| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * FP/SIMD context switching and fault handling |
| * |
| * Copyright (C) 2012 ARM Ltd. |
| * Author: Catalin Marinas <catalin.marinas@arm.com> |
| */ |
| |
| #include <linux/bitmap.h> |
| #include <linux/bitops.h> |
| #include <linux/bottom_half.h> |
| #include <linux/bug.h> |
| #include <linux/cache.h> |
| #include <linux/compat.h> |
| #include <linux/cpu.h> |
| #include <linux/cpu_pm.h> |
| #include <linux/kernel.h> |
| #include <linux/linkage.h> |
| #include <linux/irqflags.h> |
| #include <linux/init.h> |
| #include <linux/percpu.h> |
| #include <linux/prctl.h> |
| #include <linux/preempt.h> |
| #include <linux/ptrace.h> |
| #include <linux/sched/signal.h> |
| #include <linux/sched/task_stack.h> |
| #include <linux/signal.h> |
| #include <linux/slab.h> |
| #include <linux/stddef.h> |
| #include <linux/sysctl.h> |
| #include <linux/swab.h> |
| |
| #include <asm/esr.h> |
| #include <asm/fpsimd.h> |
| #include <asm/cpufeature.h> |
| #include <asm/cputype.h> |
| #include <asm/processor.h> |
| #include <asm/simd.h> |
| #include <asm/sigcontext.h> |
| #include <asm/sysreg.h> |
| #include <asm/traps.h> |
| #include <asm/virt.h> |
| |
| #define FPEXC_IOF (1 << 0) |
| #define FPEXC_DZF (1 << 1) |
| #define FPEXC_OFF (1 << 2) |
| #define FPEXC_UFF (1 << 3) |
| #define FPEXC_IXF (1 << 4) |
| #define FPEXC_IDF (1 << 7) |
| |
| /* |
| * (Note: in this discussion, statements about FPSIMD apply equally to SVE.) |
| * |
| * In order to reduce the number of times the FPSIMD state is needlessly saved |
| * and restored, we need to keep track of two things: |
| * (a) for each task, we need to remember which CPU was the last one to have |
| * the task's FPSIMD state loaded into its FPSIMD registers; |
| * (b) for each CPU, we need to remember which task's userland FPSIMD state has |
| * been loaded into its FPSIMD registers most recently, or whether it has |
| * been used to perform kernel mode NEON in the meantime. |
| * |
| * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to |
| * the id of the current CPU every time the state is loaded onto a CPU. For (b), |
| * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the |
| * address of the userland FPSIMD state of the task that was loaded onto the CPU |
| * the most recently, or NULL if kernel mode NEON has been performed after that. |
| * |
| * With this in place, we no longer have to restore the next FPSIMD state right |
| * when switching between tasks. Instead, we can defer this check to userland |
| * resume, at which time we verify whether the CPU's fpsimd_last_state and the |
| * task's fpsimd_cpu are still mutually in sync. If this is the case, we |
| * can omit the FPSIMD restore. |
| * |
| * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to |
| * indicate whether or not the userland FPSIMD state of the current task is |
| * present in the registers. The flag is set unless the FPSIMD registers of this |
| * CPU currently contain the most recent userland FPSIMD state of the current |
| * task. |
| * |
| * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may |
| * save the task's FPSIMD context back to task_struct from softirq context. |
| * To prevent this from racing with the manipulation of the task's FPSIMD state |
| * from task context and thereby corrupting the state, it is necessary to |
| * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE |
| * flag with local_bh_disable() unless softirqs are already masked. |
| * |
| * For a certain task, the sequence may look something like this: |
| * - the task gets scheduled in; if both the task's fpsimd_cpu field |
| * contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu |
| * variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is |
| * cleared, otherwise it is set; |
| * |
| * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's |
| * userland FPSIMD state is copied from memory to the registers, the task's |
| * fpsimd_cpu field is set to the id of the current CPU, the current |
| * CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the |
| * TIF_FOREIGN_FPSTATE flag is cleared; |
| * |
| * - the task executes an ordinary syscall; upon return to userland, the |
| * TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is |
| * restored; |
| * |
| * - the task executes a syscall which executes some NEON instructions; this is |
| * preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD |
| * register contents to memory, clears the fpsimd_last_state per-cpu variable |
| * and sets the TIF_FOREIGN_FPSTATE flag; |
| * |
| * - the task gets preempted after kernel_neon_end() is called; as we have not |
| * returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so |
| * whatever is in the FPSIMD registers is not saved to memory, but discarded. |
| */ |
| struct fpsimd_last_state_struct { |
| struct user_fpsimd_state *st; |
| void *sve_state; |
| unsigned int sve_vl; |
| }; |
| |
| static DEFINE_PER_CPU(struct fpsimd_last_state_struct, fpsimd_last_state); |
| |
| /* Default VL for tasks that don't set it explicitly: */ |
| static int sve_default_vl = -1; |
| |
| #ifdef CONFIG_ARM64_SVE |
| |
| /* Maximum supported vector length across all CPUs (initially poisoned) */ |
| int __ro_after_init sve_max_vl = SVE_VL_MIN; |
| int __ro_after_init sve_max_virtualisable_vl = SVE_VL_MIN; |
| |
| /* |
| * Set of available vector lengths, |
| * where length vq encoded as bit __vq_to_bit(vq): |
| */ |
| __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX); |
| /* Set of vector lengths present on at least one cpu: */ |
| static __ro_after_init DECLARE_BITMAP(sve_vq_partial_map, SVE_VQ_MAX); |
| |
| static void __percpu *efi_sve_state; |
| |
| #else /* ! CONFIG_ARM64_SVE */ |
| |
| /* Dummy declaration for code that will be optimised out: */ |
| extern __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX); |
| extern __ro_after_init DECLARE_BITMAP(sve_vq_partial_map, SVE_VQ_MAX); |
| extern void __percpu *efi_sve_state; |
| |
| #endif /* ! CONFIG_ARM64_SVE */ |
| |
| /* |
| * Call __sve_free() directly only if you know task can't be scheduled |
| * or preempted. |
| */ |
| static void __sve_free(struct task_struct *task) |
| { |
| kfree(task->thread.sve_state); |
| task->thread.sve_state = NULL; |
| } |
| |
| static void sve_free(struct task_struct *task) |
| { |
| WARN_ON(test_tsk_thread_flag(task, TIF_SVE)); |
| |
| __sve_free(task); |
| } |
| |
| /* |
| * TIF_SVE controls whether a task can use SVE without trapping while |
| * in userspace, and also the way a task's FPSIMD/SVE state is stored |
| * in thread_struct. |
| * |
| * The kernel uses this flag to track whether a user task is actively |
| * using SVE, and therefore whether full SVE register state needs to |
| * be tracked. If not, the cheaper FPSIMD context handling code can |
| * be used instead of the more costly SVE equivalents. |
| * |
| * * TIF_SVE set: |
| * |
| * The task can execute SVE instructions while in userspace without |
| * trapping to the kernel. |
| * |
| * When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the |
| * corresponding Zn), P0-P15 and FFR are encoded in in |
| * task->thread.sve_state, formatted appropriately for vector |
| * length task->thread.sve_vl. |
| * |
| * task->thread.sve_state must point to a valid buffer at least |
| * sve_state_size(task) bytes in size. |
| * |
| * During any syscall, the kernel may optionally clear TIF_SVE and |
| * discard the vector state except for the FPSIMD subset. |
| * |
| * * TIF_SVE clear: |
| * |
| * An attempt by the user task to execute an SVE instruction causes |
| * do_sve_acc() to be called, which does some preparation and then |
| * sets TIF_SVE. |
| * |
| * When stored, FPSIMD registers V0-V31 are encoded in |
| * task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are |
| * logically zero but not stored anywhere; P0-P15 and FFR are not |
| * stored and have unspecified values from userspace's point of |
| * view. For hygiene purposes, the kernel zeroes them on next use, |
| * but userspace is discouraged from relying on this. |
| * |
| * task->thread.sve_state does not need to be non-NULL, valid or any |
| * particular size: it must not be dereferenced. |
| * |
| * * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state |
| * irrespective of whether TIF_SVE is clear or set, since these are |
| * not vector length dependent. |
| */ |
| |
| /* |
| * Update current's FPSIMD/SVE registers from thread_struct. |
| * |
| * This function should be called only when the FPSIMD/SVE state in |
| * thread_struct is known to be up to date, when preparing to enter |
| * userspace. |
| * |
| * Softirqs (and preemption) must be disabled. |
| */ |
| static void task_fpsimd_load(void) |
| { |
| WARN_ON(!in_softirq() && !irqs_disabled()); |
| |
| if (system_supports_sve() && test_thread_flag(TIF_SVE)) |
| sve_load_state(sve_pffr(¤t->thread), |
| ¤t->thread.uw.fpsimd_state.fpsr, |
| sve_vq_from_vl(current->thread.sve_vl) - 1); |
| else |
| fpsimd_load_state(¤t->thread.uw.fpsimd_state); |
| } |
| |
| /* |
| * Ensure FPSIMD/SVE storage in memory for the loaded context is up to |
| * date with respect to the CPU registers. |
| * |
| * Softirqs (and preemption) must be disabled. |
| */ |
| void fpsimd_save(void) |
| { |
| struct fpsimd_last_state_struct const *last = |
| this_cpu_ptr(&fpsimd_last_state); |
| /* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */ |
| |
| WARN_ON(!in_softirq() && !irqs_disabled()); |
| |
| if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) { |
| if (system_supports_sve() && test_thread_flag(TIF_SVE)) { |
| if (WARN_ON(sve_get_vl() != last->sve_vl)) { |
| /* |
| * Can't save the user regs, so current would |
| * re-enter user with corrupt state. |
| * There's no way to recover, so kill it: |
| */ |
| force_signal_inject(SIGKILL, SI_KERNEL, 0); |
| return; |
| } |
| |
| sve_save_state((char *)last->sve_state + |
| sve_ffr_offset(last->sve_vl), |
| &last->st->fpsr); |
| } else |
| fpsimd_save_state(last->st); |
| } |
| } |
| |
| /* |
| * All vector length selection from userspace comes through here. |
| * We're on a slow path, so some sanity-checks are included. |
| * If things go wrong there's a bug somewhere, but try to fall back to a |
| * safe choice. |
| */ |
| static unsigned int find_supported_vector_length(unsigned int vl) |
| { |
| int bit; |
| int max_vl = sve_max_vl; |
| |
| if (WARN_ON(!sve_vl_valid(vl))) |
| vl = SVE_VL_MIN; |
| |
| if (WARN_ON(!sve_vl_valid(max_vl))) |
| max_vl = SVE_VL_MIN; |
| |
| if (vl > max_vl) |
| vl = max_vl; |
| |
| bit = find_next_bit(sve_vq_map, SVE_VQ_MAX, |
| __vq_to_bit(sve_vq_from_vl(vl))); |
| return sve_vl_from_vq(__bit_to_vq(bit)); |
| } |
| |
| #ifdef CONFIG_SYSCTL |
| |
| static int sve_proc_do_default_vl(struct ctl_table *table, int write, |
| void __user *buffer, size_t *lenp, |
| loff_t *ppos) |
| { |
| int ret; |
| int vl = sve_default_vl; |
| struct ctl_table tmp_table = { |
| .data = &vl, |
| .maxlen = sizeof(vl), |
| }; |
| |
| ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos); |
| if (ret || !write) |
| return ret; |
| |
| /* Writing -1 has the special meaning "set to max": */ |
| if (vl == -1) |
| vl = sve_max_vl; |
| |
| if (!sve_vl_valid(vl)) |
| return -EINVAL; |
| |
| sve_default_vl = find_supported_vector_length(vl); |
| return 0; |
| } |
| |
| static struct ctl_table sve_default_vl_table[] = { |
| { |
| .procname = "sve_default_vector_length", |
| .mode = 0644, |
| .proc_handler = sve_proc_do_default_vl, |
| }, |
| { } |
| }; |
| |
| static int __init sve_sysctl_init(void) |
| { |
| if (system_supports_sve()) |
| if (!register_sysctl("abi", sve_default_vl_table)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| #else /* ! CONFIG_SYSCTL */ |
| static int __init sve_sysctl_init(void) { return 0; } |
| #endif /* ! CONFIG_SYSCTL */ |
| |
| #define ZREG(sve_state, vq, n) ((char *)(sve_state) + \ |
| (SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET)) |
| |
| #ifdef CONFIG_CPU_BIG_ENDIAN |
| static __uint128_t arm64_cpu_to_le128(__uint128_t x) |
| { |
| u64 a = swab64(x); |
| u64 b = swab64(x >> 64); |
| |
| return ((__uint128_t)a << 64) | b; |
| } |
| #else |
| static __uint128_t arm64_cpu_to_le128(__uint128_t x) |
| { |
| return x; |
| } |
| #endif |
| |
| #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x) |
| |
| /* |
| * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to |
| * task->thread.sve_state. |
| * |
| * Task can be a non-runnable task, or current. In the latter case, |
| * softirqs (and preemption) must be disabled. |
| * task->thread.sve_state must point to at least sve_state_size(task) |
| * bytes of allocated kernel memory. |
| * task->thread.uw.fpsimd_state must be up to date before calling this |
| * function. |
| */ |
| static void fpsimd_to_sve(struct task_struct *task) |
| { |
| unsigned int vq; |
| void *sst = task->thread.sve_state; |
| struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state; |
| unsigned int i; |
| __uint128_t *p; |
| |
| if (!system_supports_sve()) |
| return; |
| |
| vq = sve_vq_from_vl(task->thread.sve_vl); |
| for (i = 0; i < 32; ++i) { |
| p = (__uint128_t *)ZREG(sst, vq, i); |
| *p = arm64_cpu_to_le128(fst->vregs[i]); |
| } |
| } |
| |
| /* |
| * Transfer the SVE state in task->thread.sve_state to |
| * task->thread.uw.fpsimd_state. |
| * |
| * Task can be a non-runnable task, or current. In the latter case, |
| * softirqs (and preemption) must be disabled. |
| * task->thread.sve_state must point to at least sve_state_size(task) |
| * bytes of allocated kernel memory. |
| * task->thread.sve_state must be up to date before calling this function. |
| */ |
| static void sve_to_fpsimd(struct task_struct *task) |
| { |
| unsigned int vq; |
| void const *sst = task->thread.sve_state; |
| struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state; |
| unsigned int i; |
| __uint128_t const *p; |
| |
| if (!system_supports_sve()) |
| return; |
| |
| vq = sve_vq_from_vl(task->thread.sve_vl); |
| for (i = 0; i < 32; ++i) { |
| p = (__uint128_t const *)ZREG(sst, vq, i); |
| fst->vregs[i] = arm64_le128_to_cpu(*p); |
| } |
| } |
| |
| #ifdef CONFIG_ARM64_SVE |
| |
| /* |
| * Return how many bytes of memory are required to store the full SVE |
| * state for task, given task's currently configured vector length. |
| */ |
| size_t sve_state_size(struct task_struct const *task) |
| { |
| return SVE_SIG_REGS_SIZE(sve_vq_from_vl(task->thread.sve_vl)); |
| } |
| |
| /* |
| * Ensure that task->thread.sve_state is allocated and sufficiently large. |
| * |
| * This function should be used only in preparation for replacing |
| * task->thread.sve_state with new data. The memory is always zeroed |
| * here to prevent stale data from showing through: this is done in |
| * the interest of testability and predictability: except in the |
| * do_sve_acc() case, there is no ABI requirement to hide stale data |
| * written previously be task. |
| */ |
| void sve_alloc(struct task_struct *task) |
| { |
| if (task->thread.sve_state) { |
| memset(task->thread.sve_state, 0, sve_state_size(current)); |
| return; |
| } |
| |
| /* This is a small allocation (maximum ~8KB) and Should Not Fail. */ |
| task->thread.sve_state = |
| kzalloc(sve_state_size(task), GFP_KERNEL); |
| |
| /* |
| * If future SVE revisions can have larger vectors though, |
| * this may cease to be true: |
| */ |
| BUG_ON(!task->thread.sve_state); |
| } |
| |
| |
| /* |
| * Ensure that task->thread.sve_state is up to date with respect to |
| * the user task, irrespective of when SVE is in use or not. |
| * |
| * This should only be called by ptrace. task must be non-runnable. |
| * task->thread.sve_state must point to at least sve_state_size(task) |
| * bytes of allocated kernel memory. |
| */ |
| void fpsimd_sync_to_sve(struct task_struct *task) |
| { |
| if (!test_tsk_thread_flag(task, TIF_SVE)) |
| fpsimd_to_sve(task); |
| } |
| |
| /* |
| * Ensure that task->thread.uw.fpsimd_state is up to date with respect to |
| * the user task, irrespective of whether SVE is in use or not. |
| * |
| * This should only be called by ptrace. task must be non-runnable. |
| * task->thread.sve_state must point to at least sve_state_size(task) |
| * bytes of allocated kernel memory. |
| */ |
| void sve_sync_to_fpsimd(struct task_struct *task) |
| { |
| if (test_tsk_thread_flag(task, TIF_SVE)) |
| sve_to_fpsimd(task); |
| } |
| |
| /* |
| * Ensure that task->thread.sve_state is up to date with respect to |
| * the task->thread.uw.fpsimd_state. |
| * |
| * This should only be called by ptrace to merge new FPSIMD register |
| * values into a task for which SVE is currently active. |
| * task must be non-runnable. |
| * task->thread.sve_state must point to at least sve_state_size(task) |
| * bytes of allocated kernel memory. |
| * task->thread.uw.fpsimd_state must already have been initialised with |
| * the new FPSIMD register values to be merged in. |
| */ |
| void sve_sync_from_fpsimd_zeropad(struct task_struct *task) |
| { |
| unsigned int vq; |
| void *sst = task->thread.sve_state; |
| struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state; |
| unsigned int i; |
| __uint128_t *p; |
| |
| if (!test_tsk_thread_flag(task, TIF_SVE)) |
| return; |
| |
| vq = sve_vq_from_vl(task->thread.sve_vl); |
| |
| memset(sst, 0, SVE_SIG_REGS_SIZE(vq)); |
| |
| for (i = 0; i < 32; ++i) { |
| p = (__uint128_t *)ZREG(sst, vq, i); |
| *p = arm64_cpu_to_le128(fst->vregs[i]); |
| } |
| } |
| |
| int sve_set_vector_length(struct task_struct *task, |
| unsigned long vl, unsigned long flags) |
| { |
| if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT | |
| PR_SVE_SET_VL_ONEXEC)) |
| return -EINVAL; |
| |
| if (!sve_vl_valid(vl)) |
| return -EINVAL; |
| |
| /* |
| * Clamp to the maximum vector length that VL-agnostic SVE code can |
| * work with. A flag may be assigned in the future to allow setting |
| * of larger vector lengths without confusing older software. |
| */ |
| if (vl > SVE_VL_ARCH_MAX) |
| vl = SVE_VL_ARCH_MAX; |
| |
| vl = find_supported_vector_length(vl); |
| |
| if (flags & (PR_SVE_VL_INHERIT | |
| PR_SVE_SET_VL_ONEXEC)) |
| task->thread.sve_vl_onexec = vl; |
| else |
| /* Reset VL to system default on next exec: */ |
| task->thread.sve_vl_onexec = 0; |
| |
| /* Only actually set the VL if not deferred: */ |
| if (flags & PR_SVE_SET_VL_ONEXEC) |
| goto out; |
| |
| if (vl == task->thread.sve_vl) |
| goto out; |
| |
| /* |
| * To ensure the FPSIMD bits of the SVE vector registers are preserved, |
| * write any live register state back to task_struct, and convert to a |
| * non-SVE thread. |
| */ |
| if (task == current) { |
| local_bh_disable(); |
| |
| fpsimd_save(); |
| } |
| |
| fpsimd_flush_task_state(task); |
| if (test_and_clear_tsk_thread_flag(task, TIF_SVE)) |
| sve_to_fpsimd(task); |
| |
| if (task == current) |
| local_bh_enable(); |
| |
| /* |
| * Force reallocation of task SVE state to the correct size |
| * on next use: |
| */ |
| sve_free(task); |
| |
| task->thread.sve_vl = vl; |
| |
| out: |
| update_tsk_thread_flag(task, TIF_SVE_VL_INHERIT, |
| flags & PR_SVE_VL_INHERIT); |
| |
| return 0; |
| } |
| |
| /* |
| * Encode the current vector length and flags for return. |
| * This is only required for prctl(): ptrace has separate fields |
| * |
| * flags are as for sve_set_vector_length(). |
| */ |
| static int sve_prctl_status(unsigned long flags) |
| { |
| int ret; |
| |
| if (flags & PR_SVE_SET_VL_ONEXEC) |
| ret = current->thread.sve_vl_onexec; |
| else |
| ret = current->thread.sve_vl; |
| |
| if (test_thread_flag(TIF_SVE_VL_INHERIT)) |
| ret |= PR_SVE_VL_INHERIT; |
| |
| return ret; |
| } |
| |
| /* PR_SVE_SET_VL */ |
| int sve_set_current_vl(unsigned long arg) |
| { |
| unsigned long vl, flags; |
| int ret; |
| |
| vl = arg & PR_SVE_VL_LEN_MASK; |
| flags = arg & ~vl; |
| |
| if (!system_supports_sve()) |
| return -EINVAL; |
| |
| ret = sve_set_vector_length(current, vl, flags); |
| if (ret) |
| return ret; |
| |
| return sve_prctl_status(flags); |
| } |
| |
| /* PR_SVE_GET_VL */ |
| int sve_get_current_vl(void) |
| { |
| if (!system_supports_sve()) |
| return -EINVAL; |
| |
| return sve_prctl_status(0); |
| } |
| |
| static void sve_probe_vqs(DECLARE_BITMAP(map, SVE_VQ_MAX)) |
| { |
| unsigned int vq, vl; |
| unsigned long zcr; |
| |
| bitmap_zero(map, SVE_VQ_MAX); |
| |
| zcr = ZCR_ELx_LEN_MASK; |
| zcr = read_sysreg_s(SYS_ZCR_EL1) & ~zcr; |
| |
| for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) { |
| write_sysreg_s(zcr | (vq - 1), SYS_ZCR_EL1); /* self-syncing */ |
| vl = sve_get_vl(); |
| vq = sve_vq_from_vl(vl); /* skip intervening lengths */ |
| set_bit(__vq_to_bit(vq), map); |
| } |
| } |
| |
| /* |
| * Initialise the set of known supported VQs for the boot CPU. |
| * This is called during kernel boot, before secondary CPUs are brought up. |
| */ |
| void __init sve_init_vq_map(void) |
| { |
| sve_probe_vqs(sve_vq_map); |
| bitmap_copy(sve_vq_partial_map, sve_vq_map, SVE_VQ_MAX); |
| } |
| |
| /* |
| * If we haven't committed to the set of supported VQs yet, filter out |
| * those not supported by the current CPU. |
| * This function is called during the bring-up of early secondary CPUs only. |
| */ |
| void sve_update_vq_map(void) |
| { |
| DECLARE_BITMAP(tmp_map, SVE_VQ_MAX); |
| |
| sve_probe_vqs(tmp_map); |
| bitmap_and(sve_vq_map, sve_vq_map, tmp_map, SVE_VQ_MAX); |
| bitmap_or(sve_vq_partial_map, sve_vq_partial_map, tmp_map, SVE_VQ_MAX); |
| } |
| |
| /* |
| * Check whether the current CPU supports all VQs in the committed set. |
| * This function is called during the bring-up of late secondary CPUs only. |
| */ |
| int sve_verify_vq_map(void) |
| { |
| DECLARE_BITMAP(tmp_map, SVE_VQ_MAX); |
| unsigned long b; |
| |
| sve_probe_vqs(tmp_map); |
| |
| bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX); |
| if (bitmap_intersects(tmp_map, sve_vq_map, SVE_VQ_MAX)) { |
| pr_warn("SVE: cpu%d: Required vector length(s) missing\n", |
| smp_processor_id()); |
| return -EINVAL; |
| } |
| |
| if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available()) |
| return 0; |
| |
| /* |
| * For KVM, it is necessary to ensure that this CPU doesn't |
| * support any vector length that guests may have probed as |
| * unsupported. |
| */ |
| |
| /* Recover the set of supported VQs: */ |
| bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX); |
| /* Find VQs supported that are not globally supported: */ |
| bitmap_andnot(tmp_map, tmp_map, sve_vq_map, SVE_VQ_MAX); |
| |
| /* Find the lowest such VQ, if any: */ |
| b = find_last_bit(tmp_map, SVE_VQ_MAX); |
| if (b >= SVE_VQ_MAX) |
| return 0; /* no mismatches */ |
| |
| /* |
| * Mismatches above sve_max_virtualisable_vl are fine, since |
| * no guest is allowed to configure ZCR_EL2.LEN to exceed this: |
| */ |
| if (sve_vl_from_vq(__bit_to_vq(b)) <= sve_max_virtualisable_vl) { |
| pr_warn("SVE: cpu%d: Unsupported vector length(s) present\n", |
| smp_processor_id()); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static void __init sve_efi_setup(void) |
| { |
| if (!IS_ENABLED(CONFIG_EFI)) |
| return; |
| |
| /* |
| * alloc_percpu() warns and prints a backtrace if this goes wrong. |
| * This is evidence of a crippled system and we are returning void, |
| * so no attempt is made to handle this situation here. |
| */ |
| if (!sve_vl_valid(sve_max_vl)) |
| goto fail; |
| |
| efi_sve_state = __alloc_percpu( |
| SVE_SIG_REGS_SIZE(sve_vq_from_vl(sve_max_vl)), SVE_VQ_BYTES); |
| if (!efi_sve_state) |
| goto fail; |
| |
| return; |
| |
| fail: |
| panic("Cannot allocate percpu memory for EFI SVE save/restore"); |
| } |
| |
| /* |
| * Enable SVE for EL1. |
| * Intended for use by the cpufeatures code during CPU boot. |
| */ |
| void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p) |
| { |
| write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1); |
| isb(); |
| } |
| |
| /* |
| * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE |
| * vector length. |
| * |
| * Use only if SVE is present. |
| * This function clobbers the SVE vector length. |
| */ |
| u64 read_zcr_features(void) |
| { |
| u64 zcr; |
| unsigned int vq_max; |
| |
| /* |
| * Set the maximum possible VL, and write zeroes to all other |
| * bits to see if they stick. |
| */ |
| sve_kernel_enable(NULL); |
| write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1); |
| |
| zcr = read_sysreg_s(SYS_ZCR_EL1); |
| zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */ |
| vq_max = sve_vq_from_vl(sve_get_vl()); |
| zcr |= vq_max - 1; /* set LEN field to maximum effective value */ |
| |
| return zcr; |
| } |
| |
| void __init sve_setup(void) |
| { |
| u64 zcr; |
| DECLARE_BITMAP(tmp_map, SVE_VQ_MAX); |
| unsigned long b; |
| |
| if (!system_supports_sve()) |
| return; |
| |
| /* |
| * The SVE architecture mandates support for 128-bit vectors, |
| * so sve_vq_map must have at least SVE_VQ_MIN set. |
| * If something went wrong, at least try to patch it up: |
| */ |
| if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), sve_vq_map))) |
| set_bit(__vq_to_bit(SVE_VQ_MIN), sve_vq_map); |
| |
| zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1); |
| sve_max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1); |
| |
| /* |
| * Sanity-check that the max VL we determined through CPU features |
| * corresponds properly to sve_vq_map. If not, do our best: |
| */ |
| if (WARN_ON(sve_max_vl != find_supported_vector_length(sve_max_vl))) |
| sve_max_vl = find_supported_vector_length(sve_max_vl); |
| |
| /* |
| * For the default VL, pick the maximum supported value <= 64. |
| * VL == 64 is guaranteed not to grow the signal frame. |
| */ |
| sve_default_vl = find_supported_vector_length(64); |
| |
| bitmap_andnot(tmp_map, sve_vq_partial_map, sve_vq_map, |
| SVE_VQ_MAX); |
| |
| b = find_last_bit(tmp_map, SVE_VQ_MAX); |
| if (b >= SVE_VQ_MAX) |
| /* No non-virtualisable VLs found */ |
| sve_max_virtualisable_vl = SVE_VQ_MAX; |
| else if (WARN_ON(b == SVE_VQ_MAX - 1)) |
| /* No virtualisable VLs? This is architecturally forbidden. */ |
| sve_max_virtualisable_vl = SVE_VQ_MIN; |
| else /* b + 1 < SVE_VQ_MAX */ |
| sve_max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1)); |
| |
| if (sve_max_virtualisable_vl > sve_max_vl) |
| sve_max_virtualisable_vl = sve_max_vl; |
| |
| pr_info("SVE: maximum available vector length %u bytes per vector\n", |
| sve_max_vl); |
| pr_info("SVE: default vector length %u bytes per vector\n", |
| sve_default_vl); |
| |
| /* KVM decides whether to support mismatched systems. Just warn here: */ |
| if (sve_max_virtualisable_vl < sve_max_vl) |
| pr_warn("SVE: unvirtualisable vector lengths present\n"); |
| |
| sve_efi_setup(); |
| } |
| |
| /* |
| * Called from the put_task_struct() path, which cannot get here |
| * unless dead_task is really dead and not schedulable. |
| */ |
| void fpsimd_release_task(struct task_struct *dead_task) |
| { |
| __sve_free(dead_task); |
| } |
| |
| #endif /* CONFIG_ARM64_SVE */ |
| |
| /* |
| * Trapped SVE access |
| * |
| * Storage is allocated for the full SVE state, the current FPSIMD |
| * register contents are migrated across, and TIF_SVE is set so that |
| * the SVE access trap will be disabled the next time this task |
| * reaches ret_to_user. |
| * |
| * TIF_SVE should be clear on entry: otherwise, task_fpsimd_load() |
| * would have disabled the SVE access trap for userspace during |
| * ret_to_user, making an SVE access trap impossible in that case. |
| */ |
| asmlinkage void do_sve_acc(unsigned int esr, struct pt_regs *regs) |
| { |
| /* Even if we chose not to use SVE, the hardware could still trap: */ |
| if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) { |
| force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc); |
| return; |
| } |
| |
| sve_alloc(current); |
| |
| local_bh_disable(); |
| |
| fpsimd_save(); |
| |
| /* Force ret_to_user to reload the registers: */ |
| fpsimd_flush_task_state(current); |
| |
| fpsimd_to_sve(current); |
| if (test_and_set_thread_flag(TIF_SVE)) |
| WARN_ON(1); /* SVE access shouldn't have trapped */ |
| |
| local_bh_enable(); |
| } |
| |
| /* |
| * Trapped FP/ASIMD access. |
| */ |
| asmlinkage void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs) |
| { |
| /* TODO: implement lazy context saving/restoring */ |
| WARN_ON(1); |
| } |
| |
| /* |
| * Raise a SIGFPE for the current process. |
| */ |
| asmlinkage void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs) |
| { |
| unsigned int si_code = FPE_FLTUNK; |
| |
| if (esr & ESR_ELx_FP_EXC_TFV) { |
| if (esr & FPEXC_IOF) |
| si_code = FPE_FLTINV; |
| else if (esr & FPEXC_DZF) |
| si_code = FPE_FLTDIV; |
| else if (esr & FPEXC_OFF) |
| si_code = FPE_FLTOVF; |
| else if (esr & FPEXC_UFF) |
| si_code = FPE_FLTUND; |
| else if (esr & FPEXC_IXF) |
| si_code = FPE_FLTRES; |
| } |
| |
| send_sig_fault(SIGFPE, si_code, |
| (void __user *)instruction_pointer(regs), |
| current); |
| } |
| |
| void fpsimd_thread_switch(struct task_struct *next) |
| { |
| bool wrong_task, wrong_cpu; |
| |
| if (!system_supports_fpsimd()) |
| return; |
| |
| /* Save unsaved fpsimd state, if any: */ |
| fpsimd_save(); |
| |
| /* |
| * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's |
| * state. For kernel threads, FPSIMD registers are never loaded |
| * and wrong_task and wrong_cpu will always be true. |
| */ |
| wrong_task = __this_cpu_read(fpsimd_last_state.st) != |
| &next->thread.uw.fpsimd_state; |
| wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id(); |
| |
| update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE, |
| wrong_task || wrong_cpu); |
| } |
| |
| void fpsimd_flush_thread(void) |
| { |
| int vl, supported_vl; |
| |
| if (!system_supports_fpsimd()) |
| return; |
| |
| local_bh_disable(); |
| |
| fpsimd_flush_task_state(current); |
| memset(¤t->thread.uw.fpsimd_state, 0, |
| sizeof(current->thread.uw.fpsimd_state)); |
| |
| if (system_supports_sve()) { |
| clear_thread_flag(TIF_SVE); |
| sve_free(current); |
| |
| /* |
| * Reset the task vector length as required. |
| * This is where we ensure that all user tasks have a valid |
| * vector length configured: no kernel task can become a user |
| * task without an exec and hence a call to this function. |
| * By the time the first call to this function is made, all |
| * early hardware probing is complete, so sve_default_vl |
| * should be valid. |
| * If a bug causes this to go wrong, we make some noise and |
| * try to fudge thread.sve_vl to a safe value here. |
| */ |
| vl = current->thread.sve_vl_onexec ? |
| current->thread.sve_vl_onexec : sve_default_vl; |
| |
| if (WARN_ON(!sve_vl_valid(vl))) |
| vl = SVE_VL_MIN; |
| |
| supported_vl = find_supported_vector_length(vl); |
| if (WARN_ON(supported_vl != vl)) |
| vl = supported_vl; |
| |
| current->thread.sve_vl = vl; |
| |
| /* |
| * If the task is not set to inherit, ensure that the vector |
| * length will be reset by a subsequent exec: |
| */ |
| if (!test_thread_flag(TIF_SVE_VL_INHERIT)) |
| current->thread.sve_vl_onexec = 0; |
| } |
| |
| local_bh_enable(); |
| } |
| |
| /* |
| * Save the userland FPSIMD state of 'current' to memory, but only if the state |
| * currently held in the registers does in fact belong to 'current' |
| */ |
| void fpsimd_preserve_current_state(void) |
| { |
| if (!system_supports_fpsimd()) |
| return; |
| |
| local_bh_disable(); |
| fpsimd_save(); |
| local_bh_enable(); |
| } |
| |
| /* |
| * Like fpsimd_preserve_current_state(), but ensure that |
| * current->thread.uw.fpsimd_state is updated so that it can be copied to |
| * the signal frame. |
| */ |
| void fpsimd_signal_preserve_current_state(void) |
| { |
| fpsimd_preserve_current_state(); |
| if (system_supports_sve() && test_thread_flag(TIF_SVE)) |
| sve_to_fpsimd(current); |
| } |
| |
| /* |
| * Associate current's FPSIMD context with this cpu |
| * Preemption must be disabled when calling this function. |
| */ |
| void fpsimd_bind_task_to_cpu(void) |
| { |
| struct fpsimd_last_state_struct *last = |
| this_cpu_ptr(&fpsimd_last_state); |
| |
| last->st = ¤t->thread.uw.fpsimd_state; |
| last->sve_state = current->thread.sve_state; |
| last->sve_vl = current->thread.sve_vl; |
| current->thread.fpsimd_cpu = smp_processor_id(); |
| |
| if (system_supports_sve()) { |
| /* Toggle SVE trapping for userspace if needed */ |
| if (test_thread_flag(TIF_SVE)) |
| sve_user_enable(); |
| else |
| sve_user_disable(); |
| |
| /* Serialised by exception return to user */ |
| } |
| } |
| |
| void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *st, void *sve_state, |
| unsigned int sve_vl) |
| { |
| struct fpsimd_last_state_struct *last = |
| this_cpu_ptr(&fpsimd_last_state); |
| |
| WARN_ON(!in_softirq() && !irqs_disabled()); |
| |
| last->st = st; |
| last->sve_state = sve_state; |
| last->sve_vl = sve_vl; |
| } |
| |
| /* |
| * Load the userland FPSIMD state of 'current' from memory, but only if the |
| * FPSIMD state already held in the registers is /not/ the most recent FPSIMD |
| * state of 'current' |
| */ |
| void fpsimd_restore_current_state(void) |
| { |
| if (!system_supports_fpsimd()) |
| return; |
| |
| local_bh_disable(); |
| |
| if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) { |
| task_fpsimd_load(); |
| fpsimd_bind_task_to_cpu(); |
| } |
| |
| local_bh_enable(); |
| } |
| |
| /* |
| * Load an updated userland FPSIMD state for 'current' from memory and set the |
| * flag that indicates that the FPSIMD register contents are the most recent |
| * FPSIMD state of 'current' |
| */ |
| void fpsimd_update_current_state(struct user_fpsimd_state const *state) |
| { |
| if (!system_supports_fpsimd()) |
| return; |
| |
| local_bh_disable(); |
| |
| current->thread.uw.fpsimd_state = *state; |
| if (system_supports_sve() && test_thread_flag(TIF_SVE)) |
| fpsimd_to_sve(current); |
| |
| task_fpsimd_load(); |
| fpsimd_bind_task_to_cpu(); |
| |
| clear_thread_flag(TIF_FOREIGN_FPSTATE); |
| |
| local_bh_enable(); |
| } |
| |
| /* |
| * Invalidate live CPU copies of task t's FPSIMD state |
| * |
| * This function may be called with preemption enabled. The barrier() |
| * ensures that the assignment to fpsimd_cpu is visible to any |
| * preemption/softirq that could race with set_tsk_thread_flag(), so |
| * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared. |
| * |
| * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any |
| * subsequent code. |
| */ |
| void fpsimd_flush_task_state(struct task_struct *t) |
| { |
| t->thread.fpsimd_cpu = NR_CPUS; |
| |
| barrier(); |
| set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE); |
| |
| barrier(); |
| } |
| |
| /* |
| * Invalidate any task's FPSIMD state that is present on this cpu. |
| * This function must be called with softirqs disabled. |
| */ |
| void fpsimd_flush_cpu_state(void) |
| { |
| __this_cpu_write(fpsimd_last_state.st, NULL); |
| set_thread_flag(TIF_FOREIGN_FPSTATE); |
| } |
| |
| #ifdef CONFIG_KERNEL_MODE_NEON |
| |
| DEFINE_PER_CPU(bool, kernel_neon_busy); |
| EXPORT_PER_CPU_SYMBOL(kernel_neon_busy); |
| |
| /* |
| * Kernel-side NEON support functions |
| */ |
| |
| /* |
| * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling |
| * context |
| * |
| * Must not be called unless may_use_simd() returns true. |
| * Task context in the FPSIMD registers is saved back to memory as necessary. |
| * |
| * A matching call to kernel_neon_end() must be made before returning from the |
| * calling context. |
| * |
| * The caller may freely use the FPSIMD registers until kernel_neon_end() is |
| * called. |
| */ |
| void kernel_neon_begin(void) |
| { |
| if (WARN_ON(!system_supports_fpsimd())) |
| return; |
| |
| BUG_ON(!may_use_simd()); |
| |
| local_bh_disable(); |
| |
| __this_cpu_write(kernel_neon_busy, true); |
| |
| /* Save unsaved fpsimd state, if any: */ |
| fpsimd_save(); |
| |
| /* Invalidate any task state remaining in the fpsimd regs: */ |
| fpsimd_flush_cpu_state(); |
| |
| preempt_disable(); |
| |
| local_bh_enable(); |
| } |
| EXPORT_SYMBOL(kernel_neon_begin); |
| |
| /* |
| * kernel_neon_end(): give the CPU FPSIMD registers back to the current task |
| * |
| * Must be called from a context in which kernel_neon_begin() was previously |
| * called, with no call to kernel_neon_end() in the meantime. |
| * |
| * The caller must not use the FPSIMD registers after this function is called, |
| * unless kernel_neon_begin() is called again in the meantime. |
| */ |
| void kernel_neon_end(void) |
| { |
| bool busy; |
| |
| if (!system_supports_fpsimd()) |
| return; |
| |
| busy = __this_cpu_xchg(kernel_neon_busy, false); |
| WARN_ON(!busy); /* No matching kernel_neon_begin()? */ |
| |
| preempt_enable(); |
| } |
| EXPORT_SYMBOL(kernel_neon_end); |
| |
| #ifdef CONFIG_EFI |
| |
| static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state); |
| static DEFINE_PER_CPU(bool, efi_fpsimd_state_used); |
| static DEFINE_PER_CPU(bool, efi_sve_state_used); |
| |
| /* |
| * EFI runtime services support functions |
| * |
| * The ABI for EFI runtime services allows EFI to use FPSIMD during the call. |
| * This means that for EFI (and only for EFI), we have to assume that FPSIMD |
| * is always used rather than being an optional accelerator. |
| * |
| * These functions provide the necessary support for ensuring FPSIMD |
| * save/restore in the contexts from which EFI is used. |
| * |
| * Do not use them for any other purpose -- if tempted to do so, you are |
| * either doing something wrong or you need to propose some refactoring. |
| */ |
| |
| /* |
| * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call |
| */ |
| void __efi_fpsimd_begin(void) |
| { |
| if (!system_supports_fpsimd()) |
| return; |
| |
| WARN_ON(preemptible()); |
| |
| if (may_use_simd()) { |
| kernel_neon_begin(); |
| } else { |
| /* |
| * If !efi_sve_state, SVE can't be in use yet and doesn't need |
| * preserving: |
| */ |
| if (system_supports_sve() && likely(efi_sve_state)) { |
| char *sve_state = this_cpu_ptr(efi_sve_state); |
| |
| __this_cpu_write(efi_sve_state_used, true); |
| |
| sve_save_state(sve_state + sve_ffr_offset(sve_max_vl), |
| &this_cpu_ptr(&efi_fpsimd_state)->fpsr); |
| } else { |
| fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state)); |
| } |
| |
| __this_cpu_write(efi_fpsimd_state_used, true); |
| } |
| } |
| |
| /* |
| * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call |
| */ |
| void __efi_fpsimd_end(void) |
| { |
| if (!system_supports_fpsimd()) |
| return; |
| |
| if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) { |
| kernel_neon_end(); |
| } else { |
| if (system_supports_sve() && |
| likely(__this_cpu_read(efi_sve_state_used))) { |
| char const *sve_state = this_cpu_ptr(efi_sve_state); |
| |
| sve_load_state(sve_state + sve_ffr_offset(sve_max_vl), |
| &this_cpu_ptr(&efi_fpsimd_state)->fpsr, |
| sve_vq_from_vl(sve_get_vl()) - 1); |
| |
| __this_cpu_write(efi_sve_state_used, false); |
| } else { |
| fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state)); |
| } |
| } |
| } |
| |
| #endif /* CONFIG_EFI */ |
| |
| #endif /* CONFIG_KERNEL_MODE_NEON */ |
| |
| #ifdef CONFIG_CPU_PM |
| static int fpsimd_cpu_pm_notifier(struct notifier_block *self, |
| unsigned long cmd, void *v) |
| { |
| switch (cmd) { |
| case CPU_PM_ENTER: |
| fpsimd_save(); |
| fpsimd_flush_cpu_state(); |
| break; |
| case CPU_PM_EXIT: |
| break; |
| case CPU_PM_ENTER_FAILED: |
| default: |
| return NOTIFY_DONE; |
| } |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block fpsimd_cpu_pm_notifier_block = { |
| .notifier_call = fpsimd_cpu_pm_notifier, |
| }; |
| |
| static void __init fpsimd_pm_init(void) |
| { |
| cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block); |
| } |
| |
| #else |
| static inline void fpsimd_pm_init(void) { } |
| #endif /* CONFIG_CPU_PM */ |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| static int fpsimd_cpu_dead(unsigned int cpu) |
| { |
| per_cpu(fpsimd_last_state.st, cpu) = NULL; |
| return 0; |
| } |
| |
| static inline void fpsimd_hotplug_init(void) |
| { |
| cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead", |
| NULL, fpsimd_cpu_dead); |
| } |
| |
| #else |
| static inline void fpsimd_hotplug_init(void) { } |
| #endif |
| |
| /* |
| * FP/SIMD support code initialisation. |
| */ |
| static int __init fpsimd_init(void) |
| { |
| if (cpu_have_named_feature(FP)) { |
| fpsimd_pm_init(); |
| fpsimd_hotplug_init(); |
| } else { |
| pr_notice("Floating-point is not implemented\n"); |
| } |
| |
| if (!cpu_have_named_feature(ASIMD)) |
| pr_notice("Advanced SIMD is not implemented\n"); |
| |
| return sve_sysctl_init(); |
| } |
| core_initcall(fpsimd_init); |