| /* |
| * Copyright 2015 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * |
| */ |
| |
| #include "iceland_smc.h" |
| #include "smu7_dyn_defaults.h" |
| |
| #include "smu7_hwmgr.h" |
| #include "hardwaremanager.h" |
| #include "ppatomctrl.h" |
| #include "pp_debug.h" |
| #include "cgs_common.h" |
| #include "atombios.h" |
| #include "pppcielanes.h" |
| #include "pp_endian.h" |
| #include "smu7_ppsmc.h" |
| |
| #include "smu71_discrete.h" |
| |
| #include "smu/smu_7_1_1_d.h" |
| #include "smu/smu_7_1_1_sh_mask.h" |
| |
| #include "gmc/gmc_8_1_d.h" |
| #include "gmc/gmc_8_1_sh_mask.h" |
| |
| #include "bif/bif_5_0_d.h" |
| #include "bif/bif_5_0_sh_mask.h" |
| |
| #include "dce/dce_10_0_d.h" |
| #include "dce/dce_10_0_sh_mask.h" |
| #include "processpptables.h" |
| |
| #include "iceland_smumgr.h" |
| |
| #define VOLTAGE_SCALE 4 |
| #define POWERTUNE_DEFAULT_SET_MAX 1 |
| #define VOLTAGE_VID_OFFSET_SCALE1 625 |
| #define VOLTAGE_VID_OFFSET_SCALE2 100 |
| #define MC_CG_ARB_FREQ_F1 0x0b |
| #define VDDC_VDDCI_DELTA 200 |
| |
| #define DEVICE_ID_VI_ICELAND_M_6900 0x6900 |
| #define DEVICE_ID_VI_ICELAND_M_6901 0x6901 |
| #define DEVICE_ID_VI_ICELAND_M_6902 0x6902 |
| #define DEVICE_ID_VI_ICELAND_M_6903 0x6903 |
| |
| static const struct iceland_pt_defaults defaults_iceland = { |
| /* |
| * sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc, |
| * TDC_MAWt, TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT |
| */ |
| 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000, |
| { 0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61 }, |
| { 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 } |
| }; |
| |
| /* 35W - XT, XTL */ |
| static const struct iceland_pt_defaults defaults_icelandxt = { |
| /* |
| * sviLoadLIneEn, SviLoadLineVddC, |
| * TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt, |
| * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, |
| * BAPM_TEMP_GRADIENT |
| */ |
| 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0x0, |
| { 0xA7, 0x0, 0x0, 0xB5, 0x0, 0x0, 0x9F, 0x0, 0x0, 0xD6, 0x0, 0x0, 0xD7, 0x0, 0x0}, |
| { 0x1EA, 0x0, 0x0, 0x224, 0x0, 0x0, 0x25E, 0x0, 0x0, 0x28E, 0x0, 0x0, 0x2AB, 0x0, 0x0} |
| }; |
| |
| /* 25W - PRO, LE */ |
| static const struct iceland_pt_defaults defaults_icelandpro = { |
| /* |
| * sviLoadLIneEn, SviLoadLineVddC, |
| * TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt, |
| * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, |
| * BAPM_TEMP_GRADIENT |
| */ |
| 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0x0, |
| { 0xB7, 0x0, 0x0, 0xC3, 0x0, 0x0, 0xB5, 0x0, 0x0, 0xEA, 0x0, 0x0, 0xE6, 0x0, 0x0}, |
| { 0x1EA, 0x0, 0x0, 0x224, 0x0, 0x0, 0x25E, 0x0, 0x0, 0x28E, 0x0, 0x0, 0x2AB, 0x0, 0x0} |
| }; |
| |
| static void iceland_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr) |
| { |
| struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smumgr->backend); |
| struct cgs_system_info sys_info = {0}; |
| uint32_t dev_id; |
| |
| sys_info.size = sizeof(struct cgs_system_info); |
| sys_info.info_id = CGS_SYSTEM_INFO_PCIE_DEV; |
| cgs_query_system_info(hwmgr->device, &sys_info); |
| dev_id = (uint32_t)sys_info.value; |
| |
| switch (dev_id) { |
| case DEVICE_ID_VI_ICELAND_M_6900: |
| case DEVICE_ID_VI_ICELAND_M_6903: |
| smu_data->power_tune_defaults = &defaults_icelandxt; |
| break; |
| |
| case DEVICE_ID_VI_ICELAND_M_6901: |
| case DEVICE_ID_VI_ICELAND_M_6902: |
| smu_data->power_tune_defaults = &defaults_icelandpro; |
| break; |
| default: |
| smu_data->power_tune_defaults = &defaults_iceland; |
| pr_warning("Unknown V.I. Device ID.\n"); |
| break; |
| } |
| return; |
| } |
| |
| static int iceland_populate_svi_load_line(struct pp_hwmgr *hwmgr) |
| { |
| struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smumgr->backend); |
| const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults; |
| |
| smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en; |
| smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddc; |
| smu_data->power_tune_table.SviLoadLineTrimVddC = 3; |
| smu_data->power_tune_table.SviLoadLineOffsetVddC = 0; |
| |
| return 0; |
| } |
| |
| static int iceland_populate_tdc_limit(struct pp_hwmgr *hwmgr) |
| { |
| uint16_t tdc_limit; |
| struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smumgr->backend); |
| const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults; |
| |
| tdc_limit = (uint16_t)(hwmgr->dyn_state.cac_dtp_table->usTDC * 256); |
| smu_data->power_tune_table.TDC_VDDC_PkgLimit = |
| CONVERT_FROM_HOST_TO_SMC_US(tdc_limit); |
| smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc = |
| defaults->tdc_vddc_throttle_release_limit_perc; |
| smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt; |
| |
| return 0; |
| } |
| |
| static int iceland_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset) |
| { |
| struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smumgr->backend); |
| const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults; |
| uint32_t temp; |
| |
| if (smu7_read_smc_sram_dword(hwmgr->smumgr, |
| fuse_table_offset + |
| offsetof(SMU71_Discrete_PmFuses, TdcWaterfallCtl), |
| (uint32_t *)&temp, SMC_RAM_END)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!", |
| return -EINVAL); |
| else |
| smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl; |
| |
| return 0; |
| } |
| |
| static int iceland_populate_temperature_scaler(struct pp_hwmgr *hwmgr) |
| { |
| return 0; |
| } |
| |
| static int iceland_populate_gnb_lpml(struct pp_hwmgr *hwmgr) |
| { |
| int i; |
| struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smumgr->backend); |
| |
| /* Currently not used. Set all to zero. */ |
| for (i = 0; i < 8; i++) |
| smu_data->power_tune_table.GnbLPML[i] = 0; |
| |
| return 0; |
| } |
| |
| static int iceland_min_max_vgnb_lpml_id_from_bapm_vddc(struct pp_hwmgr *hwmgr) |
| { |
| return 0; |
| } |
| |
| static int iceland_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr) |
| { |
| struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smumgr->backend); |
| uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd; |
| uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd; |
| struct phm_cac_tdp_table *cac_table = hwmgr->dyn_state.cac_dtp_table; |
| |
| HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256); |
| LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256); |
| |
| smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd = |
| CONVERT_FROM_HOST_TO_SMC_US(HiSidd); |
| smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd = |
| CONVERT_FROM_HOST_TO_SMC_US(LoSidd); |
| |
| return 0; |
| } |
| |
| static int iceland_populate_bapm_vddc_vid_sidd(struct pp_hwmgr *hwmgr) |
| { |
| int i; |
| struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smumgr->backend); |
| uint8_t *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd; |
| uint8_t *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd; |
| |
| PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.cac_leakage_table, |
| "The CAC Leakage table does not exist!", return -EINVAL); |
| PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count <= 8, |
| "There should never be more than 8 entries for BapmVddcVid!!!", return -EINVAL); |
| PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count == hwmgr->dyn_state.vddc_dependency_on_sclk->count, |
| "CACLeakageTable->count and VddcDependencyOnSCLk->count not equal", return -EINVAL); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EVV)) { |
| for (i = 0; (uint32_t) i < hwmgr->dyn_state.cac_leakage_table->count; i++) { |
| lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc1); |
| hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc2); |
| } |
| } else { |
| PP_ASSERT_WITH_CODE(false, "Iceland should always support EVV", return -EINVAL); |
| } |
| |
| return 0; |
| } |
| |
| static int iceland_populate_vddc_vid(struct pp_hwmgr *hwmgr) |
| { |
| int i; |
| struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smumgr->backend); |
| uint8_t *vid = smu_data->power_tune_table.VddCVid; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 8, |
| "There should never be more than 8 entries for VddcVid!!!", |
| return -EINVAL); |
| |
| for (i = 0; i < (int)data->vddc_voltage_table.count; i++) { |
| vid[i] = convert_to_vid(data->vddc_voltage_table.entries[i].value); |
| } |
| |
| return 0; |
| } |
| |
| |
| |
| static int iceland_populate_pm_fuses(struct pp_hwmgr *hwmgr) |
| { |
| struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smumgr->backend); |
| uint32_t pm_fuse_table_offset; |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_PowerContainment)) { |
| if (smu7_read_smc_sram_dword(hwmgr->smumgr, |
| SMU71_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU71_Firmware_Header, PmFuseTable), |
| &pm_fuse_table_offset, SMC_RAM_END)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to get pm_fuse_table_offset Failed!", |
| return -EINVAL); |
| |
| /* DW0 - DW3 */ |
| if (iceland_populate_bapm_vddc_vid_sidd(hwmgr)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to populate bapm vddc vid Failed!", |
| return -EINVAL); |
| |
| /* DW4 - DW5 */ |
| if (iceland_populate_vddc_vid(hwmgr)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to populate vddc vid Failed!", |
| return -EINVAL); |
| |
| /* DW6 */ |
| if (iceland_populate_svi_load_line(hwmgr)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to populate SviLoadLine Failed!", |
| return -EINVAL); |
| /* DW7 */ |
| if (iceland_populate_tdc_limit(hwmgr)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to populate TDCLimit Failed!", return -EINVAL); |
| /* DW8 */ |
| if (iceland_populate_dw8(hwmgr, pm_fuse_table_offset)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to populate TdcWaterfallCtl, " |
| "LPMLTemperature Min and Max Failed!", |
| return -EINVAL); |
| |
| /* DW9-DW12 */ |
| if (0 != iceland_populate_temperature_scaler(hwmgr)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to populate LPMLTemperatureScaler Failed!", |
| return -EINVAL); |
| |
| /* DW13-DW16 */ |
| if (iceland_populate_gnb_lpml(hwmgr)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to populate GnbLPML Failed!", |
| return -EINVAL); |
| |
| /* DW17 */ |
| if (iceland_min_max_vgnb_lpml_id_from_bapm_vddc(hwmgr)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to populate GnbLPML Min and Max Vid Failed!", |
| return -EINVAL); |
| |
| /* DW18 */ |
| if (iceland_populate_bapm_vddc_base_leakage_sidd(hwmgr)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to populate BapmVddCBaseLeakage Hi and Lo Sidd Failed!", |
| return -EINVAL); |
| |
| if (smu7_copy_bytes_to_smc(hwmgr->smumgr, pm_fuse_table_offset, |
| (uint8_t *)&smu_data->power_tune_table, |
| sizeof(struct SMU71_Discrete_PmFuses), SMC_RAM_END)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to download PmFuseTable Failed!", |
| return -EINVAL); |
| } |
| return 0; |
| } |
| |
| static int iceland_get_dependecy_volt_by_clk(struct pp_hwmgr *hwmgr, |
| struct phm_clock_voltage_dependency_table *allowed_clock_voltage_table, |
| uint32_t clock, uint32_t *vol) |
| { |
| uint32_t i = 0; |
| |
| /* clock - voltage dependency table is empty table */ |
| if (allowed_clock_voltage_table->count == 0) |
| return -EINVAL; |
| |
| for (i = 0; i < allowed_clock_voltage_table->count; i++) { |
| /* find first sclk bigger than request */ |
| if (allowed_clock_voltage_table->entries[i].clk >= clock) { |
| *vol = allowed_clock_voltage_table->entries[i].v; |
| return 0; |
| } |
| } |
| |
| /* sclk is bigger than max sclk in the dependence table */ |
| *vol = allowed_clock_voltage_table->entries[i - 1].v; |
| |
| return 0; |
| } |
| |
| static int iceland_get_std_voltage_value_sidd(struct pp_hwmgr *hwmgr, |
| pp_atomctrl_voltage_table_entry *tab, uint16_t *hi, |
| uint16_t *lo) |
| { |
| uint16_t v_index; |
| bool vol_found = false; |
| *hi = tab->value * VOLTAGE_SCALE; |
| *lo = tab->value * VOLTAGE_SCALE; |
| |
| /* SCLK/VDDC Dependency Table has to exist. */ |
| PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.vddc_dependency_on_sclk, |
| "The SCLK/VDDC Dependency Table does not exist.\n", |
| return -EINVAL); |
| |
| if (NULL == hwmgr->dyn_state.cac_leakage_table) { |
| pr_warning("CAC Leakage Table does not exist, using vddc.\n"); |
| return 0; |
| } |
| |
| /* |
| * Since voltage in the sclk/vddc dependency table is not |
| * necessarily in ascending order because of ELB voltage |
| * patching, loop through entire list to find exact voltage. |
| */ |
| for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) { |
| if (tab->value == hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) { |
| vol_found = true; |
| if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) { |
| *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE; |
| *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage * VOLTAGE_SCALE); |
| } else { |
| pr_warning("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index, using maximum index from CAC table.\n"); |
| *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE; |
| *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE); |
| } |
| break; |
| } |
| } |
| |
| /* |
| * If voltage is not found in the first pass, loop again to |
| * find the best match, equal or higher value. |
| */ |
| if (!vol_found) { |
| for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) { |
| if (tab->value <= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) { |
| vol_found = true; |
| if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) { |
| *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE; |
| *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage) * VOLTAGE_SCALE; |
| } else { |
| pr_warning("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index in second look up, using maximum index from CAC table."); |
| *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE; |
| *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE); |
| } |
| break; |
| } |
| } |
| |
| if (!vol_found) |
| pr_warning("Unable to get std_vddc from SCLK/VDDC Dependency Table, using vddc.\n"); |
| } |
| |
| return 0; |
| } |
| |
| static int iceland_populate_smc_voltage_table(struct pp_hwmgr *hwmgr, |
| pp_atomctrl_voltage_table_entry *tab, |
| SMU71_Discrete_VoltageLevel *smc_voltage_tab) |
| { |
| int result; |
| |
| result = iceland_get_std_voltage_value_sidd(hwmgr, tab, |
| &smc_voltage_tab->StdVoltageHiSidd, |
| &smc_voltage_tab->StdVoltageLoSidd); |
| if (0 != result) { |
| smc_voltage_tab->StdVoltageHiSidd = tab->value * VOLTAGE_SCALE; |
| smc_voltage_tab->StdVoltageLoSidd = tab->value * VOLTAGE_SCALE; |
| } |
| |
| smc_voltage_tab->Voltage = PP_HOST_TO_SMC_US(tab->value * VOLTAGE_SCALE); |
| CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd); |
| CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd); |
| |
| return 0; |
| } |
| |
| static int iceland_populate_smc_vddc_table(struct pp_hwmgr *hwmgr, |
| SMU71_Discrete_DpmTable *table) |
| { |
| unsigned int count; |
| int result; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| table->VddcLevelCount = data->vddc_voltage_table.count; |
| for (count = 0; count < table->VddcLevelCount; count++) { |
| result = iceland_populate_smc_voltage_table(hwmgr, |
| &(data->vddc_voltage_table.entries[count]), |
| &(table->VddcLevel[count])); |
| PP_ASSERT_WITH_CODE(0 == result, "do not populate SMC VDDC voltage table", return -EINVAL); |
| |
| /* GPIO voltage control */ |
| if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control) |
| table->VddcLevel[count].Smio |= data->vddc_voltage_table.entries[count].smio_low; |
| else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) |
| table->VddcLevel[count].Smio = 0; |
| } |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount); |
| |
| return 0; |
| } |
| |
| static int iceland_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr, |
| SMU71_Discrete_DpmTable *table) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| uint32_t count; |
| int result; |
| |
| table->VddciLevelCount = data->vddci_voltage_table.count; |
| |
| for (count = 0; count < table->VddciLevelCount; count++) { |
| result = iceland_populate_smc_voltage_table(hwmgr, |
| &(data->vddci_voltage_table.entries[count]), |
| &(table->VddciLevel[count])); |
| PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC VDDCI voltage table", return -EINVAL); |
| if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) |
| table->VddciLevel[count].Smio |= data->vddci_voltage_table.entries[count].smio_low; |
| else |
| table->VddciLevel[count].Smio |= 0; |
| } |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount); |
| |
| return 0; |
| } |
| |
| static int iceland_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr, |
| SMU71_Discrete_DpmTable *table) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| uint32_t count; |
| int result; |
| |
| table->MvddLevelCount = data->mvdd_voltage_table.count; |
| |
| for (count = 0; count < table->VddciLevelCount; count++) { |
| result = iceland_populate_smc_voltage_table(hwmgr, |
| &(data->mvdd_voltage_table.entries[count]), |
| &table->MvddLevel[count]); |
| PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC mvdd voltage table", return -EINVAL); |
| if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) |
| table->MvddLevel[count].Smio |= data->mvdd_voltage_table.entries[count].smio_low; |
| else |
| table->MvddLevel[count].Smio |= 0; |
| } |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount); |
| |
| return 0; |
| } |
| |
| |
| static int iceland_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr, |
| SMU71_Discrete_DpmTable *table) |
| { |
| int result; |
| |
| result = iceland_populate_smc_vddc_table(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "can not populate VDDC voltage table to SMC", return -EINVAL); |
| |
| result = iceland_populate_smc_vdd_ci_table(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "can not populate VDDCI voltage table to SMC", return -EINVAL); |
| |
| result = iceland_populate_smc_mvdd_table(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "can not populate MVDD voltage table to SMC", return -EINVAL); |
| |
| return 0; |
| } |
| |
| static int iceland_populate_ulv_level(struct pp_hwmgr *hwmgr, |
| struct SMU71_Discrete_Ulv *state) |
| { |
| uint32_t voltage_response_time, ulv_voltage; |
| int result; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| state->CcPwrDynRm = 0; |
| state->CcPwrDynRm1 = 0; |
| |
| result = pp_tables_get_response_times(hwmgr, &voltage_response_time, &ulv_voltage); |
| PP_ASSERT_WITH_CODE((0 == result), "can not get ULV voltage value", return result;); |
| |
| if (ulv_voltage == 0) { |
| data->ulv_supported = false; |
| return 0; |
| } |
| |
| if (data->voltage_control != SMU7_VOLTAGE_CONTROL_BY_SVID2) { |
| /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */ |
| if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v) |
| state->VddcOffset = 0; |
| else |
| /* used in SMIO Mode. not implemented for now. this is backup only for CI. */ |
| state->VddcOffset = (uint16_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage); |
| } else { |
| /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */ |
| if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v) |
| state->VddcOffsetVid = 0; |
| else /* used in SVI2 Mode */ |
| state->VddcOffsetVid = (uint8_t)( |
| (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage) |
| * VOLTAGE_VID_OFFSET_SCALE2 |
| / VOLTAGE_VID_OFFSET_SCALE1); |
| } |
| state->VddcPhase = 1; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm); |
| CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1); |
| CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset); |
| |
| return 0; |
| } |
| |
| static int iceland_populate_ulv_state(struct pp_hwmgr *hwmgr, |
| SMU71_Discrete_Ulv *ulv_level) |
| { |
| return iceland_populate_ulv_level(hwmgr, ulv_level); |
| } |
| |
| static int iceland_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU71_Discrete_DpmTable *table) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct smu7_dpm_table *dpm_table = &data->dpm_table; |
| struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smumgr->backend); |
| uint32_t i; |
| |
| /* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */ |
| for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) { |
| table->LinkLevel[i].PcieGenSpeed = |
| (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value; |
| table->LinkLevel[i].PcieLaneCount = |
| (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1); |
| table->LinkLevel[i].EnabledForActivity = |
| 1; |
| table->LinkLevel[i].SPC = |
| (uint8_t)(data->pcie_spc_cap & 0xff); |
| table->LinkLevel[i].DownThreshold = |
| PP_HOST_TO_SMC_UL(5); |
| table->LinkLevel[i].UpThreshold = |
| PP_HOST_TO_SMC_UL(30); |
| } |
| |
| smu_data->smc_state_table.LinkLevelCount = |
| (uint8_t)dpm_table->pcie_speed_table.count; |
| data->dpm_level_enable_mask.pcie_dpm_enable_mask = |
| phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table); |
| |
| return 0; |
| } |
| |
| /** |
| * Calculates the SCLK dividers using the provided engine clock |
| * |
| * @param hwmgr the address of the hardware manager |
| * @param engine_clock the engine clock to use to populate the structure |
| * @param sclk the SMC SCLK structure to be populated |
| */ |
| static int iceland_calculate_sclk_params(struct pp_hwmgr *hwmgr, |
| uint32_t engine_clock, SMU71_Discrete_GraphicsLevel *sclk) |
| { |
| const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| pp_atomctrl_clock_dividers_vi dividers; |
| uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; |
| uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; |
| uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; |
| uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; |
| uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; |
| uint32_t reference_clock; |
| uint32_t reference_divider; |
| uint32_t fbdiv; |
| int result; |
| |
| /* get the engine clock dividers for this clock value*/ |
| result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock, ÷rs); |
| |
| PP_ASSERT_WITH_CODE(result == 0, |
| "Error retrieving Engine Clock dividers from VBIOS.", return result); |
| |
| /* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/ |
| reference_clock = atomctrl_get_reference_clock(hwmgr); |
| |
| reference_divider = 1 + dividers.uc_pll_ref_div; |
| |
| /* low 14 bits is fraction and high 12 bits is divider*/ |
| fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF; |
| |
| /* SPLL_FUNC_CNTL setup*/ |
| spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, |
| CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div); |
| spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, |
| CG_SPLL_FUNC_CNTL, SPLL_PDIV_A, dividers.uc_pll_post_div); |
| |
| /* SPLL_FUNC_CNTL_3 setup*/ |
| spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, |
| CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv); |
| |
| /* set to use fractional accumulation*/ |
| spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, |
| CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_EngineSpreadSpectrumSupport)) { |
| pp_atomctrl_internal_ss_info ss_info; |
| |
| uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div; |
| if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) { |
| /* |
| * ss_info.speed_spectrum_percentage -- in unit of 0.01% |
| * ss_info.speed_spectrum_rate -- in unit of khz |
| */ |
| /* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */ |
| uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate); |
| |
| /* clkv = 2 * D * fbdiv / NS */ |
| uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000); |
| |
| cg_spll_spread_spectrum = |
| PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS); |
| cg_spll_spread_spectrum = |
| PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1); |
| cg_spll_spread_spectrum_2 = |
| PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV); |
| } |
| } |
| |
| sclk->SclkFrequency = engine_clock; |
| sclk->CgSpllFuncCntl3 = spll_func_cntl_3; |
| sclk->CgSpllFuncCntl4 = spll_func_cntl_4; |
| sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum; |
| sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2; |
| sclk->SclkDid = (uint8_t)dividers.pll_post_divider; |
| |
| return 0; |
| } |
| |
| static int iceland_populate_phase_value_based_on_sclk(struct pp_hwmgr *hwmgr, |
| const struct phm_phase_shedding_limits_table *pl, |
| uint32_t sclk, uint32_t *p_shed) |
| { |
| unsigned int i; |
| |
| /* use the minimum phase shedding */ |
| *p_shed = 1; |
| |
| for (i = 0; i < pl->count; i++) { |
| if (sclk < pl->entries[i].Sclk) { |
| *p_shed = i; |
| break; |
| } |
| } |
| return 0; |
| } |
| |
| /** |
| * Populates single SMC SCLK structure using the provided engine clock |
| * |
| * @param hwmgr the address of the hardware manager |
| * @param engine_clock the engine clock to use to populate the structure |
| * @param sclk the SMC SCLK structure to be populated |
| */ |
| static int iceland_populate_single_graphic_level(struct pp_hwmgr *hwmgr, |
| uint32_t engine_clock, |
| uint16_t sclk_activity_level_threshold, |
| SMU71_Discrete_GraphicsLevel *graphic_level) |
| { |
| int result; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| result = iceland_calculate_sclk_params(hwmgr, engine_clock, graphic_level); |
| |
| /* populate graphics levels*/ |
| result = iceland_get_dependecy_volt_by_clk(hwmgr, |
| hwmgr->dyn_state.vddc_dependency_on_sclk, engine_clock, |
| &graphic_level->MinVddc); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "can not find VDDC voltage value for VDDC \ |
| engine clock dependency table", return result); |
| |
| /* SCLK frequency in units of 10KHz*/ |
| graphic_level->SclkFrequency = engine_clock; |
| graphic_level->MinVddcPhases = 1; |
| |
| if (data->vddc_phase_shed_control) |
| iceland_populate_phase_value_based_on_sclk(hwmgr, |
| hwmgr->dyn_state.vddc_phase_shed_limits_table, |
| engine_clock, |
| &graphic_level->MinVddcPhases); |
| |
| /* Indicates maximum activity level for this performance level. 50% for now*/ |
| graphic_level->ActivityLevel = sclk_activity_level_threshold; |
| |
| graphic_level->CcPwrDynRm = 0; |
| graphic_level->CcPwrDynRm1 = 0; |
| /* this level can be used if activity is high enough.*/ |
| graphic_level->EnabledForActivity = 0; |
| /* this level can be used for throttling.*/ |
| graphic_level->EnabledForThrottle = 1; |
| graphic_level->UpHyst = 0; |
| graphic_level->DownHyst = 100; |
| graphic_level->VoltageDownHyst = 0; |
| graphic_level->PowerThrottle = 0; |
| |
| data->display_timing.min_clock_in_sr = |
| hwmgr->display_config.min_core_set_clock_in_sr; |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_SclkDeepSleep)) |
| graphic_level->DeepSleepDivId = |
| smu7_get_sleep_divider_id_from_clock(engine_clock, |
| data->display_timing.min_clock_in_sr); |
| |
| /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/ |
| graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; |
| |
| if (0 == result) { |
| graphic_level->MinVddc = PP_HOST_TO_SMC_UL(graphic_level->MinVddc * VOLTAGE_SCALE); |
| CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases); |
| CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency); |
| CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel); |
| CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3); |
| CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4); |
| CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum); |
| CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2); |
| CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm); |
| CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1); |
| } |
| |
| return result; |
| } |
| |
| /** |
| * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states |
| * |
| * @param hwmgr the address of the hardware manager |
| */ |
| int iceland_populate_all_graphic_levels(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smumgr->backend); |
| struct smu7_dpm_table *dpm_table = &data->dpm_table; |
| uint32_t level_array_adress = smu_data->smu7_data.dpm_table_start + |
| offsetof(SMU71_Discrete_DpmTable, GraphicsLevel); |
| |
| uint32_t level_array_size = sizeof(SMU71_Discrete_GraphicsLevel) * |
| SMU71_MAX_LEVELS_GRAPHICS; |
| |
| SMU71_Discrete_GraphicsLevel *levels = smu_data->smc_state_table.GraphicsLevel; |
| |
| uint32_t i; |
| uint8_t highest_pcie_level_enabled = 0; |
| uint8_t lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0; |
| uint8_t count = 0; |
| int result = 0; |
| |
| memset(levels, 0x00, level_array_size); |
| |
| for (i = 0; i < dpm_table->sclk_table.count; i++) { |
| result = iceland_populate_single_graphic_level(hwmgr, |
| dpm_table->sclk_table.dpm_levels[i].value, |
| (uint16_t)smu_data->activity_target[i], |
| &(smu_data->smc_state_table.GraphicsLevel[i])); |
| if (result != 0) |
| return result; |
| |
| /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */ |
| if (i > 1) |
| smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0; |
| } |
| |
| /* Only enable level 0 for now. */ |
| smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1; |
| |
| /* set highest level watermark to high */ |
| if (dpm_table->sclk_table.count > 1) |
| smu_data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark = |
| PPSMC_DISPLAY_WATERMARK_HIGH; |
| |
| smu_data->smc_state_table.GraphicsDpmLevelCount = |
| (uint8_t)dpm_table->sclk_table.count; |
| data->dpm_level_enable_mask.sclk_dpm_enable_mask = |
| phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table); |
| |
| while ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
| (1 << (highest_pcie_level_enabled + 1))) != 0) { |
| highest_pcie_level_enabled++; |
| } |
| |
| while ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
| (1 << lowest_pcie_level_enabled)) == 0) { |
| lowest_pcie_level_enabled++; |
| } |
| |
| while ((count < highest_pcie_level_enabled) && |
| ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
| (1 << (lowest_pcie_level_enabled + 1 + count))) == 0)) { |
| count++; |
| } |
| |
| mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ? |
| (lowest_pcie_level_enabled+1+count) : highest_pcie_level_enabled; |
| |
| |
| /* set pcieDpmLevel to highest_pcie_level_enabled*/ |
| for (i = 2; i < dpm_table->sclk_table.count; i++) { |
| smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled; |
| } |
| |
| /* set pcieDpmLevel to lowest_pcie_level_enabled*/ |
| smu_data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled; |
| |
| /* set pcieDpmLevel to mid_pcie_level_enabled*/ |
| smu_data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled; |
| |
| /* level count will send to smc once at init smc table and never change*/ |
| result = smu7_copy_bytes_to_smc(hwmgr->smumgr, level_array_adress, |
| (uint8_t *)levels, (uint32_t)level_array_size, |
| SMC_RAM_END); |
| |
| return result; |
| } |
| |
| /** |
| * Populates the SMC MCLK structure using the provided memory clock |
| * |
| * @param hwmgr the address of the hardware manager |
| * @param memory_clock the memory clock to use to populate the structure |
| * @param sclk the SMC SCLK structure to be populated |
| */ |
| static int iceland_calculate_mclk_params( |
| struct pp_hwmgr *hwmgr, |
| uint32_t memory_clock, |
| SMU71_Discrete_MemoryLevel *mclk, |
| bool strobe_mode, |
| bool dllStateOn |
| ) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| uint32_t dll_cntl = data->clock_registers.vDLL_CNTL; |
| uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL; |
| uint32_t mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL; |
| uint32_t mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL; |
| uint32_t mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL; |
| uint32_t mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1; |
| uint32_t mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2; |
| uint32_t mpll_ss1 = data->clock_registers.vMPLL_SS1; |
| uint32_t mpll_ss2 = data->clock_registers.vMPLL_SS2; |
| |
| pp_atomctrl_memory_clock_param mpll_param; |
| int result; |
| |
| result = atomctrl_get_memory_pll_dividers_si(hwmgr, |
| memory_clock, &mpll_param, strobe_mode); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Error retrieving Memory Clock Parameters from VBIOS.", return result); |
| |
| /* MPLL_FUNC_CNTL setup*/ |
| mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl); |
| |
| /* MPLL_FUNC_CNTL_1 setup*/ |
| mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, |
| MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf); |
| mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, |
| MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac); |
| mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, |
| MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode); |
| |
| /* MPLL_AD_FUNC_CNTL setup*/ |
| mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl, |
| MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider); |
| |
| if (data->is_memory_gddr5) { |
| /* MPLL_DQ_FUNC_CNTL setup*/ |
| mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl, |
| MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel); |
| mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl, |
| MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider); |
| } |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_MemorySpreadSpectrumSupport)) { |
| /* |
| ************************************ |
| Fref = Reference Frequency |
| NF = Feedback divider ratio |
| NR = Reference divider ratio |
| Fnom = Nominal VCO output frequency = Fref * NF / NR |
| Fs = Spreading Rate |
| D = Percentage down-spread / 2 |
| Fint = Reference input frequency to PFD = Fref / NR |
| NS = Spreading rate divider ratio = int(Fint / (2 * Fs)) |
| CLKS = NS - 1 = ISS_STEP_NUM[11:0] |
| NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2) |
| CLKV = 65536 * NV = ISS_STEP_SIZE[25:0] |
| ************************************* |
| */ |
| pp_atomctrl_internal_ss_info ss_info; |
| uint32_t freq_nom; |
| uint32_t tmp; |
| uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr); |
| |
| /* for GDDR5 for all modes and DDR3 */ |
| if (1 == mpll_param.qdr) |
| freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider); |
| else |
| freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider); |
| |
| /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2 Note: S.I. reference_divider = 1*/ |
| tmp = (freq_nom / reference_clock); |
| tmp = tmp * tmp; |
| |
| if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) { |
| /* ss_info.speed_spectrum_percentage -- in unit of 0.01% */ |
| /* ss.Info.speed_spectrum_rate -- in unit of khz */ |
| /* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */ |
| /* = reference_clock * 5 / speed_spectrum_rate */ |
| uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate; |
| |
| /* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */ |
| /* = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */ |
| uint32_t clkv = |
| (uint32_t)((((131 * ss_info.speed_spectrum_percentage * |
| ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom); |
| |
| mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv); |
| mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks); |
| } |
| } |
| |
| /* MCLK_PWRMGT_CNTL setup */ |
| mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
| MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed); |
| mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
| MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn); |
| mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
| MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn); |
| |
| |
| /* Save the result data to outpupt memory level structure */ |
| mclk->MclkFrequency = memory_clock; |
| mclk->MpllFuncCntl = mpll_func_cntl; |
| mclk->MpllFuncCntl_1 = mpll_func_cntl_1; |
| mclk->MpllFuncCntl_2 = mpll_func_cntl_2; |
| mclk->MpllAdFuncCntl = mpll_ad_func_cntl; |
| mclk->MpllDqFuncCntl = mpll_dq_func_cntl; |
| mclk->MclkPwrmgtCntl = mclk_pwrmgt_cntl; |
| mclk->DllCntl = dll_cntl; |
| mclk->MpllSs1 = mpll_ss1; |
| mclk->MpllSs2 = mpll_ss2; |
| |
| return 0; |
| } |
| |
| static uint8_t iceland_get_mclk_frequency_ratio(uint32_t memory_clock, |
| bool strobe_mode) |
| { |
| uint8_t mc_para_index; |
| |
| if (strobe_mode) { |
| if (memory_clock < 12500) { |
| mc_para_index = 0x00; |
| } else if (memory_clock > 47500) { |
| mc_para_index = 0x0f; |
| } else { |
| mc_para_index = (uint8_t)((memory_clock - 10000) / 2500); |
| } |
| } else { |
| if (memory_clock < 65000) { |
| mc_para_index = 0x00; |
| } else if (memory_clock > 135000) { |
| mc_para_index = 0x0f; |
| } else { |
| mc_para_index = (uint8_t)((memory_clock - 60000) / 5000); |
| } |
| } |
| |
| return mc_para_index; |
| } |
| |
| static uint8_t iceland_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock) |
| { |
| uint8_t mc_para_index; |
| |
| if (memory_clock < 10000) { |
| mc_para_index = 0; |
| } else if (memory_clock >= 80000) { |
| mc_para_index = 0x0f; |
| } else { |
| mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1); |
| } |
| |
| return mc_para_index; |
| } |
| |
| static int iceland_populate_phase_value_based_on_mclk(struct pp_hwmgr *hwmgr, const struct phm_phase_shedding_limits_table *pl, |
| uint32_t memory_clock, uint32_t *p_shed) |
| { |
| unsigned int i; |
| |
| *p_shed = 1; |
| |
| for (i = 0; i < pl->count; i++) { |
| if (memory_clock < pl->entries[i].Mclk) { |
| *p_shed = i; |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int iceland_populate_single_memory_level( |
| struct pp_hwmgr *hwmgr, |
| uint32_t memory_clock, |
| SMU71_Discrete_MemoryLevel *memory_level |
| ) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| int result = 0; |
| bool dll_state_on; |
| struct cgs_display_info info = {0}; |
| uint32_t mclk_edc_wr_enable_threshold = 40000; |
| uint32_t mclk_edc_enable_threshold = 40000; |
| uint32_t mclk_strobe_mode_threshold = 40000; |
| |
| if (hwmgr->dyn_state.vddc_dependency_on_mclk != NULL) { |
| result = iceland_get_dependecy_volt_by_clk(hwmgr, |
| hwmgr->dyn_state.vddc_dependency_on_mclk, memory_clock, &memory_level->MinVddc); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "can not find MinVddc voltage value from memory VDDC voltage dependency table", return result); |
| } |
| |
| if (data->vddci_control == SMU7_VOLTAGE_CONTROL_NONE) { |
| memory_level->MinVddci = memory_level->MinVddc; |
| } else if (NULL != hwmgr->dyn_state.vddci_dependency_on_mclk) { |
| result = iceland_get_dependecy_volt_by_clk(hwmgr, |
| hwmgr->dyn_state.vddci_dependency_on_mclk, |
| memory_clock, |
| &memory_level->MinVddci); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "can not find MinVddci voltage value from memory VDDCI voltage dependency table", return result); |
| } |
| |
| memory_level->MinVddcPhases = 1; |
| |
| if (data->vddc_phase_shed_control) { |
| iceland_populate_phase_value_based_on_mclk(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table, |
| memory_clock, &memory_level->MinVddcPhases); |
| } |
| |
| memory_level->EnabledForThrottle = 1; |
| memory_level->EnabledForActivity = 0; |
| memory_level->UpHyst = 0; |
| memory_level->DownHyst = 100; |
| memory_level->VoltageDownHyst = 0; |
| |
| /* Indicates maximum activity level for this performance level.*/ |
| memory_level->ActivityLevel = (uint16_t)data->mclk_activity_target; |
| memory_level->StutterEnable = 0; |
| memory_level->StrobeEnable = 0; |
| memory_level->EdcReadEnable = 0; |
| memory_level->EdcWriteEnable = 0; |
| memory_level->RttEnable = 0; |
| |
| /* default set to low watermark. Highest level will be set to high later.*/ |
| memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; |
| |
| cgs_get_active_displays_info(hwmgr->device, &info); |
| data->display_timing.num_existing_displays = info.display_count; |
| |
| /* stutter mode not support on iceland */ |
| |
| /* decide strobe mode*/ |
| memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) && |
| (memory_clock <= mclk_strobe_mode_threshold); |
| |
| /* decide EDC mode and memory clock ratio*/ |
| if (data->is_memory_gddr5) { |
| memory_level->StrobeRatio = iceland_get_mclk_frequency_ratio(memory_clock, |
| memory_level->StrobeEnable); |
| |
| if ((mclk_edc_enable_threshold != 0) && |
| (memory_clock > mclk_edc_enable_threshold)) { |
| memory_level->EdcReadEnable = 1; |
| } |
| |
| if ((mclk_edc_wr_enable_threshold != 0) && |
| (memory_clock > mclk_edc_wr_enable_threshold)) { |
| memory_level->EdcWriteEnable = 1; |
| } |
| |
| if (memory_level->StrobeEnable) { |
| if (iceland_get_mclk_frequency_ratio(memory_clock, 1) >= |
| ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf)) |
| dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0; |
| else |
| dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0; |
| } else |
| dll_state_on = data->dll_default_on; |
| } else { |
| memory_level->StrobeRatio = |
| iceland_get_ddr3_mclk_frequency_ratio(memory_clock); |
| dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0; |
| } |
| |
| result = iceland_calculate_mclk_params(hwmgr, |
| memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on); |
| |
| if (0 == result) { |
| memory_level->MinVddc = PP_HOST_TO_SMC_UL(memory_level->MinVddc * VOLTAGE_SCALE); |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinVddcPhases); |
| memory_level->MinVddci = PP_HOST_TO_SMC_UL(memory_level->MinVddci * VOLTAGE_SCALE); |
| memory_level->MinMvdd = PP_HOST_TO_SMC_UL(memory_level->MinMvdd * VOLTAGE_SCALE); |
| /* MCLK frequency in units of 10KHz*/ |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency); |
| /* Indicates maximum activity level for this performance level.*/ |
| CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel); |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl); |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1); |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2); |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl); |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl); |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl); |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl); |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1); |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2); |
| } |
| |
| return result; |
| } |
| |
| /** |
| * Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states |
| * |
| * @param hwmgr the address of the hardware manager |
| */ |
| |
| int iceland_populate_all_memory_levels(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smumgr->backend); |
| struct smu7_dpm_table *dpm_table = &data->dpm_table; |
| int result; |
| |
| /* populate MCLK dpm table to SMU7 */ |
| uint32_t level_array_adress = smu_data->smu7_data.dpm_table_start + offsetof(SMU71_Discrete_DpmTable, MemoryLevel); |
| uint32_t level_array_size = sizeof(SMU71_Discrete_MemoryLevel) * SMU71_MAX_LEVELS_MEMORY; |
| SMU71_Discrete_MemoryLevel *levels = smu_data->smc_state_table.MemoryLevel; |
| uint32_t i; |
| |
| memset(levels, 0x00, level_array_size); |
| |
| for (i = 0; i < dpm_table->mclk_table.count; i++) { |
| PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value), |
| "can not populate memory level as memory clock is zero", return -EINVAL); |
| result = iceland_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value, |
| &(smu_data->smc_state_table.MemoryLevel[i])); |
| if (0 != result) { |
| return result; |
| } |
| } |
| |
| /* Only enable level 0 for now.*/ |
| smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1; |
| |
| /* |
| * in order to prevent MC activity from stutter mode to push DPM up. |
| * the UVD change complements this by putting the MCLK in a higher state |
| * by default such that we are not effected by up threshold or and MCLK DPM latency. |
| */ |
| smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F; |
| CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel); |
| |
| smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count; |
| data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table); |
| /* set highest level watermark to high*/ |
| smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH; |
| |
| /* level count will send to smc once at init smc table and never change*/ |
| result = smu7_copy_bytes_to_smc(hwmgr->smumgr, |
| level_array_adress, (uint8_t *)levels, (uint32_t)level_array_size, |
| SMC_RAM_END); |
| |
| return result; |
| } |
| |
| static int iceland_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk, |
| SMU71_Discrete_VoltageLevel *voltage) |
| { |
| const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| uint32_t i = 0; |
| |
| if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) { |
| /* find mvdd value which clock is more than request */ |
| for (i = 0; i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count; i++) { |
| if (mclk <= hwmgr->dyn_state.mvdd_dependency_on_mclk->entries[i].clk) { |
| /* Always round to higher voltage. */ |
| voltage->Voltage = data->mvdd_voltage_table.entries[i].value; |
| break; |
| } |
| } |
| |
| PP_ASSERT_WITH_CODE(i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count, |
| "MVDD Voltage is outside the supported range.", return -EINVAL); |
| |
| } else { |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int iceland_populate_smc_acpi_level(struct pp_hwmgr *hwmgr, |
| SMU71_Discrete_DpmTable *table) |
| { |
| int result = 0; |
| const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct pp_atomctrl_clock_dividers_vi dividers; |
| uint32_t vddc_phase_shed_control = 0; |
| |
| SMU71_Discrete_VoltageLevel voltage_level; |
| uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; |
| uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2; |
| uint32_t dll_cntl = data->clock_registers.vDLL_CNTL; |
| uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL; |
| |
| |
| /* The ACPI state should not do DPM on DC (or ever).*/ |
| table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC; |
| |
| if (data->acpi_vddc) |
| table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->acpi_vddc * VOLTAGE_SCALE); |
| else |
| table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->min_vddc_in_pptable * VOLTAGE_SCALE); |
| |
| table->ACPILevel.MinVddcPhases = vddc_phase_shed_control ? 0 : 1; |
| /* assign zero for now*/ |
| table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr); |
| |
| /* get the engine clock dividers for this clock value*/ |
| result = atomctrl_get_engine_pll_dividers_vi(hwmgr, |
| table->ACPILevel.SclkFrequency, ÷rs); |
| |
| PP_ASSERT_WITH_CODE(result == 0, |
| "Error retrieving Engine Clock dividers from VBIOS.", return result); |
| |
| /* divider ID for required SCLK*/ |
| table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider; |
| table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; |
| table->ACPILevel.DeepSleepDivId = 0; |
| |
| spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, |
| CG_SPLL_FUNC_CNTL, SPLL_PWRON, 0); |
| spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, |
| CG_SPLL_FUNC_CNTL, SPLL_RESET, 1); |
| spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, |
| CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL, 4); |
| |
| table->ACPILevel.CgSpllFuncCntl = spll_func_cntl; |
| table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2; |
| table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; |
| table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; |
| table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; |
| table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; |
| table->ACPILevel.CcPwrDynRm = 0; |
| table->ACPILevel.CcPwrDynRm1 = 0; |
| |
| |
| /* For various features to be enabled/disabled while this level is active.*/ |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags); |
| /* SCLK frequency in units of 10KHz*/ |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1); |
| |
| /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/ |
| table->MemoryACPILevel.MinVddc = table->ACPILevel.MinVddc; |
| table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases; |
| |
| if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control) |
| table->MemoryACPILevel.MinVddci = table->MemoryACPILevel.MinVddc; |
| else { |
| if (data->acpi_vddci != 0) |
| table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->acpi_vddci * VOLTAGE_SCALE); |
| else |
| table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->min_vddci_in_pptable * VOLTAGE_SCALE); |
| } |
| |
| if (0 == iceland_populate_mvdd_value(hwmgr, 0, &voltage_level)) |
| table->MemoryACPILevel.MinMvdd = |
| PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE); |
| else |
| table->MemoryACPILevel.MinMvdd = 0; |
| |
| /* Force reset on DLL*/ |
| mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
| MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1); |
| mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
| MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1); |
| |
| /* Disable DLL in ACPIState*/ |
| mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
| MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0); |
| mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
| MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0); |
| |
| /* Enable DLL bypass signal*/ |
| dll_cntl = PHM_SET_FIELD(dll_cntl, |
| DLL_CNTL, MRDCK0_BYPASS, 0); |
| dll_cntl = PHM_SET_FIELD(dll_cntl, |
| DLL_CNTL, MRDCK1_BYPASS, 0); |
| |
| table->MemoryACPILevel.DllCntl = |
| PP_HOST_TO_SMC_UL(dll_cntl); |
| table->MemoryACPILevel.MclkPwrmgtCntl = |
| PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl); |
| table->MemoryACPILevel.MpllAdFuncCntl = |
| PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL); |
| table->MemoryACPILevel.MpllDqFuncCntl = |
| PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL); |
| table->MemoryACPILevel.MpllFuncCntl = |
| PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL); |
| table->MemoryACPILevel.MpllFuncCntl_1 = |
| PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1); |
| table->MemoryACPILevel.MpllFuncCntl_2 = |
| PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2); |
| table->MemoryACPILevel.MpllSs1 = |
| PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1); |
| table->MemoryACPILevel.MpllSs2 = |
| PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2); |
| |
| table->MemoryACPILevel.EnabledForThrottle = 0; |
| table->MemoryACPILevel.EnabledForActivity = 0; |
| table->MemoryACPILevel.UpHyst = 0; |
| table->MemoryACPILevel.DownHyst = 100; |
| table->MemoryACPILevel.VoltageDownHyst = 0; |
| /* Indicates maximum activity level for this performance level.*/ |
| table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target); |
| |
| table->MemoryACPILevel.StutterEnable = 0; |
| table->MemoryACPILevel.StrobeEnable = 0; |
| table->MemoryACPILevel.EdcReadEnable = 0; |
| table->MemoryACPILevel.EdcWriteEnable = 0; |
| table->MemoryACPILevel.RttEnable = 0; |
| |
| return result; |
| } |
| |
| static int iceland_populate_smc_uvd_level(struct pp_hwmgr *hwmgr, |
| SMU71_Discrete_DpmTable *table) |
| { |
| return 0; |
| } |
| |
| static int iceland_populate_smc_vce_level(struct pp_hwmgr *hwmgr, |
| SMU71_Discrete_DpmTable *table) |
| { |
| return 0; |
| } |
| |
| static int iceland_populate_smc_acp_level(struct pp_hwmgr *hwmgr, |
| SMU71_Discrete_DpmTable *table) |
| { |
| return 0; |
| } |
| |
| static int iceland_populate_smc_samu_level(struct pp_hwmgr *hwmgr, |
| SMU71_Discrete_DpmTable *table) |
| { |
| return 0; |
| } |
| |
| static int iceland_populate_memory_timing_parameters( |
| struct pp_hwmgr *hwmgr, |
| uint32_t engine_clock, |
| uint32_t memory_clock, |
| struct SMU71_Discrete_MCArbDramTimingTableEntry *arb_regs |
| ) |
| { |
| uint32_t dramTiming; |
| uint32_t dramTiming2; |
| uint32_t burstTime; |
| int result; |
| |
| result = atomctrl_set_engine_dram_timings_rv770(hwmgr, |
| engine_clock, memory_clock); |
| |
| PP_ASSERT_WITH_CODE(result == 0, |
| "Error calling VBIOS to set DRAM_TIMING.", return result); |
| |
| dramTiming = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING); |
| dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2); |
| burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0); |
| |
| arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dramTiming); |
| arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2); |
| arb_regs->McArbBurstTime = (uint8_t)burstTime; |
| |
| return 0; |
| } |
| |
| /** |
| * Setup parameters for the MC ARB. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| * This function is to be called from the SetPowerState table. |
| */ |
| static int iceland_program_memory_timing_parameters(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smumgr->backend); |
| int result = 0; |
| SMU71_Discrete_MCArbDramTimingTable arb_regs; |
| uint32_t i, j; |
| |
| memset(&arb_regs, 0x00, sizeof(SMU71_Discrete_MCArbDramTimingTable)); |
| |
| for (i = 0; i < data->dpm_table.sclk_table.count; i++) { |
| for (j = 0; j < data->dpm_table.mclk_table.count; j++) { |
| result = iceland_populate_memory_timing_parameters |
| (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value, |
| data->dpm_table.mclk_table.dpm_levels[j].value, |
| &arb_regs.entries[i][j]); |
| |
| if (0 != result) { |
| break; |
| } |
| } |
| } |
| |
| if (0 == result) { |
| result = smu7_copy_bytes_to_smc( |
| hwmgr->smumgr, |
| smu_data->smu7_data.arb_table_start, |
| (uint8_t *)&arb_regs, |
| sizeof(SMU71_Discrete_MCArbDramTimingTable), |
| SMC_RAM_END |
| ); |
| } |
| |
| return result; |
| } |
| |
| static int iceland_populate_smc_boot_level(struct pp_hwmgr *hwmgr, |
| SMU71_Discrete_DpmTable *table) |
| { |
| int result = 0; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smumgr->backend); |
| table->GraphicsBootLevel = 0; |
| table->MemoryBootLevel = 0; |
| |
| /* find boot level from dpm table*/ |
| result = phm_find_boot_level(&(data->dpm_table.sclk_table), |
| data->vbios_boot_state.sclk_bootup_value, |
| (uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel)); |
| |
| if (0 != result) { |
| smu_data->smc_state_table.GraphicsBootLevel = 0; |
| printk(KERN_ERR "[ powerplay ] VBIOS did not find boot engine clock value \ |
| in dependency table. Using Graphics DPM level 0!"); |
| result = 0; |
| } |
| |
| result = phm_find_boot_level(&(data->dpm_table.mclk_table), |
| data->vbios_boot_state.mclk_bootup_value, |
| (uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel)); |
| |
| if (0 != result) { |
| smu_data->smc_state_table.MemoryBootLevel = 0; |
| printk(KERN_ERR "[ powerplay ] VBIOS did not find boot engine clock value \ |
| in dependency table. Using Memory DPM level 0!"); |
| result = 0; |
| } |
| |
| table->BootVddc = data->vbios_boot_state.vddc_bootup_value; |
| if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control) |
| table->BootVddci = table->BootVddc; |
| else |
| table->BootVddci = data->vbios_boot_state.vddci_bootup_value; |
| |
| table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value; |
| |
| return result; |
| } |
| |
| static int iceland_populate_mc_reg_address(struct pp_smumgr *smumgr, |
| SMU71_Discrete_MCRegisters *mc_reg_table) |
| { |
| const struct iceland_smumgr *smu_data = (struct iceland_smumgr *)smumgr->backend; |
| |
| uint32_t i, j; |
| |
| for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) { |
| if (smu_data->mc_reg_table.validflag & 1<<j) { |
| PP_ASSERT_WITH_CODE(i < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE, |
| "Index of mc_reg_table->address[] array out of boundary", return -EINVAL); |
| mc_reg_table->address[i].s0 = |
| PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0); |
| mc_reg_table->address[i].s1 = |
| PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1); |
| i++; |
| } |
| } |
| |
| mc_reg_table->last = (uint8_t)i; |
| |
| return 0; |
| } |
| |
| /*convert register values from driver to SMC format */ |
| static void iceland_convert_mc_registers( |
| const struct iceland_mc_reg_entry *entry, |
| SMU71_Discrete_MCRegisterSet *data, |
| uint32_t num_entries, uint32_t valid_flag) |
| { |
| uint32_t i, j; |
| |
| for (i = 0, j = 0; j < num_entries; j++) { |
| if (valid_flag & 1<<j) { |
| data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]); |
| i++; |
| } |
| } |
| } |
| |
| static int iceland_convert_mc_reg_table_entry_to_smc( |
| struct pp_smumgr *smumgr, |
| const uint32_t memory_clock, |
| SMU71_Discrete_MCRegisterSet *mc_reg_table_data |
| ) |
| { |
| struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(smumgr->backend); |
| uint32_t i = 0; |
| |
| for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) { |
| if (memory_clock <= |
| smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) { |
| break; |
| } |
| } |
| |
| if ((i == smu_data->mc_reg_table.num_entries) && (i > 0)) |
| --i; |
| |
| iceland_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i], |
| mc_reg_table_data, smu_data->mc_reg_table.last, |
| smu_data->mc_reg_table.validflag); |
| |
| return 0; |
| } |
| |
| static int iceland_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr, |
| SMU71_Discrete_MCRegisters *mc_regs) |
| { |
| int result = 0; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| int res; |
| uint32_t i; |
| |
| for (i = 0; i < data->dpm_table.mclk_table.count; i++) { |
| res = iceland_convert_mc_reg_table_entry_to_smc( |
| hwmgr->smumgr, |
| data->dpm_table.mclk_table.dpm_levels[i].value, |
| &mc_regs->data[i] |
| ); |
| |
| if (0 != res) |
| result = res; |
| } |
| |
| return result; |
| } |
| |
| static int iceland_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr) |
| { |
| struct pp_smumgr *smumgr = hwmgr->smumgr; |
| struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(smumgr->backend); |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| uint32_t address; |
| int32_t result; |
| |
| if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) |
| return 0; |
| |
| |
| memset(&smu_data->mc_regs, 0, sizeof(SMU71_Discrete_MCRegisters)); |
| |
| result = iceland_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs)); |
| |
| if (result != 0) |
| return result; |
| |
| |
| address = smu_data->smu7_data.mc_reg_table_start + (uint32_t)offsetof(SMU71_Discrete_MCRegisters, data[0]); |
| |
| return smu7_copy_bytes_to_smc(hwmgr->smumgr, address, |
| (uint8_t *)&smu_data->mc_regs.data[0], |
| sizeof(SMU71_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count, |
| SMC_RAM_END); |
| } |
| |
| static int iceland_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr) |
| { |
| int result; |
| struct pp_smumgr *smumgr = hwmgr->smumgr; |
| struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(smumgr->backend); |
| |
| memset(&smu_data->mc_regs, 0x00, sizeof(SMU71_Discrete_MCRegisters)); |
| result = iceland_populate_mc_reg_address(smumgr, &(smu_data->mc_regs)); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize MCRegTable for the MC register addresses!", return result;); |
| |
| result = iceland_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize MCRegTable for driver state!", return result;); |
| |
| return smu7_copy_bytes_to_smc(smumgr, smu_data->smu7_data.mc_reg_table_start, |
| (uint8_t *)&smu_data->mc_regs, sizeof(SMU71_Discrete_MCRegisters), SMC_RAM_END); |
| } |
| |
| static int iceland_populate_smc_initial_state(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smumgr->backend); |
| uint8_t count, level; |
| |
| count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->count); |
| |
| for (level = 0; level < count; level++) { |
| if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[level].clk |
| >= data->vbios_boot_state.sclk_bootup_value) { |
| smu_data->smc_state_table.GraphicsBootLevel = level; |
| break; |
| } |
| } |
| |
| count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_mclk->count); |
| |
| for (level = 0; level < count; level++) { |
| if (hwmgr->dyn_state.vddc_dependency_on_mclk->entries[level].clk |
| >= data->vbios_boot_state.mclk_bootup_value) { |
| smu_data->smc_state_table.MemoryBootLevel = level; |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int iceland_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smumgr->backend); |
| const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults; |
| SMU71_Discrete_DpmTable *dpm_table = &(smu_data->smc_state_table); |
| struct phm_cac_tdp_table *cac_dtp_table = hwmgr->dyn_state.cac_dtp_table; |
| struct phm_ppm_table *ppm = hwmgr->dyn_state.ppm_parameter_table; |
| const uint16_t *def1, *def2; |
| int i, j, k; |
| |
| |
| /* |
| * TDP number of fraction bits are changed from 8 to 7 for Iceland |
| * as requested by SMC team |
| */ |
| |
| dpm_table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 256)); |
| dpm_table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usConfigurableTDP * 256)); |
| |
| |
| dpm_table->DTETjOffset = 0; |
| |
| dpm_table->GpuTjMax = (uint8_t)(data->thermal_temp_setting.temperature_high / PP_TEMPERATURE_UNITS_PER_CENTIGRADES); |
| dpm_table->GpuTjHyst = 8; |
| |
| dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base; |
| |
| /* The following are for new Iceland Multi-input fan/thermal control */ |
| if (NULL != ppm) { |
| dpm_table->PPM_PkgPwrLimit = (uint16_t)ppm->dgpu_tdp * 256 / 1000; |
| dpm_table->PPM_TemperatureLimit = (uint16_t)ppm->tj_max * 256; |
| } else { |
| dpm_table->PPM_PkgPwrLimit = 0; |
| dpm_table->PPM_TemperatureLimit = 0; |
| } |
| |
| CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_PkgPwrLimit); |
| CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_TemperatureLimit); |
| |
| dpm_table->BAPM_TEMP_GRADIENT = PP_HOST_TO_SMC_UL(defaults->bamp_temp_gradient); |
| def1 = defaults->bapmti_r; |
| def2 = defaults->bapmti_rc; |
| |
| for (i = 0; i < SMU71_DTE_ITERATIONS; i++) { |
| for (j = 0; j < SMU71_DTE_SOURCES; j++) { |
| for (k = 0; k < SMU71_DTE_SINKS; k++) { |
| dpm_table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*def1); |
| dpm_table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*def2); |
| def1++; |
| def2++; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int iceland_populate_smc_svi2_config(struct pp_hwmgr *hwmgr, |
| SMU71_Discrete_DpmTable *tab) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) |
| tab->SVI2Enable |= VDDC_ON_SVI2; |
| |
| if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) |
| tab->SVI2Enable |= VDDCI_ON_SVI2; |
| else |
| tab->MergedVddci = 1; |
| |
| if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) |
| tab->SVI2Enable |= MVDD_ON_SVI2; |
| |
| PP_ASSERT_WITH_CODE(tab->SVI2Enable != (VDDC_ON_SVI2 | VDDCI_ON_SVI2 | MVDD_ON_SVI2) && |
| (tab->SVI2Enable & VDDC_ON_SVI2), "SVI2 domain configuration is incorrect!", return -EINVAL); |
| |
| return 0; |
| } |
| |
| /** |
| * Initializes the SMC table and uploads it |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @param pInput the pointer to input data (PowerState) |
| * @return always 0 |
| */ |
| int iceland_init_smc_table(struct pp_hwmgr *hwmgr) |
| { |
| int result; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smumgr->backend); |
| SMU71_Discrete_DpmTable *table = &(smu_data->smc_state_table); |
| |
| |
| iceland_initialize_power_tune_defaults(hwmgr); |
| memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table)); |
| |
| if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control) { |
| iceland_populate_smc_voltage_tables(hwmgr, table); |
| } |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_AutomaticDCTransition)) |
| table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC; |
| |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_StepVddc)) |
| table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC; |
| |
| if (data->is_memory_gddr5) |
| table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5; |
| |
| |
| if (data->ulv_supported) { |
| result = iceland_populate_ulv_state(hwmgr, &(smu_data->ulv_setting)); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize ULV state!", return result;); |
| |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_ULV_PARAMETER, 0x40035); |
| } |
| |
| result = iceland_populate_smc_link_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize Link Level!", return result;); |
| |
| result = iceland_populate_all_graphic_levels(hwmgr); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize Graphics Level!", return result;); |
| |
| result = iceland_populate_all_memory_levels(hwmgr); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize Memory Level!", return result;); |
| |
| result = iceland_populate_smc_acpi_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize ACPI Level!", return result;); |
| |
| result = iceland_populate_smc_vce_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize VCE Level!", return result;); |
| |
| result = iceland_populate_smc_acp_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize ACP Level!", return result;); |
| |
| result = iceland_populate_smc_samu_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize SAMU Level!", return result;); |
| |
| /* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */ |
| /* need to populate the ARB settings for the initial state. */ |
| result = iceland_program_memory_timing_parameters(hwmgr); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to Write ARB settings for the initial state.", return result;); |
| |
| result = iceland_populate_smc_uvd_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize UVD Level!", return result;); |
| |
| table->GraphicsBootLevel = 0; |
| table->MemoryBootLevel = 0; |
| |
| result = iceland_populate_smc_boot_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize Boot Level!", return result;); |
| |
| result = iceland_populate_smc_initial_state(hwmgr); |
| PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot State!", return result); |
| |
| result = iceland_populate_bapm_parameters_in_dpm_table(hwmgr); |
| PP_ASSERT_WITH_CODE(0 == result, "Failed to populate BAPM Parameters!", return result); |
| |
| table->GraphicsVoltageChangeEnable = 1; |
| table->GraphicsThermThrottleEnable = 1; |
| table->GraphicsInterval = 1; |
| table->VoltageInterval = 1; |
| table->ThermalInterval = 1; |
| |
| table->TemperatureLimitHigh = |
| (data->thermal_temp_setting.temperature_high * |
| SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES; |
| table->TemperatureLimitLow = |
| (data->thermal_temp_setting.temperature_low * |
| SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES; |
| |
| table->MemoryVoltageChangeEnable = 1; |
| table->MemoryInterval = 1; |
| table->VoltageResponseTime = 0; |
| table->PhaseResponseTime = 0; |
| table->MemoryThermThrottleEnable = 1; |
| table->PCIeBootLinkLevel = 0; |
| table->PCIeGenInterval = 1; |
| |
| result = iceland_populate_smc_svi2_config(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to populate SVI2 setting!", return result); |
| |
| table->ThermGpio = 17; |
| table->SclkStepSize = 0x4000; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcVid); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcPhase); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddciVid); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskMvddVid); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize); |
| CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh); |
| CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow); |
| CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime); |
| CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime); |
| |
| table->BootVddc = PP_HOST_TO_SMC_US(table->BootVddc * VOLTAGE_SCALE); |
| table->BootVddci = PP_HOST_TO_SMC_US(table->BootVddci * VOLTAGE_SCALE); |
| table->BootMVdd = PP_HOST_TO_SMC_US(table->BootMVdd * VOLTAGE_SCALE); |
| |
| /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */ |
| result = smu7_copy_bytes_to_smc(hwmgr->smumgr, smu_data->smu7_data.dpm_table_start + |
| offsetof(SMU71_Discrete_DpmTable, SystemFlags), |
| (uint8_t *)&(table->SystemFlags), |
| sizeof(SMU71_Discrete_DpmTable)-3 * sizeof(SMU71_PIDController), |
| SMC_RAM_END); |
| |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to upload dpm data to SMC memory!", return result;); |
| |
| /* Upload all ulv setting to SMC memory.(dpm level, dpm level count etc) */ |
| result = smu7_copy_bytes_to_smc(hwmgr->smumgr, |
| smu_data->smu7_data.ulv_setting_starts, |
| (uint8_t *)&(smu_data->ulv_setting), |
| sizeof(SMU71_Discrete_Ulv), |
| SMC_RAM_END); |
| |
| |
| result = iceland_populate_initial_mc_reg_table(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Failed to populate initialize MC Reg table!", return result); |
| |
| result = iceland_populate_pm_fuses(hwmgr); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to populate PM fuses to SMC memory!", return result); |
| |
| return 0; |
| } |
| |
| /** |
| * Set up the fan table to control the fan using the SMC. |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @param pInput the pointer to input data |
| * @param pOutput the pointer to output data |
| * @param pStorage the pointer to temporary storage |
| * @param Result the last failure code |
| * @return result from set temperature range routine |
| */ |
| int iceland_thermal_setup_fan_table(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_smumgr *smu7_data = (struct smu7_smumgr *)(hwmgr->smumgr->backend); |
| SMU71_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE }; |
| uint32_t duty100; |
| uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2; |
| uint16_t fdo_min, slope1, slope2; |
| uint32_t reference_clock; |
| int res; |
| uint64_t tmp64; |
| |
| if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl)) |
| return 0; |
| |
| if (0 == smu7_data->fan_table_start) { |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl); |
| return 0; |
| } |
| |
| duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_FDO_CTRL1, FMAX_DUTY100); |
| |
| if (0 == duty100) { |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl); |
| return 0; |
| } |
| |
| tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100; |
| do_div(tmp64, 10000); |
| fdo_min = (uint16_t)tmp64; |
| |
| t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - hwmgr->thermal_controller.advanceFanControlParameters.usTMin; |
| t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - hwmgr->thermal_controller.advanceFanControlParameters.usTMed; |
| |
| pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin; |
| pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed; |
| |
| slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100); |
| slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100); |
| |
| fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100); |
| fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100); |
| fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100); |
| |
| fan_table.Slope1 = cpu_to_be16(slope1); |
| fan_table.Slope2 = cpu_to_be16(slope2); |
| |
| fan_table.FdoMin = cpu_to_be16(fdo_min); |
| |
| fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst); |
| |
| fan_table.HystUp = cpu_to_be16(1); |
| |
| fan_table.HystSlope = cpu_to_be16(1); |
| |
| fan_table.TempRespLim = cpu_to_be16(5); |
| |
| reference_clock = smu7_get_xclk(hwmgr); |
| |
| fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600); |
| |
| fan_table.FdoMax = cpu_to_be16((uint16_t)duty100); |
| |
| fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL); |
| |
| /* fan_table.FanControl_GL_Flag = 1; */ |
| |
| res = smu7_copy_bytes_to_smc(hwmgr->smumgr, smu7_data->fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END); |
| |
| return 0; |
| } |
| |
| |
| static int iceland_program_mem_timing_parameters(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| if (data->need_update_smu7_dpm_table & |
| (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK)) |
| return iceland_program_memory_timing_parameters(hwmgr); |
| |
| return 0; |
| } |
| |
| int iceland_update_sclk_threshold(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smumgr->backend); |
| |
| int result = 0; |
| uint32_t low_sclk_interrupt_threshold = 0; |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_SclkThrottleLowNotification) |
| && (hwmgr->gfx_arbiter.sclk_threshold != |
| data->low_sclk_interrupt_threshold)) { |
| data->low_sclk_interrupt_threshold = |
| hwmgr->gfx_arbiter.sclk_threshold; |
| low_sclk_interrupt_threshold = |
| data->low_sclk_interrupt_threshold; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold); |
| |
| result = smu7_copy_bytes_to_smc( |
| hwmgr->smumgr, |
| smu_data->smu7_data.dpm_table_start + |
| offsetof(SMU71_Discrete_DpmTable, |
| LowSclkInterruptThreshold), |
| (uint8_t *)&low_sclk_interrupt_threshold, |
| sizeof(uint32_t), |
| SMC_RAM_END); |
| } |
| |
| result = iceland_update_and_upload_mc_reg_table(hwmgr); |
| |
| PP_ASSERT_WITH_CODE((0 == result), "Failed to upload MC reg table!", return result); |
| |
| result = iceland_program_mem_timing_parameters(hwmgr); |
| PP_ASSERT_WITH_CODE((result == 0), |
| "Failed to program memory timing parameters!", |
| ); |
| |
| return result; |
| } |
| |
| uint32_t iceland_get_offsetof(uint32_t type, uint32_t member) |
| { |
| switch (type) { |
| case SMU_SoftRegisters: |
| switch (member) { |
| case HandshakeDisables: |
| return offsetof(SMU71_SoftRegisters, HandshakeDisables); |
| case VoltageChangeTimeout: |
| return offsetof(SMU71_SoftRegisters, VoltageChangeTimeout); |
| case AverageGraphicsActivity: |
| return offsetof(SMU71_SoftRegisters, AverageGraphicsActivity); |
| case PreVBlankGap: |
| return offsetof(SMU71_SoftRegisters, PreVBlankGap); |
| case VBlankTimeout: |
| return offsetof(SMU71_SoftRegisters, VBlankTimeout); |
| case UcodeLoadStatus: |
| return offsetof(SMU71_SoftRegisters, UcodeLoadStatus); |
| } |
| case SMU_Discrete_DpmTable: |
| switch (member) { |
| case LowSclkInterruptThreshold: |
| return offsetof(SMU71_Discrete_DpmTable, LowSclkInterruptThreshold); |
| } |
| } |
| printk("cant't get the offset of type %x member %x \n", type, member); |
| return 0; |
| } |
| |
| uint32_t iceland_get_mac_definition(uint32_t value) |
| { |
| switch (value) { |
| case SMU_MAX_LEVELS_GRAPHICS: |
| return SMU71_MAX_LEVELS_GRAPHICS; |
| case SMU_MAX_LEVELS_MEMORY: |
| return SMU71_MAX_LEVELS_MEMORY; |
| case SMU_MAX_LEVELS_LINK: |
| return SMU71_MAX_LEVELS_LINK; |
| case SMU_MAX_ENTRIES_SMIO: |
| return SMU71_MAX_ENTRIES_SMIO; |
| case SMU_MAX_LEVELS_VDDC: |
| return SMU71_MAX_LEVELS_VDDC; |
| case SMU_MAX_LEVELS_VDDCI: |
| return SMU71_MAX_LEVELS_VDDCI; |
| case SMU_MAX_LEVELS_MVDD: |
| return SMU71_MAX_LEVELS_MVDD; |
| } |
| |
| printk("cant't get the mac of %x \n", value); |
| return 0; |
| } |
| |
| /** |
| * Get the location of various tables inside the FW image. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| int iceland_process_firmware_header(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct smu7_smumgr *smu7_data = (struct smu7_smumgr *)(hwmgr->smumgr->backend); |
| |
| uint32_t tmp; |
| int result; |
| bool error = false; |
| |
| result = smu7_read_smc_sram_dword(hwmgr->smumgr, |
| SMU71_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU71_Firmware_Header, DpmTable), |
| &tmp, SMC_RAM_END); |
| |
| if (0 == result) { |
| smu7_data->dpm_table_start = tmp; |
| } |
| |
| error |= (0 != result); |
| |
| result = smu7_read_smc_sram_dword(hwmgr->smumgr, |
| SMU71_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU71_Firmware_Header, SoftRegisters), |
| &tmp, SMC_RAM_END); |
| |
| if (0 == result) { |
| data->soft_regs_start = tmp; |
| smu7_data->soft_regs_start = tmp; |
| } |
| |
| error |= (0 != result); |
| |
| |
| result = smu7_read_smc_sram_dword(hwmgr->smumgr, |
| SMU71_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU71_Firmware_Header, mcRegisterTable), |
| &tmp, SMC_RAM_END); |
| |
| if (0 == result) { |
| smu7_data->mc_reg_table_start = tmp; |
| } |
| |
| result = smu7_read_smc_sram_dword(hwmgr->smumgr, |
| SMU71_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU71_Firmware_Header, FanTable), |
| &tmp, SMC_RAM_END); |
| |
| if (0 == result) { |
| smu7_data->fan_table_start = tmp; |
| } |
| |
| error |= (0 != result); |
| |
| result = smu7_read_smc_sram_dword(hwmgr->smumgr, |
| SMU71_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU71_Firmware_Header, mcArbDramTimingTable), |
| &tmp, SMC_RAM_END); |
| |
| if (0 == result) { |
| smu7_data->arb_table_start = tmp; |
| } |
| |
| error |= (0 != result); |
| |
| |
| result = smu7_read_smc_sram_dword(hwmgr->smumgr, |
| SMU71_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU71_Firmware_Header, Version), |
| &tmp, SMC_RAM_END); |
| |
| if (0 == result) { |
| hwmgr->microcode_version_info.SMC = tmp; |
| } |
| |
| error |= (0 != result); |
| |
| result = smu7_read_smc_sram_dword(hwmgr->smumgr, |
| SMU71_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU71_Firmware_Header, UlvSettings), |
| &tmp, SMC_RAM_END); |
| |
| if (0 == result) { |
| smu7_data->ulv_setting_starts = tmp; |
| } |
| |
| error |= (0 != result); |
| |
| return error ? 1 : 0; |
| } |
| |
| /*---------------------------MC----------------------------*/ |
| |
| static uint8_t iceland_get_memory_modile_index(struct pp_hwmgr *hwmgr) |
| { |
| return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16)); |
| } |
| |
| static bool iceland_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg) |
| { |
| bool result = true; |
| |
| switch (in_reg) { |
| case mmMC_SEQ_RAS_TIMING: |
| *out_reg = mmMC_SEQ_RAS_TIMING_LP; |
| break; |
| |
| case mmMC_SEQ_DLL_STBY: |
| *out_reg = mmMC_SEQ_DLL_STBY_LP; |
| break; |
| |
| case mmMC_SEQ_G5PDX_CMD0: |
| *out_reg = mmMC_SEQ_G5PDX_CMD0_LP; |
| break; |
| |
| case mmMC_SEQ_G5PDX_CMD1: |
| *out_reg = mmMC_SEQ_G5PDX_CMD1_LP; |
| break; |
| |
| case mmMC_SEQ_G5PDX_CTRL: |
| *out_reg = mmMC_SEQ_G5PDX_CTRL_LP; |
| break; |
| |
| case mmMC_SEQ_CAS_TIMING: |
| *out_reg = mmMC_SEQ_CAS_TIMING_LP; |
| break; |
| |
| case mmMC_SEQ_MISC_TIMING: |
| *out_reg = mmMC_SEQ_MISC_TIMING_LP; |
| break; |
| |
| case mmMC_SEQ_MISC_TIMING2: |
| *out_reg = mmMC_SEQ_MISC_TIMING2_LP; |
| break; |
| |
| case mmMC_SEQ_PMG_DVS_CMD: |
| *out_reg = mmMC_SEQ_PMG_DVS_CMD_LP; |
| break; |
| |
| case mmMC_SEQ_PMG_DVS_CTL: |
| *out_reg = mmMC_SEQ_PMG_DVS_CTL_LP; |
| break; |
| |
| case mmMC_SEQ_RD_CTL_D0: |
| *out_reg = mmMC_SEQ_RD_CTL_D0_LP; |
| break; |
| |
| case mmMC_SEQ_RD_CTL_D1: |
| *out_reg = mmMC_SEQ_RD_CTL_D1_LP; |
| break; |
| |
| case mmMC_SEQ_WR_CTL_D0: |
| *out_reg = mmMC_SEQ_WR_CTL_D0_LP; |
| break; |
| |
| case mmMC_SEQ_WR_CTL_D1: |
| *out_reg = mmMC_SEQ_WR_CTL_D1_LP; |
| break; |
| |
| case mmMC_PMG_CMD_EMRS: |
| *out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP; |
| break; |
| |
| case mmMC_PMG_CMD_MRS: |
| *out_reg = mmMC_SEQ_PMG_CMD_MRS_LP; |
| break; |
| |
| case mmMC_PMG_CMD_MRS1: |
| *out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP; |
| break; |
| |
| case mmMC_SEQ_PMG_TIMING: |
| *out_reg = mmMC_SEQ_PMG_TIMING_LP; |
| break; |
| |
| case mmMC_PMG_CMD_MRS2: |
| *out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP; |
| break; |
| |
| case mmMC_SEQ_WR_CTL_2: |
| *out_reg = mmMC_SEQ_WR_CTL_2_LP; |
| break; |
| |
| default: |
| result = false; |
| break; |
| } |
| |
| return result; |
| } |
| |
| static int iceland_set_s0_mc_reg_index(struct iceland_mc_reg_table *table) |
| { |
| uint32_t i; |
| uint16_t address; |
| |
| for (i = 0; i < table->last; i++) { |
| table->mc_reg_address[i].s0 = |
| iceland_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address) |
| ? address : table->mc_reg_address[i].s1; |
| } |
| return 0; |
| } |
| |
| static int iceland_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table, |
| struct iceland_mc_reg_table *ni_table) |
| { |
| uint8_t i, j; |
| |
| PP_ASSERT_WITH_CODE((table->last <= SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE), |
| "Invalid VramInfo table.", return -EINVAL); |
| PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES), |
| "Invalid VramInfo table.", return -EINVAL); |
| |
| for (i = 0; i < table->last; i++) { |
| ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1; |
| } |
| ni_table->last = table->last; |
| |
| for (i = 0; i < table->num_entries; i++) { |
| ni_table->mc_reg_table_entry[i].mclk_max = |
| table->mc_reg_table_entry[i].mclk_max; |
| for (j = 0; j < table->last; j++) { |
| ni_table->mc_reg_table_entry[i].mc_data[j] = |
| table->mc_reg_table_entry[i].mc_data[j]; |
| } |
| } |
| |
| ni_table->num_entries = table->num_entries; |
| |
| return 0; |
| } |
| |
| /** |
| * VBIOS omits some information to reduce size, we need to recover them here. |
| * 1. when we see mmMC_SEQ_MISC1, bit[31:16] EMRS1, need to be write to mmMC_PMG_CMD_EMRS /_LP[15:0]. |
| * Bit[15:0] MRS, need to be update mmMC_PMG_CMD_MRS/_LP[15:0] |
| * 2. when we see mmMC_SEQ_RESERVE_M, bit[15:0] EMRS2, need to be write to mmMC_PMG_CMD_MRS1/_LP[15:0]. |
| * 3. need to set these data for each clock range |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @param table the address of MCRegTable |
| * @return always 0 |
| */ |
| static int iceland_set_mc_special_registers(struct pp_hwmgr *hwmgr, |
| struct iceland_mc_reg_table *table) |
| { |
| uint8_t i, j, k; |
| uint32_t temp_reg; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| for (i = 0, j = table->last; i < table->last; i++) { |
| PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE), |
| "Invalid VramInfo table.", return -EINVAL); |
| |
| switch (table->mc_reg_address[i].s1) { |
| |
| case mmMC_SEQ_MISC1: |
| temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS); |
| table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS; |
| table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP; |
| for (k = 0; k < table->num_entries; k++) { |
| table->mc_reg_table_entry[k].mc_data[j] = |
| ((temp_reg & 0xffff0000)) | |
| ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16); |
| } |
| j++; |
| PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE), |
| "Invalid VramInfo table.", return -EINVAL); |
| |
| temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS); |
| table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS; |
| table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP; |
| for (k = 0; k < table->num_entries; k++) { |
| table->mc_reg_table_entry[k].mc_data[j] = |
| (temp_reg & 0xffff0000) | |
| (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); |
| |
| if (!data->is_memory_gddr5) { |
| table->mc_reg_table_entry[k].mc_data[j] |= 0x100; |
| } |
| } |
| j++; |
| PP_ASSERT_WITH_CODE((j <= SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE), |
| "Invalid VramInfo table.", return -EINVAL); |
| |
| if (!data->is_memory_gddr5) { |
| table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD; |
| table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD; |
| for (k = 0; k < table->num_entries; k++) { |
| table->mc_reg_table_entry[k].mc_data[j] = |
| (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16; |
| } |
| j++; |
| PP_ASSERT_WITH_CODE((j <= SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE), |
| "Invalid VramInfo table.", return -EINVAL); |
| } |
| |
| break; |
| |
| case mmMC_SEQ_RESERVE_M: |
| temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1); |
| table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1; |
| table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP; |
| for (k = 0; k < table->num_entries; k++) { |
| table->mc_reg_table_entry[k].mc_data[j] = |
| (temp_reg & 0xffff0000) | |
| (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); |
| } |
| j++; |
| PP_ASSERT_WITH_CODE((j <= SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE), |
| "Invalid VramInfo table.", return -EINVAL); |
| break; |
| |
| default: |
| break; |
| } |
| |
| } |
| |
| table->last = j; |
| |
| return 0; |
| } |
| |
| static int iceland_set_valid_flag(struct iceland_mc_reg_table *table) |
| { |
| uint8_t i, j; |
| for (i = 0; i < table->last; i++) { |
| for (j = 1; j < table->num_entries; j++) { |
| if (table->mc_reg_table_entry[j-1].mc_data[i] != |
| table->mc_reg_table_entry[j].mc_data[i]) { |
| table->validflag |= (1<<i); |
| break; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| int iceland_initialize_mc_reg_table(struct pp_hwmgr *hwmgr) |
| { |
| int result; |
| struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smumgr->backend); |
| pp_atomctrl_mc_reg_table *table; |
| struct iceland_mc_reg_table *ni_table = &smu_data->mc_reg_table; |
| uint8_t module_index = iceland_get_memory_modile_index(hwmgr); |
| |
| table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL); |
| |
| if (NULL == table) |
| return -ENOMEM; |
| |
| /* Program additional LP registers that are no longer programmed by VBIOS */ |
| cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2)); |
| |
| memset(table, 0x00, sizeof(pp_atomctrl_mc_reg_table)); |
| |
| result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table); |
| |
| if (0 == result) |
| result = iceland_copy_vbios_smc_reg_table(table, ni_table); |
| |
| if (0 == result) { |
| iceland_set_s0_mc_reg_index(ni_table); |
| result = iceland_set_mc_special_registers(hwmgr, ni_table); |
| } |
| |
| if (0 == result) |
| iceland_set_valid_flag(ni_table); |
| |
| kfree(table); |
| |
| return result; |
| } |
| |
| bool iceland_is_dpm_running(struct pp_hwmgr *hwmgr) |
| { |
| return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device, |
| CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON)) |
| ? true : false; |
| } |