| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Author: Andy Fleming <afleming@freescale.com> |
| * Kumar Gala <galak@kernel.crashing.org> |
| * |
| * Copyright 2006-2008, 2011-2012, 2015 Freescale Semiconductor Inc. |
| */ |
| |
| #include <linux/stddef.h> |
| #include <linux/kernel.h> |
| #include <linux/sched/hotplug.h> |
| #include <linux/init.h> |
| #include <linux/delay.h> |
| #include <linux/of.h> |
| #include <linux/kexec.h> |
| #include <linux/highmem.h> |
| #include <linux/cpu.h> |
| #include <linux/fsl/guts.h> |
| |
| #include <asm/machdep.h> |
| #include <linux/pgtable.h> |
| #include <asm/page.h> |
| #include <asm/mpic.h> |
| #include <asm/cacheflush.h> |
| #include <asm/dbell.h> |
| #include <asm/code-patching.h> |
| #include <asm/cputhreads.h> |
| #include <asm/fsl_pm.h> |
| |
| #include <sysdev/fsl_soc.h> |
| #include <sysdev/mpic.h> |
| #include "smp.h" |
| |
| struct epapr_spin_table { |
| u32 addr_h; |
| u32 addr_l; |
| u32 r3_h; |
| u32 r3_l; |
| u32 reserved; |
| u32 pir; |
| }; |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| static u64 timebase; |
| static int tb_req; |
| static int tb_valid; |
| |
| static void mpc85xx_give_timebase(void) |
| { |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| hard_irq_disable(); |
| |
| while (!tb_req) |
| barrier(); |
| tb_req = 0; |
| |
| qoriq_pm_ops->freeze_time_base(true); |
| #ifdef CONFIG_PPC64 |
| /* |
| * e5500/e6500 have a workaround for erratum A-006958 in place |
| * that will reread the timebase until TBL is non-zero. |
| * That would be a bad thing when the timebase is frozen. |
| * |
| * Thus, we read it manually, and instead of checking that |
| * TBL is non-zero, we ensure that TB does not change. We don't |
| * do that for the main mftb implementation, because it requires |
| * a scratch register |
| */ |
| { |
| u64 prev; |
| |
| asm volatile("mfspr %0, %1" : "=r" (timebase) : |
| "i" (SPRN_TBRL)); |
| |
| do { |
| prev = timebase; |
| asm volatile("mfspr %0, %1" : "=r" (timebase) : |
| "i" (SPRN_TBRL)); |
| } while (prev != timebase); |
| } |
| #else |
| timebase = get_tb(); |
| #endif |
| mb(); |
| tb_valid = 1; |
| |
| while (tb_valid) |
| barrier(); |
| |
| qoriq_pm_ops->freeze_time_base(false); |
| |
| local_irq_restore(flags); |
| } |
| |
| static void mpc85xx_take_timebase(void) |
| { |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| hard_irq_disable(); |
| |
| tb_req = 1; |
| while (!tb_valid) |
| barrier(); |
| |
| set_tb(timebase >> 32, timebase & 0xffffffff); |
| isync(); |
| tb_valid = 0; |
| |
| local_irq_restore(flags); |
| } |
| |
| static void smp_85xx_mach_cpu_die(void) |
| { |
| unsigned int cpu = smp_processor_id(); |
| |
| local_irq_disable(); |
| hard_irq_disable(); |
| /* mask all irqs to prevent cpu wakeup */ |
| qoriq_pm_ops->irq_mask(cpu); |
| |
| idle_task_exit(); |
| |
| mtspr(SPRN_TCR, 0); |
| mtspr(SPRN_TSR, mfspr(SPRN_TSR)); |
| |
| generic_set_cpu_dead(cpu); |
| |
| cur_cpu_spec->cpu_down_flush(); |
| |
| qoriq_pm_ops->cpu_die(cpu); |
| |
| while (1) |
| ; |
| } |
| |
| static void qoriq_cpu_kill(unsigned int cpu) |
| { |
| int i; |
| |
| for (i = 0; i < 500; i++) { |
| if (is_cpu_dead(cpu)) { |
| #ifdef CONFIG_PPC64 |
| paca_ptrs[cpu]->cpu_start = 0; |
| #endif |
| return; |
| } |
| msleep(20); |
| } |
| pr_err("CPU%d didn't die...\n", cpu); |
| } |
| #endif |
| |
| /* |
| * To keep it compatible with old boot program which uses |
| * cache-inhibit spin table, we need to flush the cache |
| * before accessing spin table to invalidate any staled data. |
| * We also need to flush the cache after writing to spin |
| * table to push data out. |
| */ |
| static inline void flush_spin_table(void *spin_table) |
| { |
| flush_dcache_range((ulong)spin_table, |
| (ulong)spin_table + sizeof(struct epapr_spin_table)); |
| } |
| |
| static inline u32 read_spin_table_addr_l(void *spin_table) |
| { |
| flush_dcache_range((ulong)spin_table, |
| (ulong)spin_table + sizeof(struct epapr_spin_table)); |
| return in_be32(&((struct epapr_spin_table *)spin_table)->addr_l); |
| } |
| |
| #ifdef CONFIG_PPC64 |
| static void wake_hw_thread(void *info) |
| { |
| void fsl_secondary_thread_init(void); |
| unsigned long inia; |
| int cpu = *(const int *)info; |
| |
| inia = *(unsigned long *)fsl_secondary_thread_init; |
| book3e_start_thread(cpu_thread_in_core(cpu), inia); |
| } |
| #endif |
| |
| static int smp_85xx_start_cpu(int cpu) |
| { |
| int ret = 0; |
| struct device_node *np; |
| const u64 *cpu_rel_addr; |
| unsigned long flags; |
| int ioremappable; |
| int hw_cpu = get_hard_smp_processor_id(cpu); |
| struct epapr_spin_table __iomem *spin_table; |
| |
| np = of_get_cpu_node(cpu, NULL); |
| cpu_rel_addr = of_get_property(np, "cpu-release-addr", NULL); |
| if (!cpu_rel_addr) { |
| pr_err("No cpu-release-addr for cpu %d\n", cpu); |
| return -ENOENT; |
| } |
| |
| /* |
| * A secondary core could be in a spinloop in the bootpage |
| * (0xfffff000), somewhere in highmem, or somewhere in lowmem. |
| * The bootpage and highmem can be accessed via ioremap(), but |
| * we need to directly access the spinloop if its in lowmem. |
| */ |
| ioremappable = *cpu_rel_addr > virt_to_phys(high_memory); |
| |
| /* Map the spin table */ |
| if (ioremappable) |
| spin_table = ioremap_coherent(*cpu_rel_addr, |
| sizeof(struct epapr_spin_table)); |
| else |
| spin_table = phys_to_virt(*cpu_rel_addr); |
| |
| local_irq_save(flags); |
| hard_irq_disable(); |
| |
| if (qoriq_pm_ops) |
| qoriq_pm_ops->cpu_up_prepare(cpu); |
| |
| /* if cpu is not spinning, reset it */ |
| if (read_spin_table_addr_l(spin_table) != 1) { |
| /* |
| * We don't set the BPTR register here since it already points |
| * to the boot page properly. |
| */ |
| mpic_reset_core(cpu); |
| |
| /* |
| * wait until core is ready... |
| * We need to invalidate the stale data, in case the boot |
| * loader uses a cache-inhibited spin table. |
| */ |
| if (!spin_event_timeout( |
| read_spin_table_addr_l(spin_table) == 1, |
| 10000, 100)) { |
| pr_err("timeout waiting for cpu %d to reset\n", |
| hw_cpu); |
| ret = -EAGAIN; |
| goto err; |
| } |
| } |
| |
| flush_spin_table(spin_table); |
| out_be32(&spin_table->pir, hw_cpu); |
| #ifdef CONFIG_PPC64 |
| out_be64((u64 *)(&spin_table->addr_h), |
| __pa(ppc_function_entry(generic_secondary_smp_init))); |
| #else |
| #ifdef CONFIG_PHYS_ADDR_T_64BIT |
| /* |
| * We need also to write addr_h to spin table for systems |
| * in which their physical memory start address was configured |
| * to above 4G, otherwise the secondary core can not get |
| * correct entry to start from. |
| */ |
| out_be32(&spin_table->addr_h, __pa(__early_start) >> 32); |
| #endif |
| out_be32(&spin_table->addr_l, __pa(__early_start)); |
| #endif |
| flush_spin_table(spin_table); |
| err: |
| local_irq_restore(flags); |
| |
| if (ioremappable) |
| iounmap(spin_table); |
| |
| return ret; |
| } |
| |
| static int smp_85xx_kick_cpu(int nr) |
| { |
| int ret = 0; |
| #ifdef CONFIG_PPC64 |
| int primary = nr; |
| #endif |
| |
| WARN_ON(nr < 0 || nr >= num_possible_cpus()); |
| |
| pr_debug("kick CPU #%d\n", nr); |
| |
| #ifdef CONFIG_PPC64 |
| if (threads_per_core == 2) { |
| if (WARN_ON_ONCE(!cpu_has_feature(CPU_FTR_SMT))) |
| return -ENOENT; |
| |
| booting_thread_hwid = cpu_thread_in_core(nr); |
| primary = cpu_first_thread_sibling(nr); |
| |
| if (qoriq_pm_ops) |
| qoriq_pm_ops->cpu_up_prepare(nr); |
| |
| /* |
| * If either thread in the core is online, use it to start |
| * the other. |
| */ |
| if (cpu_online(primary)) { |
| smp_call_function_single(primary, |
| wake_hw_thread, &nr, 1); |
| goto done; |
| } else if (cpu_online(primary + 1)) { |
| smp_call_function_single(primary + 1, |
| wake_hw_thread, &nr, 1); |
| goto done; |
| } |
| |
| /* |
| * If getting here, it means both threads in the core are |
| * offline. So start the primary thread, then it will start |
| * the thread specified in booting_thread_hwid, the one |
| * corresponding to nr. |
| */ |
| |
| } else if (threads_per_core == 1) { |
| /* |
| * If one core has only one thread, set booting_thread_hwid to |
| * an invalid value. |
| */ |
| booting_thread_hwid = INVALID_THREAD_HWID; |
| |
| } else if (threads_per_core > 2) { |
| pr_err("Do not support more than 2 threads per CPU."); |
| return -EINVAL; |
| } |
| |
| ret = smp_85xx_start_cpu(primary); |
| if (ret) |
| return ret; |
| |
| done: |
| paca_ptrs[nr]->cpu_start = 1; |
| generic_set_cpu_up(nr); |
| |
| return ret; |
| #else |
| ret = smp_85xx_start_cpu(nr); |
| if (ret) |
| return ret; |
| |
| generic_set_cpu_up(nr); |
| |
| return ret; |
| #endif |
| } |
| |
| struct smp_ops_t smp_85xx_ops = { |
| .cause_nmi_ipi = NULL, |
| .kick_cpu = smp_85xx_kick_cpu, |
| .cpu_bootable = smp_generic_cpu_bootable, |
| #ifdef CONFIG_HOTPLUG_CPU |
| .cpu_disable = generic_cpu_disable, |
| .cpu_die = generic_cpu_die, |
| #endif |
| #if defined(CONFIG_KEXEC_CORE) && !defined(CONFIG_PPC64) |
| .give_timebase = smp_generic_give_timebase, |
| .take_timebase = smp_generic_take_timebase, |
| #endif |
| }; |
| |
| #ifdef CONFIG_KEXEC_CORE |
| #ifdef CONFIG_PPC32 |
| atomic_t kexec_down_cpus = ATOMIC_INIT(0); |
| |
| void mpc85xx_smp_kexec_cpu_down(int crash_shutdown, int secondary) |
| { |
| local_irq_disable(); |
| |
| if (secondary) { |
| cur_cpu_spec->cpu_down_flush(); |
| atomic_inc(&kexec_down_cpus); |
| /* loop forever */ |
| while (1); |
| } |
| } |
| |
| static void mpc85xx_smp_kexec_down(void *arg) |
| { |
| if (ppc_md.kexec_cpu_down) |
| ppc_md.kexec_cpu_down(0,1); |
| } |
| #else |
| void mpc85xx_smp_kexec_cpu_down(int crash_shutdown, int secondary) |
| { |
| int cpu = smp_processor_id(); |
| int sibling = cpu_last_thread_sibling(cpu); |
| bool notified = false; |
| int disable_cpu; |
| int disable_threadbit = 0; |
| long start = mftb(); |
| long now; |
| |
| local_irq_disable(); |
| hard_irq_disable(); |
| mpic_teardown_this_cpu(secondary); |
| |
| if (cpu == crashing_cpu && cpu_thread_in_core(cpu) != 0) { |
| /* |
| * We enter the crash kernel on whatever cpu crashed, |
| * even if it's a secondary thread. If that's the case, |
| * disable the corresponding primary thread. |
| */ |
| disable_threadbit = 1; |
| disable_cpu = cpu_first_thread_sibling(cpu); |
| } else if (sibling != crashing_cpu && |
| cpu_thread_in_core(cpu) == 0 && |
| cpu_thread_in_core(sibling) != 0) { |
| disable_threadbit = 2; |
| disable_cpu = sibling; |
| } |
| |
| if (disable_threadbit) { |
| while (paca_ptrs[disable_cpu]->kexec_state < KEXEC_STATE_REAL_MODE) { |
| barrier(); |
| now = mftb(); |
| if (!notified && now - start > 1000000) { |
| pr_info("%s/%d: waiting for cpu %d to enter KEXEC_STATE_REAL_MODE (%d)\n", |
| __func__, smp_processor_id(), |
| disable_cpu, |
| paca_ptrs[disable_cpu]->kexec_state); |
| notified = true; |
| } |
| } |
| |
| if (notified) { |
| pr_info("%s: cpu %d done waiting\n", |
| __func__, disable_cpu); |
| } |
| |
| mtspr(SPRN_TENC, disable_threadbit); |
| while (mfspr(SPRN_TENSR) & disable_threadbit) |
| cpu_relax(); |
| } |
| } |
| #endif |
| |
| static void mpc85xx_smp_machine_kexec(struct kimage *image) |
| { |
| #ifdef CONFIG_PPC32 |
| int timeout = INT_MAX; |
| int i, num_cpus = num_present_cpus(); |
| |
| if (image->type == KEXEC_TYPE_DEFAULT) |
| smp_call_function(mpc85xx_smp_kexec_down, NULL, 0); |
| |
| while ( (atomic_read(&kexec_down_cpus) != (num_cpus - 1)) && |
| ( timeout > 0 ) ) |
| { |
| timeout--; |
| } |
| |
| if ( !timeout ) |
| printk(KERN_ERR "Unable to bring down secondary cpu(s)"); |
| |
| for_each_online_cpu(i) |
| { |
| if ( i == smp_processor_id() ) continue; |
| mpic_reset_core(i); |
| } |
| #endif |
| |
| default_machine_kexec(image); |
| } |
| #endif /* CONFIG_KEXEC_CORE */ |
| |
| static void smp_85xx_setup_cpu(int cpu_nr) |
| { |
| mpic_setup_this_cpu(); |
| } |
| |
| void __init mpc85xx_smp_init(void) |
| { |
| struct device_node *np; |
| |
| |
| np = of_find_node_by_type(NULL, "open-pic"); |
| if (np) { |
| smp_85xx_ops.probe = smp_mpic_probe; |
| smp_85xx_ops.setup_cpu = smp_85xx_setup_cpu; |
| smp_85xx_ops.message_pass = smp_mpic_message_pass; |
| } else |
| smp_85xx_ops.setup_cpu = NULL; |
| |
| if (cpu_has_feature(CPU_FTR_DBELL)) { |
| /* |
| * If left NULL, .message_pass defaults to |
| * smp_muxed_ipi_message_pass |
| */ |
| smp_85xx_ops.message_pass = NULL; |
| smp_85xx_ops.cause_ipi = doorbell_global_ipi; |
| smp_85xx_ops.probe = NULL; |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| #ifdef CONFIG_FSL_CORENET_RCPM |
| fsl_rcpm_init(); |
| #endif |
| |
| #ifdef CONFIG_FSL_PMC |
| mpc85xx_setup_pmc(); |
| #endif |
| if (qoriq_pm_ops) { |
| smp_85xx_ops.give_timebase = mpc85xx_give_timebase; |
| smp_85xx_ops.take_timebase = mpc85xx_take_timebase; |
| ppc_md.cpu_die = smp_85xx_mach_cpu_die; |
| smp_85xx_ops.cpu_die = qoriq_cpu_kill; |
| } |
| #endif |
| smp_ops = &smp_85xx_ops; |
| |
| #ifdef CONFIG_KEXEC_CORE |
| ppc_md.kexec_cpu_down = mpc85xx_smp_kexec_cpu_down; |
| ppc_md.machine_kexec = mpc85xx_smp_machine_kexec; |
| #endif |
| } |