| /* |
| * (C) Dominik Brodowski <linux@brodo.de> 2003 |
| * |
| * Driver to use the Power Management Timer (PMTMR) available in some |
| * southbridges as primary timing source for the Linux kernel. |
| * |
| * Based on parts of linux/drivers/acpi/hardware/hwtimer.c, timer_pit.c, |
| * timer_hpet.c, and on Arjan van de Ven's implementation for 2.4. |
| * |
| * This file is licensed under the GPL v2. |
| */ |
| |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/device.h> |
| #include <linux/init.h> |
| #include <linux/pci.h> |
| #include <asm/types.h> |
| #include <asm/timer.h> |
| #include <asm/smp.h> |
| #include <asm/io.h> |
| #include <asm/arch_hooks.h> |
| |
| #include <linux/timex.h> |
| #include "mach_timer.h" |
| |
| /* Number of PMTMR ticks expected during calibration run */ |
| #define PMTMR_TICKS_PER_SEC 3579545 |
| #define PMTMR_EXPECTED_RATE \ |
| ((CALIBRATE_LATCH * (PMTMR_TICKS_PER_SEC >> 10)) / (CLOCK_TICK_RATE>>10)) |
| |
| |
| /* The I/O port the PMTMR resides at. |
| * The location is detected during setup_arch(), |
| * in arch/i386/acpi/boot.c */ |
| u32 pmtmr_ioport = 0; |
| |
| |
| /* value of the Power timer at last timer interrupt */ |
| static u32 offset_tick; |
| static u32 offset_delay; |
| |
| static unsigned long long monotonic_base; |
| static seqlock_t monotonic_lock = SEQLOCK_UNLOCKED; |
| |
| #define ACPI_PM_MASK 0xFFFFFF /* limit it to 24 bits */ |
| |
| static int pmtmr_need_workaround __read_mostly = 1; |
| |
| /*helper function to safely read acpi pm timesource*/ |
| static inline u32 read_pmtmr(void) |
| { |
| if (pmtmr_need_workaround) { |
| u32 v1, v2, v3; |
| |
| /* It has been reported that because of various broken |
| * chipsets (ICH4, PIIX4 and PIIX4E) where the ACPI PM time |
| * source is not latched, so you must read it multiple |
| * times to insure a safe value is read. |
| */ |
| do { |
| v1 = inl(pmtmr_ioport); |
| v2 = inl(pmtmr_ioport); |
| v3 = inl(pmtmr_ioport); |
| } while ((v1 > v2 && v1 < v3) || (v2 > v3 && v2 < v1) |
| || (v3 > v1 && v3 < v2)); |
| |
| /* mask the output to 24 bits */ |
| return v2 & ACPI_PM_MASK; |
| } |
| |
| return inl(pmtmr_ioport) & ACPI_PM_MASK; |
| } |
| |
| |
| /* |
| * Some boards have the PMTMR running way too fast. We check |
| * the PMTMR rate against PIT channel 2 to catch these cases. |
| */ |
| static int verify_pmtmr_rate(void) |
| { |
| u32 value1, value2; |
| unsigned long count, delta; |
| |
| mach_prepare_counter(); |
| value1 = read_pmtmr(); |
| mach_countup(&count); |
| value2 = read_pmtmr(); |
| delta = (value2 - value1) & ACPI_PM_MASK; |
| |
| /* Check that the PMTMR delta is within 5% of what we expect */ |
| if (delta < (PMTMR_EXPECTED_RATE * 19) / 20 || |
| delta > (PMTMR_EXPECTED_RATE * 21) / 20) { |
| printk(KERN_INFO "PM-Timer running at invalid rate: %lu%% of normal - aborting.\n", 100UL * delta / PMTMR_EXPECTED_RATE); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| |
| static int init_pmtmr(char* override) |
| { |
| u32 value1, value2; |
| unsigned int i; |
| |
| if (override[0] && strncmp(override,"pmtmr",5)) |
| return -ENODEV; |
| |
| if (!pmtmr_ioport) |
| return -ENODEV; |
| |
| /* we use the TSC for delay_pmtmr, so make sure it exists */ |
| if (!cpu_has_tsc) |
| return -ENODEV; |
| |
| /* "verify" this timing source */ |
| value1 = read_pmtmr(); |
| for (i = 0; i < 10000; i++) { |
| value2 = read_pmtmr(); |
| if (value2 == value1) |
| continue; |
| if (value2 > value1) |
| goto pm_good; |
| if ((value2 < value1) && ((value2) < 0xFFF)) |
| goto pm_good; |
| printk(KERN_INFO "PM-Timer had inconsistent results: 0x%#x, 0x%#x - aborting.\n", value1, value2); |
| return -EINVAL; |
| } |
| printk(KERN_INFO "PM-Timer had no reasonable result: 0x%#x - aborting.\n", value1); |
| return -ENODEV; |
| |
| pm_good: |
| if (verify_pmtmr_rate() != 0) |
| return -ENODEV; |
| |
| init_cpu_khz(); |
| return 0; |
| } |
| |
| static inline u32 cyc2us(u32 cycles) |
| { |
| /* The Power Management Timer ticks at 3.579545 ticks per microsecond. |
| * 1 / PM_TIMER_FREQUENCY == 0.27936511 =~ 286/1024 [error: 0.024%] |
| * |
| * Even with HZ = 100, delta is at maximum 35796 ticks, so it can |
| * easily be multiplied with 286 (=0x11E) without having to fear |
| * u32 overflows. |
| */ |
| cycles *= 286; |
| return (cycles >> 10); |
| } |
| |
| /* |
| * this gets called during each timer interrupt |
| * - Called while holding the writer xtime_lock |
| */ |
| static void mark_offset_pmtmr(void) |
| { |
| u32 lost, delta, last_offset; |
| static int first_run = 1; |
| last_offset = offset_tick; |
| |
| write_seqlock(&monotonic_lock); |
| |
| offset_tick = read_pmtmr(); |
| |
| /* calculate tick interval */ |
| delta = (offset_tick - last_offset) & ACPI_PM_MASK; |
| |
| /* convert to usecs */ |
| delta = cyc2us(delta); |
| |
| /* update the monotonic base value */ |
| monotonic_base += delta * NSEC_PER_USEC; |
| write_sequnlock(&monotonic_lock); |
| |
| /* convert to ticks */ |
| delta += offset_delay; |
| lost = delta / (USEC_PER_SEC / HZ); |
| offset_delay = delta % (USEC_PER_SEC / HZ); |
| |
| |
| /* compensate for lost ticks */ |
| if (lost >= 2) |
| jiffies_64 += lost - 1; |
| |
| /* don't calculate delay for first run, |
| or if we've got less then a tick */ |
| if (first_run || (lost < 1)) { |
| first_run = 0; |
| offset_delay = 0; |
| } |
| } |
| |
| static int pmtmr_resume(void) |
| { |
| write_seqlock(&monotonic_lock); |
| /* Assume this is the last mark offset time */ |
| offset_tick = read_pmtmr(); |
| write_sequnlock(&monotonic_lock); |
| return 0; |
| } |
| |
| static unsigned long long monotonic_clock_pmtmr(void) |
| { |
| u32 last_offset, this_offset; |
| unsigned long long base, ret; |
| unsigned seq; |
| |
| |
| /* atomically read monotonic base & last_offset */ |
| do { |
| seq = read_seqbegin(&monotonic_lock); |
| last_offset = offset_tick; |
| base = monotonic_base; |
| } while (read_seqretry(&monotonic_lock, seq)); |
| |
| /* Read the pmtmr */ |
| this_offset = read_pmtmr(); |
| |
| /* convert to nanoseconds */ |
| ret = (this_offset - last_offset) & ACPI_PM_MASK; |
| ret = base + (cyc2us(ret) * NSEC_PER_USEC); |
| return ret; |
| } |
| |
| static void delay_pmtmr(unsigned long loops) |
| { |
| unsigned long bclock, now; |
| |
| rdtscl(bclock); |
| do |
| { |
| rep_nop(); |
| rdtscl(now); |
| } while ((now-bclock) < loops); |
| } |
| |
| |
| /* |
| * get the offset (in microseconds) from the last call to mark_offset() |
| * - Called holding a reader xtime_lock |
| */ |
| static unsigned long get_offset_pmtmr(void) |
| { |
| u32 now, offset, delta = 0; |
| |
| offset = offset_tick; |
| now = read_pmtmr(); |
| delta = (now - offset)&ACPI_PM_MASK; |
| |
| return (unsigned long) offset_delay + cyc2us(delta); |
| } |
| |
| |
| /* acpi timer_opts struct */ |
| static struct timer_opts timer_pmtmr = { |
| .name = "pmtmr", |
| .mark_offset = mark_offset_pmtmr, |
| .get_offset = get_offset_pmtmr, |
| .monotonic_clock = monotonic_clock_pmtmr, |
| .delay = delay_pmtmr, |
| .read_timer = read_timer_tsc, |
| .resume = pmtmr_resume, |
| }; |
| |
| struct init_timer_opts __initdata timer_pmtmr_init = { |
| .init = init_pmtmr, |
| .opts = &timer_pmtmr, |
| }; |
| |
| #ifdef CONFIG_PCI |
| /* |
| * PIIX4 Errata: |
| * |
| * The power management timer may return improper results when read. |
| * Although the timer value settles properly after incrementing, |
| * while incrementing there is a 3 ns window every 69.8 ns where the |
| * timer value is indeterminate (a 4.2% chance that the data will be |
| * incorrect when read). As a result, the ACPI free running count up |
| * timer specification is violated due to erroneous reads. |
| */ |
| static int __init pmtmr_bug_check(void) |
| { |
| static struct pci_device_id gray_list[] __initdata = { |
| /* these chipsets may have bug. */ |
| { PCI_DEVICE(PCI_VENDOR_ID_INTEL, |
| PCI_DEVICE_ID_INTEL_82801DB_0) }, |
| { }, |
| }; |
| struct pci_dev *dev; |
| int pmtmr_has_bug = 0; |
| u8 rev; |
| |
| if (cur_timer != &timer_pmtmr || !pmtmr_need_workaround) |
| return 0; |
| |
| dev = pci_get_device(PCI_VENDOR_ID_INTEL, |
| PCI_DEVICE_ID_INTEL_82371AB_3, NULL); |
| if (dev) { |
| pci_read_config_byte(dev, PCI_REVISION_ID, &rev); |
| /* the bug has been fixed in PIIX4M */ |
| if (rev < 3) { |
| printk(KERN_WARNING "* Found PM-Timer Bug on this " |
| "chipset. Due to workarounds for a bug,\n" |
| "* this time source is slow. Consider trying " |
| "other time sources (clock=)\n"); |
| pmtmr_has_bug = 1; |
| } |
| pci_dev_put(dev); |
| } |
| |
| if (pci_dev_present(gray_list)) { |
| printk(KERN_WARNING "* This chipset may have PM-Timer Bug. Due" |
| " to workarounds for a bug,\n" |
| "* this time source is slow. If you are sure your timer" |
| " does not have\n" |
| "* this bug, please use \"pmtmr_good\" to disable the " |
| "workaround\n"); |
| pmtmr_has_bug = 1; |
| } |
| |
| if (!pmtmr_has_bug) |
| pmtmr_need_workaround = 0; |
| |
| return 0; |
| } |
| device_initcall(pmtmr_bug_check); |
| #endif |
| |
| static int __init pmtr_good_setup(char *__str) |
| { |
| pmtmr_need_workaround = 0; |
| return 1; |
| } |
| __setup("pmtmr_good", pmtr_good_setup); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Dominik Brodowski <linux@brodo.de>"); |
| MODULE_DESCRIPTION("Power Management Timer (PMTMR) as primary timing source for x86"); |