| /* |
| * Copyright (c) 2007-2017 Nicira, Inc. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of version 2 of the GNU General Public |
| * License as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
| * 02110-1301, USA |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include "flow.h" |
| #include "datapath.h" |
| #include <linux/uaccess.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/if_ether.h> |
| #include <linux/if_vlan.h> |
| #include <net/llc_pdu.h> |
| #include <linux/kernel.h> |
| #include <linux/jhash.h> |
| #include <linux/jiffies.h> |
| #include <linux/llc.h> |
| #include <linux/module.h> |
| #include <linux/in.h> |
| #include <linux/rcupdate.h> |
| #include <linux/if_arp.h> |
| #include <linux/ip.h> |
| #include <linux/ipv6.h> |
| #include <linux/sctp.h> |
| #include <linux/tcp.h> |
| #include <linux/udp.h> |
| #include <linux/icmp.h> |
| #include <linux/icmpv6.h> |
| #include <linux/rculist.h> |
| #include <net/geneve.h> |
| #include <net/ip.h> |
| #include <net/ipv6.h> |
| #include <net/ndisc.h> |
| #include <net/mpls.h> |
| #include <net/vxlan.h> |
| #include <net/tun_proto.h> |
| |
| #include "flow_netlink.h" |
| |
| struct ovs_len_tbl { |
| int len; |
| const struct ovs_len_tbl *next; |
| }; |
| |
| #define OVS_ATTR_NESTED -1 |
| #define OVS_ATTR_VARIABLE -2 |
| |
| static bool actions_may_change_flow(const struct nlattr *actions) |
| { |
| struct nlattr *nla; |
| int rem; |
| |
| nla_for_each_nested(nla, actions, rem) { |
| u16 action = nla_type(nla); |
| |
| switch (action) { |
| case OVS_ACTION_ATTR_OUTPUT: |
| case OVS_ACTION_ATTR_RECIRC: |
| case OVS_ACTION_ATTR_TRUNC: |
| case OVS_ACTION_ATTR_USERSPACE: |
| break; |
| |
| case OVS_ACTION_ATTR_CT: |
| case OVS_ACTION_ATTR_CT_CLEAR: |
| case OVS_ACTION_ATTR_HASH: |
| case OVS_ACTION_ATTR_POP_ETH: |
| case OVS_ACTION_ATTR_POP_MPLS: |
| case OVS_ACTION_ATTR_POP_NSH: |
| case OVS_ACTION_ATTR_POP_VLAN: |
| case OVS_ACTION_ATTR_PUSH_ETH: |
| case OVS_ACTION_ATTR_PUSH_MPLS: |
| case OVS_ACTION_ATTR_PUSH_NSH: |
| case OVS_ACTION_ATTR_PUSH_VLAN: |
| case OVS_ACTION_ATTR_SAMPLE: |
| case OVS_ACTION_ATTR_SET: |
| case OVS_ACTION_ATTR_SET_MASKED: |
| case OVS_ACTION_ATTR_METER: |
| default: |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static void update_range(struct sw_flow_match *match, |
| size_t offset, size_t size, bool is_mask) |
| { |
| struct sw_flow_key_range *range; |
| size_t start = rounddown(offset, sizeof(long)); |
| size_t end = roundup(offset + size, sizeof(long)); |
| |
| if (!is_mask) |
| range = &match->range; |
| else |
| range = &match->mask->range; |
| |
| if (range->start == range->end) { |
| range->start = start; |
| range->end = end; |
| return; |
| } |
| |
| if (range->start > start) |
| range->start = start; |
| |
| if (range->end < end) |
| range->end = end; |
| } |
| |
| #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \ |
| do { \ |
| update_range(match, offsetof(struct sw_flow_key, field), \ |
| sizeof((match)->key->field), is_mask); \ |
| if (is_mask) \ |
| (match)->mask->key.field = value; \ |
| else \ |
| (match)->key->field = value; \ |
| } while (0) |
| |
| #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask) \ |
| do { \ |
| update_range(match, offset, len, is_mask); \ |
| if (is_mask) \ |
| memcpy((u8 *)&(match)->mask->key + offset, value_p, \ |
| len); \ |
| else \ |
| memcpy((u8 *)(match)->key + offset, value_p, len); \ |
| } while (0) |
| |
| #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \ |
| SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \ |
| value_p, len, is_mask) |
| |
| #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask) \ |
| do { \ |
| update_range(match, offsetof(struct sw_flow_key, field), \ |
| sizeof((match)->key->field), is_mask); \ |
| if (is_mask) \ |
| memset((u8 *)&(match)->mask->key.field, value, \ |
| sizeof((match)->mask->key.field)); \ |
| else \ |
| memset((u8 *)&(match)->key->field, value, \ |
| sizeof((match)->key->field)); \ |
| } while (0) |
| |
| static bool match_validate(const struct sw_flow_match *match, |
| u64 key_attrs, u64 mask_attrs, bool log) |
| { |
| u64 key_expected = 0; |
| u64 mask_allowed = key_attrs; /* At most allow all key attributes */ |
| |
| /* The following mask attributes allowed only if they |
| * pass the validation tests. */ |
| mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4) |
| | (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) |
| | (1 << OVS_KEY_ATTR_IPV6) |
| | (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) |
| | (1 << OVS_KEY_ATTR_TCP) |
| | (1 << OVS_KEY_ATTR_TCP_FLAGS) |
| | (1 << OVS_KEY_ATTR_UDP) |
| | (1 << OVS_KEY_ATTR_SCTP) |
| | (1 << OVS_KEY_ATTR_ICMP) |
| | (1 << OVS_KEY_ATTR_ICMPV6) |
| | (1 << OVS_KEY_ATTR_ARP) |
| | (1 << OVS_KEY_ATTR_ND) |
| | (1 << OVS_KEY_ATTR_MPLS) |
| | (1 << OVS_KEY_ATTR_NSH)); |
| |
| /* Always allowed mask fields. */ |
| mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL) |
| | (1 << OVS_KEY_ATTR_IN_PORT) |
| | (1 << OVS_KEY_ATTR_ETHERTYPE)); |
| |
| /* Check key attributes. */ |
| if (match->key->eth.type == htons(ETH_P_ARP) |
| || match->key->eth.type == htons(ETH_P_RARP)) { |
| key_expected |= 1 << OVS_KEY_ATTR_ARP; |
| if (match->mask && (match->mask->key.eth.type == htons(0xffff))) |
| mask_allowed |= 1 << OVS_KEY_ATTR_ARP; |
| } |
| |
| if (eth_p_mpls(match->key->eth.type)) { |
| key_expected |= 1 << OVS_KEY_ATTR_MPLS; |
| if (match->mask && (match->mask->key.eth.type == htons(0xffff))) |
| mask_allowed |= 1 << OVS_KEY_ATTR_MPLS; |
| } |
| |
| if (match->key->eth.type == htons(ETH_P_IP)) { |
| key_expected |= 1 << OVS_KEY_ATTR_IPV4; |
| if (match->mask && match->mask->key.eth.type == htons(0xffff)) { |
| mask_allowed |= 1 << OVS_KEY_ATTR_IPV4; |
| mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4; |
| } |
| |
| if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) { |
| if (match->key->ip.proto == IPPROTO_UDP) { |
| key_expected |= 1 << OVS_KEY_ATTR_UDP; |
| if (match->mask && (match->mask->key.ip.proto == 0xff)) |
| mask_allowed |= 1 << OVS_KEY_ATTR_UDP; |
| } |
| |
| if (match->key->ip.proto == IPPROTO_SCTP) { |
| key_expected |= 1 << OVS_KEY_ATTR_SCTP; |
| if (match->mask && (match->mask->key.ip.proto == 0xff)) |
| mask_allowed |= 1 << OVS_KEY_ATTR_SCTP; |
| } |
| |
| if (match->key->ip.proto == IPPROTO_TCP) { |
| key_expected |= 1 << OVS_KEY_ATTR_TCP; |
| key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS; |
| if (match->mask && (match->mask->key.ip.proto == 0xff)) { |
| mask_allowed |= 1 << OVS_KEY_ATTR_TCP; |
| mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS; |
| } |
| } |
| |
| if (match->key->ip.proto == IPPROTO_ICMP) { |
| key_expected |= 1 << OVS_KEY_ATTR_ICMP; |
| if (match->mask && (match->mask->key.ip.proto == 0xff)) |
| mask_allowed |= 1 << OVS_KEY_ATTR_ICMP; |
| } |
| } |
| } |
| |
| if (match->key->eth.type == htons(ETH_P_IPV6)) { |
| key_expected |= 1 << OVS_KEY_ATTR_IPV6; |
| if (match->mask && match->mask->key.eth.type == htons(0xffff)) { |
| mask_allowed |= 1 << OVS_KEY_ATTR_IPV6; |
| mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6; |
| } |
| |
| if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) { |
| if (match->key->ip.proto == IPPROTO_UDP) { |
| key_expected |= 1 << OVS_KEY_ATTR_UDP; |
| if (match->mask && (match->mask->key.ip.proto == 0xff)) |
| mask_allowed |= 1 << OVS_KEY_ATTR_UDP; |
| } |
| |
| if (match->key->ip.proto == IPPROTO_SCTP) { |
| key_expected |= 1 << OVS_KEY_ATTR_SCTP; |
| if (match->mask && (match->mask->key.ip.proto == 0xff)) |
| mask_allowed |= 1 << OVS_KEY_ATTR_SCTP; |
| } |
| |
| if (match->key->ip.proto == IPPROTO_TCP) { |
| key_expected |= 1 << OVS_KEY_ATTR_TCP; |
| key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS; |
| if (match->mask && (match->mask->key.ip.proto == 0xff)) { |
| mask_allowed |= 1 << OVS_KEY_ATTR_TCP; |
| mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS; |
| } |
| } |
| |
| if (match->key->ip.proto == IPPROTO_ICMPV6) { |
| key_expected |= 1 << OVS_KEY_ATTR_ICMPV6; |
| if (match->mask && (match->mask->key.ip.proto == 0xff)) |
| mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6; |
| |
| if (match->key->tp.src == |
| htons(NDISC_NEIGHBOUR_SOLICITATION) || |
| match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) { |
| key_expected |= 1 << OVS_KEY_ATTR_ND; |
| /* Original direction conntrack tuple |
| * uses the same space as the ND fields |
| * in the key, so both are not allowed |
| * at the same time. |
| */ |
| mask_allowed &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6); |
| if (match->mask && (match->mask->key.tp.src == htons(0xff))) |
| mask_allowed |= 1 << OVS_KEY_ATTR_ND; |
| } |
| } |
| } |
| } |
| |
| if (match->key->eth.type == htons(ETH_P_NSH)) { |
| key_expected |= 1 << OVS_KEY_ATTR_NSH; |
| if (match->mask && |
| match->mask->key.eth.type == htons(0xffff)) { |
| mask_allowed |= 1 << OVS_KEY_ATTR_NSH; |
| } |
| } |
| |
| if ((key_attrs & key_expected) != key_expected) { |
| /* Key attributes check failed. */ |
| OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)", |
| (unsigned long long)key_attrs, |
| (unsigned long long)key_expected); |
| return false; |
| } |
| |
| if ((mask_attrs & mask_allowed) != mask_attrs) { |
| /* Mask attributes check failed. */ |
| OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)", |
| (unsigned long long)mask_attrs, |
| (unsigned long long)mask_allowed); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| size_t ovs_tun_key_attr_size(void) |
| { |
| /* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider |
| * updating this function. |
| */ |
| return nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */ |
| + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */ |
| + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */ |
| + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TOS */ |
| + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TTL */ |
| + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */ |
| + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_CSUM */ |
| + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_OAM */ |
| + nla_total_size(256) /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */ |
| /* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with |
| * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it. |
| */ |
| + nla_total_size(2) /* OVS_TUNNEL_KEY_ATTR_TP_SRC */ |
| + nla_total_size(2); /* OVS_TUNNEL_KEY_ATTR_TP_DST */ |
| } |
| |
| static size_t ovs_nsh_key_attr_size(void) |
| { |
| /* Whenever adding new OVS_NSH_KEY_ FIELDS, we should consider |
| * updating this function. |
| */ |
| return nla_total_size(NSH_BASE_HDR_LEN) /* OVS_NSH_KEY_ATTR_BASE */ |
| /* OVS_NSH_KEY_ATTR_MD1 and OVS_NSH_KEY_ATTR_MD2 are |
| * mutually exclusive, so the bigger one can cover |
| * the small one. |
| */ |
| + nla_total_size(NSH_CTX_HDRS_MAX_LEN); |
| } |
| |
| size_t ovs_key_attr_size(void) |
| { |
| /* Whenever adding new OVS_KEY_ FIELDS, we should consider |
| * updating this function. |
| */ |
| BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 29); |
| |
| return nla_total_size(4) /* OVS_KEY_ATTR_PRIORITY */ |
| + nla_total_size(0) /* OVS_KEY_ATTR_TUNNEL */ |
| + ovs_tun_key_attr_size() |
| + nla_total_size(4) /* OVS_KEY_ATTR_IN_PORT */ |
| + nla_total_size(4) /* OVS_KEY_ATTR_SKB_MARK */ |
| + nla_total_size(4) /* OVS_KEY_ATTR_DP_HASH */ |
| + nla_total_size(4) /* OVS_KEY_ATTR_RECIRC_ID */ |
| + nla_total_size(4) /* OVS_KEY_ATTR_CT_STATE */ |
| + nla_total_size(2) /* OVS_KEY_ATTR_CT_ZONE */ |
| + nla_total_size(4) /* OVS_KEY_ATTR_CT_MARK */ |
| + nla_total_size(16) /* OVS_KEY_ATTR_CT_LABELS */ |
| + nla_total_size(40) /* OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6 */ |
| + nla_total_size(0) /* OVS_KEY_ATTR_NSH */ |
| + ovs_nsh_key_attr_size() |
| + nla_total_size(12) /* OVS_KEY_ATTR_ETHERNET */ |
| + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */ |
| + nla_total_size(4) /* OVS_KEY_ATTR_VLAN */ |
| + nla_total_size(0) /* OVS_KEY_ATTR_ENCAP */ |
| + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */ |
| + nla_total_size(40) /* OVS_KEY_ATTR_IPV6 */ |
| + nla_total_size(2) /* OVS_KEY_ATTR_ICMPV6 */ |
| + nla_total_size(28); /* OVS_KEY_ATTR_ND */ |
| } |
| |
| static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = { |
| [OVS_VXLAN_EXT_GBP] = { .len = sizeof(u32) }, |
| }; |
| |
| static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = { |
| [OVS_TUNNEL_KEY_ATTR_ID] = { .len = sizeof(u64) }, |
| [OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = { .len = sizeof(u32) }, |
| [OVS_TUNNEL_KEY_ATTR_IPV4_DST] = { .len = sizeof(u32) }, |
| [OVS_TUNNEL_KEY_ATTR_TOS] = { .len = 1 }, |
| [OVS_TUNNEL_KEY_ATTR_TTL] = { .len = 1 }, |
| [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 }, |
| [OVS_TUNNEL_KEY_ATTR_CSUM] = { .len = 0 }, |
| [OVS_TUNNEL_KEY_ATTR_TP_SRC] = { .len = sizeof(u16) }, |
| [OVS_TUNNEL_KEY_ATTR_TP_DST] = { .len = sizeof(u16) }, |
| [OVS_TUNNEL_KEY_ATTR_OAM] = { .len = 0 }, |
| [OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS] = { .len = OVS_ATTR_VARIABLE }, |
| [OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS] = { .len = OVS_ATTR_NESTED, |
| .next = ovs_vxlan_ext_key_lens }, |
| [OVS_TUNNEL_KEY_ATTR_IPV6_SRC] = { .len = sizeof(struct in6_addr) }, |
| [OVS_TUNNEL_KEY_ATTR_IPV6_DST] = { .len = sizeof(struct in6_addr) }, |
| }; |
| |
| static const struct ovs_len_tbl |
| ovs_nsh_key_attr_lens[OVS_NSH_KEY_ATTR_MAX + 1] = { |
| [OVS_NSH_KEY_ATTR_BASE] = { .len = sizeof(struct ovs_nsh_key_base) }, |
| [OVS_NSH_KEY_ATTR_MD1] = { .len = sizeof(struct ovs_nsh_key_md1) }, |
| [OVS_NSH_KEY_ATTR_MD2] = { .len = OVS_ATTR_VARIABLE }, |
| }; |
| |
| /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */ |
| static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = { |
| [OVS_KEY_ATTR_ENCAP] = { .len = OVS_ATTR_NESTED }, |
| [OVS_KEY_ATTR_PRIORITY] = { .len = sizeof(u32) }, |
| [OVS_KEY_ATTR_IN_PORT] = { .len = sizeof(u32) }, |
| [OVS_KEY_ATTR_SKB_MARK] = { .len = sizeof(u32) }, |
| [OVS_KEY_ATTR_ETHERNET] = { .len = sizeof(struct ovs_key_ethernet) }, |
| [OVS_KEY_ATTR_VLAN] = { .len = sizeof(__be16) }, |
| [OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) }, |
| [OVS_KEY_ATTR_IPV4] = { .len = sizeof(struct ovs_key_ipv4) }, |
| [OVS_KEY_ATTR_IPV6] = { .len = sizeof(struct ovs_key_ipv6) }, |
| [OVS_KEY_ATTR_TCP] = { .len = sizeof(struct ovs_key_tcp) }, |
| [OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) }, |
| [OVS_KEY_ATTR_UDP] = { .len = sizeof(struct ovs_key_udp) }, |
| [OVS_KEY_ATTR_SCTP] = { .len = sizeof(struct ovs_key_sctp) }, |
| [OVS_KEY_ATTR_ICMP] = { .len = sizeof(struct ovs_key_icmp) }, |
| [OVS_KEY_ATTR_ICMPV6] = { .len = sizeof(struct ovs_key_icmpv6) }, |
| [OVS_KEY_ATTR_ARP] = { .len = sizeof(struct ovs_key_arp) }, |
| [OVS_KEY_ATTR_ND] = { .len = sizeof(struct ovs_key_nd) }, |
| [OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) }, |
| [OVS_KEY_ATTR_DP_HASH] = { .len = sizeof(u32) }, |
| [OVS_KEY_ATTR_TUNNEL] = { .len = OVS_ATTR_NESTED, |
| .next = ovs_tunnel_key_lens, }, |
| [OVS_KEY_ATTR_MPLS] = { .len = sizeof(struct ovs_key_mpls) }, |
| [OVS_KEY_ATTR_CT_STATE] = { .len = sizeof(u32) }, |
| [OVS_KEY_ATTR_CT_ZONE] = { .len = sizeof(u16) }, |
| [OVS_KEY_ATTR_CT_MARK] = { .len = sizeof(u32) }, |
| [OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) }, |
| [OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4] = { |
| .len = sizeof(struct ovs_key_ct_tuple_ipv4) }, |
| [OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6] = { |
| .len = sizeof(struct ovs_key_ct_tuple_ipv6) }, |
| [OVS_KEY_ATTR_NSH] = { .len = OVS_ATTR_NESTED, |
| .next = ovs_nsh_key_attr_lens, }, |
| }; |
| |
| static bool check_attr_len(unsigned int attr_len, unsigned int expected_len) |
| { |
| return expected_len == attr_len || |
| expected_len == OVS_ATTR_NESTED || |
| expected_len == OVS_ATTR_VARIABLE; |
| } |
| |
| static bool is_all_zero(const u8 *fp, size_t size) |
| { |
| int i; |
| |
| if (!fp) |
| return false; |
| |
| for (i = 0; i < size; i++) |
| if (fp[i]) |
| return false; |
| |
| return true; |
| } |
| |
| static int __parse_flow_nlattrs(const struct nlattr *attr, |
| const struct nlattr *a[], |
| u64 *attrsp, bool log, bool nz) |
| { |
| const struct nlattr *nla; |
| u64 attrs; |
| int rem; |
| |
| attrs = *attrsp; |
| nla_for_each_nested(nla, attr, rem) { |
| u16 type = nla_type(nla); |
| int expected_len; |
| |
| if (type > OVS_KEY_ATTR_MAX) { |
| OVS_NLERR(log, "Key type %d is out of range max %d", |
| type, OVS_KEY_ATTR_MAX); |
| return -EINVAL; |
| } |
| |
| if (attrs & (1 << type)) { |
| OVS_NLERR(log, "Duplicate key (type %d).", type); |
| return -EINVAL; |
| } |
| |
| expected_len = ovs_key_lens[type].len; |
| if (!check_attr_len(nla_len(nla), expected_len)) { |
| OVS_NLERR(log, "Key %d has unexpected len %d expected %d", |
| type, nla_len(nla), expected_len); |
| return -EINVAL; |
| } |
| |
| if (!nz || !is_all_zero(nla_data(nla), expected_len)) { |
| attrs |= 1 << type; |
| a[type] = nla; |
| } |
| } |
| if (rem) { |
| OVS_NLERR(log, "Message has %d unknown bytes.", rem); |
| return -EINVAL; |
| } |
| |
| *attrsp = attrs; |
| return 0; |
| } |
| |
| static int parse_flow_mask_nlattrs(const struct nlattr *attr, |
| const struct nlattr *a[], u64 *attrsp, |
| bool log) |
| { |
| return __parse_flow_nlattrs(attr, a, attrsp, log, true); |
| } |
| |
| int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[], |
| u64 *attrsp, bool log) |
| { |
| return __parse_flow_nlattrs(attr, a, attrsp, log, false); |
| } |
| |
| static int genev_tun_opt_from_nlattr(const struct nlattr *a, |
| struct sw_flow_match *match, bool is_mask, |
| bool log) |
| { |
| unsigned long opt_key_offset; |
| |
| if (nla_len(a) > sizeof(match->key->tun_opts)) { |
| OVS_NLERR(log, "Geneve option length err (len %d, max %zu).", |
| nla_len(a), sizeof(match->key->tun_opts)); |
| return -EINVAL; |
| } |
| |
| if (nla_len(a) % 4 != 0) { |
| OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.", |
| nla_len(a)); |
| return -EINVAL; |
| } |
| |
| /* We need to record the length of the options passed |
| * down, otherwise packets with the same format but |
| * additional options will be silently matched. |
| */ |
| if (!is_mask) { |
| SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a), |
| false); |
| } else { |
| /* This is somewhat unusual because it looks at |
| * both the key and mask while parsing the |
| * attributes (and by extension assumes the key |
| * is parsed first). Normally, we would verify |
| * that each is the correct length and that the |
| * attributes line up in the validate function. |
| * However, that is difficult because this is |
| * variable length and we won't have the |
| * information later. |
| */ |
| if (match->key->tun_opts_len != nla_len(a)) { |
| OVS_NLERR(log, "Geneve option len %d != mask len %d", |
| match->key->tun_opts_len, nla_len(a)); |
| return -EINVAL; |
| } |
| |
| SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true); |
| } |
| |
| opt_key_offset = TUN_METADATA_OFFSET(nla_len(a)); |
| SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a), |
| nla_len(a), is_mask); |
| return 0; |
| } |
| |
| static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr, |
| struct sw_flow_match *match, bool is_mask, |
| bool log) |
| { |
| struct nlattr *a; |
| int rem; |
| unsigned long opt_key_offset; |
| struct vxlan_metadata opts; |
| |
| BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts)); |
| |
| memset(&opts, 0, sizeof(opts)); |
| nla_for_each_nested(a, attr, rem) { |
| int type = nla_type(a); |
| |
| if (type > OVS_VXLAN_EXT_MAX) { |
| OVS_NLERR(log, "VXLAN extension %d out of range max %d", |
| type, OVS_VXLAN_EXT_MAX); |
| return -EINVAL; |
| } |
| |
| if (!check_attr_len(nla_len(a), |
| ovs_vxlan_ext_key_lens[type].len)) { |
| OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d", |
| type, nla_len(a), |
| ovs_vxlan_ext_key_lens[type].len); |
| return -EINVAL; |
| } |
| |
| switch (type) { |
| case OVS_VXLAN_EXT_GBP: |
| opts.gbp = nla_get_u32(a); |
| break; |
| default: |
| OVS_NLERR(log, "Unknown VXLAN extension attribute %d", |
| type); |
| return -EINVAL; |
| } |
| } |
| if (rem) { |
| OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.", |
| rem); |
| return -EINVAL; |
| } |
| |
| if (!is_mask) |
| SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false); |
| else |
| SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true); |
| |
| opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts)); |
| SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts), |
| is_mask); |
| return 0; |
| } |
| |
| static int ip_tun_from_nlattr(const struct nlattr *attr, |
| struct sw_flow_match *match, bool is_mask, |
| bool log) |
| { |
| bool ttl = false, ipv4 = false, ipv6 = false; |
| __be16 tun_flags = 0; |
| int opts_type = 0; |
| struct nlattr *a; |
| int rem; |
| |
| nla_for_each_nested(a, attr, rem) { |
| int type = nla_type(a); |
| int err; |
| |
| if (type > OVS_TUNNEL_KEY_ATTR_MAX) { |
| OVS_NLERR(log, "Tunnel attr %d out of range max %d", |
| type, OVS_TUNNEL_KEY_ATTR_MAX); |
| return -EINVAL; |
| } |
| |
| if (!check_attr_len(nla_len(a), |
| ovs_tunnel_key_lens[type].len)) { |
| OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d", |
| type, nla_len(a), ovs_tunnel_key_lens[type].len); |
| return -EINVAL; |
| } |
| |
| switch (type) { |
| case OVS_TUNNEL_KEY_ATTR_ID: |
| SW_FLOW_KEY_PUT(match, tun_key.tun_id, |
| nla_get_be64(a), is_mask); |
| tun_flags |= TUNNEL_KEY; |
| break; |
| case OVS_TUNNEL_KEY_ATTR_IPV4_SRC: |
| SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src, |
| nla_get_in_addr(a), is_mask); |
| ipv4 = true; |
| break; |
| case OVS_TUNNEL_KEY_ATTR_IPV4_DST: |
| SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst, |
| nla_get_in_addr(a), is_mask); |
| ipv4 = true; |
| break; |
| case OVS_TUNNEL_KEY_ATTR_IPV6_SRC: |
| SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src, |
| nla_get_in6_addr(a), is_mask); |
| ipv6 = true; |
| break; |
| case OVS_TUNNEL_KEY_ATTR_IPV6_DST: |
| SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst, |
| nla_get_in6_addr(a), is_mask); |
| ipv6 = true; |
| break; |
| case OVS_TUNNEL_KEY_ATTR_TOS: |
| SW_FLOW_KEY_PUT(match, tun_key.tos, |
| nla_get_u8(a), is_mask); |
| break; |
| case OVS_TUNNEL_KEY_ATTR_TTL: |
| SW_FLOW_KEY_PUT(match, tun_key.ttl, |
| nla_get_u8(a), is_mask); |
| ttl = true; |
| break; |
| case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT: |
| tun_flags |= TUNNEL_DONT_FRAGMENT; |
| break; |
| case OVS_TUNNEL_KEY_ATTR_CSUM: |
| tun_flags |= TUNNEL_CSUM; |
| break; |
| case OVS_TUNNEL_KEY_ATTR_TP_SRC: |
| SW_FLOW_KEY_PUT(match, tun_key.tp_src, |
| nla_get_be16(a), is_mask); |
| break; |
| case OVS_TUNNEL_KEY_ATTR_TP_DST: |
| SW_FLOW_KEY_PUT(match, tun_key.tp_dst, |
| nla_get_be16(a), is_mask); |
| break; |
| case OVS_TUNNEL_KEY_ATTR_OAM: |
| tun_flags |= TUNNEL_OAM; |
| break; |
| case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS: |
| if (opts_type) { |
| OVS_NLERR(log, "Multiple metadata blocks provided"); |
| return -EINVAL; |
| } |
| |
| err = genev_tun_opt_from_nlattr(a, match, is_mask, log); |
| if (err) |
| return err; |
| |
| tun_flags |= TUNNEL_GENEVE_OPT; |
| opts_type = type; |
| break; |
| case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS: |
| if (opts_type) { |
| OVS_NLERR(log, "Multiple metadata blocks provided"); |
| return -EINVAL; |
| } |
| |
| err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log); |
| if (err) |
| return err; |
| |
| tun_flags |= TUNNEL_VXLAN_OPT; |
| opts_type = type; |
| break; |
| case OVS_TUNNEL_KEY_ATTR_PAD: |
| break; |
| default: |
| OVS_NLERR(log, "Unknown IP tunnel attribute %d", |
| type); |
| return -EINVAL; |
| } |
| } |
| |
| SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask); |
| if (is_mask) |
| SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true); |
| else |
| SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET, |
| false); |
| |
| if (rem > 0) { |
| OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.", |
| rem); |
| return -EINVAL; |
| } |
| |
| if (ipv4 && ipv6) { |
| OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes"); |
| return -EINVAL; |
| } |
| |
| if (!is_mask) { |
| if (!ipv4 && !ipv6) { |
| OVS_NLERR(log, "IP tunnel dst address not specified"); |
| return -EINVAL; |
| } |
| if (ipv4 && !match->key->tun_key.u.ipv4.dst) { |
| OVS_NLERR(log, "IPv4 tunnel dst address is zero"); |
| return -EINVAL; |
| } |
| if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) { |
| OVS_NLERR(log, "IPv6 tunnel dst address is zero"); |
| return -EINVAL; |
| } |
| |
| if (!ttl) { |
| OVS_NLERR(log, "IP tunnel TTL not specified."); |
| return -EINVAL; |
| } |
| } |
| |
| return opts_type; |
| } |
| |
| static int vxlan_opt_to_nlattr(struct sk_buff *skb, |
| const void *tun_opts, int swkey_tun_opts_len) |
| { |
| const struct vxlan_metadata *opts = tun_opts; |
| struct nlattr *nla; |
| |
| nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS); |
| if (!nla) |
| return -EMSGSIZE; |
| |
| if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0) |
| return -EMSGSIZE; |
| |
| nla_nest_end(skb, nla); |
| return 0; |
| } |
| |
| static int __ip_tun_to_nlattr(struct sk_buff *skb, |
| const struct ip_tunnel_key *output, |
| const void *tun_opts, int swkey_tun_opts_len, |
| unsigned short tun_proto) |
| { |
| if (output->tun_flags & TUNNEL_KEY && |
| nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id, |
| OVS_TUNNEL_KEY_ATTR_PAD)) |
| return -EMSGSIZE; |
| switch (tun_proto) { |
| case AF_INET: |
| if (output->u.ipv4.src && |
| nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, |
| output->u.ipv4.src)) |
| return -EMSGSIZE; |
| if (output->u.ipv4.dst && |
| nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, |
| output->u.ipv4.dst)) |
| return -EMSGSIZE; |
| break; |
| case AF_INET6: |
| if (!ipv6_addr_any(&output->u.ipv6.src) && |
| nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC, |
| &output->u.ipv6.src)) |
| return -EMSGSIZE; |
| if (!ipv6_addr_any(&output->u.ipv6.dst) && |
| nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST, |
| &output->u.ipv6.dst)) |
| return -EMSGSIZE; |
| break; |
| } |
| if (output->tos && |
| nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos)) |
| return -EMSGSIZE; |
| if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl)) |
| return -EMSGSIZE; |
| if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) && |
| nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT)) |
| return -EMSGSIZE; |
| if ((output->tun_flags & TUNNEL_CSUM) && |
| nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM)) |
| return -EMSGSIZE; |
| if (output->tp_src && |
| nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src)) |
| return -EMSGSIZE; |
| if (output->tp_dst && |
| nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst)) |
| return -EMSGSIZE; |
| if ((output->tun_flags & TUNNEL_OAM) && |
| nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM)) |
| return -EMSGSIZE; |
| if (swkey_tun_opts_len) { |
| if (output->tun_flags & TUNNEL_GENEVE_OPT && |
| nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS, |
| swkey_tun_opts_len, tun_opts)) |
| return -EMSGSIZE; |
| else if (output->tun_flags & TUNNEL_VXLAN_OPT && |
| vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len)) |
| return -EMSGSIZE; |
| } |
| |
| return 0; |
| } |
| |
| static int ip_tun_to_nlattr(struct sk_buff *skb, |
| const struct ip_tunnel_key *output, |
| const void *tun_opts, int swkey_tun_opts_len, |
| unsigned short tun_proto) |
| { |
| struct nlattr *nla; |
| int err; |
| |
| nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL); |
| if (!nla) |
| return -EMSGSIZE; |
| |
| err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len, |
| tun_proto); |
| if (err) |
| return err; |
| |
| nla_nest_end(skb, nla); |
| return 0; |
| } |
| |
| int ovs_nla_put_tunnel_info(struct sk_buff *skb, |
| struct ip_tunnel_info *tun_info) |
| { |
| return __ip_tun_to_nlattr(skb, &tun_info->key, |
| ip_tunnel_info_opts(tun_info), |
| tun_info->options_len, |
| ip_tunnel_info_af(tun_info)); |
| } |
| |
| static int encode_vlan_from_nlattrs(struct sw_flow_match *match, |
| const struct nlattr *a[], |
| bool is_mask, bool inner) |
| { |
| __be16 tci = 0; |
| __be16 tpid = 0; |
| |
| if (a[OVS_KEY_ATTR_VLAN]) |
| tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); |
| |
| if (a[OVS_KEY_ATTR_ETHERTYPE]) |
| tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); |
| |
| if (likely(!inner)) { |
| SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask); |
| SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask); |
| } else { |
| SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask); |
| SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask); |
| } |
| return 0; |
| } |
| |
| static int validate_vlan_from_nlattrs(const struct sw_flow_match *match, |
| u64 key_attrs, bool inner, |
| const struct nlattr **a, bool log) |
| { |
| __be16 tci = 0; |
| |
| if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) && |
| (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) && |
| eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) { |
| /* Not a VLAN. */ |
| return 0; |
| } |
| |
| if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) && |
| (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) { |
| OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN"); |
| return -EINVAL; |
| } |
| |
| if (a[OVS_KEY_ATTR_VLAN]) |
| tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); |
| |
| if (!(tci & htons(VLAN_TAG_PRESENT))) { |
| if (tci) { |
| OVS_NLERR(log, "%s TCI does not have VLAN_TAG_PRESENT bit set.", |
| (inner) ? "C-VLAN" : "VLAN"); |
| return -EINVAL; |
| } else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) { |
| /* Corner case for truncated VLAN header. */ |
| OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.", |
| (inner) ? "C-VLAN" : "VLAN"); |
| return -EINVAL; |
| } |
| } |
| |
| return 1; |
| } |
| |
| static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match, |
| u64 key_attrs, bool inner, |
| const struct nlattr **a, bool log) |
| { |
| __be16 tci = 0; |
| __be16 tpid = 0; |
| bool encap_valid = !!(match->key->eth.vlan.tci & |
| htons(VLAN_TAG_PRESENT)); |
| bool i_encap_valid = !!(match->key->eth.cvlan.tci & |
| htons(VLAN_TAG_PRESENT)); |
| |
| if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) { |
| /* Not a VLAN. */ |
| return 0; |
| } |
| |
| if ((!inner && !encap_valid) || (inner && !i_encap_valid)) { |
| OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.", |
| (inner) ? "C-VLAN" : "VLAN"); |
| return -EINVAL; |
| } |
| |
| if (a[OVS_KEY_ATTR_VLAN]) |
| tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); |
| |
| if (a[OVS_KEY_ATTR_ETHERTYPE]) |
| tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); |
| |
| if (tpid != htons(0xffff)) { |
| OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).", |
| (inner) ? "C-VLAN" : "VLAN", ntohs(tpid)); |
| return -EINVAL; |
| } |
| if (!(tci & htons(VLAN_TAG_PRESENT))) { |
| OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_TAG_PRESENT bit.", |
| (inner) ? "C-VLAN" : "VLAN"); |
| return -EINVAL; |
| } |
| |
| return 1; |
| } |
| |
| static int __parse_vlan_from_nlattrs(struct sw_flow_match *match, |
| u64 *key_attrs, bool inner, |
| const struct nlattr **a, bool is_mask, |
| bool log) |
| { |
| int err; |
| const struct nlattr *encap; |
| |
| if (!is_mask) |
| err = validate_vlan_from_nlattrs(match, *key_attrs, inner, |
| a, log); |
| else |
| err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner, |
| a, log); |
| if (err <= 0) |
| return err; |
| |
| err = encode_vlan_from_nlattrs(match, a, is_mask, inner); |
| if (err) |
| return err; |
| |
| *key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP); |
| *key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN); |
| *key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); |
| |
| encap = a[OVS_KEY_ATTR_ENCAP]; |
| |
| if (!is_mask) |
| err = parse_flow_nlattrs(encap, a, key_attrs, log); |
| else |
| err = parse_flow_mask_nlattrs(encap, a, key_attrs, log); |
| |
| return err; |
| } |
| |
| static int parse_vlan_from_nlattrs(struct sw_flow_match *match, |
| u64 *key_attrs, const struct nlattr **a, |
| bool is_mask, bool log) |
| { |
| int err; |
| bool encap_valid = false; |
| |
| err = __parse_vlan_from_nlattrs(match, key_attrs, false, a, |
| is_mask, log); |
| if (err) |
| return err; |
| |
| encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_TAG_PRESENT)); |
| if (encap_valid) { |
| err = __parse_vlan_from_nlattrs(match, key_attrs, true, a, |
| is_mask, log); |
| if (err) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static int parse_eth_type_from_nlattrs(struct sw_flow_match *match, |
| u64 *attrs, const struct nlattr **a, |
| bool is_mask, bool log) |
| { |
| __be16 eth_type; |
| |
| eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); |
| if (is_mask) { |
| /* Always exact match EtherType. */ |
| eth_type = htons(0xffff); |
| } else if (!eth_proto_is_802_3(eth_type)) { |
| OVS_NLERR(log, "EtherType %x is less than min %x", |
| ntohs(eth_type), ETH_P_802_3_MIN); |
| return -EINVAL; |
| } |
| |
| SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask); |
| *attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); |
| return 0; |
| } |
| |
| static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match, |
| u64 *attrs, const struct nlattr **a, |
| bool is_mask, bool log) |
| { |
| u8 mac_proto = MAC_PROTO_ETHERNET; |
| |
| if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) { |
| u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]); |
| |
| SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask); |
| *attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH); |
| } |
| |
| if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) { |
| u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]); |
| |
| SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask); |
| *attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID); |
| } |
| |
| if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) { |
| SW_FLOW_KEY_PUT(match, phy.priority, |
| nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask); |
| *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY); |
| } |
| |
| if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) { |
| u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]); |
| |
| if (is_mask) { |
| in_port = 0xffffffff; /* Always exact match in_port. */ |
| } else if (in_port >= DP_MAX_PORTS) { |
| OVS_NLERR(log, "Port %d exceeds max allowable %d", |
| in_port, DP_MAX_PORTS); |
| return -EINVAL; |
| } |
| |
| SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask); |
| *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT); |
| } else if (!is_mask) { |
| SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask); |
| } |
| |
| if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) { |
| uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]); |
| |
| SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask); |
| *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK); |
| } |
| if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) { |
| if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match, |
| is_mask, log) < 0) |
| return -EINVAL; |
| *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL); |
| } |
| |
| if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) && |
| ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) { |
| u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]); |
| |
| if (ct_state & ~CT_SUPPORTED_MASK) { |
| OVS_NLERR(log, "ct_state flags %08x unsupported", |
| ct_state); |
| return -EINVAL; |
| } |
| |
| SW_FLOW_KEY_PUT(match, ct_state, ct_state, is_mask); |
| *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE); |
| } |
| if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) && |
| ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) { |
| u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]); |
| |
| SW_FLOW_KEY_PUT(match, ct_zone, ct_zone, is_mask); |
| *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE); |
| } |
| if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) && |
| ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) { |
| u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]); |
| |
| SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask); |
| *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK); |
| } |
| if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) && |
| ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) { |
| const struct ovs_key_ct_labels *cl; |
| |
| cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]); |
| SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels, |
| sizeof(*cl), is_mask); |
| *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS); |
| } |
| if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)) { |
| const struct ovs_key_ct_tuple_ipv4 *ct; |
| |
| ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4]); |
| |
| SW_FLOW_KEY_PUT(match, ipv4.ct_orig.src, ct->ipv4_src, is_mask); |
| SW_FLOW_KEY_PUT(match, ipv4.ct_orig.dst, ct->ipv4_dst, is_mask); |
| SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask); |
| SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask); |
| SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv4_proto, is_mask); |
| *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4); |
| } |
| if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)) { |
| const struct ovs_key_ct_tuple_ipv6 *ct; |
| |
| ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6]); |
| |
| SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.src, &ct->ipv6_src, |
| sizeof(match->key->ipv6.ct_orig.src), |
| is_mask); |
| SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.dst, &ct->ipv6_dst, |
| sizeof(match->key->ipv6.ct_orig.dst), |
| is_mask); |
| SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask); |
| SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask); |
| SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv6_proto, is_mask); |
| *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6); |
| } |
| |
| /* For layer 3 packets the Ethernet type is provided |
| * and treated as metadata but no MAC addresses are provided. |
| */ |
| if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) && |
| (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE))) |
| mac_proto = MAC_PROTO_NONE; |
| |
| /* Always exact match mac_proto */ |
| SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask); |
| |
| if (mac_proto == MAC_PROTO_NONE) |
| return parse_eth_type_from_nlattrs(match, attrs, a, is_mask, |
| log); |
| |
| return 0; |
| } |
| |
| int nsh_hdr_from_nlattr(const struct nlattr *attr, |
| struct nshhdr *nh, size_t size) |
| { |
| struct nlattr *a; |
| int rem; |
| u8 flags = 0; |
| u8 ttl = 0; |
| int mdlen = 0; |
| |
| /* validate_nsh has check this, so we needn't do duplicate check here |
| */ |
| if (size < NSH_BASE_HDR_LEN) |
| return -ENOBUFS; |
| |
| nla_for_each_nested(a, attr, rem) { |
| int type = nla_type(a); |
| |
| switch (type) { |
| case OVS_NSH_KEY_ATTR_BASE: { |
| const struct ovs_nsh_key_base *base = nla_data(a); |
| |
| flags = base->flags; |
| ttl = base->ttl; |
| nh->np = base->np; |
| nh->mdtype = base->mdtype; |
| nh->path_hdr = base->path_hdr; |
| break; |
| } |
| case OVS_NSH_KEY_ATTR_MD1: |
| mdlen = nla_len(a); |
| if (mdlen > size - NSH_BASE_HDR_LEN) |
| return -ENOBUFS; |
| memcpy(&nh->md1, nla_data(a), mdlen); |
| break; |
| |
| case OVS_NSH_KEY_ATTR_MD2: |
| mdlen = nla_len(a); |
| if (mdlen > size - NSH_BASE_HDR_LEN) |
| return -ENOBUFS; |
| memcpy(&nh->md2, nla_data(a), mdlen); |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| /* nsh header length = NSH_BASE_HDR_LEN + mdlen */ |
| nh->ver_flags_ttl_len = 0; |
| nsh_set_flags_ttl_len(nh, flags, ttl, NSH_BASE_HDR_LEN + mdlen); |
| |
| return 0; |
| } |
| |
| int nsh_key_from_nlattr(const struct nlattr *attr, |
| struct ovs_key_nsh *nsh, struct ovs_key_nsh *nsh_mask) |
| { |
| struct nlattr *a; |
| int rem; |
| |
| /* validate_nsh has check this, so we needn't do duplicate check here |
| */ |
| nla_for_each_nested(a, attr, rem) { |
| int type = nla_type(a); |
| |
| switch (type) { |
| case OVS_NSH_KEY_ATTR_BASE: { |
| const struct ovs_nsh_key_base *base = nla_data(a); |
| const struct ovs_nsh_key_base *base_mask = base + 1; |
| |
| nsh->base = *base; |
| nsh_mask->base = *base_mask; |
| break; |
| } |
| case OVS_NSH_KEY_ATTR_MD1: { |
| const struct ovs_nsh_key_md1 *md1 = nla_data(a); |
| const struct ovs_nsh_key_md1 *md1_mask = md1 + 1; |
| |
| memcpy(nsh->context, md1->context, sizeof(*md1)); |
| memcpy(nsh_mask->context, md1_mask->context, |
| sizeof(*md1_mask)); |
| break; |
| } |
| case OVS_NSH_KEY_ATTR_MD2: |
| /* Not supported yet */ |
| return -ENOTSUPP; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int nsh_key_put_from_nlattr(const struct nlattr *attr, |
| struct sw_flow_match *match, bool is_mask, |
| bool is_push_nsh, bool log) |
| { |
| struct nlattr *a; |
| int rem; |
| bool has_base = false; |
| bool has_md1 = false; |
| bool has_md2 = false; |
| u8 mdtype = 0; |
| int mdlen = 0; |
| |
| if (WARN_ON(is_push_nsh && is_mask)) |
| return -EINVAL; |
| |
| nla_for_each_nested(a, attr, rem) { |
| int type = nla_type(a); |
| int i; |
| |
| if (type > OVS_NSH_KEY_ATTR_MAX) { |
| OVS_NLERR(log, "nsh attr %d is out of range max %d", |
| type, OVS_NSH_KEY_ATTR_MAX); |
| return -EINVAL; |
| } |
| |
| if (!check_attr_len(nla_len(a), |
| ovs_nsh_key_attr_lens[type].len)) { |
| OVS_NLERR( |
| log, |
| "nsh attr %d has unexpected len %d expected %d", |
| type, |
| nla_len(a), |
| ovs_nsh_key_attr_lens[type].len |
| ); |
| return -EINVAL; |
| } |
| |
| switch (type) { |
| case OVS_NSH_KEY_ATTR_BASE: { |
| const struct ovs_nsh_key_base *base = nla_data(a); |
| |
| has_base = true; |
| mdtype = base->mdtype; |
| SW_FLOW_KEY_PUT(match, nsh.base.flags, |
| base->flags, is_mask); |
| SW_FLOW_KEY_PUT(match, nsh.base.ttl, |
| base->ttl, is_mask); |
| SW_FLOW_KEY_PUT(match, nsh.base.mdtype, |
| base->mdtype, is_mask); |
| SW_FLOW_KEY_PUT(match, nsh.base.np, |
| base->np, is_mask); |
| SW_FLOW_KEY_PUT(match, nsh.base.path_hdr, |
| base->path_hdr, is_mask); |
| break; |
| } |
| case OVS_NSH_KEY_ATTR_MD1: { |
| const struct ovs_nsh_key_md1 *md1 = nla_data(a); |
| |
| has_md1 = true; |
| for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) |
| SW_FLOW_KEY_PUT(match, nsh.context[i], |
| md1->context[i], is_mask); |
| break; |
| } |
| case OVS_NSH_KEY_ATTR_MD2: |
| if (!is_push_nsh) /* Not supported MD type 2 yet */ |
| return -ENOTSUPP; |
| |
| has_md2 = true; |
| mdlen = nla_len(a); |
| if (mdlen > NSH_CTX_HDRS_MAX_LEN || mdlen <= 0) { |
| OVS_NLERR( |
| log, |
| "Invalid MD length %d for MD type %d", |
| mdlen, |
| mdtype |
| ); |
| return -EINVAL; |
| } |
| break; |
| default: |
| OVS_NLERR(log, "Unknown nsh attribute %d", |
| type); |
| return -EINVAL; |
| } |
| } |
| |
| if (rem > 0) { |
| OVS_NLERR(log, "nsh attribute has %d unknown bytes.", rem); |
| return -EINVAL; |
| } |
| |
| if (has_md1 && has_md2) { |
| OVS_NLERR( |
| 1, |
| "invalid nsh attribute: md1 and md2 are exclusive." |
| ); |
| return -EINVAL; |
| } |
| |
| if (!is_mask) { |
| if ((has_md1 && mdtype != NSH_M_TYPE1) || |
| (has_md2 && mdtype != NSH_M_TYPE2)) { |
| OVS_NLERR(1, "nsh attribute has unmatched MD type %d.", |
| mdtype); |
| return -EINVAL; |
| } |
| |
| if (is_push_nsh && |
| (!has_base || (!has_md1 && !has_md2))) { |
| OVS_NLERR( |
| 1, |
| "push_nsh: missing base or metadata attributes" |
| ); |
| return -EINVAL; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match, |
| u64 attrs, const struct nlattr **a, |
| bool is_mask, bool log) |
| { |
| int err; |
| |
| err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log); |
| if (err) |
| return err; |
| |
| if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) { |
| const struct ovs_key_ethernet *eth_key; |
| |
| eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]); |
| SW_FLOW_KEY_MEMCPY(match, eth.src, |
| eth_key->eth_src, ETH_ALEN, is_mask); |
| SW_FLOW_KEY_MEMCPY(match, eth.dst, |
| eth_key->eth_dst, ETH_ALEN, is_mask); |
| attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET); |
| |
| if (attrs & (1 << OVS_KEY_ATTR_VLAN)) { |
| /* VLAN attribute is always parsed before getting here since it |
| * may occur multiple times. |
| */ |
| OVS_NLERR(log, "VLAN attribute unexpected."); |
| return -EINVAL; |
| } |
| |
| if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) { |
| err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask, |
| log); |
| if (err) |
| return err; |
| } else if (!is_mask) { |
| SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask); |
| } |
| } else if (!match->key->eth.type) { |
| OVS_NLERR(log, "Either Ethernet header or EtherType is required."); |
| return -EINVAL; |
| } |
| |
| if (attrs & (1 << OVS_KEY_ATTR_IPV4)) { |
| const struct ovs_key_ipv4 *ipv4_key; |
| |
| ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]); |
| if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) { |
| OVS_NLERR(log, "IPv4 frag type %d is out of range max %d", |
| ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX); |
| return -EINVAL; |
| } |
| SW_FLOW_KEY_PUT(match, ip.proto, |
| ipv4_key->ipv4_proto, is_mask); |
| SW_FLOW_KEY_PUT(match, ip.tos, |
| ipv4_key->ipv4_tos, is_mask); |
| SW_FLOW_KEY_PUT(match, ip.ttl, |
| ipv4_key->ipv4_ttl, is_mask); |
| SW_FLOW_KEY_PUT(match, ip.frag, |
| ipv4_key->ipv4_frag, is_mask); |
| SW_FLOW_KEY_PUT(match, ipv4.addr.src, |
| ipv4_key->ipv4_src, is_mask); |
| SW_FLOW_KEY_PUT(match, ipv4.addr.dst, |
| ipv4_key->ipv4_dst, is_mask); |
| attrs &= ~(1 << OVS_KEY_ATTR_IPV4); |
| } |
| |
| if (attrs & (1 << OVS_KEY_ATTR_IPV6)) { |
| const struct ovs_key_ipv6 *ipv6_key; |
| |
| ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]); |
| if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) { |
| OVS_NLERR(log, "IPv6 frag type %d is out of range max %d", |
| ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX); |
| return -EINVAL; |
| } |
| |
| if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) { |
| OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x)", |
| ntohl(ipv6_key->ipv6_label), (1 << 20) - 1); |
| return -EINVAL; |
| } |
| |
| SW_FLOW_KEY_PUT(match, ipv6.label, |
| ipv6_key->ipv6_label, is_mask); |
| SW_FLOW_KEY_PUT(match, ip.proto, |
| ipv6_key->ipv6_proto, is_mask); |
| SW_FLOW_KEY_PUT(match, ip.tos, |
| ipv6_key->ipv6_tclass, is_mask); |
| SW_FLOW_KEY_PUT(match, ip.ttl, |
| ipv6_key->ipv6_hlimit, is_mask); |
| SW_FLOW_KEY_PUT(match, ip.frag, |
| ipv6_key->ipv6_frag, is_mask); |
| SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src, |
| ipv6_key->ipv6_src, |
| sizeof(match->key->ipv6.addr.src), |
| is_mask); |
| SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst, |
| ipv6_key->ipv6_dst, |
| sizeof(match->key->ipv6.addr.dst), |
| is_mask); |
| |
| attrs &= ~(1 << OVS_KEY_ATTR_IPV6); |
| } |
| |
| if (attrs & (1 << OVS_KEY_ATTR_ARP)) { |
| const struct ovs_key_arp *arp_key; |
| |
| arp_key = nla_data(a[OVS_KEY_ATTR_ARP]); |
| if (!is_mask && (arp_key->arp_op & htons(0xff00))) { |
| OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).", |
| arp_key->arp_op); |
| return -EINVAL; |
| } |
| |
| SW_FLOW_KEY_PUT(match, ipv4.addr.src, |
| arp_key->arp_sip, is_mask); |
| SW_FLOW_KEY_PUT(match, ipv4.addr.dst, |
| arp_key->arp_tip, is_mask); |
| SW_FLOW_KEY_PUT(match, ip.proto, |
| ntohs(arp_key->arp_op), is_mask); |
| SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha, |
| arp_key->arp_sha, ETH_ALEN, is_mask); |
| SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha, |
| arp_key->arp_tha, ETH_ALEN, is_mask); |
| |
| attrs &= ~(1 << OVS_KEY_ATTR_ARP); |
| } |
| |
| if (attrs & (1 << OVS_KEY_ATTR_NSH)) { |
| if (nsh_key_put_from_nlattr(a[OVS_KEY_ATTR_NSH], match, |
| is_mask, false, log) < 0) |
| return -EINVAL; |
| attrs &= ~(1 << OVS_KEY_ATTR_NSH); |
| } |
| |
| if (attrs & (1 << OVS_KEY_ATTR_MPLS)) { |
| const struct ovs_key_mpls *mpls_key; |
| |
| mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]); |
| SW_FLOW_KEY_PUT(match, mpls.top_lse, |
| mpls_key->mpls_lse, is_mask); |
| |
| attrs &= ~(1 << OVS_KEY_ATTR_MPLS); |
| } |
| |
| if (attrs & (1 << OVS_KEY_ATTR_TCP)) { |
| const struct ovs_key_tcp *tcp_key; |
| |
| tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]); |
| SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask); |
| SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask); |
| attrs &= ~(1 << OVS_KEY_ATTR_TCP); |
| } |
| |
| if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) { |
| SW_FLOW_KEY_PUT(match, tp.flags, |
| nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]), |
| is_mask); |
| attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS); |
| } |
| |
| if (attrs & (1 << OVS_KEY_ATTR_UDP)) { |
| const struct ovs_key_udp *udp_key; |
| |
| udp_key = nla_data(a[OVS_KEY_ATTR_UDP]); |
| SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask); |
| SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask); |
| attrs &= ~(1 << OVS_KEY_ATTR_UDP); |
| } |
| |
| if (attrs & (1 << OVS_KEY_ATTR_SCTP)) { |
| const struct ovs_key_sctp *sctp_key; |
| |
| sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]); |
| SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask); |
| SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask); |
| attrs &= ~(1 << OVS_KEY_ATTR_SCTP); |
| } |
| |
| if (attrs & (1 << OVS_KEY_ATTR_ICMP)) { |
| const struct ovs_key_icmp *icmp_key; |
| |
| icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]); |
| SW_FLOW_KEY_PUT(match, tp.src, |
| htons(icmp_key->icmp_type), is_mask); |
| SW_FLOW_KEY_PUT(match, tp.dst, |
| htons(icmp_key->icmp_code), is_mask); |
| attrs &= ~(1 << OVS_KEY_ATTR_ICMP); |
| } |
| |
| if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) { |
| const struct ovs_key_icmpv6 *icmpv6_key; |
| |
| icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]); |
| SW_FLOW_KEY_PUT(match, tp.src, |
| htons(icmpv6_key->icmpv6_type), is_mask); |
| SW_FLOW_KEY_PUT(match, tp.dst, |
| htons(icmpv6_key->icmpv6_code), is_mask); |
| attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6); |
| } |
| |
| if (attrs & (1 << OVS_KEY_ATTR_ND)) { |
| const struct ovs_key_nd *nd_key; |
| |
| nd_key = nla_data(a[OVS_KEY_ATTR_ND]); |
| SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target, |
| nd_key->nd_target, |
| sizeof(match->key->ipv6.nd.target), |
| is_mask); |
| SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll, |
| nd_key->nd_sll, ETH_ALEN, is_mask); |
| SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll, |
| nd_key->nd_tll, ETH_ALEN, is_mask); |
| attrs &= ~(1 << OVS_KEY_ATTR_ND); |
| } |
| |
| if (attrs != 0) { |
| OVS_NLERR(log, "Unknown key attributes %llx", |
| (unsigned long long)attrs); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static void nlattr_set(struct nlattr *attr, u8 val, |
| const struct ovs_len_tbl *tbl) |
| { |
| struct nlattr *nla; |
| int rem; |
| |
| /* The nlattr stream should already have been validated */ |
| nla_for_each_nested(nla, attr, rem) { |
| if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED) { |
| if (tbl[nla_type(nla)].next) |
| tbl = tbl[nla_type(nla)].next; |
| nlattr_set(nla, val, tbl); |
| } else { |
| memset(nla_data(nla), val, nla_len(nla)); |
| } |
| |
| if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE) |
| *(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK; |
| } |
| } |
| |
| static void mask_set_nlattr(struct nlattr *attr, u8 val) |
| { |
| nlattr_set(attr, val, ovs_key_lens); |
| } |
| |
| /** |
| * ovs_nla_get_match - parses Netlink attributes into a flow key and |
| * mask. In case the 'mask' is NULL, the flow is treated as exact match |
| * flow. Otherwise, it is treated as a wildcarded flow, except the mask |
| * does not include any don't care bit. |
| * @net: Used to determine per-namespace field support. |
| * @match: receives the extracted flow match information. |
| * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute |
| * sequence. The fields should of the packet that triggered the creation |
| * of this flow. |
| * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink |
| * attribute specifies the mask field of the wildcarded flow. |
| * @log: Boolean to allow kernel error logging. Normally true, but when |
| * probing for feature compatibility this should be passed in as false to |
| * suppress unnecessary error logging. |
| */ |
| int ovs_nla_get_match(struct net *net, struct sw_flow_match *match, |
| const struct nlattr *nla_key, |
| const struct nlattr *nla_mask, |
| bool log) |
| { |
| const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; |
| struct nlattr *newmask = NULL; |
| u64 key_attrs = 0; |
| u64 mask_attrs = 0; |
| int err; |
| |
| err = parse_flow_nlattrs(nla_key, a, &key_attrs, log); |
| if (err) |
| return err; |
| |
| err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log); |
| if (err) |
| return err; |
| |
| err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log); |
| if (err) |
| return err; |
| |
| if (match->mask) { |
| if (!nla_mask) { |
| /* Create an exact match mask. We need to set to 0xff |
| * all the 'match->mask' fields that have been touched |
| * in 'match->key'. We cannot simply memset |
| * 'match->mask', because padding bytes and fields not |
| * specified in 'match->key' should be left to 0. |
| * Instead, we use a stream of netlink attributes, |
| * copied from 'key' and set to 0xff. |
| * ovs_key_from_nlattrs() will take care of filling |
| * 'match->mask' appropriately. |
| */ |
| newmask = kmemdup(nla_key, |
| nla_total_size(nla_len(nla_key)), |
| GFP_KERNEL); |
| if (!newmask) |
| return -ENOMEM; |
| |
| mask_set_nlattr(newmask, 0xff); |
| |
| /* The userspace does not send tunnel attributes that |
| * are 0, but we should not wildcard them nonetheless. |
| */ |
| if (match->key->tun_proto) |
| SW_FLOW_KEY_MEMSET_FIELD(match, tun_key, |
| 0xff, true); |
| |
| nla_mask = newmask; |
| } |
| |
| err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log); |
| if (err) |
| goto free_newmask; |
| |
| /* Always match on tci. */ |
| SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true); |
| SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true); |
| |
| err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log); |
| if (err) |
| goto free_newmask; |
| |
| err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true, |
| log); |
| if (err) |
| goto free_newmask; |
| } |
| |
| if (!match_validate(match, key_attrs, mask_attrs, log)) |
| err = -EINVAL; |
| |
| free_newmask: |
| kfree(newmask); |
| return err; |
| } |
| |
| static size_t get_ufid_len(const struct nlattr *attr, bool log) |
| { |
| size_t len; |
| |
| if (!attr) |
| return 0; |
| |
| len = nla_len(attr); |
| if (len < 1 || len > MAX_UFID_LENGTH) { |
| OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)", |
| nla_len(attr), MAX_UFID_LENGTH); |
| return 0; |
| } |
| |
| return len; |
| } |
| |
| /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID, |
| * or false otherwise. |
| */ |
| bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr, |
| bool log) |
| { |
| sfid->ufid_len = get_ufid_len(attr, log); |
| if (sfid->ufid_len) |
| memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len); |
| |
| return sfid->ufid_len; |
| } |
| |
| int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid, |
| const struct sw_flow_key *key, bool log) |
| { |
| struct sw_flow_key *new_key; |
| |
| if (ovs_nla_get_ufid(sfid, ufid, log)) |
| return 0; |
| |
| /* If UFID was not provided, use unmasked key. */ |
| new_key = kmalloc(sizeof(*new_key), GFP_KERNEL); |
| if (!new_key) |
| return -ENOMEM; |
| memcpy(new_key, key, sizeof(*key)); |
| sfid->unmasked_key = new_key; |
| |
| return 0; |
| } |
| |
| u32 ovs_nla_get_ufid_flags(const struct nlattr *attr) |
| { |
| return attr ? nla_get_u32(attr) : 0; |
| } |
| |
| /** |
| * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key. |
| * @net: Network namespace. |
| * @key: Receives extracted in_port, priority, tun_key, skb_mark and conntrack |
| * metadata. |
| * @a: Array of netlink attributes holding parsed %OVS_KEY_ATTR_* Netlink |
| * attributes. |
| * @attrs: Bit mask for the netlink attributes included in @a. |
| * @log: Boolean to allow kernel error logging. Normally true, but when |
| * probing for feature compatibility this should be passed in as false to |
| * suppress unnecessary error logging. |
| * |
| * This parses a series of Netlink attributes that form a flow key, which must |
| * take the same form accepted by flow_from_nlattrs(), but only enough of it to |
| * get the metadata, that is, the parts of the flow key that cannot be |
| * extracted from the packet itself. |
| * |
| * This must be called before the packet key fields are filled in 'key'. |
| */ |
| |
| int ovs_nla_get_flow_metadata(struct net *net, |
| const struct nlattr *a[OVS_KEY_ATTR_MAX + 1], |
| u64 attrs, struct sw_flow_key *key, bool log) |
| { |
| struct sw_flow_match match; |
| |
| memset(&match, 0, sizeof(match)); |
| match.key = key; |
| |
| key->ct_state = 0; |
| key->ct_zone = 0; |
| key->ct_orig_proto = 0; |
| memset(&key->ct, 0, sizeof(key->ct)); |
| memset(&key->ipv4.ct_orig, 0, sizeof(key->ipv4.ct_orig)); |
| memset(&key->ipv6.ct_orig, 0, sizeof(key->ipv6.ct_orig)); |
| |
| key->phy.in_port = DP_MAX_PORTS; |
| |
| return metadata_from_nlattrs(net, &match, &attrs, a, false, log); |
| } |
| |
| static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh, |
| bool is_mask) |
| { |
| __be16 eth_type = !is_mask ? vh->tpid : htons(0xffff); |
| |
| if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) || |
| nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci)) |
| return -EMSGSIZE; |
| return 0; |
| } |
| |
| static int nsh_key_to_nlattr(const struct ovs_key_nsh *nsh, bool is_mask, |
| struct sk_buff *skb) |
| { |
| struct nlattr *start; |
| |
| start = nla_nest_start(skb, OVS_KEY_ATTR_NSH); |
| if (!start) |
| return -EMSGSIZE; |
| |
| if (nla_put(skb, OVS_NSH_KEY_ATTR_BASE, sizeof(nsh->base), &nsh->base)) |
| goto nla_put_failure; |
| |
| if (is_mask || nsh->base.mdtype == NSH_M_TYPE1) { |
| if (nla_put(skb, OVS_NSH_KEY_ATTR_MD1, |
| sizeof(nsh->context), nsh->context)) |
| goto nla_put_failure; |
| } |
| |
| /* Don't support MD type 2 yet */ |
| |
| nla_nest_end(skb, start); |
| |
| return 0; |
| |
| nla_put_failure: |
| return -EMSGSIZE; |
| } |
| |
| static int __ovs_nla_put_key(const struct sw_flow_key *swkey, |
| const struct sw_flow_key *output, bool is_mask, |
| struct sk_buff *skb) |
| { |
| struct ovs_key_ethernet *eth_key; |
| struct nlattr *nla; |
| struct nlattr *encap = NULL; |
| struct nlattr *in_encap = NULL; |
| |
| if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id)) |
| goto nla_put_failure; |
| |
| if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash)) |
| goto nla_put_failure; |
| |
| if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority)) |
| goto nla_put_failure; |
| |
| if ((swkey->tun_proto || is_mask)) { |
| const void *opts = NULL; |
| |
| if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT) |
| opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len); |
| |
| if (ip_tun_to_nlattr(skb, &output->tun_key, opts, |
| swkey->tun_opts_len, swkey->tun_proto)) |
| goto nla_put_failure; |
| } |
| |
| if (swkey->phy.in_port == DP_MAX_PORTS) { |
| if (is_mask && (output->phy.in_port == 0xffff)) |
| if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff)) |
| goto nla_put_failure; |
| } else { |
| u16 upper_u16; |
| upper_u16 = !is_mask ? 0 : 0xffff; |
| |
| if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, |
| (upper_u16 << 16) | output->phy.in_port)) |
| goto nla_put_failure; |
| } |
| |
| if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark)) |
| goto nla_put_failure; |
| |
| if (ovs_ct_put_key(swkey, output, skb)) |
| goto nla_put_failure; |
| |
| if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) { |
| nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key)); |
| if (!nla) |
| goto nla_put_failure; |
| |
| eth_key = nla_data(nla); |
| ether_addr_copy(eth_key->eth_src, output->eth.src); |
| ether_addr_copy(eth_key->eth_dst, output->eth.dst); |
| |
| if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) { |
| if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask)) |
| goto nla_put_failure; |
| encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP); |
| if (!swkey->eth.vlan.tci) |
| goto unencap; |
| |
| if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) { |
| if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask)) |
| goto nla_put_failure; |
| in_encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP); |
| if (!swkey->eth.cvlan.tci) |
| goto unencap; |
| } |
| } |
| |
| if (swkey->eth.type == htons(ETH_P_802_2)) { |
| /* |
| * Ethertype 802.2 is represented in the netlink with omitted |
| * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and |
| * 0xffff in the mask attribute. Ethertype can also |
| * be wildcarded. |
| */ |
| if (is_mask && output->eth.type) |
| if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, |
| output->eth.type)) |
| goto nla_put_failure; |
| goto unencap; |
| } |
| } |
| |
| if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type)) |
| goto nla_put_failure; |
| |
| if (eth_type_vlan(swkey->eth.type)) { |
| /* There are 3 VLAN tags, we don't know anything about the rest |
| * of the packet, so truncate here. |
| */ |
| WARN_ON_ONCE(!(encap && in_encap)); |
| goto unencap; |
| } |
| |
| if (swkey->eth.type == htons(ETH_P_IP)) { |
| struct ovs_key_ipv4 *ipv4_key; |
| |
| nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key)); |
| if (!nla) |
| goto nla_put_failure; |
| ipv4_key = nla_data(nla); |
| ipv4_key->ipv4_src = output->ipv4.addr.src; |
| ipv4_key->ipv4_dst = output->ipv4.addr.dst; |
| ipv4_key->ipv4_proto = output->ip.proto; |
| ipv4_key->ipv4_tos = output->ip.tos; |
| ipv4_key->ipv4_ttl = output->ip.ttl; |
| ipv4_key->ipv4_frag = output->ip.frag; |
| } else if (swkey->eth.type == htons(ETH_P_IPV6)) { |
| struct ovs_key_ipv6 *ipv6_key; |
| |
| nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key)); |
| if (!nla) |
| goto nla_put_failure; |
| ipv6_key = nla_data(nla); |
| memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src, |
| sizeof(ipv6_key->ipv6_src)); |
| memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst, |
| sizeof(ipv6_key->ipv6_dst)); |
| ipv6_key->ipv6_label = output->ipv6.label; |
| ipv6_key->ipv6_proto = output->ip.proto; |
| ipv6_key->ipv6_tclass = output->ip.tos; |
| ipv6_key->ipv6_hlimit = output->ip.ttl; |
| ipv6_key->ipv6_frag = output->ip.frag; |
| } else if (swkey->eth.type == htons(ETH_P_NSH)) { |
| if (nsh_key_to_nlattr(&output->nsh, is_mask, skb)) |
| goto nla_put_failure; |
| } else if (swkey->eth.type == htons(ETH_P_ARP) || |
| swkey->eth.type == htons(ETH_P_RARP)) { |
| struct ovs_key_arp *arp_key; |
| |
| nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key)); |
| if (!nla) |
| goto nla_put_failure; |
| arp_key = nla_data(nla); |
| memset(arp_key, 0, sizeof(struct ovs_key_arp)); |
| arp_key->arp_sip = output->ipv4.addr.src; |
| arp_key->arp_tip = output->ipv4.addr.dst; |
| arp_key->arp_op = htons(output->ip.proto); |
| ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha); |
| ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha); |
| } else if (eth_p_mpls(swkey->eth.type)) { |
| struct ovs_key_mpls *mpls_key; |
| |
| nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key)); |
| if (!nla) |
| goto nla_put_failure; |
| mpls_key = nla_data(nla); |
| mpls_key->mpls_lse = output->mpls.top_lse; |
| } |
| |
| if ((swkey->eth.type == htons(ETH_P_IP) || |
| swkey->eth.type == htons(ETH_P_IPV6)) && |
| swkey->ip.frag != OVS_FRAG_TYPE_LATER) { |
| |
| if (swkey->ip.proto == IPPROTO_TCP) { |
| struct ovs_key_tcp *tcp_key; |
| |
| nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key)); |
| if (!nla) |
| goto nla_put_failure; |
| tcp_key = nla_data(nla); |
| tcp_key->tcp_src = output->tp.src; |
| tcp_key->tcp_dst = output->tp.dst; |
| if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS, |
| output->tp.flags)) |
| goto nla_put_failure; |
| } else if (swkey->ip.proto == IPPROTO_UDP) { |
| struct ovs_key_udp *udp_key; |
| |
| nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key)); |
| if (!nla) |
| goto nla_put_failure; |
| udp_key = nla_data(nla); |
| udp_key->udp_src = output->tp.src; |
| udp_key->udp_dst = output->tp.dst; |
| } else if (swkey->ip.proto == IPPROTO_SCTP) { |
| struct ovs_key_sctp *sctp_key; |
| |
| nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key)); |
| if (!nla) |
| goto nla_put_failure; |
| sctp_key = nla_data(nla); |
| sctp_key->sctp_src = output->tp.src; |
| sctp_key->sctp_dst = output->tp.dst; |
| } else if (swkey->eth.type == htons(ETH_P_IP) && |
| swkey->ip.proto == IPPROTO_ICMP) { |
| struct ovs_key_icmp *icmp_key; |
| |
| nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key)); |
| if (!nla) |
| goto nla_put_failure; |
| icmp_key = nla_data(nla); |
| icmp_key->icmp_type = ntohs(output->tp.src); |
| icmp_key->icmp_code = ntohs(output->tp.dst); |
| } else if (swkey->eth.type == htons(ETH_P_IPV6) && |
| swkey->ip.proto == IPPROTO_ICMPV6) { |
| struct ovs_key_icmpv6 *icmpv6_key; |
| |
| nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6, |
| sizeof(*icmpv6_key)); |
| if (!nla) |
| goto nla_put_failure; |
| icmpv6_key = nla_data(nla); |
| icmpv6_key->icmpv6_type = ntohs(output->tp.src); |
| icmpv6_key->icmpv6_code = ntohs(output->tp.dst); |
| |
| if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION || |
| icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) { |
| struct ovs_key_nd *nd_key; |
| |
| nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key)); |
| if (!nla) |
| goto nla_put_failure; |
| nd_key = nla_data(nla); |
| memcpy(nd_key->nd_target, &output->ipv6.nd.target, |
| sizeof(nd_key->nd_target)); |
| ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll); |
| ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll); |
| } |
| } |
| } |
| |
| unencap: |
| if (in_encap) |
| nla_nest_end(skb, in_encap); |
| if (encap) |
| nla_nest_end(skb, encap); |
| |
| return 0; |
| |
| nla_put_failure: |
| return -EMSGSIZE; |
| } |
| |
| int ovs_nla_put_key(const struct sw_flow_key *swkey, |
| const struct sw_flow_key *output, int attr, bool is_mask, |
| struct sk_buff *skb) |
| { |
| int err; |
| struct nlattr *nla; |
| |
| nla = nla_nest_start(skb, attr); |
| if (!nla) |
| return -EMSGSIZE; |
| err = __ovs_nla_put_key(swkey, output, is_mask, skb); |
| if (err) |
| return err; |
| nla_nest_end(skb, nla); |
| |
| return 0; |
| } |
| |
| /* Called with ovs_mutex or RCU read lock. */ |
| int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb) |
| { |
| if (ovs_identifier_is_ufid(&flow->id)) |
| return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len, |
| flow->id.ufid); |
| |
| return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key, |
| OVS_FLOW_ATTR_KEY, false, skb); |
| } |
| |
| /* Called with ovs_mutex or RCU read lock. */ |
| int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb) |
| { |
| return ovs_nla_put_key(&flow->key, &flow->key, |
| OVS_FLOW_ATTR_KEY, false, skb); |
| } |
| |
| /* Called with ovs_mutex or RCU read lock. */ |
| int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb) |
| { |
| return ovs_nla_put_key(&flow->key, &flow->mask->key, |
| OVS_FLOW_ATTR_MASK, true, skb); |
| } |
| |
| #define MAX_ACTIONS_BUFSIZE (32 * 1024) |
| |
| static struct sw_flow_actions *nla_alloc_flow_actions(int size) |
| { |
| struct sw_flow_actions *sfa; |
| |
| WARN_ON_ONCE(size > MAX_ACTIONS_BUFSIZE); |
| |
| sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL); |
| if (!sfa) |
| return ERR_PTR(-ENOMEM); |
| |
| sfa->actions_len = 0; |
| return sfa; |
| } |
| |
| static void ovs_nla_free_set_action(const struct nlattr *a) |
| { |
| const struct nlattr *ovs_key = nla_data(a); |
| struct ovs_tunnel_info *ovs_tun; |
| |
| switch (nla_type(ovs_key)) { |
| case OVS_KEY_ATTR_TUNNEL_INFO: |
| ovs_tun = nla_data(ovs_key); |
| dst_release((struct dst_entry *)ovs_tun->tun_dst); |
| break; |
| } |
| } |
| |
| void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts) |
| { |
| const struct nlattr *a; |
| int rem; |
| |
| if (!sf_acts) |
| return; |
| |
| nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) { |
| switch (nla_type(a)) { |
| case OVS_ACTION_ATTR_SET: |
| ovs_nla_free_set_action(a); |
| break; |
| case OVS_ACTION_ATTR_CT: |
| ovs_ct_free_action(a); |
| break; |
| } |
| } |
| |
| kfree(sf_acts); |
| } |
| |
| static void __ovs_nla_free_flow_actions(struct rcu_head *head) |
| { |
| ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu)); |
| } |
| |
| /* Schedules 'sf_acts' to be freed after the next RCU grace period. |
| * The caller must hold rcu_read_lock for this to be sensible. */ |
| void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts) |
| { |
| call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions); |
| } |
| |
| static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa, |
| int attr_len, bool log) |
| { |
| |
| struct sw_flow_actions *acts; |
| int new_acts_size; |
| int req_size = NLA_ALIGN(attr_len); |
| int next_offset = offsetof(struct sw_flow_actions, actions) + |
| (*sfa)->actions_len; |
| |
| if (req_size <= (ksize(*sfa) - next_offset)) |
| goto out; |
| |
| new_acts_size = ksize(*sfa) * 2; |
| |
| if (new_acts_size > MAX_ACTIONS_BUFSIZE) { |
| if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size) { |
| OVS_NLERR(log, "Flow action size exceeds max %u", |
| MAX_ACTIONS_BUFSIZE); |
| return ERR_PTR(-EMSGSIZE); |
| } |
| new_acts_size = MAX_ACTIONS_BUFSIZE; |
| } |
| |
| acts = nla_alloc_flow_actions(new_acts_size); |
| if (IS_ERR(acts)) |
| return (void *)acts; |
| |
| memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len); |
| acts->actions_len = (*sfa)->actions_len; |
| acts->orig_len = (*sfa)->orig_len; |
| kfree(*sfa); |
| *sfa = acts; |
| |
| out: |
| (*sfa)->actions_len += req_size; |
| return (struct nlattr *) ((unsigned char *)(*sfa) + next_offset); |
| } |
| |
| static struct nlattr *__add_action(struct sw_flow_actions **sfa, |
| int attrtype, void *data, int len, bool log) |
| { |
| struct nlattr *a; |
| |
| a = reserve_sfa_size(sfa, nla_attr_size(len), log); |
| if (IS_ERR(a)) |
| return a; |
| |
| a->nla_type = attrtype; |
| a->nla_len = nla_attr_size(len); |
| |
| if (data) |
| memcpy(nla_data(a), data, len); |
| memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len)); |
| |
| return a; |
| } |
| |
| int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data, |
| int len, bool log) |
| { |
| struct nlattr *a; |
| |
| a = __add_action(sfa, attrtype, data, len, log); |
| |
| return PTR_ERR_OR_ZERO(a); |
| } |
| |
| static inline int add_nested_action_start(struct sw_flow_actions **sfa, |
| int attrtype, bool log) |
| { |
| int used = (*sfa)->actions_len; |
| int err; |
| |
| err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log); |
| if (err) |
| return err; |
| |
| return used; |
| } |
| |
| static inline void add_nested_action_end(struct sw_flow_actions *sfa, |
| int st_offset) |
| { |
| struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions + |
| st_offset); |
| |
| a->nla_len = sfa->actions_len - st_offset; |
| } |
| |
| static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr, |
| const struct sw_flow_key *key, |
| struct sw_flow_actions **sfa, |
| __be16 eth_type, __be16 vlan_tci, bool log); |
| |
| static int validate_and_copy_sample(struct net *net, const struct nlattr *attr, |
| const struct sw_flow_key *key, |
| struct sw_flow_actions **sfa, |
| __be16 eth_type, __be16 vlan_tci, |
| bool log, bool last) |
| { |
| const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1]; |
| const struct nlattr *probability, *actions; |
| const struct nlattr *a; |
| int rem, start, err; |
| struct sample_arg arg; |
| |
| memset(attrs, 0, sizeof(attrs)); |
| nla_for_each_nested(a, attr, rem) { |
| int type = nla_type(a); |
| if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type]) |
| return -EINVAL; |
| attrs[type] = a; |
| } |
| if (rem) |
| return -EINVAL; |
| |
| probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY]; |
| if (!probability || nla_len(probability) != sizeof(u32)) |
| return -EINVAL; |
| |
| actions = attrs[OVS_SAMPLE_ATTR_ACTIONS]; |
| if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN)) |
| return -EINVAL; |
| |
| /* validation done, copy sample action. */ |
| start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log); |
| if (start < 0) |
| return start; |
| |
| /* When both skb and flow may be changed, put the sample |
| * into a deferred fifo. On the other hand, if only skb |
| * may be modified, the actions can be executed in place. |
| * |
| * Do this analysis at the flow installation time. |
| * Set 'clone_action->exec' to true if the actions can be |
| * executed without being deferred. |
| * |
| * If the sample is the last action, it can always be excuted |
| * rather than deferred. |
| */ |
| arg.exec = last || !actions_may_change_flow(actions); |
| arg.probability = nla_get_u32(probability); |
| |
| err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_ARG, &arg, sizeof(arg), |
| log); |
| if (err) |
| return err; |
| |
| err = __ovs_nla_copy_actions(net, actions, key, sfa, |
| eth_type, vlan_tci, log); |
| |
| if (err) |
| return err; |
| |
| add_nested_action_end(*sfa, start); |
| |
| return 0; |
| } |
| |
| void ovs_match_init(struct sw_flow_match *match, |
| struct sw_flow_key *key, |
| bool reset_key, |
| struct sw_flow_mask *mask) |
| { |
| memset(match, 0, sizeof(*match)); |
| match->key = key; |
| match->mask = mask; |
| |
| if (reset_key) |
| memset(key, 0, sizeof(*key)); |
| |
| if (mask) { |
| memset(&mask->key, 0, sizeof(mask->key)); |
| mask->range.start = mask->range.end = 0; |
| } |
| } |
| |
| static int validate_geneve_opts(struct sw_flow_key *key) |
| { |
| struct geneve_opt *option; |
| int opts_len = key->tun_opts_len; |
| bool crit_opt = false; |
| |
| option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len); |
| while (opts_len > 0) { |
| int len; |
| |
| if (opts_len < sizeof(*option)) |
| return -EINVAL; |
| |
| len = sizeof(*option) + option->length * 4; |
| if (len > opts_len) |
| return -EINVAL; |
| |
| crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE); |
| |
| option = (struct geneve_opt *)((u8 *)option + len); |
| opts_len -= len; |
| }; |
| |
| key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0; |
| |
| return 0; |
| } |
| |
| static int validate_and_copy_set_tun(const struct nlattr *attr, |
| struct sw_flow_actions **sfa, bool log) |
| { |
| struct sw_flow_match match; |
| struct sw_flow_key key; |
| struct metadata_dst *tun_dst; |
| struct ip_tunnel_info *tun_info; |
| struct ovs_tunnel_info *ovs_tun; |
| struct nlattr *a; |
| int err = 0, start, opts_type; |
| |
| ovs_match_init(&match, &key, true, NULL); |
| opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log); |
| if (opts_type < 0) |
| return opts_type; |
| |
| if (key.tun_opts_len) { |
| switch (opts_type) { |
| case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS: |
| err = validate_geneve_opts(&key); |
| if (err < 0) |
| return err; |
| break; |
| case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS: |
| break; |
| } |
| }; |
| |
| start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log); |
| if (start < 0) |
| return start; |
| |
| tun_dst = metadata_dst_alloc(key.tun_opts_len, METADATA_IP_TUNNEL, |
| GFP_KERNEL); |
| |
| if (!tun_dst) |
| return -ENOMEM; |
| |
| err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL); |
| if (err) { |
| dst_release((struct dst_entry *)tun_dst); |
| return err; |
| } |
| |
| a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL, |
| sizeof(*ovs_tun), log); |
| if (IS_ERR(a)) { |
| dst_release((struct dst_entry *)tun_dst); |
| return PTR_ERR(a); |
| } |
| |
| ovs_tun = nla_data(a); |
| ovs_tun->tun_dst = tun_dst; |
| |
| tun_info = &tun_dst->u.tun_info; |
| tun_info->mode = IP_TUNNEL_INFO_TX; |
| if (key.tun_proto == AF_INET6) |
| tun_info->mode |= IP_TUNNEL_INFO_IPV6; |
| tun_info->key = key.tun_key; |
| |
| /* We need to store the options in the action itself since |
| * everything else will go away after flow setup. We can append |
| * it to tun_info and then point there. |
| */ |
| ip_tunnel_info_opts_set(tun_info, |
| TUN_METADATA_OPTS(&key, key.tun_opts_len), |
| key.tun_opts_len); |
| add_nested_action_end(*sfa, start); |
| |
| return err; |
| } |
| |
| static bool validate_nsh(const struct nlattr *attr, bool is_mask, |
| bool is_push_nsh, bool log) |
| { |
| struct sw_flow_match match; |
| struct sw_flow_key key; |
| int ret = 0; |
| |
| ovs_match_init(&match, &key, true, NULL); |
| ret = nsh_key_put_from_nlattr(attr, &match, is_mask, |
| is_push_nsh, log); |
| return !ret; |
| } |
| |
| /* Return false if there are any non-masked bits set. |
| * Mask follows data immediately, before any netlink padding. |
| */ |
| static bool validate_masked(u8 *data, int len) |
| { |
| u8 *mask = data + len; |
| |
| while (len--) |
| if (*data++ & ~*mask++) |
| return false; |
| |
| return true; |
| } |
| |
| static int validate_set(const struct nlattr *a, |
| const struct sw_flow_key *flow_key, |
| struct sw_flow_actions **sfa, bool *skip_copy, |
| u8 mac_proto, __be16 eth_type, bool masked, bool log) |
| { |
| const struct nlattr *ovs_key = nla_data(a); |
| int key_type = nla_type(ovs_key); |
| size_t key_len; |
| |
| /* There can be only one key in a action */ |
| if (nla_total_size(nla_len(ovs_key)) != nla_len(a)) |
| return -EINVAL; |
| |
| key_len = nla_len(ovs_key); |
| if (masked) |
| key_len /= 2; |
| |
| if (key_type > OVS_KEY_ATTR_MAX || |
| !check_attr_len(key_len, ovs_key_lens[key_type].len)) |
| return -EINVAL; |
| |
| if (masked && !validate_masked(nla_data(ovs_key), key_len)) |
| return -EINVAL; |
| |
| switch (key_type) { |
| const struct ovs_key_ipv4 *ipv4_key; |
| const struct ovs_key_ipv6 *ipv6_key; |
| int err; |
| |
| case OVS_KEY_ATTR_PRIORITY: |
| case OVS_KEY_ATTR_SKB_MARK: |
| case OVS_KEY_ATTR_CT_MARK: |
| case OVS_KEY_ATTR_CT_LABELS: |
| break; |
| |
| case OVS_KEY_ATTR_ETHERNET: |
| if (mac_proto != MAC_PROTO_ETHERNET) |
| return -EINVAL; |
| break; |
| |
| case OVS_KEY_ATTR_TUNNEL: |
| if (masked) |
| return -EINVAL; /* Masked tunnel set not supported. */ |
| |
| *skip_copy = true; |
| err = validate_and_copy_set_tun(a, sfa, log); |
| if (err) |
| return err; |
| break; |
| |
| case OVS_KEY_ATTR_IPV4: |
| if (eth_type != htons(ETH_P_IP)) |
| return -EINVAL; |
| |
| ipv4_key = nla_data(ovs_key); |
| |
| if (masked) { |
| const struct ovs_key_ipv4 *mask = ipv4_key + 1; |
| |
| /* Non-writeable fields. */ |
| if (mask->ipv4_proto || mask->ipv4_frag) |
| return -EINVAL; |
| } else { |
| if (ipv4_key->ipv4_proto != flow_key->ip.proto) |
| return -EINVAL; |
| |
| if (ipv4_key->ipv4_frag != flow_key->ip.frag) |
| return -EINVAL; |
| } |
| break; |
| |
| case OVS_KEY_ATTR_IPV6: |
| if (eth_type != htons(ETH_P_IPV6)) |
| return -EINVAL; |
| |
| ipv6_key = nla_data(ovs_key); |
| |
| if (masked) { |
| const struct ovs_key_ipv6 *mask = ipv6_key + 1; |
| |
| /* Non-writeable fields. */ |
| if (mask->ipv6_proto || mask->ipv6_frag) |
| return -EINVAL; |
| |
| /* Invalid bits in the flow label mask? */ |
| if (ntohl(mask->ipv6_label) & 0xFFF00000) |
| return -EINVAL; |
| } else { |
| if (ipv6_key->ipv6_proto != flow_key->ip.proto) |
| return -EINVAL; |
| |
| if (ipv6_key->ipv6_frag != flow_key->ip.frag) |
| return -EINVAL; |
| } |
| if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000) |
| return -EINVAL; |
| |
| break; |
| |
| case OVS_KEY_ATTR_TCP: |
| if ((eth_type != htons(ETH_P_IP) && |
| eth_type != htons(ETH_P_IPV6)) || |
| flow_key->ip.proto != IPPROTO_TCP) |
| return -EINVAL; |
| |
| break; |
| |
| case OVS_KEY_ATTR_UDP: |
| if ((eth_type != htons(ETH_P_IP) && |
| eth_type != htons(ETH_P_IPV6)) || |
| flow_key->ip.proto != IPPROTO_UDP) |
| return -EINVAL; |
| |
| break; |
| |
| case OVS_KEY_ATTR_MPLS: |
| if (!eth_p_mpls(eth_type)) |
| return -EINVAL; |
| break; |
| |
| case OVS_KEY_ATTR_SCTP: |
| if ((eth_type != htons(ETH_P_IP) && |
| eth_type != htons(ETH_P_IPV6)) || |
| flow_key->ip.proto != IPPROTO_SCTP) |
| return -EINVAL; |
| |
| break; |
| |
| case OVS_KEY_ATTR_NSH: |
| if (eth_type != htons(ETH_P_NSH)) |
| return -EINVAL; |
| if (!validate_nsh(nla_data(a), masked, false, log)) |
| return -EINVAL; |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| /* Convert non-masked non-tunnel set actions to masked set actions. */ |
| if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) { |
| int start, len = key_len * 2; |
| struct nlattr *at; |
| |
| *skip_copy = true; |
| |
| start = add_nested_action_start(sfa, |
| OVS_ACTION_ATTR_SET_TO_MASKED, |
| log); |
| if (start < 0) |
| return start; |
| |
| at = __add_action(sfa, key_type, NULL, len, log); |
| if (IS_ERR(at)) |
| return PTR_ERR(at); |
| |
| memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */ |
| memset(nla_data(at) + key_len, 0xff, key_len); /* Mask. */ |
| /* Clear non-writeable bits from otherwise writeable fields. */ |
| if (key_type == OVS_KEY_ATTR_IPV6) { |
| struct ovs_key_ipv6 *mask = nla_data(at) + key_len; |
| |
| mask->ipv6_label &= htonl(0x000FFFFF); |
| } |
| add_nested_action_end(*sfa, start); |
| } |
| |
| return 0; |
| } |
| |
| static int validate_userspace(const struct nlattr *attr) |
| { |
| static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = { |
| [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 }, |
| [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC }, |
| [OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 }, |
| }; |
| struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1]; |
| int error; |
| |
| error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX, attr, |
| userspace_policy, NULL); |
| if (error) |
| return error; |
| |
| if (!a[OVS_USERSPACE_ATTR_PID] || |
| !nla_get_u32(a[OVS_USERSPACE_ATTR_PID])) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int copy_action(const struct nlattr *from, |
| struct sw_flow_actions **sfa, bool log) |
| { |
| int totlen = NLA_ALIGN(from->nla_len); |
| struct nlattr *to; |
| |
| to = reserve_sfa_size(sfa, from->nla_len, log); |
| if (IS_ERR(to)) |
| return PTR_ERR(to); |
| |
| memcpy(to, from, totlen); |
| return 0; |
| } |
| |
| static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr, |
| const struct sw_flow_key *key, |
| struct sw_flow_actions **sfa, |
| __be16 eth_type, __be16 vlan_tci, bool log) |
| { |
| u8 mac_proto = ovs_key_mac_proto(key); |
| const struct nlattr *a; |
| int rem, err; |
| |
| nla_for_each_nested(a, attr, rem) { |
| /* Expected argument lengths, (u32)-1 for variable length. */ |
| static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = { |
| [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32), |
| [OVS_ACTION_ATTR_RECIRC] = sizeof(u32), |
| [OVS_ACTION_ATTR_USERSPACE] = (u32)-1, |
| [OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls), |
| [OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16), |
| [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan), |
| [OVS_ACTION_ATTR_POP_VLAN] = 0, |
| [OVS_ACTION_ATTR_SET] = (u32)-1, |
| [OVS_ACTION_ATTR_SET_MASKED] = (u32)-1, |
| [OVS_ACTION_ATTR_SAMPLE] = (u32)-1, |
| [OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash), |
| [OVS_ACTION_ATTR_CT] = (u32)-1, |
| [OVS_ACTION_ATTR_CT_CLEAR] = 0, |
| [OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc), |
| [OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth), |
| [OVS_ACTION_ATTR_POP_ETH] = 0, |
| [OVS_ACTION_ATTR_PUSH_NSH] = (u32)-1, |
| [OVS_ACTION_ATTR_POP_NSH] = 0, |
| [OVS_ACTION_ATTR_METER] = sizeof(u32), |
| }; |
| const struct ovs_action_push_vlan *vlan; |
| int type = nla_type(a); |
| bool skip_copy; |
| |
| if (type > OVS_ACTION_ATTR_MAX || |
| (action_lens[type] != nla_len(a) && |
| action_lens[type] != (u32)-1)) |
| return -EINVAL; |
| |
| skip_copy = false; |
| switch (type) { |
| case OVS_ACTION_ATTR_UNSPEC: |
| return -EINVAL; |
| |
| case OVS_ACTION_ATTR_USERSPACE: |
| err = validate_userspace(a); |
| if (err) |
| return err; |
| break; |
| |
| case OVS_ACTION_ATTR_OUTPUT: |
| if (nla_get_u32(a) >= DP_MAX_PORTS) |
| return -EINVAL; |
| break; |
| |
| case OVS_ACTION_ATTR_TRUNC: { |
| const struct ovs_action_trunc *trunc = nla_data(a); |
| |
| if (trunc->max_len < ETH_HLEN) |
| return -EINVAL; |
| break; |
| } |
| |
| case OVS_ACTION_ATTR_HASH: { |
| const struct ovs_action_hash *act_hash = nla_data(a); |
| |
| switch (act_hash->hash_alg) { |
| case OVS_HASH_ALG_L4: |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| break; |
| } |
| |
| case OVS_ACTION_ATTR_POP_VLAN: |
| if (mac_proto != MAC_PROTO_ETHERNET) |
| return -EINVAL; |
| vlan_tci = htons(0); |
| break; |
| |
| case OVS_ACTION_ATTR_PUSH_VLAN: |
| if (mac_proto != MAC_PROTO_ETHERNET) |
| return -EINVAL; |
| vlan = nla_data(a); |
| if (!eth_type_vlan(vlan->vlan_tpid)) |
| return -EINVAL; |
| if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT))) |
| return -EINVAL; |
| vlan_tci = vlan->vlan_tci; |
| break; |
| |
| case OVS_ACTION_ATTR_RECIRC: |
| break; |
| |
| case OVS_ACTION_ATTR_PUSH_MPLS: { |
| const struct ovs_action_push_mpls *mpls = nla_data(a); |
| |
| if (!eth_p_mpls(mpls->mpls_ethertype)) |
| return -EINVAL; |
| /* Prohibit push MPLS other than to a white list |
| * for packets that have a known tag order. |
| */ |
| if (vlan_tci & htons(VLAN_TAG_PRESENT) || |
| (eth_type != htons(ETH_P_IP) && |
| eth_type != htons(ETH_P_IPV6) && |
| eth_type != htons(ETH_P_ARP) && |
| eth_type != htons(ETH_P_RARP) && |
| !eth_p_mpls(eth_type))) |
| return -EINVAL; |
| eth_type = mpls->mpls_ethertype; |
| break; |
| } |
| |
| case OVS_ACTION_ATTR_POP_MPLS: |
| if (vlan_tci & htons(VLAN_TAG_PRESENT) || |
| !eth_p_mpls(eth_type)) |
| return -EINVAL; |
| |
| /* Disallow subsequent L2.5+ set and mpls_pop actions |
| * as there is no check here to ensure that the new |
| * eth_type is valid and thus set actions could |
| * write off the end of the packet or otherwise |
| * corrupt it. |
| * |
| * Support for these actions is planned using packet |
| * recirculation. |
| */ |
| eth_type = htons(0); |
| break; |
| |
| case OVS_ACTION_ATTR_SET: |
| err = validate_set(a, key, sfa, |
| &skip_copy, mac_proto, eth_type, |
| false, log); |
| if (err) |
| return err; |
| break; |
| |
| case OVS_ACTION_ATTR_SET_MASKED: |
| err = validate_set(a, key, sfa, |
| &skip_copy, mac_proto, eth_type, |
| true, log); |
| if (err) |
| return err; |
| break; |
| |
| case OVS_ACTION_ATTR_SAMPLE: { |
| bool last = nla_is_last(a, rem); |
| |
| err = validate_and_copy_sample(net, a, key, sfa, |
| eth_type, vlan_tci, |
| log, last); |
| if (err) |
| return err; |
| skip_copy = true; |
| break; |
| } |
| |
| case OVS_ACTION_ATTR_CT: |
| err = ovs_ct_copy_action(net, a, key, sfa, log); |
| if (err) |
| return err; |
| skip_copy = true; |
| break; |
| |
| case OVS_ACTION_ATTR_CT_CLEAR: |
| break; |
| |
| case OVS_ACTION_ATTR_PUSH_ETH: |
| /* Disallow pushing an Ethernet header if one |
| * is already present */ |
| if (mac_proto != MAC_PROTO_NONE) |
| return -EINVAL; |
| mac_proto = MAC_PROTO_NONE; |
| break; |
| |
| case OVS_ACTION_ATTR_POP_ETH: |
| if (mac_proto != MAC_PROTO_ETHERNET) |
| return -EINVAL; |
| if (vlan_tci & htons(VLAN_TAG_PRESENT)) |
| return -EINVAL; |
| mac_proto = MAC_PROTO_ETHERNET; |
| break; |
| |
| case OVS_ACTION_ATTR_PUSH_NSH: |
| if (mac_proto != MAC_PROTO_ETHERNET) { |
| u8 next_proto; |
| |
| next_proto = tun_p_from_eth_p(eth_type); |
| if (!next_proto) |
| return -EINVAL; |
| } |
| mac_proto = MAC_PROTO_NONE; |
| if (!validate_nsh(nla_data(a), false, true, true)) |
| return -EINVAL; |
| break; |
| |
| case OVS_ACTION_ATTR_POP_NSH: { |
| __be16 inner_proto; |
| |
| if (eth_type != htons(ETH_P_NSH)) |
| return -EINVAL; |
| inner_proto = tun_p_to_eth_p(key->nsh.base.np); |
| if (!inner_proto) |
| return -EINVAL; |
| if (key->nsh.base.np == TUN_P_ETHERNET) |
| mac_proto = MAC_PROTO_ETHERNET; |
| else |
| mac_proto = MAC_PROTO_NONE; |
| break; |
| } |
| |
| case OVS_ACTION_ATTR_METER: |
| /* Non-existent meters are simply ignored. */ |
| break; |
| |
| default: |
| OVS_NLERR(log, "Unknown Action type %d", type); |
| return -EINVAL; |
| } |
| if (!skip_copy) { |
| err = copy_action(a, sfa, log); |
| if (err) |
| return err; |
| } |
| } |
| |
| if (rem > 0) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| /* 'key' must be the masked key. */ |
| int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr, |
| const struct sw_flow_key *key, |
| struct sw_flow_actions **sfa, bool log) |
| { |
| int err; |
| |
| *sfa = nla_alloc_flow_actions(min(nla_len(attr), MAX_ACTIONS_BUFSIZE)); |
| if (IS_ERR(*sfa)) |
| return PTR_ERR(*sfa); |
| |
| (*sfa)->orig_len = nla_len(attr); |
| err = __ovs_nla_copy_actions(net, attr, key, sfa, key->eth.type, |
| key->eth.vlan.tci, log); |
| if (err) |
| ovs_nla_free_flow_actions(*sfa); |
| |
| return err; |
| } |
| |
| static int sample_action_to_attr(const struct nlattr *attr, |
| struct sk_buff *skb) |
| { |
| struct nlattr *start, *ac_start = NULL, *sample_arg; |
| int err = 0, rem = nla_len(attr); |
| const struct sample_arg *arg; |
| struct nlattr *actions; |
| |
| start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE); |
| if (!start) |
| return -EMSGSIZE; |
| |
| sample_arg = nla_data(attr); |
| arg = nla_data(sample_arg); |
| actions = nla_next(sample_arg, &rem); |
| |
| if (nla_put_u32(skb, OVS_SAMPLE_ATTR_PROBABILITY, arg->probability)) { |
| err = -EMSGSIZE; |
| goto out; |
| } |
| |
| ac_start = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS); |
| if (!ac_start) { |
| err = -EMSGSIZE; |
| goto out; |
| } |
| |
| err = ovs_nla_put_actions(actions, rem, skb); |
| |
| out: |
| if (err) { |
| nla_nest_cancel(skb, ac_start); |
| nla_nest_cancel(skb, start); |
| } else { |
| nla_nest_end(skb, ac_start); |
| nla_nest_end(skb, start); |
| } |
| |
| return err; |
| } |
| |
| static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb) |
| { |
| const struct nlattr *ovs_key = nla_data(a); |
| int key_type = nla_type(ovs_key); |
| struct nlattr *start; |
| int err; |
| |
| switch (key_type) { |
| case OVS_KEY_ATTR_TUNNEL_INFO: { |
| struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key); |
| struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info; |
| |
| start = nla_nest_start(skb, OVS_ACTION_ATTR_SET); |
| if (!start) |
| return -EMSGSIZE; |
| |
| err = ip_tun_to_nlattr(skb, &tun_info->key, |
| ip_tunnel_info_opts(tun_info), |
| tun_info->options_len, |
| ip_tunnel_info_af(tun_info)); |
| if (err) |
| return err; |
| nla_nest_end(skb, start); |
| break; |
| } |
| default: |
| if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key)) |
| return -EMSGSIZE; |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static int masked_set_action_to_set_action_attr(const struct nlattr *a, |
| struct sk_buff *skb) |
| { |
| const struct nlattr *ovs_key = nla_data(a); |
| struct nlattr *nla; |
| size_t key_len = nla_len(ovs_key) / 2; |
| |
| /* Revert the conversion we did from a non-masked set action to |
| * masked set action. |
| */ |
| nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET); |
| if (!nla) |
| return -EMSGSIZE; |
| |
| if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key))) |
| return -EMSGSIZE; |
| |
| nla_nest_end(skb, nla); |
| return 0; |
| } |
| |
| int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb) |
| { |
| const struct nlattr *a; |
| int rem, err; |
| |
| nla_for_each_attr(a, attr, len, rem) { |
| int type = nla_type(a); |
| |
| switch (type) { |
| case OVS_ACTION_ATTR_SET: |
| err = set_action_to_attr(a, skb); |
| if (err) |
| return err; |
| break; |
| |
| case OVS_ACTION_ATTR_SET_TO_MASKED: |
| err = masked_set_action_to_set_action_attr(a, skb); |
| if (err) |
| return err; |
| break; |
| |
| case OVS_ACTION_ATTR_SAMPLE: |
| err = sample_action_to_attr(a, skb); |
| if (err) |
| return err; |
| break; |
| |
| case OVS_ACTION_ATTR_CT: |
| err = ovs_ct_action_to_attr(nla_data(a), skb); |
| if (err) |
| return err; |
| break; |
| |
| default: |
| if (nla_put(skb, type, nla_len(a), nla_data(a))) |
| return -EMSGSIZE; |
| break; |
| } |
| } |
| |
| return 0; |
| } |