| /* |
| * Copyright(c) 2015, 2016 Intel Corporation. |
| * |
| * This file is provided under a dual BSD/GPLv2 license. When using or |
| * redistributing this file, you may do so under either license. |
| * |
| * GPL LICENSE SUMMARY |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * BSD LICENSE |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * - Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * - Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * - Neither the name of Intel Corporation nor the names of its |
| * contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| */ |
| |
| #include <linux/spinlock.h> |
| #include <linux/pci.h> |
| #include <linux/io.h> |
| #include <linux/delay.h> |
| #include <linux/netdevice.h> |
| #include <linux/vmalloc.h> |
| #include <linux/module.h> |
| #include <linux/prefetch.h> |
| #include <rdma/ib_verbs.h> |
| |
| #include "hfi.h" |
| #include "trace.h" |
| #include "qp.h" |
| #include "sdma.h" |
| |
| #undef pr_fmt |
| #define pr_fmt(fmt) DRIVER_NAME ": " fmt |
| |
| /* |
| * The size has to be longer than this string, so we can append |
| * board/chip information to it in the initialization code. |
| */ |
| const char ib_hfi1_version[] = HFI1_DRIVER_VERSION "\n"; |
| |
| DEFINE_SPINLOCK(hfi1_devs_lock); |
| LIST_HEAD(hfi1_dev_list); |
| DEFINE_MUTEX(hfi1_mutex); /* general driver use */ |
| |
| unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU; |
| module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO); |
| MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is " __stringify( |
| HFI1_DEFAULT_MAX_MTU)); |
| |
| unsigned int hfi1_cu = 1; |
| module_param_named(cu, hfi1_cu, uint, S_IRUGO); |
| MODULE_PARM_DESC(cu, "Credit return units"); |
| |
| unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT; |
| static int hfi1_caps_set(const char *, const struct kernel_param *); |
| static int hfi1_caps_get(char *, const struct kernel_param *); |
| static const struct kernel_param_ops cap_ops = { |
| .set = hfi1_caps_set, |
| .get = hfi1_caps_get |
| }; |
| module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO); |
| MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features"); |
| |
| MODULE_LICENSE("Dual BSD/GPL"); |
| MODULE_DESCRIPTION("Intel Omni-Path Architecture driver"); |
| MODULE_VERSION(HFI1_DRIVER_VERSION); |
| |
| /* |
| * MAX_PKT_RCV is the max # if packets processed per receive interrupt. |
| */ |
| #define MAX_PKT_RECV 64 |
| #define EGR_HEAD_UPDATE_THRESHOLD 16 |
| |
| struct hfi1_ib_stats hfi1_stats; |
| |
| static int hfi1_caps_set(const char *val, const struct kernel_param *kp) |
| { |
| int ret = 0; |
| unsigned long *cap_mask_ptr = (unsigned long *)kp->arg, |
| cap_mask = *cap_mask_ptr, value, diff, |
| write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) | |
| HFI1_CAP_WRITABLE_MASK); |
| |
| ret = kstrtoul(val, 0, &value); |
| if (ret) { |
| pr_warn("Invalid module parameter value for 'cap_mask'\n"); |
| goto done; |
| } |
| /* Get the changed bits (except the locked bit) */ |
| diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK); |
| |
| /* Remove any bits that are not allowed to change after driver load */ |
| if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) { |
| pr_warn("Ignoring non-writable capability bits %#lx\n", |
| diff & ~write_mask); |
| diff &= write_mask; |
| } |
| |
| /* Mask off any reserved bits */ |
| diff &= ~HFI1_CAP_RESERVED_MASK; |
| /* Clear any previously set and changing bits */ |
| cap_mask &= ~diff; |
| /* Update the bits with the new capability */ |
| cap_mask |= (value & diff); |
| /* Check for any kernel/user restrictions */ |
| diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^ |
| ((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT); |
| cap_mask &= ~diff; |
| /* Set the bitmask to the final set */ |
| *cap_mask_ptr = cap_mask; |
| done: |
| return ret; |
| } |
| |
| static int hfi1_caps_get(char *buffer, const struct kernel_param *kp) |
| { |
| unsigned long cap_mask = *(unsigned long *)kp->arg; |
| |
| cap_mask &= ~HFI1_CAP_LOCKED_SMASK; |
| cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT); |
| |
| return scnprintf(buffer, PAGE_SIZE, "0x%lx", cap_mask); |
| } |
| |
| const char *get_unit_name(int unit) |
| { |
| static char iname[16]; |
| |
| snprintf(iname, sizeof(iname), DRIVER_NAME "_%u", unit); |
| return iname; |
| } |
| |
| const char *get_card_name(struct rvt_dev_info *rdi) |
| { |
| struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi); |
| struct hfi1_devdata *dd = container_of(ibdev, |
| struct hfi1_devdata, verbs_dev); |
| return get_unit_name(dd->unit); |
| } |
| |
| struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi) |
| { |
| struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi); |
| struct hfi1_devdata *dd = container_of(ibdev, |
| struct hfi1_devdata, verbs_dev); |
| return dd->pcidev; |
| } |
| |
| /* |
| * Return count of units with at least one port ACTIVE. |
| */ |
| int hfi1_count_active_units(void) |
| { |
| struct hfi1_devdata *dd; |
| struct hfi1_pportdata *ppd; |
| unsigned long flags; |
| int pidx, nunits_active = 0; |
| |
| spin_lock_irqsave(&hfi1_devs_lock, flags); |
| list_for_each_entry(dd, &hfi1_dev_list, list) { |
| if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase) |
| continue; |
| for (pidx = 0; pidx < dd->num_pports; ++pidx) { |
| ppd = dd->pport + pidx; |
| if (ppd->lid && ppd->linkup) { |
| nunits_active++; |
| break; |
| } |
| } |
| } |
| spin_unlock_irqrestore(&hfi1_devs_lock, flags); |
| return nunits_active; |
| } |
| |
| /* |
| * Return count of all units, optionally return in arguments |
| * the number of usable (present) units, and the number of |
| * ports that are up. |
| */ |
| int hfi1_count_units(int *npresentp, int *nupp) |
| { |
| int nunits = 0, npresent = 0, nup = 0; |
| struct hfi1_devdata *dd; |
| unsigned long flags; |
| int pidx; |
| struct hfi1_pportdata *ppd; |
| |
| spin_lock_irqsave(&hfi1_devs_lock, flags); |
| |
| list_for_each_entry(dd, &hfi1_dev_list, list) { |
| nunits++; |
| if ((dd->flags & HFI1_PRESENT) && dd->kregbase) |
| npresent++; |
| for (pidx = 0; pidx < dd->num_pports; ++pidx) { |
| ppd = dd->pport + pidx; |
| if (ppd->lid && ppd->linkup) |
| nup++; |
| } |
| } |
| |
| spin_unlock_irqrestore(&hfi1_devs_lock, flags); |
| |
| if (npresentp) |
| *npresentp = npresent; |
| if (nupp) |
| *nupp = nup; |
| |
| return nunits; |
| } |
| |
| /* |
| * Get address of eager buffer from it's index (allocated in chunks, not |
| * contiguous). |
| */ |
| static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf, |
| u8 *update) |
| { |
| u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf); |
| |
| *update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset; |
| return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) + |
| (offset * RCV_BUF_BLOCK_SIZE)); |
| } |
| |
| /* |
| * Validate and encode the a given RcvArray Buffer size. |
| * The function will check whether the given size falls within |
| * allowed size ranges for the respective type and, optionally, |
| * return the proper encoding. |
| */ |
| inline int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded) |
| { |
| if (unlikely(!PAGE_ALIGNED(size))) |
| return 0; |
| if (unlikely(size < MIN_EAGER_BUFFER)) |
| return 0; |
| if (size > |
| (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER)) |
| return 0; |
| if (encoded) |
| *encoded = ilog2(size / PAGE_SIZE) + 1; |
| return 1; |
| } |
| |
| static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd, |
| struct hfi1_packet *packet) |
| { |
| struct ib_header *rhdr = packet->hdr; |
| u32 rte = rhf_rcv_type_err(packet->rhf); |
| int lnh = be16_to_cpu(rhdr->lrh[0]) & 3; |
| struct hfi1_ibport *ibp = &ppd->ibport_data; |
| struct hfi1_devdata *dd = ppd->dd; |
| struct rvt_dev_info *rdi = &dd->verbs_dev.rdi; |
| |
| if (packet->rhf & (RHF_VCRC_ERR | RHF_ICRC_ERR)) |
| return; |
| |
| if (packet->rhf & RHF_TID_ERR) { |
| /* For TIDERR and RC QPs preemptively schedule a NAK */ |
| struct ib_other_headers *ohdr = NULL; |
| u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */ |
| u16 lid = be16_to_cpu(rhdr->lrh[1]); |
| u32 qp_num; |
| u32 rcv_flags = 0; |
| |
| /* Sanity check packet */ |
| if (tlen < 24) |
| goto drop; |
| |
| /* Check for GRH */ |
| if (lnh == HFI1_LRH_BTH) { |
| ohdr = &rhdr->u.oth; |
| } else if (lnh == HFI1_LRH_GRH) { |
| u32 vtf; |
| |
| ohdr = &rhdr->u.l.oth; |
| if (rhdr->u.l.grh.next_hdr != IB_GRH_NEXT_HDR) |
| goto drop; |
| vtf = be32_to_cpu(rhdr->u.l.grh.version_tclass_flow); |
| if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION) |
| goto drop; |
| rcv_flags |= HFI1_HAS_GRH; |
| } else { |
| goto drop; |
| } |
| /* Get the destination QP number. */ |
| qp_num = be32_to_cpu(ohdr->bth[1]) & RVT_QPN_MASK; |
| if (lid < be16_to_cpu(IB_MULTICAST_LID_BASE)) { |
| struct rvt_qp *qp; |
| unsigned long flags; |
| |
| rcu_read_lock(); |
| qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num); |
| if (!qp) { |
| rcu_read_unlock(); |
| goto drop; |
| } |
| |
| /* |
| * Handle only RC QPs - for other QP types drop error |
| * packet. |
| */ |
| spin_lock_irqsave(&qp->r_lock, flags); |
| |
| /* Check for valid receive state. */ |
| if (!(ib_rvt_state_ops[qp->state] & |
| RVT_PROCESS_RECV_OK)) { |
| ibp->rvp.n_pkt_drops++; |
| } |
| |
| switch (qp->ibqp.qp_type) { |
| case IB_QPT_RC: |
| hfi1_rc_hdrerr( |
| rcd, |
| rhdr, |
| rcv_flags, |
| qp); |
| break; |
| default: |
| /* For now don't handle any other QP types */ |
| break; |
| } |
| |
| spin_unlock_irqrestore(&qp->r_lock, flags); |
| rcu_read_unlock(); |
| } /* Unicast QP */ |
| } /* Valid packet with TIDErr */ |
| |
| /* handle "RcvTypeErr" flags */ |
| switch (rte) { |
| case RHF_RTE_ERROR_OP_CODE_ERR: |
| { |
| u32 opcode; |
| void *ebuf = NULL; |
| __be32 *bth = NULL; |
| |
| if (rhf_use_egr_bfr(packet->rhf)) |
| ebuf = packet->ebuf; |
| |
| if (!ebuf) |
| goto drop; /* this should never happen */ |
| |
| if (lnh == HFI1_LRH_BTH) |
| bth = (__be32 *)ebuf; |
| else if (lnh == HFI1_LRH_GRH) |
| bth = (__be32 *)((char *)ebuf + sizeof(struct ib_grh)); |
| else |
| goto drop; |
| |
| opcode = be32_to_cpu(bth[0]) >> 24; |
| opcode &= 0xff; |
| |
| if (opcode == IB_OPCODE_CNP) { |
| /* |
| * Only in pre-B0 h/w is the CNP_OPCODE handled |
| * via this code path. |
| */ |
| struct rvt_qp *qp = NULL; |
| u32 lqpn, rqpn; |
| u16 rlid; |
| u8 svc_type, sl, sc5; |
| |
| sc5 = hdr2sc(rhdr, packet->rhf); |
| sl = ibp->sc_to_sl[sc5]; |
| |
| lqpn = be32_to_cpu(bth[1]) & RVT_QPN_MASK; |
| rcu_read_lock(); |
| qp = rvt_lookup_qpn(rdi, &ibp->rvp, lqpn); |
| if (!qp) { |
| rcu_read_unlock(); |
| goto drop; |
| } |
| |
| switch (qp->ibqp.qp_type) { |
| case IB_QPT_UD: |
| rlid = 0; |
| rqpn = 0; |
| svc_type = IB_CC_SVCTYPE_UD; |
| break; |
| case IB_QPT_UC: |
| rlid = be16_to_cpu(rhdr->lrh[3]); |
| rqpn = qp->remote_qpn; |
| svc_type = IB_CC_SVCTYPE_UC; |
| break; |
| default: |
| goto drop; |
| } |
| |
| process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type); |
| rcu_read_unlock(); |
| } |
| |
| packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK; |
| break; |
| } |
| default: |
| break; |
| } |
| |
| drop: |
| return; |
| } |
| |
| static inline void init_packet(struct hfi1_ctxtdata *rcd, |
| struct hfi1_packet *packet) |
| { |
| packet->rsize = rcd->rcvhdrqentsize; /* words */ |
| packet->maxcnt = rcd->rcvhdrq_cnt * packet->rsize; /* words */ |
| packet->rcd = rcd; |
| packet->updegr = 0; |
| packet->etail = -1; |
| packet->rhf_addr = get_rhf_addr(rcd); |
| packet->rhf = rhf_to_cpu(packet->rhf_addr); |
| packet->rhqoff = rcd->head; |
| packet->numpkt = 0; |
| packet->rcv_flags = 0; |
| } |
| |
| void hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt, |
| bool do_cnp) |
| { |
| struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num); |
| struct ib_header *hdr = pkt->hdr; |
| struct ib_other_headers *ohdr = pkt->ohdr; |
| struct ib_grh *grh = NULL; |
| u32 rqpn = 0, bth1; |
| u16 rlid, dlid = be16_to_cpu(hdr->lrh[1]); |
| u8 sc, svc_type; |
| bool is_mcast = false; |
| |
| if (pkt->rcv_flags & HFI1_HAS_GRH) |
| grh = &hdr->u.l.grh; |
| |
| switch (qp->ibqp.qp_type) { |
| case IB_QPT_SMI: |
| case IB_QPT_GSI: |
| case IB_QPT_UD: |
| rlid = be16_to_cpu(hdr->lrh[3]); |
| rqpn = be32_to_cpu(ohdr->u.ud.deth[1]) & RVT_QPN_MASK; |
| svc_type = IB_CC_SVCTYPE_UD; |
| is_mcast = (dlid > be16_to_cpu(IB_MULTICAST_LID_BASE)) && |
| (dlid != be16_to_cpu(IB_LID_PERMISSIVE)); |
| break; |
| case IB_QPT_UC: |
| rlid = qp->remote_ah_attr.dlid; |
| rqpn = qp->remote_qpn; |
| svc_type = IB_CC_SVCTYPE_UC; |
| break; |
| case IB_QPT_RC: |
| rlid = qp->remote_ah_attr.dlid; |
| rqpn = qp->remote_qpn; |
| svc_type = IB_CC_SVCTYPE_RC; |
| break; |
| default: |
| return; |
| } |
| |
| sc = hdr2sc(hdr, pkt->rhf); |
| |
| bth1 = be32_to_cpu(ohdr->bth[1]); |
| if (do_cnp && (bth1 & HFI1_FECN_SMASK)) { |
| u16 pkey = (u16)be32_to_cpu(ohdr->bth[0]); |
| |
| return_cnp(ibp, qp, rqpn, pkey, dlid, rlid, sc, grh); |
| } |
| |
| if (!is_mcast && (bth1 & HFI1_BECN_SMASK)) { |
| struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); |
| u32 lqpn = bth1 & RVT_QPN_MASK; |
| u8 sl = ibp->sc_to_sl[sc]; |
| |
| process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type); |
| } |
| |
| } |
| |
| struct ps_mdata { |
| struct hfi1_ctxtdata *rcd; |
| u32 rsize; |
| u32 maxcnt; |
| u32 ps_head; |
| u32 ps_tail; |
| u32 ps_seq; |
| }; |
| |
| static inline void init_ps_mdata(struct ps_mdata *mdata, |
| struct hfi1_packet *packet) |
| { |
| struct hfi1_ctxtdata *rcd = packet->rcd; |
| |
| mdata->rcd = rcd; |
| mdata->rsize = packet->rsize; |
| mdata->maxcnt = packet->maxcnt; |
| mdata->ps_head = packet->rhqoff; |
| |
| if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) { |
| mdata->ps_tail = get_rcvhdrtail(rcd); |
| if (rcd->ctxt == HFI1_CTRL_CTXT) |
| mdata->ps_seq = rcd->seq_cnt; |
| else |
| mdata->ps_seq = 0; /* not used with DMA_RTAIL */ |
| } else { |
| mdata->ps_tail = 0; /* used only with DMA_RTAIL*/ |
| mdata->ps_seq = rcd->seq_cnt; |
| } |
| } |
| |
| static inline int ps_done(struct ps_mdata *mdata, u64 rhf, |
| struct hfi1_ctxtdata *rcd) |
| { |
| if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) |
| return mdata->ps_head == mdata->ps_tail; |
| return mdata->ps_seq != rhf_rcv_seq(rhf); |
| } |
| |
| static inline int ps_skip(struct ps_mdata *mdata, u64 rhf, |
| struct hfi1_ctxtdata *rcd) |
| { |
| /* |
| * Control context can potentially receive an invalid rhf. |
| * Drop such packets. |
| */ |
| if ((rcd->ctxt == HFI1_CTRL_CTXT) && (mdata->ps_head != mdata->ps_tail)) |
| return mdata->ps_seq != rhf_rcv_seq(rhf); |
| |
| return 0; |
| } |
| |
| static inline void update_ps_mdata(struct ps_mdata *mdata, |
| struct hfi1_ctxtdata *rcd) |
| { |
| mdata->ps_head += mdata->rsize; |
| if (mdata->ps_head >= mdata->maxcnt) |
| mdata->ps_head = 0; |
| |
| /* Control context must do seq counting */ |
| if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) || |
| (rcd->ctxt == HFI1_CTRL_CTXT)) { |
| if (++mdata->ps_seq > 13) |
| mdata->ps_seq = 1; |
| } |
| } |
| |
| /* |
| * prescan_rxq - search through the receive queue looking for packets |
| * containing Excplicit Congestion Notifications (FECNs, or BECNs). |
| * When an ECN is found, process the Congestion Notification, and toggle |
| * it off. |
| * This is declared as a macro to allow quick checking of the port to avoid |
| * the overhead of a function call if not enabled. |
| */ |
| #define prescan_rxq(rcd, packet) \ |
| do { \ |
| if (rcd->ppd->cc_prescan) \ |
| __prescan_rxq(packet); \ |
| } while (0) |
| static void __prescan_rxq(struct hfi1_packet *packet) |
| { |
| struct hfi1_ctxtdata *rcd = packet->rcd; |
| struct ps_mdata mdata; |
| |
| init_ps_mdata(&mdata, packet); |
| |
| while (1) { |
| struct hfi1_devdata *dd = rcd->dd; |
| struct hfi1_ibport *ibp = &rcd->ppd->ibport_data; |
| __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head + |
| dd->rhf_offset; |
| struct rvt_qp *qp; |
| struct ib_header *hdr; |
| struct ib_other_headers *ohdr; |
| struct rvt_dev_info *rdi = &dd->verbs_dev.rdi; |
| u64 rhf = rhf_to_cpu(rhf_addr); |
| u32 etype = rhf_rcv_type(rhf), qpn, bth1; |
| int is_ecn = 0; |
| u8 lnh; |
| |
| if (ps_done(&mdata, rhf, rcd)) |
| break; |
| |
| if (ps_skip(&mdata, rhf, rcd)) |
| goto next; |
| |
| if (etype != RHF_RCV_TYPE_IB) |
| goto next; |
| |
| hdr = hfi1_get_msgheader(dd, rhf_addr); |
| |
| lnh = be16_to_cpu(hdr->lrh[0]) & 3; |
| |
| if (lnh == HFI1_LRH_BTH) |
| ohdr = &hdr->u.oth; |
| else if (lnh == HFI1_LRH_GRH) |
| ohdr = &hdr->u.l.oth; |
| else |
| goto next; /* just in case */ |
| |
| bth1 = be32_to_cpu(ohdr->bth[1]); |
| is_ecn = !!(bth1 & (HFI1_FECN_SMASK | HFI1_BECN_SMASK)); |
| |
| if (!is_ecn) |
| goto next; |
| |
| qpn = bth1 & RVT_QPN_MASK; |
| rcu_read_lock(); |
| qp = rvt_lookup_qpn(rdi, &ibp->rvp, qpn); |
| |
| if (!qp) { |
| rcu_read_unlock(); |
| goto next; |
| } |
| |
| process_ecn(qp, packet, true); |
| rcu_read_unlock(); |
| |
| /* turn off BECN, FECN */ |
| bth1 &= ~(HFI1_FECN_SMASK | HFI1_BECN_SMASK); |
| ohdr->bth[1] = cpu_to_be32(bth1); |
| next: |
| update_ps_mdata(&mdata, rcd); |
| } |
| } |
| |
| static inline int skip_rcv_packet(struct hfi1_packet *packet, int thread) |
| { |
| int ret = RCV_PKT_OK; |
| |
| /* Set up for the next packet */ |
| packet->rhqoff += packet->rsize; |
| if (packet->rhqoff >= packet->maxcnt) |
| packet->rhqoff = 0; |
| |
| packet->numpkt++; |
| if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0)) { |
| if (thread) { |
| cond_resched(); |
| } else { |
| ret = RCV_PKT_LIMIT; |
| this_cpu_inc(*packet->rcd->dd->rcv_limit); |
| } |
| } |
| |
| packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff + |
| packet->rcd->dd->rhf_offset; |
| packet->rhf = rhf_to_cpu(packet->rhf_addr); |
| |
| return ret; |
| } |
| |
| static inline int process_rcv_packet(struct hfi1_packet *packet, int thread) |
| { |
| int ret = RCV_PKT_OK; |
| |
| packet->hdr = hfi1_get_msgheader(packet->rcd->dd, |
| packet->rhf_addr); |
| packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr; |
| packet->etype = rhf_rcv_type(packet->rhf); |
| /* total length */ |
| packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */ |
| /* retrieve eager buffer details */ |
| packet->ebuf = NULL; |
| if (rhf_use_egr_bfr(packet->rhf)) { |
| packet->etail = rhf_egr_index(packet->rhf); |
| packet->ebuf = get_egrbuf(packet->rcd, packet->rhf, |
| &packet->updegr); |
| /* |
| * Prefetch the contents of the eager buffer. It is |
| * OK to send a negative length to prefetch_range(). |
| * The +2 is the size of the RHF. |
| */ |
| prefetch_range(packet->ebuf, |
| packet->tlen - ((packet->rcd->rcvhdrqentsize - |
| (rhf_hdrq_offset(packet->rhf) |
| + 2)) * 4)); |
| } |
| |
| /* |
| * Call a type specific handler for the packet. We |
| * should be able to trust that etype won't be beyond |
| * the range of valid indexes. If so something is really |
| * wrong and we can probably just let things come |
| * crashing down. There is no need to eat another |
| * comparison in this performance critical code. |
| */ |
| packet->rcd->dd->rhf_rcv_function_map[packet->etype](packet); |
| packet->numpkt++; |
| |
| /* Set up for the next packet */ |
| packet->rhqoff += packet->rsize; |
| if (packet->rhqoff >= packet->maxcnt) |
| packet->rhqoff = 0; |
| |
| if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0)) { |
| if (thread) { |
| cond_resched(); |
| } else { |
| ret = RCV_PKT_LIMIT; |
| this_cpu_inc(*packet->rcd->dd->rcv_limit); |
| } |
| } |
| |
| packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff + |
| packet->rcd->dd->rhf_offset; |
| packet->rhf = rhf_to_cpu(packet->rhf_addr); |
| |
| return ret; |
| } |
| |
| static inline void process_rcv_update(int last, struct hfi1_packet *packet) |
| { |
| /* |
| * Update head regs etc., every 16 packets, if not last pkt, |
| * to help prevent rcvhdrq overflows, when many packets |
| * are processed and queue is nearly full. |
| * Don't request an interrupt for intermediate updates. |
| */ |
| if (!last && !(packet->numpkt & 0xf)) { |
| update_usrhead(packet->rcd, packet->rhqoff, packet->updegr, |
| packet->etail, 0, 0); |
| packet->updegr = 0; |
| } |
| packet->rcv_flags = 0; |
| } |
| |
| static inline void finish_packet(struct hfi1_packet *packet) |
| { |
| /* |
| * Nothing we need to free for the packet. |
| * |
| * The only thing we need to do is a final update and call for an |
| * interrupt |
| */ |
| update_usrhead(packet->rcd, packet->rcd->head, packet->updegr, |
| packet->etail, rcv_intr_dynamic, packet->numpkt); |
| } |
| |
| static inline void process_rcv_qp_work(struct hfi1_packet *packet) |
| { |
| struct hfi1_ctxtdata *rcd; |
| struct rvt_qp *qp, *nqp; |
| |
| rcd = packet->rcd; |
| rcd->head = packet->rhqoff; |
| |
| /* |
| * Iterate over all QPs waiting to respond. |
| * The list won't change since the IRQ is only run on one CPU. |
| */ |
| list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) { |
| list_del_init(&qp->rspwait); |
| if (qp->r_flags & RVT_R_RSP_NAK) { |
| qp->r_flags &= ~RVT_R_RSP_NAK; |
| hfi1_send_rc_ack(rcd, qp, 0); |
| } |
| if (qp->r_flags & RVT_R_RSP_SEND) { |
| unsigned long flags; |
| |
| qp->r_flags &= ~RVT_R_RSP_SEND; |
| spin_lock_irqsave(&qp->s_lock, flags); |
| if (ib_rvt_state_ops[qp->state] & |
| RVT_PROCESS_OR_FLUSH_SEND) |
| hfi1_schedule_send(qp); |
| spin_unlock_irqrestore(&qp->s_lock, flags); |
| } |
| if (atomic_dec_and_test(&qp->refcount)) |
| wake_up(&qp->wait); |
| } |
| } |
| |
| /* |
| * Handle receive interrupts when using the no dma rtail option. |
| */ |
| int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread) |
| { |
| u32 seq; |
| int last = RCV_PKT_OK; |
| struct hfi1_packet packet; |
| |
| init_packet(rcd, &packet); |
| seq = rhf_rcv_seq(packet.rhf); |
| if (seq != rcd->seq_cnt) { |
| last = RCV_PKT_DONE; |
| goto bail; |
| } |
| |
| prescan_rxq(rcd, &packet); |
| |
| while (last == RCV_PKT_OK) { |
| last = process_rcv_packet(&packet, thread); |
| seq = rhf_rcv_seq(packet.rhf); |
| if (++rcd->seq_cnt > 13) |
| rcd->seq_cnt = 1; |
| if (seq != rcd->seq_cnt) |
| last = RCV_PKT_DONE; |
| process_rcv_update(last, &packet); |
| } |
| process_rcv_qp_work(&packet); |
| bail: |
| finish_packet(&packet); |
| return last; |
| } |
| |
| int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread) |
| { |
| u32 hdrqtail; |
| int last = RCV_PKT_OK; |
| struct hfi1_packet packet; |
| |
| init_packet(rcd, &packet); |
| hdrqtail = get_rcvhdrtail(rcd); |
| if (packet.rhqoff == hdrqtail) { |
| last = RCV_PKT_DONE; |
| goto bail; |
| } |
| smp_rmb(); /* prevent speculative reads of dma'ed hdrq */ |
| |
| prescan_rxq(rcd, &packet); |
| |
| while (last == RCV_PKT_OK) { |
| last = process_rcv_packet(&packet, thread); |
| if (packet.rhqoff == hdrqtail) |
| last = RCV_PKT_DONE; |
| process_rcv_update(last, &packet); |
| } |
| process_rcv_qp_work(&packet); |
| bail: |
| finish_packet(&packet); |
| return last; |
| } |
| |
| static inline void set_all_nodma_rtail(struct hfi1_devdata *dd) |
| { |
| int i; |
| |
| for (i = HFI1_CTRL_CTXT + 1; i < dd->first_user_ctxt; i++) |
| dd->rcd[i]->do_interrupt = |
| &handle_receive_interrupt_nodma_rtail; |
| } |
| |
| static inline void set_all_dma_rtail(struct hfi1_devdata *dd) |
| { |
| int i; |
| |
| for (i = HFI1_CTRL_CTXT + 1; i < dd->first_user_ctxt; i++) |
| dd->rcd[i]->do_interrupt = |
| &handle_receive_interrupt_dma_rtail; |
| } |
| |
| void set_all_slowpath(struct hfi1_devdata *dd) |
| { |
| int i; |
| |
| /* HFI1_CTRL_CTXT must always use the slow path interrupt handler */ |
| for (i = HFI1_CTRL_CTXT + 1; i < dd->first_user_ctxt; i++) |
| dd->rcd[i]->do_interrupt = &handle_receive_interrupt; |
| } |
| |
| static inline int set_armed_to_active(struct hfi1_ctxtdata *rcd, |
| struct hfi1_packet *packet, |
| struct hfi1_devdata *dd) |
| { |
| struct work_struct *lsaw = &rcd->ppd->linkstate_active_work; |
| struct ib_header *hdr = hfi1_get_msgheader(packet->rcd->dd, |
| packet->rhf_addr); |
| u8 etype = rhf_rcv_type(packet->rhf); |
| |
| if (etype == RHF_RCV_TYPE_IB && hdr2sc(hdr, packet->rhf) != 0xf) { |
| int hwstate = read_logical_state(dd); |
| |
| if (hwstate != LSTATE_ACTIVE) { |
| dd_dev_info(dd, "Unexpected link state %d\n", hwstate); |
| return 0; |
| } |
| |
| queue_work(rcd->ppd->hfi1_wq, lsaw); |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* |
| * handle_receive_interrupt - receive a packet |
| * @rcd: the context |
| * |
| * Called from interrupt handler for errors or receive interrupt. |
| * This is the slow path interrupt handler. |
| */ |
| int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread) |
| { |
| struct hfi1_devdata *dd = rcd->dd; |
| u32 hdrqtail; |
| int needset, last = RCV_PKT_OK; |
| struct hfi1_packet packet; |
| int skip_pkt = 0; |
| |
| /* Control context will always use the slow path interrupt handler */ |
| needset = (rcd->ctxt == HFI1_CTRL_CTXT) ? 0 : 1; |
| |
| init_packet(rcd, &packet); |
| |
| if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) { |
| u32 seq = rhf_rcv_seq(packet.rhf); |
| |
| if (seq != rcd->seq_cnt) { |
| last = RCV_PKT_DONE; |
| goto bail; |
| } |
| hdrqtail = 0; |
| } else { |
| hdrqtail = get_rcvhdrtail(rcd); |
| if (packet.rhqoff == hdrqtail) { |
| last = RCV_PKT_DONE; |
| goto bail; |
| } |
| smp_rmb(); /* prevent speculative reads of dma'ed hdrq */ |
| |
| /* |
| * Control context can potentially receive an invalid |
| * rhf. Drop such packets. |
| */ |
| if (rcd->ctxt == HFI1_CTRL_CTXT) { |
| u32 seq = rhf_rcv_seq(packet.rhf); |
| |
| if (seq != rcd->seq_cnt) |
| skip_pkt = 1; |
| } |
| } |
| |
| prescan_rxq(rcd, &packet); |
| |
| while (last == RCV_PKT_OK) { |
| if (unlikely(dd->do_drop && |
| atomic_xchg(&dd->drop_packet, DROP_PACKET_OFF) == |
| DROP_PACKET_ON)) { |
| dd->do_drop = 0; |
| |
| /* On to the next packet */ |
| packet.rhqoff += packet.rsize; |
| packet.rhf_addr = (__le32 *)rcd->rcvhdrq + |
| packet.rhqoff + |
| dd->rhf_offset; |
| packet.rhf = rhf_to_cpu(packet.rhf_addr); |
| |
| } else if (skip_pkt) { |
| last = skip_rcv_packet(&packet, thread); |
| skip_pkt = 0; |
| } else { |
| /* Auto activate link on non-SC15 packet receive */ |
| if (unlikely(rcd->ppd->host_link_state == |
| HLS_UP_ARMED) && |
| set_armed_to_active(rcd, &packet, dd)) |
| goto bail; |
| last = process_rcv_packet(&packet, thread); |
| } |
| |
| if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) { |
| u32 seq = rhf_rcv_seq(packet.rhf); |
| |
| if (++rcd->seq_cnt > 13) |
| rcd->seq_cnt = 1; |
| if (seq != rcd->seq_cnt) |
| last = RCV_PKT_DONE; |
| if (needset) { |
| dd_dev_info(dd, "Switching to NO_DMA_RTAIL\n"); |
| set_all_nodma_rtail(dd); |
| needset = 0; |
| } |
| } else { |
| if (packet.rhqoff == hdrqtail) |
| last = RCV_PKT_DONE; |
| /* |
| * Control context can potentially receive an invalid |
| * rhf. Drop such packets. |
| */ |
| if (rcd->ctxt == HFI1_CTRL_CTXT) { |
| u32 seq = rhf_rcv_seq(packet.rhf); |
| |
| if (++rcd->seq_cnt > 13) |
| rcd->seq_cnt = 1; |
| if (!last && (seq != rcd->seq_cnt)) |
| skip_pkt = 1; |
| } |
| |
| if (needset) { |
| dd_dev_info(dd, |
| "Switching to DMA_RTAIL\n"); |
| set_all_dma_rtail(dd); |
| needset = 0; |
| } |
| } |
| |
| process_rcv_update(last, &packet); |
| } |
| |
| process_rcv_qp_work(&packet); |
| |
| bail: |
| /* |
| * Always write head at end, and setup rcv interrupt, even |
| * if no packets were processed. |
| */ |
| finish_packet(&packet); |
| return last; |
| } |
| |
| /* |
| * We may discover in the interrupt that the hardware link state has |
| * changed from ARMED to ACTIVE (due to the arrival of a non-SC15 packet), |
| * and we need to update the driver's notion of the link state. We cannot |
| * run set_link_state from interrupt context, so we queue this function on |
| * a workqueue. |
| * |
| * We delay the regular interrupt processing until after the state changes |
| * so that the link will be in the correct state by the time any application |
| * we wake up attempts to send a reply to any message it received. |
| * (Subsequent receive interrupts may possibly force the wakeup before we |
| * update the link state.) |
| * |
| * The rcd is freed in hfi1_free_ctxtdata after hfi1_postinit_cleanup invokes |
| * dd->f_cleanup(dd) to disable the interrupt handler and flush workqueues, |
| * so we're safe from use-after-free of the rcd. |
| */ |
| void receive_interrupt_work(struct work_struct *work) |
| { |
| struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, |
| linkstate_active_work); |
| struct hfi1_devdata *dd = ppd->dd; |
| int i; |
| |
| /* Received non-SC15 packet implies neighbor_normal */ |
| ppd->neighbor_normal = 1; |
| set_link_state(ppd, HLS_UP_ACTIVE); |
| |
| /* |
| * Interrupt all kernel contexts that could have had an |
| * interrupt during auto activation. |
| */ |
| for (i = HFI1_CTRL_CTXT; i < dd->first_user_ctxt; i++) |
| force_recv_intr(dd->rcd[i]); |
| } |
| |
| /* |
| * Convert a given MTU size to the on-wire MAD packet enumeration. |
| * Return -1 if the size is invalid. |
| */ |
| int mtu_to_enum(u32 mtu, int default_if_bad) |
| { |
| switch (mtu) { |
| case 0: return OPA_MTU_0; |
| case 256: return OPA_MTU_256; |
| case 512: return OPA_MTU_512; |
| case 1024: return OPA_MTU_1024; |
| case 2048: return OPA_MTU_2048; |
| case 4096: return OPA_MTU_4096; |
| case 8192: return OPA_MTU_8192; |
| case 10240: return OPA_MTU_10240; |
| } |
| return default_if_bad; |
| } |
| |
| u16 enum_to_mtu(int mtu) |
| { |
| switch (mtu) { |
| case OPA_MTU_0: return 0; |
| case OPA_MTU_256: return 256; |
| case OPA_MTU_512: return 512; |
| case OPA_MTU_1024: return 1024; |
| case OPA_MTU_2048: return 2048; |
| case OPA_MTU_4096: return 4096; |
| case OPA_MTU_8192: return 8192; |
| case OPA_MTU_10240: return 10240; |
| default: return 0xffff; |
| } |
| } |
| |
| /* |
| * set_mtu - set the MTU |
| * @ppd: the per port data |
| * |
| * We can handle "any" incoming size, the issue here is whether we |
| * need to restrict our outgoing size. We do not deal with what happens |
| * to programs that are already running when the size changes. |
| */ |
| int set_mtu(struct hfi1_pportdata *ppd) |
| { |
| struct hfi1_devdata *dd = ppd->dd; |
| int i, drain, ret = 0, is_up = 0; |
| |
| ppd->ibmtu = 0; |
| for (i = 0; i < ppd->vls_supported; i++) |
| if (ppd->ibmtu < dd->vld[i].mtu) |
| ppd->ibmtu = dd->vld[i].mtu; |
| ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd); |
| |
| mutex_lock(&ppd->hls_lock); |
| if (ppd->host_link_state == HLS_UP_INIT || |
| ppd->host_link_state == HLS_UP_ARMED || |
| ppd->host_link_state == HLS_UP_ACTIVE) |
| is_up = 1; |
| |
| drain = !is_ax(dd) && is_up; |
| |
| if (drain) |
| /* |
| * MTU is specified per-VL. To ensure that no packet gets |
| * stuck (due, e.g., to the MTU for the packet's VL being |
| * reduced), empty the per-VL FIFOs before adjusting MTU. |
| */ |
| ret = stop_drain_data_vls(dd); |
| |
| if (ret) { |
| dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n", |
| __func__); |
| goto err; |
| } |
| |
| hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0); |
| |
| if (drain) |
| open_fill_data_vls(dd); /* reopen all VLs */ |
| |
| err: |
| mutex_unlock(&ppd->hls_lock); |
| |
| return ret; |
| } |
| |
| int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc) |
| { |
| struct hfi1_devdata *dd = ppd->dd; |
| |
| ppd->lid = lid; |
| ppd->lmc = lmc; |
| hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0); |
| |
| dd_dev_info(dd, "port %u: got a lid: 0x%x\n", ppd->port, lid); |
| |
| return 0; |
| } |
| |
| void shutdown_led_override(struct hfi1_pportdata *ppd) |
| { |
| struct hfi1_devdata *dd = ppd->dd; |
| |
| /* |
| * This pairs with the memory barrier in hfi1_start_led_override to |
| * ensure that we read the correct state of LED beaconing represented |
| * by led_override_timer_active |
| */ |
| smp_rmb(); |
| if (atomic_read(&ppd->led_override_timer_active)) { |
| del_timer_sync(&ppd->led_override_timer); |
| atomic_set(&ppd->led_override_timer_active, 0); |
| /* Ensure the atomic_set is visible to all CPUs */ |
| smp_wmb(); |
| } |
| |
| /* Hand control of the LED to the DC for normal operation */ |
| write_csr(dd, DCC_CFG_LED_CNTRL, 0); |
| } |
| |
| static void run_led_override(unsigned long opaque) |
| { |
| struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)opaque; |
| struct hfi1_devdata *dd = ppd->dd; |
| unsigned long timeout; |
| int phase_idx; |
| |
| if (!(dd->flags & HFI1_INITTED)) |
| return; |
| |
| phase_idx = ppd->led_override_phase & 1; |
| |
| setextled(dd, phase_idx); |
| |
| timeout = ppd->led_override_vals[phase_idx]; |
| |
| /* Set up for next phase */ |
| ppd->led_override_phase = !ppd->led_override_phase; |
| |
| mod_timer(&ppd->led_override_timer, jiffies + timeout); |
| } |
| |
| /* |
| * To have the LED blink in a particular pattern, provide timeon and timeoff |
| * in milliseconds. |
| * To turn off custom blinking and return to normal operation, use |
| * shutdown_led_override() |
| */ |
| void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon, |
| unsigned int timeoff) |
| { |
| if (!(ppd->dd->flags & HFI1_INITTED)) |
| return; |
| |
| /* Convert to jiffies for direct use in timer */ |
| ppd->led_override_vals[0] = msecs_to_jiffies(timeoff); |
| ppd->led_override_vals[1] = msecs_to_jiffies(timeon); |
| |
| /* Arbitrarily start from LED on phase */ |
| ppd->led_override_phase = 1; |
| |
| /* |
| * If the timer has not already been started, do so. Use a "quick" |
| * timeout so the handler will be called soon to look at our request. |
| */ |
| if (!timer_pending(&ppd->led_override_timer)) { |
| setup_timer(&ppd->led_override_timer, run_led_override, |
| (unsigned long)ppd); |
| ppd->led_override_timer.expires = jiffies + 1; |
| add_timer(&ppd->led_override_timer); |
| atomic_set(&ppd->led_override_timer_active, 1); |
| /* Ensure the atomic_set is visible to all CPUs */ |
| smp_wmb(); |
| } |
| } |
| |
| /** |
| * hfi1_reset_device - reset the chip if possible |
| * @unit: the device to reset |
| * |
| * Whether or not reset is successful, we attempt to re-initialize the chip |
| * (that is, much like a driver unload/reload). We clear the INITTED flag |
| * so that the various entry points will fail until we reinitialize. For |
| * now, we only allow this if no user contexts are open that use chip resources |
| */ |
| int hfi1_reset_device(int unit) |
| { |
| int ret, i; |
| struct hfi1_devdata *dd = hfi1_lookup(unit); |
| struct hfi1_pportdata *ppd; |
| unsigned long flags; |
| int pidx; |
| |
| if (!dd) { |
| ret = -ENODEV; |
| goto bail; |
| } |
| |
| dd_dev_info(dd, "Reset on unit %u requested\n", unit); |
| |
| if (!dd->kregbase || !(dd->flags & HFI1_PRESENT)) { |
| dd_dev_info(dd, |
| "Invalid unit number %u or not initialized or not present\n", |
| unit); |
| ret = -ENXIO; |
| goto bail; |
| } |
| |
| spin_lock_irqsave(&dd->uctxt_lock, flags); |
| if (dd->rcd) |
| for (i = dd->first_user_ctxt; i < dd->num_rcv_contexts; i++) { |
| if (!dd->rcd[i] || !dd->rcd[i]->cnt) |
| continue; |
| spin_unlock_irqrestore(&dd->uctxt_lock, flags); |
| ret = -EBUSY; |
| goto bail; |
| } |
| spin_unlock_irqrestore(&dd->uctxt_lock, flags); |
| |
| for (pidx = 0; pidx < dd->num_pports; ++pidx) { |
| ppd = dd->pport + pidx; |
| |
| shutdown_led_override(ppd); |
| } |
| if (dd->flags & HFI1_HAS_SEND_DMA) |
| sdma_exit(dd); |
| |
| hfi1_reset_cpu_counters(dd); |
| |
| ret = hfi1_init(dd, 1); |
| |
| if (ret) |
| dd_dev_err(dd, |
| "Reinitialize unit %u after reset failed with %d\n", |
| unit, ret); |
| else |
| dd_dev_info(dd, "Reinitialized unit %u after resetting\n", |
| unit); |
| |
| bail: |
| return ret; |
| } |
| |
| void handle_eflags(struct hfi1_packet *packet) |
| { |
| struct hfi1_ctxtdata *rcd = packet->rcd; |
| u32 rte = rhf_rcv_type_err(packet->rhf); |
| |
| rcv_hdrerr(rcd, rcd->ppd, packet); |
| if (rhf_err_flags(packet->rhf)) |
| dd_dev_err(rcd->dd, |
| "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s%s] rte 0x%x\n", |
| rcd->ctxt, packet->rhf, |
| packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "", |
| packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "", |
| packet->rhf & RHF_DC_ERR ? "dc " : "", |
| packet->rhf & RHF_TID_ERR ? "tid " : "", |
| packet->rhf & RHF_LEN_ERR ? "len " : "", |
| packet->rhf & RHF_ECC_ERR ? "ecc " : "", |
| packet->rhf & RHF_VCRC_ERR ? "vcrc " : "", |
| packet->rhf & RHF_ICRC_ERR ? "icrc " : "", |
| rte); |
| } |
| |
| /* |
| * The following functions are called by the interrupt handler. They are type |
| * specific handlers for each packet type. |
| */ |
| int process_receive_ib(struct hfi1_packet *packet) |
| { |
| trace_hfi1_rcvhdr(packet->rcd->ppd->dd, |
| packet->rcd->ctxt, |
| rhf_err_flags(packet->rhf), |
| RHF_RCV_TYPE_IB, |
| packet->hlen, |
| packet->tlen, |
| packet->updegr, |
| rhf_egr_index(packet->rhf)); |
| |
| if (unlikely(rhf_err_flags(packet->rhf))) { |
| handle_eflags(packet); |
| return RHF_RCV_CONTINUE; |
| } |
| |
| hfi1_ib_rcv(packet); |
| return RHF_RCV_CONTINUE; |
| } |
| |
| int process_receive_bypass(struct hfi1_packet *packet) |
| { |
| if (unlikely(rhf_err_flags(packet->rhf))) |
| handle_eflags(packet); |
| |
| dd_dev_err(packet->rcd->dd, |
| "Bypass packets are not supported in normal operation. Dropping\n"); |
| incr_cntr64(&packet->rcd->dd->sw_rcv_bypass_packet_errors); |
| return RHF_RCV_CONTINUE; |
| } |
| |
| int process_receive_error(struct hfi1_packet *packet) |
| { |
| handle_eflags(packet); |
| |
| if (unlikely(rhf_err_flags(packet->rhf))) |
| dd_dev_err(packet->rcd->dd, |
| "Unhandled error packet received. Dropping.\n"); |
| |
| return RHF_RCV_CONTINUE; |
| } |
| |
| int kdeth_process_expected(struct hfi1_packet *packet) |
| { |
| if (unlikely(rhf_err_flags(packet->rhf))) |
| handle_eflags(packet); |
| |
| dd_dev_err(packet->rcd->dd, |
| "Unhandled expected packet received. Dropping.\n"); |
| return RHF_RCV_CONTINUE; |
| } |
| |
| int kdeth_process_eager(struct hfi1_packet *packet) |
| { |
| if (unlikely(rhf_err_flags(packet->rhf))) |
| handle_eflags(packet); |
| |
| dd_dev_err(packet->rcd->dd, |
| "Unhandled eager packet received. Dropping.\n"); |
| return RHF_RCV_CONTINUE; |
| } |
| |
| int process_receive_invalid(struct hfi1_packet *packet) |
| { |
| dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n", |
| rhf_rcv_type(packet->rhf)); |
| return RHF_RCV_CONTINUE; |
| } |