| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Low level x86 E820 memory map handling functions. |
| * |
| * The firmware and bootloader passes us the "E820 table", which is the primary |
| * physical memory layout description available about x86 systems. |
| * |
| * The kernel takes the E820 memory layout and optionally modifies it with |
| * quirks and other tweaks, and feeds that into the generic Linux memory |
| * allocation code routines via a platform independent interface (memblock, etc.). |
| */ |
| #include <linux/crash_dump.h> |
| #include <linux/memblock.h> |
| #include <linux/suspend.h> |
| #include <linux/acpi.h> |
| #include <linux/firmware-map.h> |
| #include <linux/sort.h> |
| #include <linux/memory_hotplug.h> |
| |
| #include <asm/e820/api.h> |
| #include <asm/setup.h> |
| |
| /* |
| * We organize the E820 table into three main data structures: |
| * |
| * - 'e820_table_firmware': the original firmware version passed to us by the |
| * bootloader - not modified by the kernel. It is composed of two parts: |
| * the first 128 E820 memory entries in boot_params.e820_table and the remaining |
| * (if any) entries of the SETUP_E820_EXT nodes. We use this to: |
| * |
| * - inform the user about the firmware's notion of memory layout |
| * via /sys/firmware/memmap |
| * |
| * - the hibernation code uses it to generate a kernel-independent MD5 |
| * fingerprint of the physical memory layout of a system. |
| * |
| * - 'e820_table_kexec': a slightly modified (by the kernel) firmware version |
| * passed to us by the bootloader - the major difference between |
| * e820_table_firmware[] and this one is that, the latter marks the setup_data |
| * list created by the EFI boot stub as reserved, so that kexec can reuse the |
| * setup_data information in the second kernel. Besides, e820_table_kexec[] |
| * might also be modified by the kexec itself to fake a mptable. |
| * We use this to: |
| * |
| * - kexec, which is a bootloader in disguise, uses the original E820 |
| * layout to pass to the kexec-ed kernel. This way the original kernel |
| * can have a restricted E820 map while the kexec()-ed kexec-kernel |
| * can have access to full memory - etc. |
| * |
| * - 'e820_table': this is the main E820 table that is massaged by the |
| * low level x86 platform code, or modified by boot parameters, before |
| * passed on to higher level MM layers. |
| * |
| * Once the E820 map has been converted to the standard Linux memory layout |
| * information its role stops - modifying it has no effect and does not get |
| * re-propagated. So itsmain role is a temporary bootstrap storage of firmware |
| * specific memory layout data during early bootup. |
| */ |
| static struct e820_table e820_table_init __initdata; |
| static struct e820_table e820_table_kexec_init __initdata; |
| static struct e820_table e820_table_firmware_init __initdata; |
| |
| struct e820_table *e820_table __refdata = &e820_table_init; |
| struct e820_table *e820_table_kexec __refdata = &e820_table_kexec_init; |
| struct e820_table *e820_table_firmware __refdata = &e820_table_firmware_init; |
| |
| /* For PCI or other memory-mapped resources */ |
| unsigned long pci_mem_start = 0xaeedbabe; |
| #ifdef CONFIG_PCI |
| EXPORT_SYMBOL(pci_mem_start); |
| #endif |
| |
| /* |
| * This function checks if any part of the range <start,end> is mapped |
| * with type. |
| */ |
| static bool _e820__mapped_any(struct e820_table *table, |
| u64 start, u64 end, enum e820_type type) |
| { |
| int i; |
| |
| for (i = 0; i < table->nr_entries; i++) { |
| struct e820_entry *entry = &table->entries[i]; |
| |
| if (type && entry->type != type) |
| continue; |
| if (entry->addr >= end || entry->addr + entry->size <= start) |
| continue; |
| return true; |
| } |
| return false; |
| } |
| |
| bool e820__mapped_raw_any(u64 start, u64 end, enum e820_type type) |
| { |
| return _e820__mapped_any(e820_table_firmware, start, end, type); |
| } |
| EXPORT_SYMBOL_GPL(e820__mapped_raw_any); |
| |
| bool e820__mapped_any(u64 start, u64 end, enum e820_type type) |
| { |
| return _e820__mapped_any(e820_table, start, end, type); |
| } |
| EXPORT_SYMBOL_GPL(e820__mapped_any); |
| |
| /* |
| * This function checks if the entire <start,end> range is mapped with 'type'. |
| * |
| * Note: this function only works correctly once the E820 table is sorted and |
| * not-overlapping (at least for the range specified), which is the case normally. |
| */ |
| static struct e820_entry *__e820__mapped_all(u64 start, u64 end, |
| enum e820_type type) |
| { |
| int i; |
| |
| for (i = 0; i < e820_table->nr_entries; i++) { |
| struct e820_entry *entry = &e820_table->entries[i]; |
| |
| if (type && entry->type != type) |
| continue; |
| |
| /* Is the region (part) in overlap with the current region? */ |
| if (entry->addr >= end || entry->addr + entry->size <= start) |
| continue; |
| |
| /* |
| * If the region is at the beginning of <start,end> we move |
| * 'start' to the end of the region since it's ok until there |
| */ |
| if (entry->addr <= start) |
| start = entry->addr + entry->size; |
| |
| /* |
| * If 'start' is now at or beyond 'end', we're done, full |
| * coverage of the desired range exists: |
| */ |
| if (start >= end) |
| return entry; |
| } |
| |
| return NULL; |
| } |
| |
| /* |
| * This function checks if the entire range <start,end> is mapped with type. |
| */ |
| bool __init e820__mapped_all(u64 start, u64 end, enum e820_type type) |
| { |
| return __e820__mapped_all(start, end, type); |
| } |
| |
| /* |
| * This function returns the type associated with the range <start,end>. |
| */ |
| int e820__get_entry_type(u64 start, u64 end) |
| { |
| struct e820_entry *entry = __e820__mapped_all(start, end, 0); |
| |
| return entry ? entry->type : -EINVAL; |
| } |
| |
| /* |
| * Add a memory region to the kernel E820 map. |
| */ |
| static void __init __e820__range_add(struct e820_table *table, u64 start, u64 size, enum e820_type type) |
| { |
| int x = table->nr_entries; |
| |
| if (x >= ARRAY_SIZE(table->entries)) { |
| pr_err("too many entries; ignoring [mem %#010llx-%#010llx]\n", |
| start, start + size - 1); |
| return; |
| } |
| |
| table->entries[x].addr = start; |
| table->entries[x].size = size; |
| table->entries[x].type = type; |
| table->nr_entries++; |
| } |
| |
| void __init e820__range_add(u64 start, u64 size, enum e820_type type) |
| { |
| __e820__range_add(e820_table, start, size, type); |
| } |
| |
| static void __init e820_print_type(enum e820_type type) |
| { |
| switch (type) { |
| case E820_TYPE_RAM: /* Fall through: */ |
| case E820_TYPE_RESERVED_KERN: pr_cont("usable"); break; |
| case E820_TYPE_RESERVED: pr_cont("reserved"); break; |
| case E820_TYPE_SOFT_RESERVED: pr_cont("soft reserved"); break; |
| case E820_TYPE_ACPI: pr_cont("ACPI data"); break; |
| case E820_TYPE_NVS: pr_cont("ACPI NVS"); break; |
| case E820_TYPE_UNUSABLE: pr_cont("unusable"); break; |
| case E820_TYPE_PMEM: /* Fall through: */ |
| case E820_TYPE_PRAM: pr_cont("persistent (type %u)", type); break; |
| default: pr_cont("type %u", type); break; |
| } |
| } |
| |
| void __init e820__print_table(char *who) |
| { |
| int i; |
| |
| for (i = 0; i < e820_table->nr_entries; i++) { |
| pr_info("%s: [mem %#018Lx-%#018Lx] ", |
| who, |
| e820_table->entries[i].addr, |
| e820_table->entries[i].addr + e820_table->entries[i].size - 1); |
| |
| e820_print_type(e820_table->entries[i].type); |
| pr_cont("\n"); |
| } |
| } |
| |
| /* |
| * Sanitize an E820 map. |
| * |
| * Some E820 layouts include overlapping entries. The following |
| * replaces the original E820 map with a new one, removing overlaps, |
| * and resolving conflicting memory types in favor of highest |
| * numbered type. |
| * |
| * The input parameter 'entries' points to an array of 'struct |
| * e820_entry' which on entry has elements in the range [0, *nr_entries) |
| * valid, and which has space for up to max_nr_entries entries. |
| * On return, the resulting sanitized E820 map entries will be in |
| * overwritten in the same location, starting at 'entries'. |
| * |
| * The integer pointed to by nr_entries must be valid on entry (the |
| * current number of valid entries located at 'entries'). If the |
| * sanitizing succeeds the *nr_entries will be updated with the new |
| * number of valid entries (something no more than max_nr_entries). |
| * |
| * The return value from e820__update_table() is zero if it |
| * successfully 'sanitized' the map entries passed in, and is -1 |
| * if it did nothing, which can happen if either of (1) it was |
| * only passed one map entry, or (2) any of the input map entries |
| * were invalid (start + size < start, meaning that the size was |
| * so big the described memory range wrapped around through zero.) |
| * |
| * Visually we're performing the following |
| * (1,2,3,4 = memory types)... |
| * |
| * Sample memory map (w/overlaps): |
| * ____22__________________ |
| * ______________________4_ |
| * ____1111________________ |
| * _44_____________________ |
| * 11111111________________ |
| * ____________________33__ |
| * ___________44___________ |
| * __________33333_________ |
| * ______________22________ |
| * ___________________2222_ |
| * _________111111111______ |
| * _____________________11_ |
| * _________________4______ |
| * |
| * Sanitized equivalent (no overlap): |
| * 1_______________________ |
| * _44_____________________ |
| * ___1____________________ |
| * ____22__________________ |
| * ______11________________ |
| * _________1______________ |
| * __________3_____________ |
| * ___________44___________ |
| * _____________33_________ |
| * _______________2________ |
| * ________________1_______ |
| * _________________4______ |
| * ___________________2____ |
| * ____________________33__ |
| * ______________________4_ |
| */ |
| struct change_member { |
| /* Pointer to the original entry: */ |
| struct e820_entry *entry; |
| /* Address for this change point: */ |
| unsigned long long addr; |
| }; |
| |
| static struct change_member change_point_list[2*E820_MAX_ENTRIES] __initdata; |
| static struct change_member *change_point[2*E820_MAX_ENTRIES] __initdata; |
| static struct e820_entry *overlap_list[E820_MAX_ENTRIES] __initdata; |
| static struct e820_entry new_entries[E820_MAX_ENTRIES] __initdata; |
| |
| static int __init cpcompare(const void *a, const void *b) |
| { |
| struct change_member * const *app = a, * const *bpp = b; |
| const struct change_member *ap = *app, *bp = *bpp; |
| |
| /* |
| * Inputs are pointers to two elements of change_point[]. If their |
| * addresses are not equal, their difference dominates. If the addresses |
| * are equal, then consider one that represents the end of its region |
| * to be greater than one that does not. |
| */ |
| if (ap->addr != bp->addr) |
| return ap->addr > bp->addr ? 1 : -1; |
| |
| return (ap->addr != ap->entry->addr) - (bp->addr != bp->entry->addr); |
| } |
| |
| int __init e820__update_table(struct e820_table *table) |
| { |
| struct e820_entry *entries = table->entries; |
| u32 max_nr_entries = ARRAY_SIZE(table->entries); |
| enum e820_type current_type, last_type; |
| unsigned long long last_addr; |
| u32 new_nr_entries, overlap_entries; |
| u32 i, chg_idx, chg_nr; |
| |
| /* If there's only one memory region, don't bother: */ |
| if (table->nr_entries < 2) |
| return -1; |
| |
| BUG_ON(table->nr_entries > max_nr_entries); |
| |
| /* Bail out if we find any unreasonable addresses in the map: */ |
| for (i = 0; i < table->nr_entries; i++) { |
| if (entries[i].addr + entries[i].size < entries[i].addr) |
| return -1; |
| } |
| |
| /* Create pointers for initial change-point information (for sorting): */ |
| for (i = 0; i < 2 * table->nr_entries; i++) |
| change_point[i] = &change_point_list[i]; |
| |
| /* |
| * Record all known change-points (starting and ending addresses), |
| * omitting empty memory regions: |
| */ |
| chg_idx = 0; |
| for (i = 0; i < table->nr_entries; i++) { |
| if (entries[i].size != 0) { |
| change_point[chg_idx]->addr = entries[i].addr; |
| change_point[chg_idx++]->entry = &entries[i]; |
| change_point[chg_idx]->addr = entries[i].addr + entries[i].size; |
| change_point[chg_idx++]->entry = &entries[i]; |
| } |
| } |
| chg_nr = chg_idx; |
| |
| /* Sort change-point list by memory addresses (low -> high): */ |
| sort(change_point, chg_nr, sizeof(*change_point), cpcompare, NULL); |
| |
| /* Create a new memory map, removing overlaps: */ |
| overlap_entries = 0; /* Number of entries in the overlap table */ |
| new_nr_entries = 0; /* Index for creating new map entries */ |
| last_type = 0; /* Start with undefined memory type */ |
| last_addr = 0; /* Start with 0 as last starting address */ |
| |
| /* Loop through change-points, determining effect on the new map: */ |
| for (chg_idx = 0; chg_idx < chg_nr; chg_idx++) { |
| /* Keep track of all overlapping entries */ |
| if (change_point[chg_idx]->addr == change_point[chg_idx]->entry->addr) { |
| /* Add map entry to overlap list (> 1 entry implies an overlap) */ |
| overlap_list[overlap_entries++] = change_point[chg_idx]->entry; |
| } else { |
| /* Remove entry from list (order independent, so swap with last): */ |
| for (i = 0; i < overlap_entries; i++) { |
| if (overlap_list[i] == change_point[chg_idx]->entry) |
| overlap_list[i] = overlap_list[overlap_entries-1]; |
| } |
| overlap_entries--; |
| } |
| /* |
| * If there are overlapping entries, decide which |
| * "type" to use (larger value takes precedence -- |
| * 1=usable, 2,3,4,4+=unusable) |
| */ |
| current_type = 0; |
| for (i = 0; i < overlap_entries; i++) { |
| if (overlap_list[i]->type > current_type) |
| current_type = overlap_list[i]->type; |
| } |
| |
| /* Continue building up new map based on this information: */ |
| if (current_type != last_type || current_type == E820_TYPE_PRAM) { |
| if (last_type != 0) { |
| new_entries[new_nr_entries].size = change_point[chg_idx]->addr - last_addr; |
| /* Move forward only if the new size was non-zero: */ |
| if (new_entries[new_nr_entries].size != 0) |
| /* No more space left for new entries? */ |
| if (++new_nr_entries >= max_nr_entries) |
| break; |
| } |
| if (current_type != 0) { |
| new_entries[new_nr_entries].addr = change_point[chg_idx]->addr; |
| new_entries[new_nr_entries].type = current_type; |
| last_addr = change_point[chg_idx]->addr; |
| } |
| last_type = current_type; |
| } |
| } |
| |
| /* Copy the new entries into the original location: */ |
| memcpy(entries, new_entries, new_nr_entries*sizeof(*entries)); |
| table->nr_entries = new_nr_entries; |
| |
| return 0; |
| } |
| |
| static int __init __append_e820_table(struct boot_e820_entry *entries, u32 nr_entries) |
| { |
| struct boot_e820_entry *entry = entries; |
| |
| while (nr_entries) { |
| u64 start = entry->addr; |
| u64 size = entry->size; |
| u64 end = start + size - 1; |
| u32 type = entry->type; |
| |
| /* Ignore the entry on 64-bit overflow: */ |
| if (start > end && likely(size)) |
| return -1; |
| |
| e820__range_add(start, size, type); |
| |
| entry++; |
| nr_entries--; |
| } |
| return 0; |
| } |
| |
| /* |
| * Copy the BIOS E820 map into a safe place. |
| * |
| * Sanity-check it while we're at it.. |
| * |
| * If we're lucky and live on a modern system, the setup code |
| * will have given us a memory map that we can use to properly |
| * set up memory. If we aren't, we'll fake a memory map. |
| */ |
| static int __init append_e820_table(struct boot_e820_entry *entries, u32 nr_entries) |
| { |
| /* Only one memory region (or negative)? Ignore it */ |
| if (nr_entries < 2) |
| return -1; |
| |
| return __append_e820_table(entries, nr_entries); |
| } |
| |
| static u64 __init |
| __e820__range_update(struct e820_table *table, u64 start, u64 size, enum e820_type old_type, enum e820_type new_type) |
| { |
| u64 end; |
| unsigned int i; |
| u64 real_updated_size = 0; |
| |
| BUG_ON(old_type == new_type); |
| |
| if (size > (ULLONG_MAX - start)) |
| size = ULLONG_MAX - start; |
| |
| end = start + size; |
| printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ", start, end - 1); |
| e820_print_type(old_type); |
| pr_cont(" ==> "); |
| e820_print_type(new_type); |
| pr_cont("\n"); |
| |
| for (i = 0; i < table->nr_entries; i++) { |
| struct e820_entry *entry = &table->entries[i]; |
| u64 final_start, final_end; |
| u64 entry_end; |
| |
| if (entry->type != old_type) |
| continue; |
| |
| entry_end = entry->addr + entry->size; |
| |
| /* Completely covered by new range? */ |
| if (entry->addr >= start && entry_end <= end) { |
| entry->type = new_type; |
| real_updated_size += entry->size; |
| continue; |
| } |
| |
| /* New range is completely covered? */ |
| if (entry->addr < start && entry_end > end) { |
| __e820__range_add(table, start, size, new_type); |
| __e820__range_add(table, end, entry_end - end, entry->type); |
| entry->size = start - entry->addr; |
| real_updated_size += size; |
| continue; |
| } |
| |
| /* Partially covered: */ |
| final_start = max(start, entry->addr); |
| final_end = min(end, entry_end); |
| if (final_start >= final_end) |
| continue; |
| |
| __e820__range_add(table, final_start, final_end - final_start, new_type); |
| |
| real_updated_size += final_end - final_start; |
| |
| /* |
| * Left range could be head or tail, so need to update |
| * its size first: |
| */ |
| entry->size -= final_end - final_start; |
| if (entry->addr < final_start) |
| continue; |
| |
| entry->addr = final_end; |
| } |
| return real_updated_size; |
| } |
| |
| u64 __init e820__range_update(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type) |
| { |
| return __e820__range_update(e820_table, start, size, old_type, new_type); |
| } |
| |
| static u64 __init e820__range_update_kexec(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type) |
| { |
| return __e820__range_update(e820_table_kexec, start, size, old_type, new_type); |
| } |
| |
| /* Remove a range of memory from the E820 table: */ |
| u64 __init e820__range_remove(u64 start, u64 size, enum e820_type old_type, bool check_type) |
| { |
| int i; |
| u64 end; |
| u64 real_removed_size = 0; |
| |
| if (size > (ULLONG_MAX - start)) |
| size = ULLONG_MAX - start; |
| |
| end = start + size; |
| printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ", start, end - 1); |
| if (check_type) |
| e820_print_type(old_type); |
| pr_cont("\n"); |
| |
| for (i = 0; i < e820_table->nr_entries; i++) { |
| struct e820_entry *entry = &e820_table->entries[i]; |
| u64 final_start, final_end; |
| u64 entry_end; |
| |
| if (check_type && entry->type != old_type) |
| continue; |
| |
| entry_end = entry->addr + entry->size; |
| |
| /* Completely covered? */ |
| if (entry->addr >= start && entry_end <= end) { |
| real_removed_size += entry->size; |
| memset(entry, 0, sizeof(*entry)); |
| continue; |
| } |
| |
| /* Is the new range completely covered? */ |
| if (entry->addr < start && entry_end > end) { |
| e820__range_add(end, entry_end - end, entry->type); |
| entry->size = start - entry->addr; |
| real_removed_size += size; |
| continue; |
| } |
| |
| /* Partially covered: */ |
| final_start = max(start, entry->addr); |
| final_end = min(end, entry_end); |
| if (final_start >= final_end) |
| continue; |
| |
| real_removed_size += final_end - final_start; |
| |
| /* |
| * Left range could be head or tail, so need to update |
| * the size first: |
| */ |
| entry->size -= final_end - final_start; |
| if (entry->addr < final_start) |
| continue; |
| |
| entry->addr = final_end; |
| } |
| return real_removed_size; |
| } |
| |
| void __init e820__update_table_print(void) |
| { |
| if (e820__update_table(e820_table)) |
| return; |
| |
| pr_info("modified physical RAM map:\n"); |
| e820__print_table("modified"); |
| } |
| |
| static void __init e820__update_table_kexec(void) |
| { |
| e820__update_table(e820_table_kexec); |
| } |
| |
| #define MAX_GAP_END 0x100000000ull |
| |
| /* |
| * Search for a gap in the E820 memory space from 0 to MAX_GAP_END (4GB). |
| */ |
| static int __init e820_search_gap(unsigned long *gapstart, unsigned long *gapsize) |
| { |
| unsigned long long last = MAX_GAP_END; |
| int i = e820_table->nr_entries; |
| int found = 0; |
| |
| while (--i >= 0) { |
| unsigned long long start = e820_table->entries[i].addr; |
| unsigned long long end = start + e820_table->entries[i].size; |
| |
| /* |
| * Since "last" is at most 4GB, we know we'll |
| * fit in 32 bits if this condition is true: |
| */ |
| if (last > end) { |
| unsigned long gap = last - end; |
| |
| if (gap >= *gapsize) { |
| *gapsize = gap; |
| *gapstart = end; |
| found = 1; |
| } |
| } |
| if (start < last) |
| last = start; |
| } |
| return found; |
| } |
| |
| /* |
| * Search for the biggest gap in the low 32 bits of the E820 |
| * memory space. We pass this space to the PCI subsystem, so |
| * that it can assign MMIO resources for hotplug or |
| * unconfigured devices in. |
| * |
| * Hopefully the BIOS let enough space left. |
| */ |
| __init void e820__setup_pci_gap(void) |
| { |
| unsigned long gapstart, gapsize; |
| int found; |
| |
| gapsize = 0x400000; |
| found = e820_search_gap(&gapstart, &gapsize); |
| |
| if (!found) { |
| #ifdef CONFIG_X86_64 |
| gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024; |
| pr_err("Cannot find an available gap in the 32-bit address range\n"); |
| pr_err("PCI devices with unassigned 32-bit BARs may not work!\n"); |
| #else |
| gapstart = 0x10000000; |
| #endif |
| } |
| |
| /* |
| * e820__reserve_resources_late() protects stolen RAM already: |
| */ |
| pci_mem_start = gapstart; |
| |
| pr_info("[mem %#010lx-%#010lx] available for PCI devices\n", |
| gapstart, gapstart + gapsize - 1); |
| } |
| |
| /* |
| * Called late during init, in free_initmem(). |
| * |
| * Initial e820_table and e820_table_kexec are largish __initdata arrays. |
| * |
| * Copy them to a (usually much smaller) dynamically allocated area that is |
| * sized precisely after the number of e820 entries. |
| * |
| * This is done after we've performed all the fixes and tweaks to the tables. |
| * All functions which modify them are __init functions, which won't exist |
| * after free_initmem(). |
| */ |
| __init void e820__reallocate_tables(void) |
| { |
| struct e820_table *n; |
| int size; |
| |
| size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table->nr_entries; |
| n = kmemdup(e820_table, size, GFP_KERNEL); |
| BUG_ON(!n); |
| e820_table = n; |
| |
| size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_kexec->nr_entries; |
| n = kmemdup(e820_table_kexec, size, GFP_KERNEL); |
| BUG_ON(!n); |
| e820_table_kexec = n; |
| |
| size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries; |
| n = kmemdup(e820_table_firmware, size, GFP_KERNEL); |
| BUG_ON(!n); |
| e820_table_firmware = n; |
| } |
| |
| /* |
| * Because of the small fixed size of struct boot_params, only the first |
| * 128 E820 memory entries are passed to the kernel via boot_params.e820_table, |
| * the remaining (if any) entries are passed via the SETUP_E820_EXT node of |
| * struct setup_data, which is parsed here. |
| */ |
| void __init e820__memory_setup_extended(u64 phys_addr, u32 data_len) |
| { |
| int entries; |
| struct boot_e820_entry *extmap; |
| struct setup_data *sdata; |
| |
| sdata = early_memremap(phys_addr, data_len); |
| entries = sdata->len / sizeof(*extmap); |
| extmap = (struct boot_e820_entry *)(sdata->data); |
| |
| __append_e820_table(extmap, entries); |
| e820__update_table(e820_table); |
| |
| memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec)); |
| memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware)); |
| |
| early_memunmap(sdata, data_len); |
| pr_info("extended physical RAM map:\n"); |
| e820__print_table("extended"); |
| } |
| |
| /* |
| * Find the ranges of physical addresses that do not correspond to |
| * E820 RAM areas and register the corresponding pages as 'nosave' for |
| * hibernation (32-bit) or software suspend and suspend to RAM (64-bit). |
| * |
| * This function requires the E820 map to be sorted and without any |
| * overlapping entries. |
| */ |
| void __init e820__register_nosave_regions(unsigned long limit_pfn) |
| { |
| int i; |
| unsigned long pfn = 0; |
| |
| for (i = 0; i < e820_table->nr_entries; i++) { |
| struct e820_entry *entry = &e820_table->entries[i]; |
| |
| if (pfn < PFN_UP(entry->addr)) |
| register_nosave_region(pfn, PFN_UP(entry->addr)); |
| |
| pfn = PFN_DOWN(entry->addr + entry->size); |
| |
| if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN) |
| register_nosave_region(PFN_UP(entry->addr), pfn); |
| |
| if (pfn >= limit_pfn) |
| break; |
| } |
| } |
| |
| #ifdef CONFIG_ACPI |
| /* |
| * Register ACPI NVS memory regions, so that we can save/restore them during |
| * hibernation and the subsequent resume: |
| */ |
| static int __init e820__register_nvs_regions(void) |
| { |
| int i; |
| |
| for (i = 0; i < e820_table->nr_entries; i++) { |
| struct e820_entry *entry = &e820_table->entries[i]; |
| |
| if (entry->type == E820_TYPE_NVS) |
| acpi_nvs_register(entry->addr, entry->size); |
| } |
| |
| return 0; |
| } |
| core_initcall(e820__register_nvs_regions); |
| #endif |
| |
| /* |
| * Allocate the requested number of bytes with the requsted alignment |
| * and return (the physical address) to the caller. Also register this |
| * range in the 'kexec' E820 table as a reserved range. |
| * |
| * This allows kexec to fake a new mptable, as if it came from the real |
| * system. |
| */ |
| u64 __init e820__memblock_alloc_reserved(u64 size, u64 align) |
| { |
| u64 addr; |
| |
| addr = memblock_phys_alloc(size, align); |
| if (addr) { |
| e820__range_update_kexec(addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED); |
| pr_info("update e820_table_kexec for e820__memblock_alloc_reserved()\n"); |
| e820__update_table_kexec(); |
| } |
| |
| return addr; |
| } |
| |
| #ifdef CONFIG_X86_32 |
| # ifdef CONFIG_X86_PAE |
| # define MAX_ARCH_PFN (1ULL<<(36-PAGE_SHIFT)) |
| # else |
| # define MAX_ARCH_PFN (1ULL<<(32-PAGE_SHIFT)) |
| # endif |
| #else /* CONFIG_X86_32 */ |
| # define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT |
| #endif |
| |
| /* |
| * Find the highest page frame number we have available |
| */ |
| static unsigned long __init e820_end_pfn(unsigned long limit_pfn, enum e820_type type) |
| { |
| int i; |
| unsigned long last_pfn = 0; |
| unsigned long max_arch_pfn = MAX_ARCH_PFN; |
| |
| for (i = 0; i < e820_table->nr_entries; i++) { |
| struct e820_entry *entry = &e820_table->entries[i]; |
| unsigned long start_pfn; |
| unsigned long end_pfn; |
| |
| if (entry->type != type) |
| continue; |
| |
| start_pfn = entry->addr >> PAGE_SHIFT; |
| end_pfn = (entry->addr + entry->size) >> PAGE_SHIFT; |
| |
| if (start_pfn >= limit_pfn) |
| continue; |
| if (end_pfn > limit_pfn) { |
| last_pfn = limit_pfn; |
| break; |
| } |
| if (end_pfn > last_pfn) |
| last_pfn = end_pfn; |
| } |
| |
| if (last_pfn > max_arch_pfn) |
| last_pfn = max_arch_pfn; |
| |
| pr_info("last_pfn = %#lx max_arch_pfn = %#lx\n", |
| last_pfn, max_arch_pfn); |
| return last_pfn; |
| } |
| |
| unsigned long __init e820__end_of_ram_pfn(void) |
| { |
| return e820_end_pfn(MAX_ARCH_PFN, E820_TYPE_RAM); |
| } |
| |
| unsigned long __init e820__end_of_low_ram_pfn(void) |
| { |
| return e820_end_pfn(1UL << (32 - PAGE_SHIFT), E820_TYPE_RAM); |
| } |
| |
| static void __init early_panic(char *msg) |
| { |
| early_printk(msg); |
| panic(msg); |
| } |
| |
| static int userdef __initdata; |
| |
| /* The "mem=nopentium" boot option disables 4MB page tables on 32-bit kernels: */ |
| static int __init parse_memopt(char *p) |
| { |
| u64 mem_size; |
| |
| if (!p) |
| return -EINVAL; |
| |
| if (!strcmp(p, "nopentium")) { |
| #ifdef CONFIG_X86_32 |
| setup_clear_cpu_cap(X86_FEATURE_PSE); |
| return 0; |
| #else |
| pr_warn("mem=nopentium ignored! (only supported on x86_32)\n"); |
| return -EINVAL; |
| #endif |
| } |
| |
| userdef = 1; |
| mem_size = memparse(p, &p); |
| |
| /* Don't remove all memory when getting "mem={invalid}" parameter: */ |
| if (mem_size == 0) |
| return -EINVAL; |
| |
| e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1); |
| |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| max_mem_size = mem_size; |
| #endif |
| |
| return 0; |
| } |
| early_param("mem", parse_memopt); |
| |
| static int __init parse_memmap_one(char *p) |
| { |
| char *oldp; |
| u64 start_at, mem_size; |
| |
| if (!p) |
| return -EINVAL; |
| |
| if (!strncmp(p, "exactmap", 8)) { |
| e820_table->nr_entries = 0; |
| userdef = 1; |
| return 0; |
| } |
| |
| oldp = p; |
| mem_size = memparse(p, &p); |
| if (p == oldp) |
| return -EINVAL; |
| |
| userdef = 1; |
| if (*p == '@') { |
| start_at = memparse(p+1, &p); |
| e820__range_add(start_at, mem_size, E820_TYPE_RAM); |
| } else if (*p == '#') { |
| start_at = memparse(p+1, &p); |
| e820__range_add(start_at, mem_size, E820_TYPE_ACPI); |
| } else if (*p == '$') { |
| start_at = memparse(p+1, &p); |
| e820__range_add(start_at, mem_size, E820_TYPE_RESERVED); |
| } else if (*p == '!') { |
| start_at = memparse(p+1, &p); |
| e820__range_add(start_at, mem_size, E820_TYPE_PRAM); |
| } else if (*p == '%') { |
| enum e820_type from = 0, to = 0; |
| |
| start_at = memparse(p + 1, &p); |
| if (*p == '-') |
| from = simple_strtoull(p + 1, &p, 0); |
| if (*p == '+') |
| to = simple_strtoull(p + 1, &p, 0); |
| if (*p != '\0') |
| return -EINVAL; |
| if (from && to) |
| e820__range_update(start_at, mem_size, from, to); |
| else if (to) |
| e820__range_add(start_at, mem_size, to); |
| else if (from) |
| e820__range_remove(start_at, mem_size, from, 1); |
| else |
| e820__range_remove(start_at, mem_size, 0, 0); |
| } else { |
| e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1); |
| } |
| |
| return *p == '\0' ? 0 : -EINVAL; |
| } |
| |
| static int __init parse_memmap_opt(char *str) |
| { |
| while (str) { |
| char *k = strchr(str, ','); |
| |
| if (k) |
| *k++ = 0; |
| |
| parse_memmap_one(str); |
| str = k; |
| } |
| |
| return 0; |
| } |
| early_param("memmap", parse_memmap_opt); |
| |
| /* |
| * Reserve all entries from the bootloader's extensible data nodes list, |
| * because if present we are going to use it later on to fetch e820 |
| * entries from it: |
| */ |
| void __init e820__reserve_setup_data(void) |
| { |
| struct setup_data *data; |
| u64 pa_data; |
| |
| pa_data = boot_params.hdr.setup_data; |
| if (!pa_data) |
| return; |
| |
| while (pa_data) { |
| data = early_memremap(pa_data, sizeof(*data)); |
| e820__range_update(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN); |
| e820__range_update_kexec(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN); |
| |
| if (data->type == SETUP_INDIRECT && |
| ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT) { |
| e820__range_update(((struct setup_indirect *)data->data)->addr, |
| ((struct setup_indirect *)data->data)->len, |
| E820_TYPE_RAM, E820_TYPE_RESERVED_KERN); |
| e820__range_update_kexec(((struct setup_indirect *)data->data)->addr, |
| ((struct setup_indirect *)data->data)->len, |
| E820_TYPE_RAM, E820_TYPE_RESERVED_KERN); |
| } |
| |
| pa_data = data->next; |
| early_memunmap(data, sizeof(*data)); |
| } |
| |
| e820__update_table(e820_table); |
| e820__update_table(e820_table_kexec); |
| |
| pr_info("extended physical RAM map:\n"); |
| e820__print_table("reserve setup_data"); |
| } |
| |
| /* |
| * Called after parse_early_param(), after early parameters (such as mem=) |
| * have been processed, in which case we already have an E820 table filled in |
| * via the parameter callback function(s), but it's not sorted and printed yet: |
| */ |
| void __init e820__finish_early_params(void) |
| { |
| if (userdef) { |
| if (e820__update_table(e820_table) < 0) |
| early_panic("Invalid user supplied memory map"); |
| |
| pr_info("user-defined physical RAM map:\n"); |
| e820__print_table("user"); |
| } |
| } |
| |
| static const char *__init e820_type_to_string(struct e820_entry *entry) |
| { |
| switch (entry->type) { |
| case E820_TYPE_RESERVED_KERN: /* Fall-through: */ |
| case E820_TYPE_RAM: return "System RAM"; |
| case E820_TYPE_ACPI: return "ACPI Tables"; |
| case E820_TYPE_NVS: return "ACPI Non-volatile Storage"; |
| case E820_TYPE_UNUSABLE: return "Unusable memory"; |
| case E820_TYPE_PRAM: return "Persistent Memory (legacy)"; |
| case E820_TYPE_PMEM: return "Persistent Memory"; |
| case E820_TYPE_RESERVED: return "Reserved"; |
| case E820_TYPE_SOFT_RESERVED: return "Soft Reserved"; |
| default: return "Unknown E820 type"; |
| } |
| } |
| |
| static unsigned long __init e820_type_to_iomem_type(struct e820_entry *entry) |
| { |
| switch (entry->type) { |
| case E820_TYPE_RESERVED_KERN: /* Fall-through: */ |
| case E820_TYPE_RAM: return IORESOURCE_SYSTEM_RAM; |
| case E820_TYPE_ACPI: /* Fall-through: */ |
| case E820_TYPE_NVS: /* Fall-through: */ |
| case E820_TYPE_UNUSABLE: /* Fall-through: */ |
| case E820_TYPE_PRAM: /* Fall-through: */ |
| case E820_TYPE_PMEM: /* Fall-through: */ |
| case E820_TYPE_RESERVED: /* Fall-through: */ |
| case E820_TYPE_SOFT_RESERVED: /* Fall-through: */ |
| default: return IORESOURCE_MEM; |
| } |
| } |
| |
| static unsigned long __init e820_type_to_iores_desc(struct e820_entry *entry) |
| { |
| switch (entry->type) { |
| case E820_TYPE_ACPI: return IORES_DESC_ACPI_TABLES; |
| case E820_TYPE_NVS: return IORES_DESC_ACPI_NV_STORAGE; |
| case E820_TYPE_PMEM: return IORES_DESC_PERSISTENT_MEMORY; |
| case E820_TYPE_PRAM: return IORES_DESC_PERSISTENT_MEMORY_LEGACY; |
| case E820_TYPE_RESERVED: return IORES_DESC_RESERVED; |
| case E820_TYPE_SOFT_RESERVED: return IORES_DESC_SOFT_RESERVED; |
| case E820_TYPE_RESERVED_KERN: /* Fall-through: */ |
| case E820_TYPE_RAM: /* Fall-through: */ |
| case E820_TYPE_UNUSABLE: /* Fall-through: */ |
| default: return IORES_DESC_NONE; |
| } |
| } |
| |
| static bool __init do_mark_busy(enum e820_type type, struct resource *res) |
| { |
| /* this is the legacy bios/dos rom-shadow + mmio region */ |
| if (res->start < (1ULL<<20)) |
| return true; |
| |
| /* |
| * Treat persistent memory and other special memory ranges like |
| * device memory, i.e. reserve it for exclusive use of a driver |
| */ |
| switch (type) { |
| case E820_TYPE_RESERVED: |
| case E820_TYPE_SOFT_RESERVED: |
| case E820_TYPE_PRAM: |
| case E820_TYPE_PMEM: |
| return false; |
| case E820_TYPE_RESERVED_KERN: |
| case E820_TYPE_RAM: |
| case E820_TYPE_ACPI: |
| case E820_TYPE_NVS: |
| case E820_TYPE_UNUSABLE: |
| default: |
| return true; |
| } |
| } |
| |
| /* |
| * Mark E820 reserved areas as busy for the resource manager: |
| */ |
| |
| static struct resource __initdata *e820_res; |
| |
| void __init e820__reserve_resources(void) |
| { |
| int i; |
| struct resource *res; |
| u64 end; |
| |
| res = memblock_alloc(sizeof(*res) * e820_table->nr_entries, |
| SMP_CACHE_BYTES); |
| if (!res) |
| panic("%s: Failed to allocate %zu bytes\n", __func__, |
| sizeof(*res) * e820_table->nr_entries); |
| e820_res = res; |
| |
| for (i = 0; i < e820_table->nr_entries; i++) { |
| struct e820_entry *entry = e820_table->entries + i; |
| |
| end = entry->addr + entry->size - 1; |
| if (end != (resource_size_t)end) { |
| res++; |
| continue; |
| } |
| res->start = entry->addr; |
| res->end = end; |
| res->name = e820_type_to_string(entry); |
| res->flags = e820_type_to_iomem_type(entry); |
| res->desc = e820_type_to_iores_desc(entry); |
| |
| /* |
| * Don't register the region that could be conflicted with |
| * PCI device BAR resources and insert them later in |
| * pcibios_resource_survey(): |
| */ |
| if (do_mark_busy(entry->type, res)) { |
| res->flags |= IORESOURCE_BUSY; |
| insert_resource(&iomem_resource, res); |
| } |
| res++; |
| } |
| |
| /* Expose the bootloader-provided memory layout to the sysfs. */ |
| for (i = 0; i < e820_table_firmware->nr_entries; i++) { |
| struct e820_entry *entry = e820_table_firmware->entries + i; |
| |
| firmware_map_add_early(entry->addr, entry->addr + entry->size, e820_type_to_string(entry)); |
| } |
| } |
| |
| /* |
| * How much should we pad the end of RAM, depending on where it is? |
| */ |
| static unsigned long __init ram_alignment(resource_size_t pos) |
| { |
| unsigned long mb = pos >> 20; |
| |
| /* To 64kB in the first megabyte */ |
| if (!mb) |
| return 64*1024; |
| |
| /* To 1MB in the first 16MB */ |
| if (mb < 16) |
| return 1024*1024; |
| |
| /* To 64MB for anything above that */ |
| return 64*1024*1024; |
| } |
| |
| #define MAX_RESOURCE_SIZE ((resource_size_t)-1) |
| |
| void __init e820__reserve_resources_late(void) |
| { |
| int i; |
| struct resource *res; |
| |
| res = e820_res; |
| for (i = 0; i < e820_table->nr_entries; i++) { |
| if (!res->parent && res->end) |
| insert_resource_expand_to_fit(&iomem_resource, res); |
| res++; |
| } |
| |
| /* |
| * Try to bump up RAM regions to reasonable boundaries, to |
| * avoid stolen RAM: |
| */ |
| for (i = 0; i < e820_table->nr_entries; i++) { |
| struct e820_entry *entry = &e820_table->entries[i]; |
| u64 start, end; |
| |
| if (entry->type != E820_TYPE_RAM) |
| continue; |
| |
| start = entry->addr + entry->size; |
| end = round_up(start, ram_alignment(start)) - 1; |
| if (end > MAX_RESOURCE_SIZE) |
| end = MAX_RESOURCE_SIZE; |
| if (start >= end) |
| continue; |
| |
| printk(KERN_DEBUG "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n", start, end); |
| reserve_region_with_split(&iomem_resource, start, end, "RAM buffer"); |
| } |
| } |
| |
| /* |
| * Pass the firmware (bootloader) E820 map to the kernel and process it: |
| */ |
| char *__init e820__memory_setup_default(void) |
| { |
| char *who = "BIOS-e820"; |
| |
| /* |
| * Try to copy the BIOS-supplied E820-map. |
| * |
| * Otherwise fake a memory map; one section from 0k->640k, |
| * the next section from 1mb->appropriate_mem_k |
| */ |
| if (append_e820_table(boot_params.e820_table, boot_params.e820_entries) < 0) { |
| u64 mem_size; |
| |
| /* Compare results from other methods and take the one that gives more RAM: */ |
| if (boot_params.alt_mem_k < boot_params.screen_info.ext_mem_k) { |
| mem_size = boot_params.screen_info.ext_mem_k; |
| who = "BIOS-88"; |
| } else { |
| mem_size = boot_params.alt_mem_k; |
| who = "BIOS-e801"; |
| } |
| |
| e820_table->nr_entries = 0; |
| e820__range_add(0, LOWMEMSIZE(), E820_TYPE_RAM); |
| e820__range_add(HIGH_MEMORY, mem_size << 10, E820_TYPE_RAM); |
| } |
| |
| /* We just appended a lot of ranges, sanitize the table: */ |
| e820__update_table(e820_table); |
| |
| return who; |
| } |
| |
| /* |
| * Calls e820__memory_setup_default() in essence to pick up the firmware/bootloader |
| * E820 map - with an optional platform quirk available for virtual platforms |
| * to override this method of boot environment processing: |
| */ |
| void __init e820__memory_setup(void) |
| { |
| char *who; |
| |
| /* This is a firmware interface ABI - make sure we don't break it: */ |
| BUILD_BUG_ON(sizeof(struct boot_e820_entry) != 20); |
| |
| who = x86_init.resources.memory_setup(); |
| |
| memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec)); |
| memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware)); |
| |
| pr_info("BIOS-provided physical RAM map:\n"); |
| e820__print_table(who); |
| } |
| |
| void __init e820__memblock_setup(void) |
| { |
| int i; |
| u64 end; |
| |
| /* |
| * The bootstrap memblock region count maximum is 128 entries |
| * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries |
| * than that - so allow memblock resizing. |
| * |
| * This is safe, because this call happens pretty late during x86 setup, |
| * so we know about reserved memory regions already. (This is important |
| * so that memblock resizing does no stomp over reserved areas.) |
| */ |
| memblock_allow_resize(); |
| |
| for (i = 0; i < e820_table->nr_entries; i++) { |
| struct e820_entry *entry = &e820_table->entries[i]; |
| |
| end = entry->addr + entry->size; |
| if (end != (resource_size_t)end) |
| continue; |
| |
| if (entry->type == E820_TYPE_SOFT_RESERVED) |
| memblock_reserve(entry->addr, entry->size); |
| |
| if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN) |
| continue; |
| |
| memblock_add(entry->addr, entry->size); |
| } |
| |
| /* Throw away partial pages: */ |
| memblock_trim_memory(PAGE_SIZE); |
| |
| memblock_dump_all(); |
| } |