr_t0sz(); |
| |
| cpu_switch_mm(lm_alias(idmap_pg_dir), &init_mm); |
| } |
| |
| /* |
| * Atomically replaces the active TTBR1_EL1 PGD with a new VA-compatible PGD, |
| * avoiding the possibility of conflicting TLB entries being allocated. |
| */ |
| static inline void cpu_replace_ttbr1(pgd_t *pgdp) |
| { |
| typedef void (ttbr_replace_func)(phys_addr_t); |
| extern ttbr_replace_func idmap_cpu_replace_ttbr1; |
| ttbr_replace_func *replace_phys; |
| |
| /* phys_to_ttbr() zeros lower 2 bits of ttbr with 52-bit PA */ |
| phys_addr_t ttbr1 = phys_to_ttbr(virt_to_phys(pgdp)); |
| |
| if (system_supports_cnp() && !WARN_ON(pgdp != lm_alias(swapper_pg_dir))) { |
| /* |
| * cpu_replace_ttbr1() is used when there's a boot CPU |
| * up (i.e. cpufeature framework is not up yet) and |
| * latter only when we enable CNP via cpufeature's |
| * enable() callback. |
| * Also we rely on the cpu_hwcap bit being set before |
| * calling the enable() function. |
| */ |
| ttbr1 |= TTBR_CNP_BIT; |
| } |
| |
| replace_phys = (void *)__pa_symbol(idmap_cpu_replace_ttbr1); |
| |
| cpu_install_idmap(); |
| replace_phys(ttbr1); |
| cpu_uninstall_idmap(); |
| } |
| |
| /* |
| * It would be nice to return ASIDs back to the allocator, but unfortunately |
| * that introduces a race with a generation rollover where we could erroneously |
| * free an ASID allocated in a future generation. We could workaround this by |
| * freeing the ASID from the context of the dying mm (e.g. in arch_exit_mmap), |
| * but we'd then need to make sure that we didn't dirty any TLBs afterwards. |
| * Setting a reserved TTBR0 or EPD0 would work, but it all gets ugly when you |
| * take CPU migration into account. |
| */ |
| #define destroy_context(mm) do { } while(0) |
| void check_and_switch_context(struct mm_struct *mm, unsigned int cpu); |
| |
| #define init_new_context(tsk,mm) ({ atomic64_set(&(mm)->context.id, 0); 0; }) |
| |
| #ifdef CONFIG_ARM64_SW_TTBR0_PAN |
| static inline void update_saved_ttbr0(struct task_struct *tsk, |
| struct mm_struct *mm) |
| { |
| u64 ttbr; |
| |
| if (!system_uses_ttbr0_pan()) |
| return; |
| |
| if (mm == &init_mm) |
| ttbr = __pa_symbol(empty_zero_page); |
| else |
| ttbr = virt_to_phys(mm->pgd) | ASID(mm) << 48; |
| |
| WRITE_ONCE(task_thread_info(tsk)->ttbr0, ttbr); |
| } |
| #else |
| static inline void update_saved_ttbr0(struct task_struct *tsk, |
| struct mm_struct *mm) |
| { |
| } |
| #endif |
| |
| static inline void |
| enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk) |
| { |
| /* |
| * We don't actually care about the ttbr0 mapping, so point it at the |
| * zero page. |
| */ |
| update_saved_ttbr0(tsk, &init_mm); |
| } |
| |
| static inline void __switch_mm(struct mm_struct *next) |
| { |
| unsigned int cpu = smp_processor_id(); |
| |
| /* |
| * init_mm.pgd does not contain any user mappings and it is always |
| * active for kernel addresses in TTBR1. Just set the reserved TTBR0. |
| */ |
| if (next == &init_mm) { |
| cpu_set_reserved_ttbr0(); |
| return; |
| } |
| |
| check_and_switch_context(next, cpu); |
| } |
| |
| static inline void |
| switch_mm(struct mm_struct *prev, struct mm_struct *next, |
| struct task_struct *tsk) |
| { |
| if (prev != next) |
| __switch_mm(next); |
| |
| /* |
| * Update the saved TTBR0_EL1 of the scheduled-in task as the previous |
| * value may have not been initialised yet (activate_mm caller) or the |
| * ASID has changed since the last run (following the context switch |
| * of another thread of the same process). |
| */ |
| update_saved_ttbr0(tsk, next); |
| } |
| |
| #define deactivate_mm(tsk,mm) do { } while (0) |
| #define activate_mm(prev,next) switch_mm(prev, next, current) |
| |
| void verify_cpu_asid_bits(void); |
| void post_ttbr_update_workaround(void); |
| |
| #endif /* !__ASSEMBLY__ */ |
| |
| #endif /* !__ASM_MMU_CONTEXT_H */ |