| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2007 Oracle. All rights reserved. |
| */ |
| |
| #include <linux/fs.h> |
| #include <linux/blkdev.h> |
| #include <linux/radix-tree.h> |
| #include <linux/writeback.h> |
| #include <linux/workqueue.h> |
| #include <linux/kthread.h> |
| #include <linux/slab.h> |
| #include <linux/migrate.h> |
| #include <linux/ratelimit.h> |
| #include <linux/uuid.h> |
| #include <linux/semaphore.h> |
| #include <linux/error-injection.h> |
| #include <linux/crc32c.h> |
| #include <linux/sched/mm.h> |
| #include <asm/unaligned.h> |
| #include <crypto/hash.h> |
| #include "ctree.h" |
| #include "disk-io.h" |
| #include "transaction.h" |
| #include "btrfs_inode.h" |
| #include "volumes.h" |
| #include "print-tree.h" |
| #include "locking.h" |
| #include "tree-log.h" |
| #include "free-space-cache.h" |
| #include "free-space-tree.h" |
| #include "check-integrity.h" |
| #include "rcu-string.h" |
| #include "dev-replace.h" |
| #include "raid56.h" |
| #include "sysfs.h" |
| #include "qgroup.h" |
| #include "compression.h" |
| #include "tree-checker.h" |
| #include "ref-verify.h" |
| #include "block-group.h" |
| #include "discard.h" |
| #include "space-info.h" |
| #include "zoned.h" |
| |
| #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ |
| BTRFS_HEADER_FLAG_RELOC |\ |
| BTRFS_SUPER_FLAG_ERROR |\ |
| BTRFS_SUPER_FLAG_SEEDING |\ |
| BTRFS_SUPER_FLAG_METADUMP |\ |
| BTRFS_SUPER_FLAG_METADUMP_V2) |
| |
| static void end_workqueue_fn(struct btrfs_work *work); |
| static void btrfs_destroy_ordered_extents(struct btrfs_root *root); |
| static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, |
| struct btrfs_fs_info *fs_info); |
| static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); |
| static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, |
| struct extent_io_tree *dirty_pages, |
| int mark); |
| static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, |
| struct extent_io_tree *pinned_extents); |
| static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); |
| static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); |
| |
| /* |
| * btrfs_end_io_wq structs are used to do processing in task context when an IO |
| * is complete. This is used during reads to verify checksums, and it is used |
| * by writes to insert metadata for new file extents after IO is complete. |
| */ |
| struct btrfs_end_io_wq { |
| struct bio *bio; |
| bio_end_io_t *end_io; |
| void *private; |
| struct btrfs_fs_info *info; |
| blk_status_t status; |
| enum btrfs_wq_endio_type metadata; |
| struct btrfs_work work; |
| }; |
| |
| static struct kmem_cache *btrfs_end_io_wq_cache; |
| |
| int __init btrfs_end_io_wq_init(void) |
| { |
| btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", |
| sizeof(struct btrfs_end_io_wq), |
| 0, |
| SLAB_MEM_SPREAD, |
| NULL); |
| if (!btrfs_end_io_wq_cache) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| void __cold btrfs_end_io_wq_exit(void) |
| { |
| kmem_cache_destroy(btrfs_end_io_wq_cache); |
| } |
| |
| static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) |
| { |
| if (fs_info->csum_shash) |
| crypto_free_shash(fs_info->csum_shash); |
| } |
| |
| /* |
| * async submit bios are used to offload expensive checksumming |
| * onto the worker threads. They checksum file and metadata bios |
| * just before they are sent down the IO stack. |
| */ |
| struct async_submit_bio { |
| struct inode *inode; |
| struct bio *bio; |
| extent_submit_bio_start_t *submit_bio_start; |
| int mirror_num; |
| |
| /* Optional parameter for submit_bio_start used by direct io */ |
| u64 dio_file_offset; |
| struct btrfs_work work; |
| blk_status_t status; |
| }; |
| |
| /* |
| * Lockdep class keys for extent_buffer->lock's in this root. For a given |
| * eb, the lockdep key is determined by the btrfs_root it belongs to and |
| * the level the eb occupies in the tree. |
| * |
| * Different roots are used for different purposes and may nest inside each |
| * other and they require separate keysets. As lockdep keys should be |
| * static, assign keysets according to the purpose of the root as indicated |
| * by btrfs_root->root_key.objectid. This ensures that all special purpose |
| * roots have separate keysets. |
| * |
| * Lock-nesting across peer nodes is always done with the immediate parent |
| * node locked thus preventing deadlock. As lockdep doesn't know this, use |
| * subclass to avoid triggering lockdep warning in such cases. |
| * |
| * The key is set by the readpage_end_io_hook after the buffer has passed |
| * csum validation but before the pages are unlocked. It is also set by |
| * btrfs_init_new_buffer on freshly allocated blocks. |
| * |
| * We also add a check to make sure the highest level of the tree is the |
| * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code |
| * needs update as well. |
| */ |
| #ifdef CONFIG_DEBUG_LOCK_ALLOC |
| # if BTRFS_MAX_LEVEL != 8 |
| # error |
| # endif |
| |
| #define DEFINE_LEVEL(stem, level) \ |
| .names[level] = "btrfs-" stem "-0" #level, |
| |
| #define DEFINE_NAME(stem) \ |
| DEFINE_LEVEL(stem, 0) \ |
| DEFINE_LEVEL(stem, 1) \ |
| DEFINE_LEVEL(stem, 2) \ |
| DEFINE_LEVEL(stem, 3) \ |
| DEFINE_LEVEL(stem, 4) \ |
| DEFINE_LEVEL(stem, 5) \ |
| DEFINE_LEVEL(stem, 6) \ |
| DEFINE_LEVEL(stem, 7) |
| |
| static struct btrfs_lockdep_keyset { |
| u64 id; /* root objectid */ |
| /* Longest entry: btrfs-free-space-00 */ |
| char names[BTRFS_MAX_LEVEL][20]; |
| struct lock_class_key keys[BTRFS_MAX_LEVEL]; |
| } btrfs_lockdep_keysets[] = { |
| { .id = BTRFS_ROOT_TREE_OBJECTID, DEFINE_NAME("root") }, |
| { .id = BTRFS_EXTENT_TREE_OBJECTID, DEFINE_NAME("extent") }, |
| { .id = BTRFS_CHUNK_TREE_OBJECTID, DEFINE_NAME("chunk") }, |
| { .id = BTRFS_DEV_TREE_OBJECTID, DEFINE_NAME("dev") }, |
| { .id = BTRFS_CSUM_TREE_OBJECTID, DEFINE_NAME("csum") }, |
| { .id = BTRFS_QUOTA_TREE_OBJECTID, DEFINE_NAME("quota") }, |
| { .id = BTRFS_TREE_LOG_OBJECTID, DEFINE_NAME("log") }, |
| { .id = BTRFS_TREE_RELOC_OBJECTID, DEFINE_NAME("treloc") }, |
| { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, DEFINE_NAME("dreloc") }, |
| { .id = BTRFS_UUID_TREE_OBJECTID, DEFINE_NAME("uuid") }, |
| { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, DEFINE_NAME("free-space") }, |
| { .id = 0, DEFINE_NAME("tree") }, |
| }; |
| |
| #undef DEFINE_LEVEL |
| #undef DEFINE_NAME |
| |
| void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, |
| int level) |
| { |
| struct btrfs_lockdep_keyset *ks; |
| |
| BUG_ON(level >= ARRAY_SIZE(ks->keys)); |
| |
| /* find the matching keyset, id 0 is the default entry */ |
| for (ks = btrfs_lockdep_keysets; ks->id; ks++) |
| if (ks->id == objectid) |
| break; |
| |
| lockdep_set_class_and_name(&eb->lock, |
| &ks->keys[level], ks->names[level]); |
| } |
| |
| #endif |
| |
| /* |
| * Compute the csum of a btree block and store the result to provided buffer. |
| */ |
| static void csum_tree_block(struct extent_buffer *buf, u8 *result) |
| { |
| struct btrfs_fs_info *fs_info = buf->fs_info; |
| const int num_pages = fs_info->nodesize >> PAGE_SHIFT; |
| const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); |
| SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); |
| char *kaddr; |
| int i; |
| |
| shash->tfm = fs_info->csum_shash; |
| crypto_shash_init(shash); |
| kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start); |
| crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, |
| first_page_part - BTRFS_CSUM_SIZE); |
| |
| for (i = 1; i < num_pages; i++) { |
| kaddr = page_address(buf->pages[i]); |
| crypto_shash_update(shash, kaddr, PAGE_SIZE); |
| } |
| memset(result, 0, BTRFS_CSUM_SIZE); |
| crypto_shash_final(shash, result); |
| } |
| |
| /* |
| * we can't consider a given block up to date unless the transid of the |
| * block matches the transid in the parent node's pointer. This is how we |
| * detect blocks that either didn't get written at all or got written |
| * in the wrong place. |
| */ |
| static int verify_parent_transid(struct extent_io_tree *io_tree, |
| struct extent_buffer *eb, u64 parent_transid, |
| int atomic) |
| { |
| struct extent_state *cached_state = NULL; |
| int ret; |
| bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); |
| |
| if (!parent_transid || btrfs_header_generation(eb) == parent_transid) |
| return 0; |
| |
| if (atomic) |
| return -EAGAIN; |
| |
| if (need_lock) |
| btrfs_tree_read_lock(eb); |
| |
| lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, |
| &cached_state); |
| if (extent_buffer_uptodate(eb) && |
| btrfs_header_generation(eb) == parent_transid) { |
| ret = 0; |
| goto out; |
| } |
| btrfs_err_rl(eb->fs_info, |
| "parent transid verify failed on %llu wanted %llu found %llu", |
| eb->start, |
| parent_transid, btrfs_header_generation(eb)); |
| ret = 1; |
| |
| /* |
| * Things reading via commit roots that don't have normal protection, |
| * like send, can have a really old block in cache that may point at a |
| * block that has been freed and re-allocated. So don't clear uptodate |
| * if we find an eb that is under IO (dirty/writeback) because we could |
| * end up reading in the stale data and then writing it back out and |
| * making everybody very sad. |
| */ |
| if (!extent_buffer_under_io(eb)) |
| clear_extent_buffer_uptodate(eb); |
| out: |
| unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, |
| &cached_state); |
| if (need_lock) |
| btrfs_tree_read_unlock(eb); |
| return ret; |
| } |
| |
| static bool btrfs_supported_super_csum(u16 csum_type) |
| { |
| switch (csum_type) { |
| case BTRFS_CSUM_TYPE_CRC32: |
| case BTRFS_CSUM_TYPE_XXHASH: |
| case BTRFS_CSUM_TYPE_SHA256: |
| case BTRFS_CSUM_TYPE_BLAKE2: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| /* |
| * Return 0 if the superblock checksum type matches the checksum value of that |
| * algorithm. Pass the raw disk superblock data. |
| */ |
| static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, |
| char *raw_disk_sb) |
| { |
| struct btrfs_super_block *disk_sb = |
| (struct btrfs_super_block *)raw_disk_sb; |
| char result[BTRFS_CSUM_SIZE]; |
| SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); |
| |
| shash->tfm = fs_info->csum_shash; |
| |
| /* |
| * The super_block structure does not span the whole |
| * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is |
| * filled with zeros and is included in the checksum. |
| */ |
| crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE, |
| BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); |
| |
| if (memcmp(disk_sb->csum, result, fs_info->csum_size)) |
| return 1; |
| |
| return 0; |
| } |
| |
| int btrfs_verify_level_key(struct extent_buffer *eb, int level, |
| struct btrfs_key *first_key, u64 parent_transid) |
| { |
| struct btrfs_fs_info *fs_info = eb->fs_info; |
| int found_level; |
| struct btrfs_key found_key; |
| int ret; |
| |
| found_level = btrfs_header_level(eb); |
| if (found_level != level) { |
| WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), |
| KERN_ERR "BTRFS: tree level check failed\n"); |
| btrfs_err(fs_info, |
| "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", |
| eb->start, level, found_level); |
| return -EIO; |
| } |
| |
| if (!first_key) |
| return 0; |
| |
| /* |
| * For live tree block (new tree blocks in current transaction), |
| * we need proper lock context to avoid race, which is impossible here. |
| * So we only checks tree blocks which is read from disk, whose |
| * generation <= fs_info->last_trans_committed. |
| */ |
| if (btrfs_header_generation(eb) > fs_info->last_trans_committed) |
| return 0; |
| |
| /* We have @first_key, so this @eb must have at least one item */ |
| if (btrfs_header_nritems(eb) == 0) { |
| btrfs_err(fs_info, |
| "invalid tree nritems, bytenr=%llu nritems=0 expect >0", |
| eb->start); |
| WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); |
| return -EUCLEAN; |
| } |
| |
| if (found_level) |
| btrfs_node_key_to_cpu(eb, &found_key, 0); |
| else |
| btrfs_item_key_to_cpu(eb, &found_key, 0); |
| ret = btrfs_comp_cpu_keys(first_key, &found_key); |
| |
| if (ret) { |
| WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), |
| KERN_ERR "BTRFS: tree first key check failed\n"); |
| btrfs_err(fs_info, |
| "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", |
| eb->start, parent_transid, first_key->objectid, |
| first_key->type, first_key->offset, |
| found_key.objectid, found_key.type, |
| found_key.offset); |
| } |
| return ret; |
| } |
| |
| /* |
| * helper to read a given tree block, doing retries as required when |
| * the checksums don't match and we have alternate mirrors to try. |
| * |
| * @parent_transid: expected transid, skip check if 0 |
| * @level: expected level, mandatory check |
| * @first_key: expected key of first slot, skip check if NULL |
| */ |
| static int btree_read_extent_buffer_pages(struct extent_buffer *eb, |
| u64 parent_transid, int level, |
| struct btrfs_key *first_key) |
| { |
| struct btrfs_fs_info *fs_info = eb->fs_info; |
| struct extent_io_tree *io_tree; |
| int failed = 0; |
| int ret; |
| int num_copies = 0; |
| int mirror_num = 0; |
| int failed_mirror = 0; |
| |
| io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; |
| while (1) { |
| clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); |
| ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num); |
| if (!ret) { |
| if (verify_parent_transid(io_tree, eb, |
| parent_transid, 0)) |
| ret = -EIO; |
| else if (btrfs_verify_level_key(eb, level, |
| first_key, parent_transid)) |
| ret = -EUCLEAN; |
| else |
| break; |
| } |
| |
| num_copies = btrfs_num_copies(fs_info, |
| eb->start, eb->len); |
| if (num_copies == 1) |
| break; |
| |
| if (!failed_mirror) { |
| failed = 1; |
| failed_mirror = eb->read_mirror; |
| } |
| |
| mirror_num++; |
| if (mirror_num == failed_mirror) |
| mirror_num++; |
| |
| if (mirror_num > num_copies) |
| break; |
| } |
| |
| if (failed && !ret && failed_mirror) |
| btrfs_repair_eb_io_failure(eb, failed_mirror); |
| |
| return ret; |
| } |
| |
| /* |
| * Checksum a dirty tree block before IO. This has extra checks to make sure |
| * we only fill in the checksum field in the first page of a multi-page block. |
| * For subpage extent buffers we need bvec to also read the offset in the page. |
| */ |
| static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec) |
| { |
| struct page *page = bvec->bv_page; |
| u64 start = page_offset(page); |
| u64 found_start; |
| u8 result[BTRFS_CSUM_SIZE]; |
| struct extent_buffer *eb; |
| int ret; |
| |
| eb = (struct extent_buffer *)page->private; |
| if (page != eb->pages[0]) |
| return 0; |
| |
| found_start = btrfs_header_bytenr(eb); |
| /* |
| * Please do not consolidate these warnings into a single if. |
| * It is useful to know what went wrong. |
| */ |
| if (WARN_ON(found_start != start)) |
| return -EUCLEAN; |
| if (WARN_ON(!PageUptodate(page))) |
| return -EUCLEAN; |
| |
| ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, |
| offsetof(struct btrfs_header, fsid), |
| BTRFS_FSID_SIZE) == 0); |
| |
| csum_tree_block(eb, result); |
| |
| if (btrfs_header_level(eb)) |
| ret = btrfs_check_node(eb); |
| else |
| ret = btrfs_check_leaf_full(eb); |
| |
| if (ret < 0) { |
| btrfs_print_tree(eb, 0); |
| btrfs_err(fs_info, |
| "block=%llu write time tree block corruption detected", |
| eb->start); |
| WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); |
| return ret; |
| } |
| write_extent_buffer(eb, result, 0, fs_info->csum_size); |
| |
| return 0; |
| } |
| |
| static int check_tree_block_fsid(struct extent_buffer *eb) |
| { |
| struct btrfs_fs_info *fs_info = eb->fs_info; |
| struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; |
| u8 fsid[BTRFS_FSID_SIZE]; |
| u8 *metadata_uuid; |
| |
| read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), |
| BTRFS_FSID_SIZE); |
| /* |
| * Checking the incompat flag is only valid for the current fs. For |
| * seed devices it's forbidden to have their uuid changed so reading |
| * ->fsid in this case is fine |
| */ |
| if (btrfs_fs_incompat(fs_info, METADATA_UUID)) |
| metadata_uuid = fs_devices->metadata_uuid; |
| else |
| metadata_uuid = fs_devices->fsid; |
| |
| if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) |
| return 0; |
| |
| list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) |
| if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* Do basic extent buffer checks at read time */ |
| static int validate_extent_buffer(struct extent_buffer *eb) |
| { |
| struct btrfs_fs_info *fs_info = eb->fs_info; |
| u64 found_start; |
| const u32 csum_size = fs_info->csum_size; |
| u8 found_level; |
| u8 result[BTRFS_CSUM_SIZE]; |
| int ret = 0; |
| |
| found_start = btrfs_header_bytenr(eb); |
| if (found_start != eb->start) { |
| btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu", |
| eb->start, found_start); |
| ret = -EIO; |
| goto out; |
| } |
| if (check_tree_block_fsid(eb)) { |
| btrfs_err_rl(fs_info, "bad fsid on block %llu", |
| eb->start); |
| ret = -EIO; |
| goto out; |
| } |
| found_level = btrfs_header_level(eb); |
| if (found_level >= BTRFS_MAX_LEVEL) { |
| btrfs_err(fs_info, "bad tree block level %d on %llu", |
| (int)btrfs_header_level(eb), eb->start); |
| ret = -EIO; |
| goto out; |
| } |
| |
| csum_tree_block(eb, result); |
| |
| if (memcmp_extent_buffer(eb, result, 0, csum_size)) { |
| u8 val[BTRFS_CSUM_SIZE] = { 0 }; |
| |
| read_extent_buffer(eb, &val, 0, csum_size); |
| btrfs_warn_rl(fs_info, |
| "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d", |
| fs_info->sb->s_id, eb->start, |
| CSUM_FMT_VALUE(csum_size, val), |
| CSUM_FMT_VALUE(csum_size, result), |
| btrfs_header_level(eb)); |
| ret = -EUCLEAN; |
| goto out; |
| } |
| |
| /* |
| * If this is a leaf block and it is corrupt, set the corrupt bit so |
| * that we don't try and read the other copies of this block, just |
| * return -EIO. |
| */ |
| if (found_level == 0 && btrfs_check_leaf_full(eb)) { |
| set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); |
| ret = -EIO; |
| } |
| |
| if (found_level > 0 && btrfs_check_node(eb)) |
| ret = -EIO; |
| |
| if (!ret) |
| set_extent_buffer_uptodate(eb); |
| else |
| btrfs_err(fs_info, |
| "block=%llu read time tree block corruption detected", |
| eb->start); |
| out: |
| return ret; |
| } |
| |
| int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio, |
| struct page *page, u64 start, u64 end, |
| int mirror) |
| { |
| struct extent_buffer *eb; |
| int ret = 0; |
| int reads_done; |
| |
| ASSERT(page->private); |
| eb = (struct extent_buffer *)page->private; |
| |
| /* |
| * The pending IO might have been the only thing that kept this buffer |
| * in memory. Make sure we have a ref for all this other checks |
| */ |
| atomic_inc(&eb->refs); |
| |
| reads_done = atomic_dec_and_test(&eb->io_pages); |
| if (!reads_done) |
| goto err; |
| |
| eb->read_mirror = mirror; |
| if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { |
| ret = -EIO; |
| goto err; |
| } |
| ret = validate_extent_buffer(eb); |
| err: |
| if (reads_done && |
| test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) |
| btree_readahead_hook(eb, ret); |
| |
| if (ret) { |
| /* |
| * our io error hook is going to dec the io pages |
| * again, we have to make sure it has something |
| * to decrement |
| */ |
| atomic_inc(&eb->io_pages); |
| clear_extent_buffer_uptodate(eb); |
| } |
| free_extent_buffer(eb); |
| |
| return ret; |
| } |
| |
| static void end_workqueue_bio(struct bio *bio) |
| { |
| struct btrfs_end_io_wq *end_io_wq = bio->bi_private; |
| struct btrfs_fs_info *fs_info; |
| struct btrfs_workqueue *wq; |
| |
| fs_info = end_io_wq->info; |
| end_io_wq->status = bio->bi_status; |
| |
| if (bio_op(bio) == REQ_OP_WRITE) { |
| if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) |
| wq = fs_info->endio_meta_write_workers; |
| else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) |
| wq = fs_info->endio_freespace_worker; |
| else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) |
| wq = fs_info->endio_raid56_workers; |
| else |
| wq = fs_info->endio_write_workers; |
| } else { |
| if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) |
| wq = fs_info->endio_raid56_workers; |
| else if (end_io_wq->metadata) |
| wq = fs_info->endio_meta_workers; |
| else |
| wq = fs_info->endio_workers; |
| } |
| |
| btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL); |
| btrfs_queue_work(wq, &end_io_wq->work); |
| } |
| |
| blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, |
| enum btrfs_wq_endio_type metadata) |
| { |
| struct btrfs_end_io_wq *end_io_wq; |
| |
| end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); |
| if (!end_io_wq) |
| return BLK_STS_RESOURCE; |
| |
| end_io_wq->private = bio->bi_private; |
| end_io_wq->end_io = bio->bi_end_io; |
| end_io_wq->info = info; |
| end_io_wq->status = 0; |
| end_io_wq->bio = bio; |
| end_io_wq->metadata = metadata; |
| |
| bio->bi_private = end_io_wq; |
| bio->bi_end_io = end_workqueue_bio; |
| return 0; |
| } |
| |
| static void run_one_async_start(struct btrfs_work *work) |
| { |
| struct async_submit_bio *async; |
| blk_status_t ret; |
| |
| async = container_of(work, struct async_submit_bio, work); |
| ret = async->submit_bio_start(async->inode, async->bio, |
| async->dio_file_offset); |
| if (ret) |
| async->status = ret; |
| } |
| |
| /* |
| * In order to insert checksums into the metadata in large chunks, we wait |
| * until bio submission time. All the pages in the bio are checksummed and |
| * sums are attached onto the ordered extent record. |
| * |
| * At IO completion time the csums attached on the ordered extent record are |
| * inserted into the tree. |
| */ |
| static void run_one_async_done(struct btrfs_work *work) |
| { |
| struct async_submit_bio *async; |
| struct inode *inode; |
| blk_status_t ret; |
| |
| async = container_of(work, struct async_submit_bio, work); |
| inode = async->inode; |
| |
| /* If an error occurred we just want to clean up the bio and move on */ |
| if (async->status) { |
| async->bio->bi_status = async->status; |
| bio_endio(async->bio); |
| return; |
| } |
| |
| /* |
| * All of the bios that pass through here are from async helpers. |
| * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context. |
| * This changes nothing when cgroups aren't in use. |
| */ |
| async->bio->bi_opf |= REQ_CGROUP_PUNT; |
| ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num); |
| if (ret) { |
| async->bio->bi_status = ret; |
| bio_endio(async->bio); |
| } |
| } |
| |
| static void run_one_async_free(struct btrfs_work *work) |
| { |
| struct async_submit_bio *async; |
| |
| async = container_of(work, struct async_submit_bio, work); |
| kfree(async); |
| } |
| |
| blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio, |
| int mirror_num, unsigned long bio_flags, |
| u64 dio_file_offset, |
| extent_submit_bio_start_t *submit_bio_start) |
| { |
| struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; |
| struct async_submit_bio *async; |
| |
| async = kmalloc(sizeof(*async), GFP_NOFS); |
| if (!async) |
| return BLK_STS_RESOURCE; |
| |
| async->inode = inode; |
| async->bio = bio; |
| async->mirror_num = mirror_num; |
| async->submit_bio_start = submit_bio_start; |
| |
| btrfs_init_work(&async->work, run_one_async_start, run_one_async_done, |
| run_one_async_free); |
| |
| async->dio_file_offset = dio_file_offset; |
| |
| async->status = 0; |
| |
| if (op_is_sync(bio->bi_opf)) |
| btrfs_set_work_high_priority(&async->work); |
| |
| btrfs_queue_work(fs_info->workers, &async->work); |
| return 0; |
| } |
| |
| static blk_status_t btree_csum_one_bio(struct bio *bio) |
| { |
| struct bio_vec *bvec; |
| struct btrfs_root *root; |
| int ret = 0; |
| struct bvec_iter_all iter_all; |
| |
| ASSERT(!bio_flagged(bio, BIO_CLONED)); |
| bio_for_each_segment_all(bvec, bio, iter_all) { |
| root = BTRFS_I(bvec->bv_page->mapping->host)->root; |
| ret = csum_dirty_buffer(root->fs_info, bvec); |
| if (ret) |
| break; |
| } |
| |
| return errno_to_blk_status(ret); |
| } |
| |
| static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio, |
| u64 dio_file_offset) |
| { |
| /* |
| * when we're called for a write, we're already in the async |
| * submission context. Just jump into btrfs_map_bio |
| */ |
| return btree_csum_one_bio(bio); |
| } |
| |
| static int check_async_write(struct btrfs_fs_info *fs_info, |
| struct btrfs_inode *bi) |
| { |
| if (atomic_read(&bi->sync_writers)) |
| return 0; |
| if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags)) |
| return 0; |
| return 1; |
| } |
| |
| blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio, |
| int mirror_num, unsigned long bio_flags) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| int async = check_async_write(fs_info, BTRFS_I(inode)); |
| blk_status_t ret; |
| |
| if (bio_op(bio) != REQ_OP_WRITE) { |
| /* |
| * called for a read, do the setup so that checksum validation |
| * can happen in the async kernel threads |
| */ |
| ret = btrfs_bio_wq_end_io(fs_info, bio, |
| BTRFS_WQ_ENDIO_METADATA); |
| if (ret) |
| goto out_w_error; |
| ret = btrfs_map_bio(fs_info, bio, mirror_num); |
| } else if (!async) { |
| ret = btree_csum_one_bio(bio); |
| if (ret) |
| goto out_w_error; |
| ret = btrfs_map_bio(fs_info, bio, mirror_num); |
| } else { |
| /* |
| * kthread helpers are used to submit writes so that |
| * checksumming can happen in parallel across all CPUs |
| */ |
| ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0, |
| 0, btree_submit_bio_start); |
| } |
| |
| if (ret) |
| goto out_w_error; |
| return 0; |
| |
| out_w_error: |
| bio->bi_status = ret; |
| bio_endio(bio); |
| return ret; |
| } |
| |
| #ifdef CONFIG_MIGRATION |
| static int btree_migratepage(struct address_space *mapping, |
| struct page *newpage, struct page *page, |
| enum migrate_mode mode) |
| { |
| /* |
| * we can't safely write a btree page from here, |
| * we haven't done the locking hook |
| */ |
| if (PageDirty(page)) |
| return -EAGAIN; |
| /* |
| * Buffers may be managed in a filesystem specific way. |
| * We must have no buffers or drop them. |
| */ |
| if (page_has_private(page) && |
| !try_to_release_page(page, GFP_KERNEL)) |
| return -EAGAIN; |
| return migrate_page(mapping, newpage, page, mode); |
| } |
| #endif |
| |
| |
| static int btree_writepages(struct address_space *mapping, |
| struct writeback_control *wbc) |
| { |
| struct btrfs_fs_info *fs_info; |
| int ret; |
| |
| if (wbc->sync_mode == WB_SYNC_NONE) { |
| |
| if (wbc->for_kupdate) |
| return 0; |
| |
| fs_info = BTRFS_I(mapping->host)->root->fs_info; |
| /* this is a bit racy, but that's ok */ |
| ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, |
| BTRFS_DIRTY_METADATA_THRESH, |
| fs_info->dirty_metadata_batch); |
| if (ret < 0) |
| return 0; |
| } |
| return btree_write_cache_pages(mapping, wbc); |
| } |
| |
| static int btree_releasepage(struct page *page, gfp_t gfp_flags) |
| { |
| if (PageWriteback(page) || PageDirty(page)) |
| return 0; |
| |
| return try_release_extent_buffer(page); |
| } |
| |
| static void btree_invalidatepage(struct page *page, unsigned int offset, |
| unsigned int length) |
| { |
| struct extent_io_tree *tree; |
| tree = &BTRFS_I(page->mapping->host)->io_tree; |
| extent_invalidatepage(tree, page, offset); |
| btree_releasepage(page, GFP_NOFS); |
| if (PagePrivate(page)) { |
| btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, |
| "page private not zero on page %llu", |
| (unsigned long long)page_offset(page)); |
| detach_page_private(page); |
| } |
| } |
| |
| static int btree_set_page_dirty(struct page *page) |
| { |
| #ifdef DEBUG |
| struct extent_buffer *eb; |
| |
| BUG_ON(!PagePrivate(page)); |
| eb = (struct extent_buffer *)page->private; |
| BUG_ON(!eb); |
| BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); |
| BUG_ON(!atomic_read(&eb->refs)); |
| btrfs_assert_tree_locked(eb); |
| #endif |
| return __set_page_dirty_nobuffers(page); |
| } |
| |
| static const struct address_space_operations btree_aops = { |
| .writepages = btree_writepages, |
| .releasepage = btree_releasepage, |
| .invalidatepage = btree_invalidatepage, |
| #ifdef CONFIG_MIGRATION |
| .migratepage = btree_migratepage, |
| #endif |
| .set_page_dirty = btree_set_page_dirty, |
| }; |
| |
| struct extent_buffer *btrfs_find_create_tree_block( |
| struct btrfs_fs_info *fs_info, |
| u64 bytenr, u64 owner_root, |
| int level) |
| { |
| if (btrfs_is_testing(fs_info)) |
| return alloc_test_extent_buffer(fs_info, bytenr); |
| return alloc_extent_buffer(fs_info, bytenr, owner_root, level); |
| } |
| |
| /* |
| * Read tree block at logical address @bytenr and do variant basic but critical |
| * verification. |
| * |
| * @owner_root: the objectid of the root owner for this block. |
| * @parent_transid: expected transid of this tree block, skip check if 0 |
| * @level: expected level, mandatory check |
| * @first_key: expected key in slot 0, skip check if NULL |
| */ |
| struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, |
| u64 owner_root, u64 parent_transid, |
| int level, struct btrfs_key *first_key) |
| { |
| struct extent_buffer *buf = NULL; |
| int ret; |
| |
| buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); |
| if (IS_ERR(buf)) |
| return buf; |
| |
| ret = btree_read_extent_buffer_pages(buf, parent_transid, |
| level, first_key); |
| if (ret) { |
| free_extent_buffer_stale(buf); |
| return ERR_PTR(ret); |
| } |
| return buf; |
| |
| } |
| |
| void btrfs_clean_tree_block(struct extent_buffer *buf) |
| { |
| struct btrfs_fs_info *fs_info = buf->fs_info; |
| if (btrfs_header_generation(buf) == |
| fs_info->running_transaction->transid) { |
| btrfs_assert_tree_locked(buf); |
| |
| if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { |
| percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, |
| -buf->len, |
| fs_info->dirty_metadata_batch); |
| clear_extent_buffer_dirty(buf); |
| } |
| } |
| } |
| |
| static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, |
| u64 objectid) |
| { |
| bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); |
| root->fs_info = fs_info; |
| root->node = NULL; |
| root->commit_root = NULL; |
| root->state = 0; |
| root->orphan_cleanup_state = 0; |
| |
| root->last_trans = 0; |
| root->highest_objectid = 0; |
| root->nr_delalloc_inodes = 0; |
| root->nr_ordered_extents = 0; |
| root->inode_tree = RB_ROOT; |
| INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); |
| root->block_rsv = NULL; |
| |
| INIT_LIST_HEAD(&root->dirty_list); |
| INIT_LIST_HEAD(&root->root_list); |
| INIT_LIST_HEAD(&root->delalloc_inodes); |
| INIT_LIST_HEAD(&root->delalloc_root); |
| INIT_LIST_HEAD(&root->ordered_extents); |
| INIT_LIST_HEAD(&root->ordered_root); |
| INIT_LIST_HEAD(&root->reloc_dirty_list); |
| INIT_LIST_HEAD(&root->logged_list[0]); |
| INIT_LIST_HEAD(&root->logged_list[1]); |
| spin_lock_init(&root->inode_lock); |
| spin_lock_init(&root->delalloc_lock); |
| spin_lock_init(&root->ordered_extent_lock); |
| spin_lock_init(&root->accounting_lock); |
| spin_lock_init(&root->log_extents_lock[0]); |
| spin_lock_init(&root->log_extents_lock[1]); |
| spin_lock_init(&root->qgroup_meta_rsv_lock); |
| mutex_init(&root->objectid_mutex); |
| mutex_init(&root->log_mutex); |
| mutex_init(&root->ordered_extent_mutex); |
| mutex_init(&root->delalloc_mutex); |
| init_waitqueue_head(&root->qgroup_flush_wait); |
| init_waitqueue_head(&root->log_writer_wait); |
| init_waitqueue_head(&root->log_commit_wait[0]); |
| init_waitqueue_head(&root->log_commit_wait[1]); |
| INIT_LIST_HEAD(&root->log_ctxs[0]); |
| INIT_LIST_HEAD(&root->log_ctxs[1]); |
| atomic_set(&root->log_commit[0], 0); |
| atomic_set(&root->log_commit[1], 0); |
| atomic_set(&root->log_writers, 0); |
| atomic_set(&root->log_batch, 0); |
| refcount_set(&root->refs, 1); |
| atomic_set(&root->snapshot_force_cow, 0); |
| atomic_set(&root->nr_swapfiles, 0); |
| root->log_transid = 0; |
| root->log_transid_committed = -1; |
| root->last_log_commit = 0; |
| if (!dummy) { |
| extent_io_tree_init(fs_info, &root->dirty_log_pages, |
| IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL); |
| extent_io_tree_init(fs_info, &root->log_csum_range, |
| IO_TREE_LOG_CSUM_RANGE, NULL); |
| } |
| |
| memset(&root->root_key, 0, sizeof(root->root_key)); |
| memset(&root->root_item, 0, sizeof(root->root_item)); |
| memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); |
| root->root_key.objectid = objectid; |
| root->anon_dev = 0; |
| |
| spin_lock_init(&root->root_item_lock); |
| btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); |
| #ifdef CONFIG_BTRFS_DEBUG |
| INIT_LIST_HEAD(&root->leak_list); |
| spin_lock(&fs_info->fs_roots_radix_lock); |
| list_add_tail(&root->leak_list, &fs_info->allocated_roots); |
| spin_unlock(&fs_info->fs_roots_radix_lock); |
| #endif |
| } |
| |
| static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, |
| u64 objectid, gfp_t flags) |
| { |
| struct btrfs_root *root = kzalloc(sizeof(*root), flags); |
| if (root) |
| __setup_root(root, fs_info, objectid); |
| return root; |
| } |
| |
| #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS |
| /* Should only be used by the testing infrastructure */ |
| struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_root *root; |
| |
| if (!fs_info) |
| return ERR_PTR(-EINVAL); |
| |
| root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); |
| if (!root) |
| return ERR_PTR(-ENOMEM); |
| |
| /* We don't use the stripesize in selftest, set it as sectorsize */ |
| root->alloc_bytenr = 0; |
| |
| return root; |
| } |
| #endif |
| |
| struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, |
| u64 objectid) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct extent_buffer *leaf; |
| struct btrfs_root *tree_root = fs_info->tree_root; |
| struct btrfs_root *root; |
| struct btrfs_key key; |
| unsigned int nofs_flag; |
| int ret = 0; |
| |
| /* |
| * We're holding a transaction handle, so use a NOFS memory allocation |
| * context to avoid deadlock if reclaim happens. |
| */ |
| nofs_flag = memalloc_nofs_save(); |
| root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); |
| memalloc_nofs_restore(nofs_flag); |
| if (!root) |
| return ERR_PTR(-ENOMEM); |
| |
| root->root_key.objectid = objectid; |
| root->root_key.type = BTRFS_ROOT_ITEM_KEY; |
| root->root_key.offset = 0; |
| |
| leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, |
| BTRFS_NESTING_NORMAL); |
| if (IS_ERR(leaf)) { |
| ret = PTR_ERR(leaf); |
| leaf = NULL; |
| goto fail_unlock; |
| } |
| |
| root->node = leaf; |
| btrfs_mark_buffer_dirty(leaf); |
| |
| root->commit_root = btrfs_root_node(root); |
| set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); |
| |
| btrfs_set_root_flags(&root->root_item, 0); |
| btrfs_set_root_limit(&root->root_item, 0); |
| btrfs_set_root_bytenr(&root->root_item, leaf->start); |
| btrfs_set_root_generation(&root->root_item, trans->transid); |
| btrfs_set_root_level(&root->root_item, 0); |
| btrfs_set_root_refs(&root->root_item, 1); |
| btrfs_set_root_used(&root->root_item, leaf->len); |
| btrfs_set_root_last_snapshot(&root->root_item, 0); |
| btrfs_set_root_dirid(&root->root_item, 0); |
| if (is_fstree(objectid)) |
| generate_random_guid(root->root_item.uuid); |
| else |
| export_guid(root->root_item.uuid, &guid_null); |
| btrfs_set_root_drop_level(&root->root_item, 0); |
| |
| btrfs_tree_unlock(leaf); |
| |
| key.objectid = objectid; |
| key.type = BTRFS_ROOT_ITEM_KEY; |
| key.offset = 0; |
| ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); |
| if (ret) |
| goto fail; |
| |
| return root; |
| |
| fail_unlock: |
| if (leaf) |
| btrfs_tree_unlock(leaf); |
| fail: |
| btrfs_put_root(root); |
| |
| return ERR_PTR(ret); |
| } |
| |
| static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, |
| struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_root *root; |
| struct extent_buffer *leaf; |
| |
| root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); |
| if (!root) |
| return ERR_PTR(-ENOMEM); |
| |
| root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; |
| root->root_key.type = BTRFS_ROOT_ITEM_KEY; |
| root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; |
| |
| /* |
| * DON'T set SHAREABLE bit for log trees. |
| * |
| * Log trees are not exposed to user space thus can't be snapshotted, |
| * and they go away before a real commit is actually done. |
| * |
| * They do store pointers to file data extents, and those reference |
| * counts still get updated (along with back refs to the log tree). |
| */ |
| |
| leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, |
| NULL, 0, 0, 0, BTRFS_NESTING_NORMAL); |
| if (IS_ERR(leaf)) { |
| btrfs_put_root(root); |
| return ERR_CAST(leaf); |
| } |
| |
| root->node = leaf; |
| |
| btrfs_mark_buffer_dirty(root->node); |
| btrfs_tree_unlock(root->node); |
| return root; |
| } |
| |
| int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, |
| struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_root *log_root; |
| |
| log_root = alloc_log_tree(trans, fs_info); |
| if (IS_ERR(log_root)) |
| return PTR_ERR(log_root); |
| WARN_ON(fs_info->log_root_tree); |
| fs_info->log_root_tree = log_root; |
| return 0; |
| } |
| |
| int btrfs_add_log_tree(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_root *log_root; |
| struct btrfs_inode_item *inode_item; |
| |
| log_root = alloc_log_tree(trans, fs_info); |
| if (IS_ERR(log_root)) |
| return PTR_ERR(log_root); |
| |
| log_root->last_trans = trans->transid; |
| log_root->root_key.offset = root->root_key.objectid; |
| |
| inode_item = &log_root->root_item.inode; |
| btrfs_set_stack_inode_generation(inode_item, 1); |
| btrfs_set_stack_inode_size(inode_item, 3); |
| btrfs_set_stack_inode_nlink(inode_item, 1); |
| btrfs_set_stack_inode_nbytes(inode_item, |
| fs_info->nodesize); |
| btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); |
| |
| btrfs_set_root_node(&log_root->root_item, log_root->node); |
| |
| WARN_ON(root->log_root); |
| root->log_root = log_root; |
| root->log_transid = 0; |
| root->log_transid_committed = -1; |
| root->last_log_commit = 0; |
| return 0; |
| } |
| |
| static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, |
| struct btrfs_path *path, |
| struct btrfs_key *key) |
| { |
| struct btrfs_root *root; |
| struct btrfs_fs_info *fs_info = tree_root->fs_info; |
| u64 generation; |
| int ret; |
| int level; |
| |
| root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); |
| if (!root) |
| return ERR_PTR(-ENOMEM); |
| |
| ret = btrfs_find_root(tree_root, key, path, |
| &root->root_item, &root->root_key); |
| if (ret) { |
| if (ret > 0) |
| ret = -ENOENT; |
| goto fail; |
| } |
| |
| generation = btrfs_root_generation(&root->root_item); |
| level = btrfs_root_level(&root->root_item); |
| root->node = read_tree_block(fs_info, |
| btrfs_root_bytenr(&root->root_item), |
| key->objectid, generation, level, NULL); |
| if (IS_ERR(root->node)) { |
| ret = PTR_ERR(root->node); |
| root->node = NULL; |
| goto fail; |
| } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { |
| ret = -EIO; |
| goto fail; |
| } |
| root->commit_root = btrfs_root_node(root); |
| return root; |
| fail: |
| btrfs_put_root(root); |
| return ERR_PTR(ret); |
| } |
| |
| struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, |
| struct btrfs_key *key) |
| { |
| struct btrfs_root *root; |
| struct btrfs_path *path; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return ERR_PTR(-ENOMEM); |
| root = read_tree_root_path(tree_root, path, key); |
| btrfs_free_path(path); |
| |
| return root; |
| } |
| |
| /* |
| * Initialize subvolume root in-memory structure |
| * |
| * @anon_dev: anonymous device to attach to the root, if zero, allocate new |
| */ |
| static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) |
| { |
| int ret; |
| unsigned int nofs_flag; |
| |
| /* |
| * We might be called under a transaction (e.g. indirect backref |
| * resolution) which could deadlock if it triggers memory reclaim |
| */ |
| nofs_flag = memalloc_nofs_save(); |
| ret = btrfs_drew_lock_init(&root->snapshot_lock); |
| memalloc_nofs_restore(nofs_flag); |
| if (ret) |
| goto fail; |
| |
| if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && |
| root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) { |
| set_bit(BTRFS_ROOT_SHAREABLE, &root->state); |
| btrfs_check_and_init_root_item(&root->root_item); |
| } |
| |
| /* |
| * Don't assign anonymous block device to roots that are not exposed to |
| * userspace, the id pool is limited to 1M |
| */ |
| if (is_fstree(root->root_key.objectid) && |
| btrfs_root_refs(&root->root_item) > 0) { |
| if (!anon_dev) { |
| ret = get_anon_bdev(&root->anon_dev); |
| if (ret) |
| goto fail; |
| } else { |
| root->anon_dev = anon_dev; |
| } |
| } |
| |
| mutex_lock(&root->objectid_mutex); |
| ret = btrfs_find_highest_objectid(root, |
| &root->highest_objectid); |
| if (ret) { |
| mutex_unlock(&root->objectid_mutex); |
| goto fail; |
| } |
| |
| ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); |
| |
| mutex_unlock(&root->objectid_mutex); |
| |
| return 0; |
| fail: |
| /* The caller is responsible to call btrfs_free_fs_root */ |
| return ret; |
| } |
| |
| static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, |
| u64 root_id) |
| { |
| struct btrfs_root *root; |
| |
| spin_lock(&fs_info->fs_roots_radix_lock); |
| root = radix_tree_lookup(&fs_info->fs_roots_radix, |
| (unsigned long)root_id); |
| if (root) |
| root = btrfs_grab_root(root); |
| spin_unlock(&fs_info->fs_roots_radix_lock); |
| return root; |
| } |
| |
| static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, |
| u64 objectid) |
| { |
| if (objectid == BTRFS_ROOT_TREE_OBJECTID) |
| return btrfs_grab_root(fs_info->tree_root); |
| if (objectid == BTRFS_EXTENT_TREE_OBJECTID) |
| return btrfs_grab_root(fs_info->extent_root); |
| if (objectid == BTRFS_CHUNK_TREE_OBJECTID) |
| return btrfs_grab_root(fs_info->chunk_root); |
| if (objectid == BTRFS_DEV_TREE_OBJECTID) |
| return btrfs_grab_root(fs_info->dev_root); |
| if (objectid == BTRFS_CSUM_TREE_OBJECTID) |
| return btrfs_grab_root(fs_info->csum_root); |
| if (objectid == BTRFS_QUOTA_TREE_OBJECTID) |
| return btrfs_grab_root(fs_info->quota_root) ? |
| fs_info->quota_root : ERR_PTR(-ENOENT); |
| if (objectid == BTRFS_UUID_TREE_OBJECTID) |
| return btrfs_grab_root(fs_info->uuid_root) ? |
| fs_info->uuid_root : ERR_PTR(-ENOENT); |
| if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) |
| return btrfs_grab_root(fs_info->free_space_root) ? |
| fs_info->free_space_root : ERR_PTR(-ENOENT); |
| return NULL; |
| } |
| |
| int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, |
| struct btrfs_root *root) |
| { |
| int ret; |
| |
| ret = radix_tree_preload(GFP_NOFS); |
| if (ret) |
| return ret; |
| |
| spin_lock(&fs_info->fs_roots_radix_lock); |
| ret = radix_tree_insert(&fs_info->fs_roots_radix, |
| (unsigned long)root->root_key.objectid, |
| root); |
| if (ret == 0) { |
| btrfs_grab_root(root); |
| set_bit(BTRFS_ROOT_IN_RADIX, &root->state); |
| } |
| spin_unlock(&fs_info->fs_roots_radix_lock); |
| radix_tree_preload_end(); |
| |
| return ret; |
| } |
| |
| void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info) |
| { |
| #ifdef CONFIG_BTRFS_DEBUG |
| struct btrfs_root *root; |
| |
| while (!list_empty(&fs_info->allocated_roots)) { |
| char buf[BTRFS_ROOT_NAME_BUF_LEN]; |
| |
| root = list_first_entry(&fs_info->allocated_roots, |
| struct btrfs_root, leak_list); |
| btrfs_err(fs_info, "leaked root %s refcount %d", |
| btrfs_root_name(root->root_key.objectid, buf), |
| refcount_read(&root->refs)); |
| while (refcount_read(&root->refs) > 1) |
| btrfs_put_root(root); |
| btrfs_put_root(root); |
| } |
| #endif |
| } |
| |
| void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) |
| { |
| percpu_counter_destroy(&fs_info->dirty_metadata_bytes); |
| percpu_counter_destroy(&fs_info->delalloc_bytes); |
| percpu_counter_destroy(&fs_info->dio_bytes); |
| percpu_counter_destroy(&fs_info->dev_replace.bio_counter); |
| btrfs_free_csum_hash(fs_info); |
| btrfs_free_stripe_hash_table(fs_info); |
| btrfs_free_ref_cache(fs_info); |
| kfree(fs_info->balance_ctl); |
| kfree(fs_info->delayed_root); |
| btrfs_put_root(fs_info->extent_root); |
| btrfs_put_root(fs_info->tree_root); |
| btrfs_put_root(fs_info->chunk_root); |
| btrfs_put_root(fs_info->dev_root); |
| btrfs_put_root(fs_info->csum_root); |
| btrfs_put_root(fs_info->quota_root); |
| btrfs_put_root(fs_info->uuid_root); |
| btrfs_put_root(fs_info->free_space_root); |
| btrfs_put_root(fs_info->fs_root); |
| btrfs_put_root(fs_info->data_reloc_root); |
| btrfs_check_leaked_roots(fs_info); |
| btrfs_extent_buffer_leak_debug_check(fs_info); |
| kfree(fs_info->super_copy); |
| kfree(fs_info->super_for_commit); |
| kvfree(fs_info); |
| } |
| |
| |
| /* |
| * Get an in-memory reference of a root structure. |
| * |
| * For essential trees like root/extent tree, we grab it from fs_info directly. |
| * For subvolume trees, we check the cached filesystem roots first. If not |
| * found, then read it from disk and add it to cached fs roots. |
| * |
| * Caller should release the root by calling btrfs_put_root() after the usage. |
| * |
| * NOTE: Reloc and log trees can't be read by this function as they share the |
| * same root objectid. |
| * |
| * @objectid: root id |
| * @anon_dev: preallocated anonymous block device number for new roots, |
| * pass 0 for new allocation. |
| * @check_ref: whether to check root item references, If true, return -ENOENT |
| * for orphan roots |
| */ |
| static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, |
| u64 objectid, dev_t anon_dev, |
| bool check_ref) |
| { |
| struct btrfs_root *root; |
| struct btrfs_path *path; |
| struct btrfs_key key; |
| int ret; |
| |
| root = btrfs_get_global_root(fs_info, objectid); |
| if (root) |
| return root; |
| again: |
| root = btrfs_lookup_fs_root(fs_info, objectid); |
| if (root) { |
| /* Shouldn't get preallocated anon_dev for cached roots */ |
| ASSERT(!anon_dev); |
| if (check_ref && btrfs_root_refs(&root->root_item) == 0) { |
| btrfs_put_root(root); |
| return ERR_PTR(-ENOENT); |
| } |
| return root; |
| } |
| |
| key.objectid = objectid; |
| key.type = BTRFS_ROOT_ITEM_KEY; |
| key.offset = (u64)-1; |
| root = btrfs_read_tree_root(fs_info->tree_root, &key); |
| if (IS_ERR(root)) |
| return root; |
| |
| if (check_ref && btrfs_root_refs(&root->root_item) == 0) { |
| ret = -ENOENT; |
| goto fail; |
| } |
| |
| ret = btrfs_init_fs_root(root, anon_dev); |
| if (ret) |
| goto fail; |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| ret = -ENOMEM; |
| goto fail; |
| } |
| key.objectid = BTRFS_ORPHAN_OBJECTID; |
| key.type = BTRFS_ORPHAN_ITEM_KEY; |
| key.offset = objectid; |
| |
| ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); |
| btrfs_free_path(path); |
| if (ret < 0) |
| goto fail; |
| if (ret == 0) |
| set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); |
| |
| ret = btrfs_insert_fs_root(fs_info, root); |
| if (ret) { |
| btrfs_put_root(root); |
| if (ret == -EEXIST) |
| goto again; |
| goto fail; |
| } |
| return root; |
| fail: |
| btrfs_put_root(root); |
| return ERR_PTR(ret); |
| } |
| |
| /* |
| * Get in-memory reference of a root structure |
| * |
| * @objectid: tree objectid |
| * @check_ref: if set, verify that the tree exists and the item has at least |
| * one reference |
| */ |
| struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, |
| u64 objectid, bool check_ref) |
| { |
| return btrfs_get_root_ref(fs_info, objectid, 0, check_ref); |
| } |
| |
| /* |
| * Get in-memory reference of a root structure, created as new, optionally pass |
| * the anonymous block device id |
| * |
| * @objectid: tree objectid |
| * @anon_dev: if zero, allocate a new anonymous block device or use the |
| * parameter value |
| */ |
| struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, |
| u64 objectid, dev_t anon_dev) |
| { |
| return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); |
| } |
| |
| /* |
| * btrfs_get_fs_root_commit_root - return a root for the given objectid |
| * @fs_info: the fs_info |
| * @objectid: the objectid we need to lookup |
| * |
| * This is exclusively used for backref walking, and exists specifically because |
| * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref |
| * creation time, which means we may have to read the tree_root in order to look |
| * up a fs root that is not in memory. If the root is not in memory we will |
| * read the tree root commit root and look up the fs root from there. This is a |
| * temporary root, it will not be inserted into the radix tree as it doesn't |
| * have the most uptodate information, it'll simply be discarded once the |
| * backref code is finished using the root. |
| */ |
| struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, |
| struct btrfs_path *path, |
| u64 objectid) |
| { |
| struct btrfs_root *root; |
| struct btrfs_key key; |
| |
| ASSERT(path->search_commit_root && path->skip_locking); |
| |
| /* |
| * This can return -ENOENT if we ask for a root that doesn't exist, but |
| * since this is called via the backref walking code we won't be looking |
| * up a root that doesn't exist, unless there's corruption. So if root |
| * != NULL just return it. |
| */ |
| root = btrfs_get_global_root(fs_info, objectid); |
| if (root) |
| return root; |
| |
| root = btrfs_lookup_fs_root(fs_info, objectid); |
| if (root) |
| return root; |
| |
| key.objectid = objectid; |
| key.type = BTRFS_ROOT_ITEM_KEY; |
| key.offset = (u64)-1; |
| root = read_tree_root_path(fs_info->tree_root, path, &key); |
| btrfs_release_path(path); |
| |
| return root; |
| } |
| |
| /* |
| * called by the kthread helper functions to finally call the bio end_io |
| * functions. This is where read checksum verification actually happens |
| */ |
| static void end_workqueue_fn(struct btrfs_work *work) |
| { |
| struct bio *bio; |
| struct btrfs_end_io_wq *end_io_wq; |
| |
| end_io_wq = container_of(work, struct btrfs_end_io_wq, work); |
| bio = end_io_wq->bio; |
| |
| bio->bi_status = end_io_wq->status; |
| bio->bi_private = end_io_wq->private; |
| bio->bi_end_io = end_io_wq->end_io; |
| bio_endio(bio); |
| kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); |
| } |
| |
| static int cleaner_kthread(void *arg) |
| { |
| struct btrfs_root *root = arg; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| int again; |
| |
| while (1) { |
| again = 0; |
| |
| set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); |
| |
| /* Make the cleaner go to sleep early. */ |
| if (btrfs_need_cleaner_sleep(fs_info)) |
| goto sleep; |
| |
| /* |
| * Do not do anything if we might cause open_ctree() to block |
| * before we have finished mounting the filesystem. |
| */ |
| if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) |
| goto sleep; |
| |
| if (!mutex_trylock(&fs_info->cleaner_mutex)) |
| goto sleep; |
| |
| /* |
| * Avoid the problem that we change the status of the fs |
| * during the above check and trylock. |
| */ |
| if (btrfs_need_cleaner_sleep(fs_info)) { |
| mutex_unlock(&fs_info->cleaner_mutex); |
| goto sleep; |
| } |
| |
| btrfs_run_delayed_iputs(fs_info); |
| |
| again = btrfs_clean_one_deleted_snapshot(root); |
| mutex_unlock(&fs_info->cleaner_mutex); |
| |
| /* |
| * The defragger has dealt with the R/O remount and umount, |
| * needn't do anything special here. |
| */ |
| btrfs_run_defrag_inodes(fs_info); |
| |
| /* |
| * Acquires fs_info->delete_unused_bgs_mutex to avoid racing |
| * with relocation (btrfs_relocate_chunk) and relocation |
| * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) |
| * after acquiring fs_info->delete_unused_bgs_mutex. So we |
| * can't hold, nor need to, fs_info->cleaner_mutex when deleting |
| * unused block groups. |
| */ |
| btrfs_delete_unused_bgs(fs_info); |
| sleep: |
| clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); |
| if (kthread_should_park()) |
| kthread_parkme(); |
| if (kthread_should_stop()) |
| return 0; |
| if (!again) { |
| set_current_state(TASK_INTERRUPTIBLE); |
| schedule(); |
| __set_current_state(TASK_RUNNING); |
| } |
| } |
| } |
| |
| static int transaction_kthread(void *arg) |
| { |
| struct btrfs_root *root = arg; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_trans_handle *trans; |
| struct btrfs_transaction *cur; |
| u64 transid; |
| time64_t delta; |
| unsigned long delay; |
| bool cannot_commit; |
| |
| do { |
| cannot_commit = false; |
| delay = msecs_to_jiffies(fs_info->commit_interval * 1000); |
| mutex_lock(&fs_info->transaction_kthread_mutex); |
| |
| spin_lock(&fs_info->trans_lock); |
| cur = fs_info->running_transaction; |
| if (!cur) { |
| spin_unlock(&fs_info->trans_lock); |
| goto sleep; |
| } |
| |
| delta = ktime_get_seconds() - cur->start_time; |
| if (cur->state < TRANS_STATE_COMMIT_START && |
| delta < fs_info->commit_interval) { |
| spin_unlock(&fs_info->trans_lock); |
| delay -= msecs_to_jiffies((delta - 1) * 1000); |
| delay = min(delay, |
| msecs_to_jiffies(fs_info->commit_interval * 1000)); |
| goto sleep; |
| } |
| transid = cur->transid; |
| spin_unlock(&fs_info->trans_lock); |
| |
| /* If the file system is aborted, this will always fail. */ |
| trans = btrfs_attach_transaction(root); |
| if (IS_ERR(trans)) { |
| if (PTR_ERR(trans) != -ENOENT) |
| cannot_commit = true; |
| goto sleep; |
| } |
| if (transid == trans->transid) { |
| btrfs_commit_transaction(trans); |
| } else { |
| btrfs_end_transaction(trans); |
| } |
| sleep: |
| wake_up_process(fs_info->cleaner_kthread); |
| mutex_unlock(&fs_info->transaction_kthread_mutex); |
| |
| if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, |
| &fs_info->fs_state))) |
| btrfs_cleanup_transaction(fs_info); |
| if (!kthread_should_stop() && |
| (!btrfs_transaction_blocked(fs_info) || |
| cannot_commit)) |
| schedule_timeout_interruptible(delay); |
| } while (!kthread_should_stop()); |
| return 0; |
| } |
| |
| /* |
| * This will find the highest generation in the array of root backups. The |
| * index of the highest array is returned, or -EINVAL if we can't find |
| * anything. |
| * |
| * We check to make sure the array is valid by comparing the |
| * generation of the latest root in the array with the generation |
| * in the super block. If they don't match we pitch it. |
| */ |
| static int find_newest_super_backup(struct btrfs_fs_info *info) |
| { |
| const u64 newest_gen = btrfs_super_generation(info->super_copy); |
| u64 cur; |
| struct btrfs_root_backup *root_backup; |
| int i; |
| |
| for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { |
| root_backup = info->super_copy->super_roots + i; |
| cur = btrfs_backup_tree_root_gen(root_backup); |
| if (cur == newest_gen) |
| return i; |
| } |
| |
| return -EINVAL; |
| } |
| |
| /* |
| * copy all the root pointers into the super backup array. |
| * this will bump the backup pointer by one when it is |
| * done |
| */ |
| static void backup_super_roots(struct btrfs_fs_info *info) |
| { |
| const int next_backup = info->backup_root_index; |
| struct btrfs_root_backup *root_backup; |
| |
| root_backup = info->super_for_commit->super_roots + next_backup; |
| |
| /* |
| * make sure all of our padding and empty slots get zero filled |
| * regardless of which ones we use today |
| */ |
| memset(root_backup, 0, sizeof(*root_backup)); |
| |
| info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; |
| |
| btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); |
| btrfs_set_backup_tree_root_gen(root_backup, |
| btrfs_header_generation(info->tree_root->node)); |
| |
| btrfs_set_backup_tree_root_level(root_backup, |
| btrfs_header_level(info->tree_root->node)); |
| |
| btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); |
| btrfs_set_backup_chunk_root_gen(root_backup, |
| btrfs_header_generation(info->chunk_root->node)); |
| btrfs_set_backup_chunk_root_level(root_backup, |
| btrfs_header_level(info->chunk_root->node)); |
| |
| btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); |
| btrfs_set_backup_extent_root_gen(root_backup, |
| btrfs_header_generation(info->extent_root->node)); |
| btrfs_set_backup_extent_root_level(root_backup, |
| btrfs_header_level(info->extent_root->node)); |
| |
| /* |
| * we might commit during log recovery, which happens before we set |
| * the fs_root. Make sure it is valid before we fill it in. |
| */ |
| if (info->fs_root && info->fs_root->node) { |
| btrfs_set_backup_fs_root(root_backup, |
| info->fs_root->node->start); |
| btrfs_set_backup_fs_root_gen(root_backup, |
| btrfs_header_generation(info->fs_root->node)); |
| btrfs_set_backup_fs_root_level(root_backup, |
| btrfs_header_level(info->fs_root->node)); |
| } |
| |
| btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); |
| btrfs_set_backup_dev_root_gen(root_backup, |
| btrfs_header_generation(info->dev_root->node)); |
| btrfs_set_backup_dev_root_level(root_backup, |
| btrfs_header_level(info->dev_root->node)); |
| |
| btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); |
| btrfs_set_backup_csum_root_gen(root_backup, |
| btrfs_header_generation(info->csum_root->node)); |
| btrfs_set_backup_csum_root_level(root_backup, |
| btrfs_header_level(info->csum_root->node)); |
| |
| btrfs_set_backup_total_bytes(root_backup, |
| btrfs_super_total_bytes(info->super_copy)); |
| btrfs_set_backup_bytes_used(root_backup, |
| btrfs_super_bytes_used(info->super_copy)); |
| btrfs_set_backup_num_devices(root_backup, |
| btrfs_super_num_devices(info->super_copy)); |
| |
| /* |
| * if we don't copy this out to the super_copy, it won't get remembered |
| * for the next commit |
| */ |
| memcpy(&info->super_copy->super_roots, |
| &info->super_for_commit->super_roots, |
| sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); |
| } |
| |
| /* |
| * read_backup_root - Reads a backup root based on the passed priority. Prio 0 |
| * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots |
| * |
| * fs_info - filesystem whose backup roots need to be read |
| * priority - priority of backup root required |
| * |
| * Returns backup root index on success and -EINVAL otherwise. |
| */ |
| static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) |
| { |
| int backup_index = find_newest_super_backup(fs_info); |
| struct btrfs_super_block *super = fs_info->super_copy; |
| struct btrfs_root_backup *root_backup; |
| |
| if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { |
| if (priority == 0) |
| return backup_index; |
| |
| backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; |
| backup_index %= BTRFS_NUM_BACKUP_ROOTS; |
| } else { |
| return -EINVAL; |
| } |
| |
| root_backup = super->super_roots + backup_index; |
| |
| btrfs_set_super_generation(super, |
| btrfs_backup_tree_root_gen(root_backup)); |
| btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); |
| btrfs_set_super_root_level(super, |
| btrfs_backup_tree_root_level(root_backup)); |
| btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); |
| |
| /* |
| * Fixme: the total bytes and num_devices need to match or we should |
| * need a fsck |
| */ |
| btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); |
| btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); |
| |
| return backup_index; |
| } |
| |
| /* helper to cleanup workers */ |
| static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) |
| { |
| btrfs_destroy_workqueue(fs_info->fixup_workers); |
| btrfs_destroy_workqueue(fs_info->delalloc_workers); |
| btrfs_destroy_workqueue(fs_info->workers); |
| btrfs_destroy_workqueue(fs_info->endio_workers); |
| btrfs_destroy_workqueue(fs_info->endio_raid56_workers); |
| btrfs_destroy_workqueue(fs_info->rmw_workers); |
| btrfs_destroy_workqueue(fs_info->endio_write_workers); |
| btrfs_destroy_workqueue(fs_info->endio_freespace_worker); |
| btrfs_destroy_workqueue(fs_info->delayed_workers); |
| btrfs_destroy_workqueue(fs_info->caching_workers); |
| btrfs_destroy_workqueue(fs_info->readahead_workers); |
| btrfs_destroy_workqueue(fs_info->flush_workers); |
| btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); |
| if (fs_info->discard_ctl.discard_workers) |
| destroy_workqueue(fs_info->discard_ctl.discard_workers); |
| /* |
| * Now that all other work queues are destroyed, we can safely destroy |
| * the queues used for metadata I/O, since tasks from those other work |
| * queues can do metadata I/O operations. |
| */ |
| btrfs_destroy_workqueue(fs_info->endio_meta_workers); |
| btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); |
| } |
| |
| static void free_root_extent_buffers(struct btrfs_root *root) |
| { |
| if (root) { |
| free_extent_buffer(root->node); |
| free_extent_buffer(root->commit_root); |
| root->node = NULL; |
| root->commit_root = NULL; |
| } |
| } |
| |
| /* helper to cleanup tree roots */ |
| static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) |
| { |
| free_root_extent_buffers(info->tree_root); |
| |
| free_root_extent_buffers(info->dev_root); |
| free_root_extent_buffers(info->extent_root); |
| free_root_extent_buffers(info->csum_root); |
| free_root_extent_buffers(info->quota_root); |
| free_root_extent_buffers(info->uuid_root); |
| free_root_extent_buffers(info->fs_root); |
| free_root_extent_buffers(info->data_reloc_root); |
| if (free_chunk_root) |
| free_root_extent_buffers(info->chunk_root); |
| free_root_extent_buffers(info->free_space_root); |
| } |
| |
| void btrfs_put_root(struct btrfs_root *root) |
| { |
| if (!root) |
| return; |
| |
| if (refcount_dec_and_test(&root->refs)) { |
| WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); |
| WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); |
| if (root->anon_dev) |
| free_anon_bdev(root->anon_dev); |
| btrfs_drew_lock_destroy(&root->snapshot_lock); |
| free_root_extent_buffers(root); |
| #ifdef CONFIG_BTRFS_DEBUG |
| spin_lock(&root->fs_info->fs_roots_radix_lock); |
| list_del_init(&root->leak_list); |
| spin_unlock(&root->fs_info->fs_roots_radix_lock); |
| #endif |
| kfree(root); |
| } |
| } |
| |
| void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) |
| { |
| int ret; |
| struct btrfs_root *gang[8]; |
| int i; |
| |
| while (!list_empty(&fs_info->dead_roots)) { |
| gang[0] = list_entry(fs_info->dead_roots.next, |
| struct btrfs_root, root_list); |
| list_del(&gang[0]->root_list); |
| |
| if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) |
| btrfs_drop_and_free_fs_root(fs_info, gang[0]); |
| btrfs_put_root(gang[0]); |
| } |
| |
| while (1) { |
| ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, |
| (void **)gang, 0, |
| ARRAY_SIZE(gang)); |
| if (!ret) |
| break; |
| for (i = 0; i < ret; i++) |
| btrfs_drop_and_free_fs_root(fs_info, gang[i]); |
| } |
| } |
| |
| static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) |
| { |
| mutex_init(&fs_info->scrub_lock); |
| atomic_set(&fs_info->scrubs_running, 0); |
| atomic_set(&fs_info->scrub_pause_req, 0); |
| atomic_set(&fs_info->scrubs_paused, 0); |
| atomic_set(&fs_info->scrub_cancel_req, 0); |
| init_waitqueue_head(&fs_info->scrub_pause_wait); |
| refcount_set(&fs_info->scrub_workers_refcnt, 0); |
| } |
| |
| static void btrfs_init_balance(struct btrfs_fs_info *fs_info) |
| { |
| spin_lock_init(&fs_info->balance_lock); |
| mutex_init(&fs_info->balance_mutex); |
| atomic_set(&fs_info->balance_pause_req, 0); |
| atomic_set(&fs_info->balance_cancel_req, 0); |
| fs_info->balance_ctl = NULL; |
| init_waitqueue_head(&fs_info->balance_wait_q); |
| } |
| |
| static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) |
| { |
| struct inode *inode = fs_info->btree_inode; |
| |
| inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; |
| set_nlink(inode, 1); |
| /* |
| * we set the i_size on the btree inode to the max possible int. |
| * the real end of the address space is determined by all of |
| * the devices in the system |
| */ |
| inode->i_size = OFFSET_MAX; |
| inode->i_mapping->a_ops = &btree_aops; |
| |
| RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); |
| extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, |
| IO_TREE_BTREE_INODE_IO, inode); |
| BTRFS_I(inode)->io_tree.track_uptodate = false; |
| extent_map_tree_init(&BTRFS_I(inode)->extent_tree); |
| |
| BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); |
| memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); |
| set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); |
| btrfs_insert_inode_hash(inode); |
| } |
| |
| static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) |
| { |
| mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); |
| init_rwsem(&fs_info->dev_replace.rwsem); |
| init_waitqueue_head(&fs_info->dev_replace.replace_wait); |
| } |
| |
| static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) |
| { |
| spin_lock_init(&fs_info->qgroup_lock); |
| mutex_init(&fs_info->qgroup_ioctl_lock); |
| fs_info->qgroup_tree = RB_ROOT; |
| INIT_LIST_HEAD(&fs_info->dirty_qgroups); |
| fs_info->qgroup_seq = 1; |
| fs_info->qgroup_ulist = NULL; |
| fs_info->qgroup_rescan_running = false; |
| mutex_init(&fs_info->qgroup_rescan_lock); |
| } |
| |
| static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, |
| struct btrfs_fs_devices *fs_devices) |
| { |
| u32 max_active = fs_info->thread_pool_size; |
| unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; |
| |
| fs_info->workers = |
| btrfs_alloc_workqueue(fs_info, "worker", |
| flags | WQ_HIGHPRI, max_active, 16); |
| |
| fs_info->delalloc_workers = |
| btrfs_alloc_workqueue(fs_info, "delalloc", |
| flags, max_active, 2); |
| |
| fs_info->flush_workers = |
| btrfs_alloc_workqueue(fs_info, "flush_delalloc", |
| flags, max_active, 0); |
| |
| fs_info->caching_workers = |
| btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); |
| |
| fs_info->fixup_workers = |
| btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); |
| |
| /* |
| * endios are largely parallel and should have a very |
| * low idle thresh |
| */ |
| fs_info->endio_workers = |
| btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); |
| fs_info->endio_meta_workers = |
| btrfs_alloc_workqueue(fs_info, "endio-meta", flags, |
| max_active, 4); |
| fs_info->endio_meta_write_workers = |
| btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, |
| max_active, 2); |
| fs_info->endio_raid56_workers = |
| btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, |
| max_active, 4); |
| fs_info->rmw_workers = |
| btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); |
| fs_info->endio_write_workers = |
| btrfs_alloc_workqueue(fs_info, "endio-write", flags, |
| max_active, 2); |
| fs_info->endio_freespace_worker = |
| btrfs_alloc_workqueue(fs_info, "freespace-write", flags, |
| max_active, 0); |
| fs_info->delayed_workers = |
| btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, |
| max_active, 0); |
| fs_info->readahead_workers = |
| btrfs_alloc_workqueue(fs_info, "readahead", flags, |
| max_active, 2); |
| fs_info->qgroup_rescan_workers = |
| btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); |
| fs_info->discard_ctl.discard_workers = |
| alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1); |
| |
| if (!(fs_info->workers && fs_info->delalloc_workers && |
| fs_info->flush_workers && |
| fs_info->endio_workers && fs_info->endio_meta_workers && |
| fs_info->endio_meta_write_workers && |
| fs_info->endio_write_workers && fs_info->endio_raid56_workers && |
| fs_info->endio_freespace_worker && fs_info->rmw_workers && |
| fs_info->caching_workers && fs_info->readahead_workers && |
| fs_info->fixup_workers && fs_info->delayed_workers && |
| fs_info->qgroup_rescan_workers && |
| fs_info->discard_ctl.discard_workers)) { |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) |
| { |
| struct crypto_shash *csum_shash; |
| const char *csum_driver = btrfs_super_csum_driver(csum_type); |
| |
| csum_shash = crypto_alloc_shash(csum_driver, 0, 0); |
| |
| if (IS_ERR(csum_shash)) { |
| btrfs_err(fs_info, "error allocating %s hash for checksum", |
| csum_driver); |
| return PTR_ERR(csum_shash); |
| } |
| |
| fs_info->csum_shash = csum_shash; |
| |
| return 0; |
| } |
| |
| static int btrfs_replay_log(struct btrfs_fs_info *fs_info, |
| struct btrfs_fs_devices *fs_devices) |
| { |
| int ret; |
| struct btrfs_root *log_tree_root; |
| struct btrfs_super_block *disk_super = fs_info->super_copy; |
| u64 bytenr = btrfs_super_log_root(disk_super); |
| int level = btrfs_super_log_root_level(disk_super); |
| |
| if (fs_devices->rw_devices == 0) { |
| btrfs_warn(fs_info, "log replay required on RO media"); |
| return -EIO; |
| } |
| |
| log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, |
| GFP_KERNEL); |
| if (!log_tree_root) |
| return -ENOMEM; |
| |
| log_tree_root->node = read_tree_block(fs_info, bytenr, |
| BTRFS_TREE_LOG_OBJECTID, |
| fs_info->generation + 1, level, |
| NULL); |
| if (IS_ERR(log_tree_root->node)) { |
| btrfs_warn(fs_info, "failed to read log tree"); |
| ret = PTR_ERR(log_tree_root->node); |
| log_tree_root->node = NULL; |
| btrfs_put_root(log_tree_root); |
| return ret; |
| } else if (!extent_buffer_uptodate(log_tree_root->node)) { |
| btrfs_err(fs_info, "failed to read log tree"); |
| btrfs_put_root(log_tree_root); |
| return -EIO; |
| } |
| /* returns with log_tree_root freed on success */ |
| ret = btrfs_recover_log_trees(log_tree_root); |
| if (ret) { |
| btrfs_handle_fs_error(fs_info, ret, |
| "Failed to recover log tree"); |
| btrfs_put_root(log_tree_root); |
| return ret; |
| } |
| |
| if (sb_rdonly(fs_info->sb)) { |
| ret = btrfs_commit_super(fs_info); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int btrfs_read_roots(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_root *tree_root = fs_info->tree_root; |
| struct btrfs_root *root; |
| struct btrfs_key location; |
| int ret; |
| |
| BUG_ON(!fs_info->tree_root); |
| |
| location.objectid = BTRFS_EXTENT_TREE_OBJECTID; |
| location.type = BTRFS_ROOT_ITEM_KEY; |
| location.offset = 0; |
| |
| root = btrfs_read_tree_root(tree_root, &location); |
| if (IS_ERR(root)) { |
| if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { |
| ret = PTR_ERR(root); |
| goto out; |
| } |
| } else { |
| set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); |
| fs_info->extent_root = root; |
| } |
| |
| location.objectid = BTRFS_DEV_TREE_OBJECTID; |
| root = btrfs_read_tree_root(tree_root, &location); |
| if (IS_ERR(root)) { |
| if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { |
| ret = PTR_ERR(root); |
| goto out; |
| } |
| } else { |
| set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); |
| fs_info->dev_root = root; |
| btrfs_init_devices_late(fs_info); |
| } |
| |
| /* If IGNOREDATACSUMS is set don't bother reading the csum root. */ |
| if (!btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { |
| location.objectid = BTRFS_CSUM_TREE_OBJECTID; |
| root = btrfs_read_tree_root(tree_root, &location); |
| if (IS_ERR(root)) { |
| if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { |
| ret = PTR_ERR(root); |
| goto out; |
| } |
| } else { |
| set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); |
| fs_info->csum_root = root; |
| } |
| } |
| |
| /* |
| * This tree can share blocks with some other fs tree during relocation |
| * and we need a proper setup by btrfs_get_fs_root |
| */ |
| root = btrfs_get_fs_root(tree_root->fs_info, |
| BTRFS_DATA_RELOC_TREE_OBJECTID, true); |
| if (IS_ERR(root)) { |
| if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { |
| ret = PTR_ERR(root); |
| goto out; |
| } |
| } else { |
| set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); |
| fs_info->data_reloc_root = root; |
| } |
| |
| location.objectid = BTRFS_QUOTA_TREE_OBJECTID; |
| root = btrfs_read_tree_root(tree_root, &location); |
| if (!IS_ERR(root)) { |
| set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); |
| set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); |
| fs_info->quota_root = root; |
| } |
| |
| location.objectid = BTRFS_UUID_TREE_OBJECTID; |
| root = btrfs_read_tree_root(tree_root, &location); |
| if (IS_ERR(root)) { |
| if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { |
| ret = PTR_ERR(root); |
| if (ret != -ENOENT) |
| goto out; |
| } |
| } else { |
| set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); |
| fs_info->uuid_root = root; |
| } |
| |
| if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { |
| location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; |
| root = btrfs_read_tree_root(tree_root, &location); |
| if (IS_ERR(root)) { |
| if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { |
| ret = PTR_ERR(root); |
| goto out; |
| } |
| } else { |
| set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); |
| fs_info->free_space_root = root; |
| } |
| } |
| |
| return 0; |
| out: |
| btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", |
| location.objectid, ret); |
| return ret; |
| } |
| |
| /* |
| * Real super block validation |
| * NOTE: super csum type and incompat features will not be checked here. |
| * |
| * @sb: super block to check |
| * @mirror_num: the super block number to check its bytenr: |
| * 0 the primary (1st) sb |
| * 1, 2 2nd and 3rd backup copy |
| * -1 skip bytenr check |
| */ |
| static int validate_super(struct btrfs_fs_info *fs_info, |
| struct btrfs_super_block *sb, int mirror_num) |
| { |
| u64 nodesize = btrfs_super_nodesize(sb); |
| u64 sectorsize = btrfs_super_sectorsize(sb); |
| int ret = 0; |
| |
| if (btrfs_super_magic(sb) != BTRFS_MAGIC) { |
| btrfs_err(fs_info, "no valid FS found"); |
| ret = -EINVAL; |
| } |
| if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { |
| btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", |
| btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); |
| ret = -EINVAL; |
| } |
| if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { |
| btrfs_err(fs_info, "tree_root level too big: %d >= %d", |
| btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); |
| ret = -EINVAL; |
| } |
| if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { |
| btrfs_err(fs_info, "chunk_root level too big: %d >= %d", |
| btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); |
| ret = -EINVAL; |
| } |
| if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { |
| btrfs_err(fs_info, "log_root level too big: %d >= %d", |
| btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); |
| ret = -EINVAL; |
| } |
| |
| /* |
| * Check sectorsize and nodesize first, other check will need it. |
| * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. |
| */ |
| if (!is_power_of_2(sectorsize) || sectorsize < 4096 || |
| sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { |
| btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); |
| ret = -EINVAL; |
| } |
| /* Only PAGE SIZE is supported yet */ |
| if (sectorsize != PAGE_SIZE) { |
| btrfs_err(fs_info, |
| "sectorsize %llu not supported yet, only support %lu", |
| sectorsize, PAGE_SIZE); |
| ret = -EINVAL; |
| } |
| if (!is_power_of_2(nodesize) || nodesize < sectorsize || |
| nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { |
| btrfs_err(fs_info, "invalid nodesize %llu", nodesize); |
| ret = -EINVAL; |
| } |
| if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { |
| btrfs_err(fs_info, "invalid leafsize %u, should be %llu", |
| le32_to_cpu(sb->__unused_leafsize), nodesize); |
| ret = -EINVAL; |
| } |
| |
| /* Root alignment check */ |
| if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { |
| btrfs_warn(fs_info, "tree_root block unaligned: %llu", |
| btrfs_super_root(sb)); |
| ret = -EINVAL; |
| } |
| if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { |
| btrfs_warn(fs_info, "chunk_root block unaligned: %llu", |
| btrfs_super_chunk_root(sb)); |
| ret = -EINVAL; |
| } |
| if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { |
| btrfs_warn(fs_info, "log_root block unaligned: %llu", |
| btrfs_super_log_root(sb)); |
| ret = -EINVAL; |
| } |
| |
| if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, |
| BTRFS_FSID_SIZE) != 0) { |
| btrfs_err(fs_info, |
| "dev_item UUID does not match metadata fsid: %pU != %pU", |
| fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); |
| ret = -EINVAL; |
| } |
| |
| /* |
| * Hint to catch really bogus numbers, bitflips or so, more exact checks are |
| * done later |
| */ |
| if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { |
| btrfs_err(fs_info, "bytes_used is too small %llu", |
| btrfs_super_bytes_used(sb)); |
| ret = -EINVAL; |
| } |
| if (!is_power_of_2(btrfs_super_stripesize(sb))) { |
| btrfs_err(fs_info, "invalid stripesize %u", |
| btrfs_super_stripesize(sb)); |
| ret = -EINVAL; |
| } |
| if (btrfs_super_num_devices(sb) > (1UL << 31)) |
| btrfs_warn(fs_info, "suspicious number of devices: %llu", |
| btrfs_super_num_devices(sb)); |
| if (btrfs_super_num_devices(sb) == 0) { |
| btrfs_err(fs_info, "number of devices is 0"); |
| ret = -EINVAL; |
| } |
| |
| if (mirror_num >= 0 && |
| btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { |
| btrfs_err(fs_info, "super offset mismatch %llu != %u", |
| btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); |
| ret = -EINVAL; |
| } |
| |
| /* |
| * Obvious sys_chunk_array corruptions, it must hold at least one key |
| * and one chunk |
| */ |
| if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { |
| btrfs_err(fs_info, "system chunk array too big %u > %u", |
| btrfs_super_sys_array_size(sb), |
| BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); |
| ret = -EINVAL; |
| } |
| if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) |
| + sizeof(struct btrfs_chunk)) { |
| btrfs_err(fs_info, "system chunk array too small %u < %zu", |
| btrfs_super_sys_array_size(sb), |
| sizeof(struct btrfs_disk_key) |
| + sizeof(struct btrfs_chunk)); |
| ret = -EINVAL; |
| } |
| |
| /* |
| * The generation is a global counter, we'll trust it more than the others |
| * but it's still possible that it's the one that's wrong. |
| */ |
| if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) |
| btrfs_warn(fs_info, |
| "suspicious: generation < chunk_root_generation: %llu < %llu", |
| btrfs_super_generation(sb), |
| btrfs_super_chunk_root_generation(sb)); |
| if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) |
| && btrfs_super_cache_generation(sb) != (u64)-1) |
| btrfs_warn(fs_info, |
| "suspicious: generation < cache_generation: %llu < %llu", |
| btrfs_super_generation(sb), |
| btrfs_super_cache_generation(sb)); |
| |
| return ret; |
| } |
| |
| /* |
| * Validation of super block at mount time. |
| * Some checks already done early at mount time, like csum type and incompat |
| * flags will be skipped. |
| */ |
| static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) |
| { |
| return validate_super(fs_info, fs_info->super_copy, 0); |
| } |
| |
| /* |
| * Validation of super block at write time. |
| * Some checks like bytenr check will be skipped as their values will be |
| * overwritten soon. |
| * Extra checks like csum type and incompat flags will be done here. |
| */ |
| static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, |
| struct btrfs_super_block *sb) |
| { |
| int ret; |
| |
| ret = validate_super(fs_info, sb, -1); |
| if (ret < 0) |
| goto out; |
| if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { |
| ret = -EUCLEAN; |
| btrfs_err(fs_info, "invalid csum type, has %u want %u", |
| btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); |
| goto out; |
| } |
| if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { |
| ret = -EUCLEAN; |
| btrfs_err(fs_info, |
| "invalid incompat flags, has 0x%llx valid mask 0x%llx", |
| btrfs_super_incompat_flags(sb), |
| (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); |
| goto out; |
| } |
| out: |
| if (ret < 0) |
| btrfs_err(fs_info, |
| "super block corruption detected before writing it to disk"); |
| return ret; |
| } |
| |
| static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) |
| { |
| int backup_index = find_newest_super_backup(fs_info); |
| struct btrfs_super_block *sb = fs_info->super_copy; |
| struct btrfs_root *tree_root = fs_info->tree_root; |
| bool handle_error = false; |
| int ret = 0; |
| int i; |
| |
| for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { |
| u64 generation; |
| int level; |
| |
| if (handle_error) { |
| if (!IS_ERR(tree_root->node)) |
| free_extent_buffer(tree_root->node); |
| tree_root->node = NULL; |
| |
| if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) |
| break; |
| |
| free_root_pointers(fs_info, 0); |
| |
| /* |
| * Don't use the log in recovery mode, it won't be |
| * valid |
| */ |
| btrfs_set_super_log_root(sb, 0); |
| |
| /* We can't trust the free space cache either */ |
| btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); |
| |
| ret = read_backup_root(fs_info, i); |
| backup_index = ret; |
| if (ret < 0) |
| return ret; |
| } |
| generation = btrfs_super_generation(sb); |
| level = btrfs_super_root_level(sb); |
| tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb), |
| BTRFS_ROOT_TREE_OBJECTID, |
| generation, level, NULL); |
| if (IS_ERR(tree_root->node)) { |
| handle_error = true; |
| ret = PTR_ERR(tree_root->node); |
| tree_root->node = NULL; |
| btrfs_warn(fs_info, "couldn't read tree root"); |
| continue; |
| |
| } else if (!extent_buffer_uptodate(tree_root->node)) { |
| handle_error = true; |
| ret = -EIO; |
| btrfs_warn(fs_info, "error while reading tree root"); |
| continue; |
| } |
| |
| btrfs_set_root_node(&tree_root->root_item, tree_root->node); |
| tree_root->commit_root = btrfs_root_node(tree_root); |
| btrfs_set_root_refs(&tree_root->root_item, 1); |
| |
| /* |
| * No need to hold btrfs_root::objectid_mutex since the fs |
| * hasn't been fully initialised and we are the only user |
| */ |
| ret = btrfs_find_highest_objectid(tree_root, |
| &tree_root->highest_objectid); |
| if (ret < 0) { |
| handle_error = true; |
| continue; |
| } |
| |
| ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); |
| |
| ret = btrfs_read_roots(fs_info); |
| if (ret < 0) { |
| handle_error = true; |
| continue; |
| } |
| |
| /* All successful */ |
| fs_info->generation = generation; |
| fs_info->last_trans_committed = generation; |
| |
| /* Always begin writing backup roots after the one being used */ |
| if (backup_index < 0) { |
| fs_info->backup_root_index = 0; |
| } else { |
| fs_info->backup_root_index = backup_index + 1; |
| fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; |
| } |
| break; |
| } |
| |
| return ret; |
| } |
| |
| void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) |
| { |
| INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); |
| INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); |
| INIT_LIST_HEAD(&fs_info->trans_list); |
| INIT_LIST_HEAD(&fs_info->dead_roots); |
| INIT_LIST_HEAD(&fs_info->delayed_iputs); |
| INIT_LIST_HEAD(&fs_info->delalloc_roots); |
| INIT_LIST_HEAD(&fs_info->caching_block_groups); |
| spin_lock_init(&fs_info->delalloc_root_lock); |
| spin_lock_init(&fs_info->trans_lock); |
| spin_lock_init(&fs_info->fs_roots_radix_lock); |
| spin_lock_init(&fs_info->delayed_iput_lock); |
| spin_lock_init(&fs_info->defrag_inodes_lock); |
| spin_lock_init(&fs_info->super_lock); |
| spin_lock_init(&fs_info->buffer_lock); |
| spin_lock_init(&fs_info->unused_bgs_lock); |
| rwlock_init(&fs_info->tree_mod_log_lock); |
| mutex_init(&fs_info->unused_bg_unpin_mutex); |
| mutex_init(&fs_info->delete_unused_bgs_mutex); |
| mutex_init(&fs_info->reloc_mutex); |
| mutex_init(&fs_info->delalloc_root_mutex); |
| seqlock_init(&fs_info->profiles_lock); |
| |
| INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); |
| INIT_LIST_HEAD(&fs_info->space_info); |
| INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); |
| INIT_LIST_HEAD(&fs_info->unused_bgs); |
| #ifdef CONFIG_BTRFS_DEBUG |
| INIT_LIST_HEAD(&fs_info->allocated_roots); |
| INIT_LIST_HEAD(&fs_info->allocated_ebs); |
| spin_lock_init(&fs_info->eb_leak_lock); |
| #endif |
| extent_map_tree_init(&fs_info->mapping_tree); |
| btrfs_init_block_rsv(&fs_info->global_block_rsv, |
| BTRFS_BLOCK_RSV_GLOBAL); |
| btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); |
| btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); |
| btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); |
| btrfs_init_block_rsv(&fs_info->delayed_block_rsv, |
| BTRFS_BLOCK_RSV_DELOPS); |
| btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, |
| BTRFS_BLOCK_RSV_DELREFS); |
| |
| atomic_set(&fs_info->async_delalloc_pages, 0); |
| atomic_set(&fs_info->defrag_running, 0); |
| atomic_set(&fs_info->reada_works_cnt, 0); |
| atomic_set(&fs_info->nr_delayed_iputs, 0); |
| atomic64_set(&fs_info->tree_mod_seq, 0); |
| fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; |
| fs_info->metadata_ratio = 0; |
| fs_info->defrag_inodes = RB_ROOT; |
| atomic64_set(&fs_info->free_chunk_space, 0); |
| fs_info->tree_mod_log = RB_ROOT; |
| fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; |
| fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ |
| /* readahead state */ |
| INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); |
| spin_lock_init(&fs_info->reada_lock); |
| btrfs_init_ref_verify(fs_info); |
| |
| fs_info->thread_pool_size = min_t(unsigned long, |
| num_online_cpus() + 2, 8); |
| |
| INIT_LIST_HEAD(&fs_info->ordered_roots); |
| spin_lock_init(&fs_info->ordered_root_lock); |
| |
| btrfs_init_scrub(fs_info); |
| #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY |
| fs_info->check_integrity_print_mask = 0; |
| #endif |
| btrfs_init_balance(fs_info); |
| btrfs_init_async_reclaim_work(fs_info); |
| |
| spin_lock_init(&fs_info->block_group_cache_lock); |
| fs_info->block_group_cache_tree = RB_ROOT; |
| fs_info->first_logical_byte = (u64)-1; |
| |
| extent_io_tree_init(fs_info, &fs_info->excluded_extents, |
| IO_TREE_FS_EXCLUDED_EXTENTS, NULL); |
| set_bit(BTRFS_FS_BARRIER, &fs_info->flags); |
| |
| mutex_init(&fs_info->ordered_operations_mutex); |
| mutex_init(&fs_info->tree_log_mutex); |
| mutex_init(&fs_info->chunk_mutex); |
| mutex_init(&fs_info->transaction_kthread_mutex); |
| mutex_init(&fs_info->cleaner_mutex); |
| mutex_init(&fs_info->ro_block_group_mutex); |
| init_rwsem(&fs_info->commit_root_sem); |
| init_rwsem(&fs_info->cleanup_work_sem); |
| init_rwsem(&fs_info->subvol_sem); |
| sema_init(&fs_info->uuid_tree_rescan_sem, 1); |
| |
| btrfs_init_dev_replace_locks(fs_info); |
| btrfs_init_qgroup(fs_info); |
| btrfs_discard_init(fs_info); |
| |
| btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); |
| btrfs_init_free_cluster(&fs_info->data_alloc_cluster); |
| |
| init_waitqueue_head(&fs_info->transaction_throttle); |
| init_waitqueue_head(&fs_info->transaction_wait); |
| init_waitqueue_head(&fs_info->transaction_blocked_wait); |
| init_waitqueue_head(&fs_info->async_submit_wait); |
| init_waitqueue_head(&fs_info->delayed_iputs_wait); |
| |
| /* Usable values until the real ones are cached from the superblock */ |
| fs_info->nodesize = 4096; |
| fs_info->sectorsize = 4096; |
| fs_info->sectorsize_bits = ilog2(4096); |
| fs_info->stripesize = 4096; |
| |
| spin_lock_init(&fs_info->swapfile_pins_lock); |
| fs_info->swapfile_pins = RB_ROOT; |
| |
| fs_info->send_in_progress = 0; |
| } |
| |
| static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) |
| { |
| int ret; |
| |
| fs_info->sb = sb; |
| sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; |
| sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); |
| |
| ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL); |
| if (ret) |
| return ret; |
| |
| ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); |
| if (ret) |
| return ret; |
| |
| fs_info->dirty_metadata_batch = PAGE_SIZE * |
| (1 + ilog2(nr_cpu_ids)); |
| |
| ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); |
| if (ret) |
| return ret; |
| |
| ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, |
| GFP_KERNEL); |
| if (ret) |
| return ret; |
| |
| fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), |
| GFP_KERNEL); |
| if (!fs_info->delayed_root) |
| return -ENOMEM; |
| btrfs_init_delayed_root(fs_info->delayed_root); |
| |
| return btrfs_alloc_stripe_hash_table(fs_info); |
| } |
| |
| static int btrfs_uuid_rescan_kthread(void *data) |
| { |
| struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; |
| int ret; |
| |
| /* |
| * 1st step is to iterate through the existing UUID tree and |
| * to delete all entries that contain outdated data. |
| * 2nd step is to add all missing entries to the UUID tree. |
| */ |
| ret = btrfs_uuid_tree_iterate(fs_info); |
| if (ret < 0) { |
| if (ret != -EINTR) |
| btrfs_warn(fs_info, "iterating uuid_tree failed %d", |
| ret); |
| up(&fs_info->uuid_tree_rescan_sem); |
| return ret; |
| } |
| return btrfs_uuid_scan_kthread(data); |
| } |
| |
| static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) |
| { |
| struct task_struct *task; |
| |
| down(&fs_info->uuid_tree_rescan_sem); |
| task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); |
| if (IS_ERR(task)) { |
| /* fs_info->update_uuid_tree_gen remains 0 in all error case */ |
| btrfs_warn(fs_info, "failed to start uuid_rescan task"); |
| up(&fs_info->uuid_tree_rescan_sem); |
| return PTR_ERR(task); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Some options only have meaning at mount time and shouldn't persist across |
| * remounts, or be displayed. Clear these at the end of mount and remount |
| * code paths. |
| */ |
| void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info) |
| { |
| btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); |
| btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE); |
| } |
| |
| /* |
| * Mounting logic specific to read-write file systems. Shared by open_ctree |
| * and btrfs_remount when remounting from read-only to read-write. |
| */ |
| int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) |
| { |
| int ret; |
| const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); |
| bool clear_free_space_tree = false; |
| |
| if (btrfs_test_opt(fs_info, CLEAR_CACHE) && |
| btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { |
| clear_free_space_tree = true; |
| } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && |
| !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { |
| btrfs_warn(fs_info, "free space tree is invalid"); |
| clear_free_space_tree = true; |
| } |
| |
| if (clear_free_space_tree) { |
| btrfs_info(fs_info, "clearing free space tree"); |
| ret = btrfs_clear_free_space_tree(fs_info); |
| if (ret) { |
| btrfs_warn(fs_info, |
| "failed to clear free space tree: %d", ret); |
| goto out; |
| } |
| } |
| |
| ret = btrfs_cleanup_fs_roots(fs_info); |
| if (ret) |
| goto out; |
| |
| down_read(&fs_info->cleanup_work_sem); |
| if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || |
| (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { |
| up_read(&fs_info->cleanup_work_sem); |
| goto out; |
| } |
| up_read(&fs_info->cleanup_work_sem); |
| |
| mutex_lock(&fs_info->cleaner_mutex); |
| ret = btrfs_recover_relocation(fs_info->tree_root); |
| mutex_unlock(&fs_info->cleaner_mutex); |
| if (ret < 0) { |
| btrfs_warn(fs_info, "failed to recover relocation: %d", ret); |
| goto out; |
| } |
| |
| if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && |
| !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { |
| btrfs_info(fs_info, "creating free space tree"); |
| ret = btrfs_create_free_space_tree(fs_info); |
| if (ret) { |
| btrfs_warn(fs_info, |
| "failed to create free space tree: %d", ret); |
| goto out; |
| } |
| } |
| |
| if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { |
| ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); |
| if (ret) |
| goto out; |
| } |
| |
| ret = btrfs_resume_balance_async(fs_info); |
| if (ret) |
| goto out; |
| |
| ret = btrfs_resume_dev_replace_async(fs_info); |
| if (ret) { |
| btrfs_warn(fs_info, "failed to resume dev_replace"); |
| goto out; |
| } |
| |
| btrfs_qgroup_rescan_resume(fs_info); |
| |
| if (!fs_info->uuid_root) { |
| btrfs_info(fs_info, "creating UUID tree"); |
| ret = btrfs_create_uuid_tree(fs_info); |
| if (ret) { |
| btrfs_warn(fs_info, |
| "failed to create the UUID tree %d", ret); |
| goto out; |
| } |
| } |
| |
| out: |
| return ret; |
| } |
| |
| int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, |
| char *options) |
| { |
| u32 sectorsize; |
| u32 nodesize; |
| u32 stripesize; |
| u64 generation; |
| u64 features; |
| u16 csum_type; |
| struct btrfs_super_block *disk_super; |
| struct btrfs_fs_info *fs_info = btrfs_sb(sb); |
| struct btrfs_root *tree_root; |
| struct btrfs_root *chunk_root; |
| int ret; |
| int err = -EINVAL; |
| int level; |
| |
| ret = init_mount_fs_info(fs_info, sb); |
| if (ret) { |
| err = ret; |
| goto fail; |
| } |
| |
| /* These need to be init'ed before we start creating inodes and such. */ |
| tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, |
| GFP_KERNEL); |
| fs_info->tree_root = tree_root; |
| chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, |
| GFP_KERNEL); |
| fs_info->chunk_root = chunk_root; |
| if (!tree_root || !chunk_root) { |
| err = -ENOMEM; |
| goto fail; |
| } |
| |
| fs_info->btree_inode = new_inode(sb); |
| if (!fs_info->btree_inode) { |
| err = -ENOMEM; |
| goto fail; |
| } |
| mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); |
| btrfs_init_btree_inode(fs_info); |
| |
| invalidate_bdev(fs_devices->latest_bdev); |
| |
| /* |
| * Read super block and check the signature bytes only |
| */ |
| disk_super = btrfs_read_dev_super(fs_devices->latest_bdev); |
| if (IS_ERR(disk_super)) { |
| err = PTR_ERR(disk_super); |
| goto fail_alloc; |
| } |
| |
| /* |
| * Verify the type first, if that or the checksum value are |
| * corrupted, we'll find out |
| */ |
| csum_type = btrfs_super_csum_type(disk_super); |
| if (!btrfs_supported_super_csum(csum_type)) { |
| btrfs_err(fs_info, "unsupported checksum algorithm: %u", |
| csum_type); |
| err = -EINVAL; |
| btrfs_release_disk_super(disk_super); |
| goto fail_alloc; |
| } |
| |
| ret = btrfs_init_csum_hash(fs_info, csum_type); |
| if (ret) { |
| err = ret; |
| btrfs_release_disk_super(disk_super); |
| goto fail_alloc; |
| } |
| |
| /* |
| * We want to check superblock checksum, the type is stored inside. |
| * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). |
| */ |
| if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) { |
| btrfs_err(fs_info, "superblock checksum mismatch"); |
| err = -EINVAL; |
| btrfs_release_disk_super(disk_super); |
| goto fail_alloc; |
| } |
| |
| /* |
| * super_copy is zeroed at allocation time and we never touch the |
| * following bytes up to INFO_SIZE, the checksum is calculated from |
| * the whole block of INFO_SIZE |
| */ |
| memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); |
| btrfs_release_disk_super(disk_super); |
| |
| disk_super = fs_info->super_copy; |
| |
| ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid, |
| BTRFS_FSID_SIZE)); |
| |
| if (btrfs_fs_incompat(fs_info, METADATA_UUID)) { |
| ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid, |
| fs_info->super_copy->metadata_uuid, |
| BTRFS_FSID_SIZE)); |
| } |
| |
| features = btrfs_super_flags(disk_super); |
| if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { |
| features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; |
| btrfs_set_super_flags(disk_super, features); |
| btrfs_info(fs_info, |
| "found metadata UUID change in progress flag, clearing"); |
| } |
| |
| memcpy(fs_info->super_for_commit, fs_info->super_copy, |
| sizeof(*fs_info->super_for_commit)); |
| |
| ret = btrfs_validate_mount_super(fs_info); |
| if (ret) { |
| btrfs_err(fs_info, "superblock contains fatal errors"); |
| err = -EINVAL; |
| goto fail_alloc; |
| } |
| |
| if (!btrfs_super_root(disk_super)) |
| goto fail_alloc; |
| |
| /* check FS state, whether FS is broken. */ |
| if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) |
| set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); |
| |
| /* |
| * In the long term, we'll store the compression type in the super |
| * block, and it'll be used for per file compression control. |
| */ |
| fs_info->compress_type = BTRFS_COMPRESS_ZLIB; |
| |
| ret = btrfs_parse_options(fs_info, options, sb->s_flags); |
| if (ret) { |
| err = ret; |
| goto fail_alloc; |
| } |
| |
| features = btrfs_super_incompat_flags(disk_super) & |
| ~BTRFS_FEATURE_INCOMPAT_SUPP; |
| if (features) { |
| btrfs_err(fs_info, |
| "cannot mount because of unsupported optional features (%llx)", |
| features); |
| err = -EINVAL; |
| goto fail_alloc; |
| } |
| |
| features = btrfs_super_incompat_flags(disk_super); |
| features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; |
| if (fs_info->compress_type == BTRFS_COMPRESS_LZO) |
| features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; |
| else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) |
| features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; |
| |
| if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) |
| btrfs_info(fs_info, "has skinny extents"); |
| |
| fs_info->zoned = (features & BTRFS_FEATURE_INCOMPAT_ZONED); |
| |
| /* |
| * flag our filesystem as having big metadata blocks if |
| * they are bigger than the page size |
| */ |
| if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { |
| if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) |
| btrfs_info(fs_info, |
| "flagging fs with big metadata feature"); |
| features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; |
| } |
| |
| nodesize = btrfs_super_nodesize(disk_super); |
| sectorsize = btrfs_super_sectorsize(disk_super); |
| stripesize = sectorsize; |
| fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); |
| fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); |
| |
| /* Cache block sizes */ |
| fs_info->nodesize = nodesize; |
| fs_info->sectorsize = sectorsize; |
| fs_info->sectorsize_bits = ilog2(sectorsize); |
| fs_info->csum_size = btrfs_super_csum_size(disk_super); |
| fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; |
| fs_info->stripesize = stripesize; |
| |
| /* |
| * mixed block groups end up with duplicate but slightly offset |
| * extent buffers for the same range. It leads to corruptions |
| */ |
| if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && |
| (sectorsize != nodesize)) { |
| btrfs_err(fs_info, |
| "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", |
| nodesize, sectorsize); |
| goto fail_alloc; |
| } |
| |
| /* |
| * Needn't use the lock because there is no other task which will |
| * update the flag. |
| */ |
| btrfs_set_super_incompat_flags(disk_super, features); |
| |
| features = btrfs_super_compat_ro_flags(disk_super) & |
| ~BTRFS_FEATURE_COMPAT_RO_SUPP; |
| if (!sb_rdonly(sb) && features) { |
| btrfs_err(fs_info, |
| "cannot mount read-write because of unsupported optional features (%llx)", |
| features); |
| err = -EINVAL; |
| goto fail_alloc; |
| } |
| |
| ret = btrfs_init_workqueues(fs_info, fs_devices); |
| if (ret) { |
| err = ret; |
| goto fail_sb_buffer; |
| } |
| |
| sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); |
| sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); |
| |
| sb->s_blocksize = sectorsize; |
| sb->s_blocksize_bits = blksize_bits(sectorsize); |
| memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); |
| |
| mutex_lock(&fs_info->chunk_mutex); |
| ret = btrfs_read_sys_array(fs_info); |
| mutex_unlock(&fs_info->chunk_mutex); |
| if (ret) { |
| btrfs_err(fs_info, "failed to read the system array: %d", ret); |
| goto fail_sb_buffer; |
| } |
| |
| generation = btrfs_super_chunk_root_generation(disk_super); |
| level = btrfs_super_chunk_root_level(disk_super); |
| |
| chunk_root->node = read_tree_block(fs_info, |
| btrfs_super_chunk_root(disk_super), |
| BTRFS_CHUNK_TREE_OBJECTID, |
| generation, level, NULL); |
| if (IS_ERR(chunk_root->node) || |
| !extent_buffer_uptodate(chunk_root->node)) { |
| btrfs_err(fs_info, "failed to read chunk root"); |
| if (!IS_ERR(chunk_root->node)) |
| free_extent_buffer(chunk_root->node); |
| chunk_root->node = NULL; |
| goto fail_tree_roots; |
| } |
| btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); |
| chunk_root->commit_root = btrfs_root_node(chunk_root); |
| |
| read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, |
| offsetof(struct btrfs_header, chunk_tree_uuid), |
| BTRFS_UUID_SIZE); |
| |
| ret = btrfs_read_chunk_tree(fs_info); |
| if (ret) { |
| btrfs_err(fs_info, "failed to read chunk tree: %d", ret); |
| goto fail_tree_roots; |
| } |
| |
| /* |
| * At this point we know all the devices that make this filesystem, |
| * including the seed devices but we don't know yet if the replace |
| * target is required. So free devices that are not part of this |
| * filesystem but skip the replace traget device which is checked |
| * below in btrfs_init_dev_replace(). |
| */ |
| btrfs_free_extra_devids(fs_devices); |
| if (!fs_devices->latest_bdev) { |
| btrfs_err(fs_info, "failed to read devices"); |
| goto fail_tree_roots; |
| } |
| |
| ret = init_tree_roots(fs_info); |
| if (ret) |
| goto fail_tree_roots; |
| |
| /* |
| * If we have a uuid root and we're not being told to rescan we need to |
| * check the generation here so we can set the |
| * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the |
| * transaction during a balance or the log replay without updating the |
| * uuid generation, and then if we crash we would rescan the uuid tree, |
| * even though it was perfectly fine. |
| */ |
| if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && |
| fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) |
| set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); |
| |
| ret = btrfs_verify_dev_extents(fs_info); |
| if (ret) { |
| btrfs_err(fs_info, |
| "failed to verify dev extents against chunks: %d", |
| ret); |
| goto fail_block_groups; |
| } |
| ret = btrfs_recover_balance(fs_info); |
| if (ret) { |
| btrfs_err(fs_info, "failed to recover balance: %d", ret); |
| goto fail_block_groups; |
| } |
| |
| ret = btrfs_init_dev_stats(fs_info); |
| if (ret) { |
| btrfs_err(fs_info, "failed to init dev_stats: %d", ret); |
| goto fail_block_groups; |
| } |
| |
| ret = btrfs_init_dev_replace(fs_info); |
| if (ret) { |
| btrfs_err(fs_info, "failed to init dev_replace: %d", ret); |
| goto fail_block_groups; |
| } |
| |
| ret = btrfs_check_zoned_mode(fs_info); |
| if (ret) { |
| btrfs_err(fs_info, "failed to initialize zoned mode: %d", |
| ret); |
| goto fail_block_groups; |
| } |
| |
| ret = btrfs_sysfs_add_fsid(fs_devices); |
| if (ret) { |
| btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", |
| ret); |
| goto fail_block_groups; |
| } |
| |
| ret = btrfs_sysfs_add_mounted(fs_info); |
| if (ret) { |
| btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); |
| goto fail_fsdev_sysfs; |
| } |
| |
| ret = btrfs_init_space_info(fs_info); |
| if (ret) { |
| btrfs_err(fs_info, "failed to initialize space info: %d", ret); |
| goto fail_sysfs; |
| } |
| |
| ret = btrfs_read_block_groups(fs_info); |
| if (ret) { |
| btrfs_err(fs_info, "failed to read block groups: %d", ret); |
| goto fail_sysfs; |
| } |
| |
| if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) { |
| btrfs_warn(fs_info, |
| "writable mount is not allowed due to too many missing devices"); |
| goto fail_sysfs; |
| } |
| |
| fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, |
| "btrfs-cleaner"); |
| if (IS_ERR(fs_info->cleaner_kthread)) |
| goto fail_sysfs; |
| |
| fs_info->transaction_kthread = kthread_run(transaction_kthread, |
| tree_root, |
| "btrfs-transaction"); |
| if (IS_ERR(fs_info->transaction_kthread)) |
| goto fail_cleaner; |
| |
| if (!btrfs_test_opt(fs_info, NOSSD) && |
| !fs_info->fs_devices->rotating) { |
| btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); |
| } |
| |
| /* |
| * Mount does not set all options immediately, we can do it now and do |
| * not have to wait for transaction commit |
| */ |
| btrfs_apply_pending_changes(fs_info); |
| |
| #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY |
| if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { |
| ret = btrfsic_mount(fs_info, fs_devices, |
| btrfs_test_opt(fs_info, |
| CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? |
| 1 : 0, |
| fs_info->check_integrity_print_mask); |
| if (ret) |
| btrfs_warn(fs_info, |
| "failed to initialize integrity check module: %d", |
| ret); |
| } |
| #endif |
| ret = btrfs_read_qgroup_config(fs_info); |
| if (ret) |
| goto fail_trans_kthread; |
| |
| if (btrfs_build_ref_tree(fs_info)) |
| btrfs_err(fs_info, "couldn't build ref tree"); |
| |
| /* do not make disk changes in broken FS or nologreplay is given */ |
| if (btrfs_super_log_root(disk_super) != 0 && |
| !btrfs_test_opt(fs_info, NOLOGREPLAY)) { |
| btrfs_info(fs_info, "start tree-log replay"); |
| ret = btrfs_replay_log(fs_info, fs_devices); |
| if (ret) { |
| err = ret; |
| goto fail_qgroup; |
| } |
| } |
| |
| ret = btrfs_find_orphan_roots(fs_info); |
| if (ret) |
| goto fail_qgroup; |
| |
| fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); |
| if (IS_ERR(fs_info->fs_root)) { |
| err = PTR_ERR(fs_info->fs_root); |
| btrfs_warn(fs_info, "failed to read fs tree: %d", err); |
| fs_info->fs_root = NULL; |
| goto fail_qgroup; |
| } |
| |
| if (sb_rdonly(sb)) |
| goto clear_oneshot; |
| |
| ret = btrfs_start_pre_rw_mount(fs_info); |
| if (ret) { |
| close_ctree(fs_info); |
| return ret; |
| } |
| btrfs_discard_resume(fs_info); |
| |
| if (fs_info->uuid_root && |
| (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || |
| fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { |
| btrfs_info(fs_info, "checking UUID tree"); |
| ret = btrfs_check_uuid_tree(fs_info); |
| if (ret) { |
| btrfs_warn(fs_info, |
| "failed to check the UUID tree: %d", ret); |
| close_ctree(fs_info); |
| return ret; |
| } |
| } |
| |
| set_bit(BTRFS_FS_OPEN, &fs_info->flags); |
| |
| clear_oneshot: |
| btrfs_clear_oneshot_options(fs_info); |
| return 0; |
| |
| fail_qgroup: |
| btrfs_free_qgroup_config(fs_info); |
| fail_trans_kthread: |
| kthread_stop(fs_info->transaction_kthread); |
| btrfs_cleanup_transaction(fs_info); |
| btrfs_free_fs_roots(fs_info); |
| fail_cleaner: |
| kthread_stop(fs_info->cleaner_kthread); |
| |
| /* |
| * make sure we're done with the btree inode before we stop our |
| * kthreads |
| */ |
| filemap_write_and_wait(fs_info->btree_inode->i_mapping); |
| |
| fail_sysfs: |
| btrfs_sysfs_remove_mounted(fs_info); |
| |
| fail_fsdev_sysfs: |
| btrfs_sysfs_remove_fsid(fs_info->fs_devices); |
| |
| fail_block_groups: |
| btrfs_put_block_group_cache(fs_info); |
| |
| fail_tree_roots: |
| if (fs_info->data_reloc_root) |
| btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); |
| free_root_pointers(fs_info, true); |
| invalidate_inode_pages2(fs_info->btree_inode->i_mapping); |
| |
| fail_sb_buffer: |
| btrfs_stop_all_workers(fs_info); |
| btrfs_free_block_groups(fs_info); |
| fail_alloc: |
| btrfs_mapping_tree_free(&fs_info->mapping_tree); |
| |
| iput(fs_info->btree_inode); |
| fail: |
| btrfs_close_devices(fs_info->fs_devices); |
| return err; |
| } |
| ALLOW_ERROR_INJECTION(open_ctree, ERRNO); |
| |
| static void btrfs_end_super_write(struct bio *bio) |
| { |
| struct btrfs_device *device = bio->bi_private; |
| struct bio_vec *bvec; |
| struct bvec_iter_all iter_all; |
| struct page *page; |
| |
| bio_for_each_segment_all(bvec, bio, iter_all) { |
| page = bvec->bv_page; |
| |
| if (bio->bi_status) { |
| btrfs_warn_rl_in_rcu(device->fs_info, |
| "lost page write due to IO error on %s (%d)", |
| rcu_str_deref(device->name), |
| blk_status_to_errno(bio->bi_status)); |
| ClearPageUptodate(page); |
| SetPageError(page); |
| btrfs_dev_stat_inc_and_print(device, |
| BTRFS_DEV_STAT_WRITE_ERRS); |
| } else { |
| SetPageUptodate(page); |
| } |
| |
| put_page(page); |
| unlock_page(page); |
| } |
| |
| bio_put(bio); |
| } |
| |
| struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, |
| int copy_num) |
| { |
| struct btrfs_super_block *super; |
| struct page *page; |
| u64 bytenr, bytenr_orig; |
| struct address_space *mapping = bdev->bd_inode->i_mapping; |
| int ret; |
| |
| bytenr_orig = btrfs_sb_offset(copy_num); |
| ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); |
| if (ret == -ENOENT) |
| return ERR_PTR(-EINVAL); |
| else if (ret) |
| return ERR_PTR(ret); |
| |
| if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) |
| return ERR_PTR(-EINVAL); |
| |
| page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); |
| if (IS_ERR(page)) |
| return ERR_CAST(page); |
| |
| super = page_address(page); |
| if (btrfs_super_magic(super) != BTRFS_MAGIC) { |
| btrfs_release_disk_super(super); |
| return ERR_PTR(-ENODATA); |
| } |
| |
| if (btrfs_super_bytenr(super) != bytenr_orig) { |
| btrfs_release_disk_super(super); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| return super; |
| } |
| |
| |
| struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) |
| { |
| struct btrfs_super_block *super, *latest = NULL; |
| int i; |
| u64 transid = 0; |
| |
| /* we would like to check all the supers, but that would make |
| * a btrfs mount succeed after a mkfs from a different FS. |
| * So, we need to add a special mount option to scan for |
| * later supers, using BTRFS_SUPER_MIRROR_MAX instead |
| */ |
| for (i = 0; i < 1; i++) { |
| super = btrfs_read_dev_one_super(bdev, i); |
| if (IS_ERR(super)) |
| continue; |
| |
| if (!latest || btrfs_super_generation(super) > transid) { |
| if (latest) |
| btrfs_release_disk_super(super); |
| |
| latest = super; |
| transid = btrfs_super_generation(super); |
| } |
| } |
| |
| return super; |
| } |
| |
| /* |
| * Write superblock @sb to the @device. Do not wait for completion, all the |
| * pages we use for writing are locked. |
| * |
| * Write @max_mirrors copies of the superblock, where 0 means default that fit |
| * the expected device size at commit time. Note that max_mirrors must be |
| * same for write and wait phases. |
| * |
| * Return number of errors when page is not found or submission fails. |
| */ |
| static int write_dev_supers(struct btrfs_device *device, |
| struct btrfs_super_block *sb, int max_mirrors) |
| { |
| struct btrfs_fs_info *fs_info = device->fs_info; |
| struct address_space *mapping = device->bdev->bd_inode->i_mapping; |
| SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); |
| int i; |
| int errors = 0; |
| int ret; |
| u64 bytenr, bytenr_orig; |
| |
| if (max_mirrors == 0) |
| max_mirrors = BTRFS_SUPER_MIRROR_MAX; |
| |
| shash->tfm = fs_info->csum_shash; |
| |
| for (i = 0; i < max_mirrors; i++) { |
| struct page *page; |
| struct bio *bio; |
| struct btrfs_super_block *disk_super; |
| |
| bytenr_orig = btrfs_sb_offset(i); |
| ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); |
| if (ret == -ENOENT) { |
| continue; |
| } else if (ret < 0) { |
| btrfs_err(device->fs_info, |
| "couldn't get super block location for mirror %d", |
| i); |
| errors++; |
| continue; |
| } |
| if (bytenr + BTRFS_SUPER_INFO_SIZE >= |
| device->commit_total_bytes) |
| break; |
| |
| btrfs_set_super_bytenr(sb, bytenr_orig); |
| |
| crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, |
| BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, |
| sb->csum); |
| |
| page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT, |
| GFP_NOFS); |
| if (!page) { |
| btrfs_err(device->fs_info, |
| "couldn't get super block page for bytenr %llu", |
| bytenr); |
| errors++; |
| continue; |
| } |
| |
| /* Bump the refcount for wait_dev_supers() */ |
| get_page(page); |
| |
| disk_super = page_address(page); |
| memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); |
| |
| /* |
| * Directly use bios here instead of relying on the page cache |
| * to do I/O, so we don't lose the ability to do integrity |
| * checking. |
| */ |
| bio = bio_alloc(GFP_NOFS, 1); |
| bio_set_dev(bio, device->bdev); |
| bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; |
| bio->bi_private = device; |
| bio->bi_end_io = btrfs_end_super_write; |
| __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE, |
| offset_in_page(bytenr)); |
| |
| /* |
| * We FUA only the first super block. The others we allow to |
| * go down lazy and there's a short window where the on-disk |
| * copies might still contain the older version. |
| */ |
| bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO; |
| if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) |
| bio->bi_opf |= REQ_FUA; |
| |
| btrfsic_submit_bio(bio); |
| btrfs_advance_sb_log(device, i); |
| } |
| return errors < i ? 0 : -1; |
| } |
| |
| /* |
| * Wait for write completion of superblocks done by write_dev_supers, |
| * @max_mirrors same for write and wait phases. |
| * |
| * Return number of errors when page is not found or not marked up to |
| * date. |
| */ |
| static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) |
| { |
| int i; |
| int errors = 0; |
| bool primary_failed = false; |
| int ret; |
| u64 bytenr; |
| |
| if (max_mirrors == 0) |
| max_mirrors = BTRFS_SUPER_MIRROR_MAX; |
| |
| for (i = 0; i < max_mirrors; i++) { |
| struct page *page; |
| |
| ret = btrfs_sb_log_location(device, i, READ, &bytenr); |
| if (ret == -ENOENT) { |
| break; |
| } else if (ret < 0) { |
| errors++; |
| if (i == 0) |
| primary_failed = true; |
| continue; |
| } |
| if (bytenr + BTRFS_SUPER_INFO_SIZE >= |
| device->commit_total_bytes) |
| break; |
| |
| page = find_get_page(device->bdev->bd_inode->i_mapping, |
| bytenr >> PAGE_SHIFT); |
| if (!page) { |
| errors++; |
| if (i == 0) |
| primary_failed = true; |
| continue; |
| } |
| /* Page is submitted locked and unlocked once the IO completes */ |
| wait_on_page_locked(page); |
| if (PageError(page)) { |
| errors++; |
| if (i == 0) |
| primary_failed = true; |
| } |
| |
| /* Drop our reference */ |
| put_page(page); |
| |
| /* Drop the reference from the writing run */ |
| put_page(page); |
| } |
| |
| /* log error, force error return */ |
| if (primary_failed) { |
| btrfs_err(device->fs_info, "error writing primary super block to device %llu", |
| device->devid); |
| return -1; |
| } |
| |
| return errors < i ? 0 : -1; |
| } |
| |
| /* |
| * endio for the write_dev_flush, this will wake anyone waiting |
| * for the barrier when it is done |
| */ |
| static void btrfs_end_empty_barrier(struct bio *bio) |
| { |
| complete(bio->bi_private); |
| } |
| |
| /* |
| * Submit a flush request to the device if it supports it. Error handling is |
| * done in the waiting counterpart. |
| */ |
| static void write_dev_flush(struct btrfs_device *device) |
| { |
| struct request_queue *q = bdev_get_queue(device->bdev); |
| struct bio *bio = device->flush_bio; |
| |
| if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) |
| return; |
| |
| bio_reset(bio); |
| bio->bi_end_io = btrfs_end_empty_barrier; |
| bio_set_dev(bio, device->bdev); |
| bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; |
| init_completion(&device->flush_wait); |
| bio->bi_private = &device->flush_wait; |
| |
| btrfsic_submit_bio(bio); |
| set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); |
| } |
| |
| /* |
| * If the flush bio has been submitted by write_dev_flush, wait for it. |
| */ |
| static blk_status_t wait_dev_flush(struct btrfs_device *device) |
| { |
| struct bio *bio = device->flush_bio; |
| |
| if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) |
| return BLK_STS_OK; |
| |
| clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); |
| wait_for_completion_io(&device->flush_wait); |
| |
| return bio->bi_status; |
| } |
| |
| static int check_barrier_error(struct btrfs_fs_info *fs_info) |
| { |
| if (!btrfs_check_rw_degradable(fs_info, NULL)) |
| return -EIO; |
| return 0; |
| } |
| |
| /* |
| * send an empty flush down to each device in parallel, |
| * then wait for them |
| */ |
| static int barrier_all_devices(struct btrfs_fs_info *info) |
| { |
| struct list_head *head; |
| struct btrfs_device *dev; |
| int errors_wait = 0; |
| blk_status_t ret; |
| |
| lockdep_assert_held(&info->fs_devices->device_list_mutex); |
| /* send down all the barriers */ |
| head = &info->fs_devices->devices; |
| list_for_each_entry(dev, head, dev_list) { |
| if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) |
| continue; |
| if (!dev->bdev) |
| continue; |
| if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || |
| !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) |
| continue; |
| |
| write_dev_flush(dev); |
| dev->last_flush_error = BLK_STS_OK; |
| } |
| |
| /* wait for all the barriers */ |
| list_for_each_entry(dev, head, dev_list) { |
| if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) |
| continue; |
| if (!dev->bdev) { |
| errors_wait++; |
| continue; |
| } |
| if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || |
| !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) |
| continue; |
| |
| ret = wait_dev_flush(dev); |
| if (ret) { |
| dev->last_flush_error = ret; |
| btrfs_dev_stat_inc_and_print(dev, |
| BTRFS_DEV_STAT_FLUSH_ERRS); |
| errors_wait++; |
| } |
| } |
| |
| if (errors_wait) { |
| /* |
| * At some point we need the status of all disks |
| * to arrive at the volume status. So error checking |
| * is being pushed to a separate loop. |
| */ |
| return check_barrier_error(info); |
| } |
| return 0; |
| } |
| |
| int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) |
| { |
| int raid_type; |
| int min_tolerated = INT_MAX; |
| |
| if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || |
| (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) |
| min_tolerated = min_t(int, min_tolerated, |
| btrfs_raid_array[BTRFS_RAID_SINGLE]. |
| tolerated_failures); |
| |
| for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { |
| if (raid_type == BTRFS_RAID_SINGLE) |
| continue; |
| if (!(flags & btrfs_raid_array[raid_type].bg_flag)) |
| continue; |
| min_tolerated = min_t(int, min_tolerated, |
| btrfs_raid_array[raid_type]. |
| tolerated_failures); |
| } |
| |
| if (min_tolerated == INT_MAX) { |
| pr_warn("BTRFS: unknown raid flag: %llu", flags); |
| min_tolerated = 0; |
| } |
| |
| return min_tolerated; |
| } |
| |
| int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) |
| { |
| struct list_head *head; |
| struct btrfs_device *dev; |
| struct btrfs_super_block *sb; |
| struct btrfs_dev_item *dev_item; |
| int ret; |
| int do_barriers; |
| int max_errors; |
| int total_errors = 0; |
| u64 flags; |
| |
| do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); |
| |
| /* |
| * max_mirrors == 0 indicates we're from commit_transaction, |
| * not from fsync where the tree roots in fs_info have not |
| * been consistent on disk. |
| */ |
| if (max_mirrors == 0) |
| backup_super_roots(fs_info); |
| |
| sb = fs_info->super_for_commit; |
| dev_item = &sb->dev_item; |
| |
| mutex_lock(&fs_info->fs_devices->device_list_mutex); |
| head = &fs_info->fs_devices->devices; |
| max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; |
| |
| if (do_barriers) { |
| ret = barrier_all_devices(fs_info); |
| if (ret) { |
| mutex_unlock( |
| &fs_info->fs_devices->device_list_mutex); |
| btrfs_handle_fs_error(fs_info, ret, |
| "errors while submitting device barriers."); |
| return ret; |
| } |
| } |
| |
| list_for_each_entry(dev, head, dev_list) { |
| if (!dev->bdev) { |
| total_errors++; |
| continue; |
| } |
| if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || |
| !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) |
| continue; |
| |
| btrfs_set_stack_device_generation(dev_item, 0); |
| btrfs_set_stack_device_type(dev_item, dev->type); |
| btrfs_set_stack_device_id(dev_item, dev->devid); |
| btrfs_set_stack_device_total_bytes(dev_item, |
| dev->commit_total_bytes); |
| btrfs_set_stack_device_bytes_used(dev_item, |
| dev->commit_bytes_used); |
| btrfs_set_stack_device_io_align(dev_item, dev->io_align); |
| btrfs_set_stack_device_io_width(dev_item, dev->io_width); |
| btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); |
| memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); |
| memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, |
| BTRFS_FSID_SIZE); |
| |
| flags = btrfs_super_flags(sb); |
| btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); |
| |
| ret = btrfs_validate_write_super(fs_info, sb); |
| if (ret < 0) { |
| mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| btrfs_handle_fs_error(fs_info, -EUCLEAN, |
| "unexpected superblock corruption detected"); |
| return -EUCLEAN; |
| } |
| |
| ret = write_dev_supers(dev, sb, max_mirrors); |
| if (ret) |
| total_errors++; |
| } |
| if (total_errors > max_errors) { |
| btrfs_err(fs_info, "%d errors while writing supers", |
| total_errors); |
| mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| |
| /* FUA is masked off if unsupported and can't be the reason */ |
| btrfs_handle_fs_error(fs_info, -EIO, |
| "%d errors while writing supers", |
| total_errors); |
| return -EIO; |
| } |
| |
| total_errors = 0; |
| list_for_each_entry(dev, head, dev_list) { |
| if (!dev->bdev) |
| continue; |
| if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || |
| !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) |
| continue; |
| |
| ret = wait_dev_supers(dev, max_mirrors); |
| if (ret) |
| total_errors++; |
| } |
| mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| if (total_errors > max_errors) { |
| btrfs_handle_fs_error(fs_info, -EIO, |
| "%d errors while writing supers", |
| total_errors); |
| return -EIO; |
| } |
| return 0; |
| } |
| |
| /* Drop a fs root from the radix tree and free it. */ |
| void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, |
| struct btrfs_root *root) |
| { |
| bool drop_ref = false; |
| |
| spin_lock(&fs_info->fs_roots_radix_lock); |
| radix_tree_delete(&fs_info->fs_roots_radix, |
| (unsigned long)root->root_key.objectid); |
| if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) |
| drop_ref = true; |
| spin_unlock(&fs_info->fs_roots_radix_lock); |
| |
| if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { |
| ASSERT(root->log_root == NULL); |
| if (root->reloc_root) { |
| btrfs_put_root(root->reloc_root); |
| root->reloc_root = NULL; |
| } |
| } |
| |
| if (drop_ref) |
| btrfs_put_root(root); |
| } |
| |
| int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) |
| { |
| u64 root_objectid = 0; |
| struct btrfs_root *gang[8]; |
| int i = 0; |
| int err = 0; |
| unsigned int ret = 0; |
| |
| while (1) { |
| spin_lock(&fs_info->fs_roots_radix_lock); |
| ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, |
| (void **)gang, root_objectid, |
| ARRAY_SIZE(gang)); |
| if (!ret) { |
| spin_unlock(&fs_info->fs_roots_radix_lock); |
| break; |
| } |
| root_objectid = gang[ret - 1]->root_key.objectid + 1; |
| |
| for (i = 0; i < ret; i++) { |
| /* Avoid to grab roots in dead_roots */ |
| if (btrfs_root_refs(&gang[i]->root_item) == 0) { |
| gang[i] = NULL; |
| continue; |
| } |
| /* grab all the search result for later use */ |
| gang[i] = btrfs_grab_root(gang[i]); |
| } |
| spin_unlock(&fs_info->fs_roots_radix_lock); |
| |
| for (i = 0; i < ret; i++) { |
| if (!gang[i]) |
| continue; |
| root_objectid = gang[i]->root_key.objectid; |
| err = btrfs_orphan_cleanup(gang[i]); |
| if (err) |
| break; |
| btrfs_put_root(gang[i]); |
| } |
| root_objectid++; |
| } |
| |
| /* release the uncleaned roots due to error */ |
| for (; i < ret; i++) { |
| if (gang[i]) |
| btrfs_put_root(gang[i]); |
| } |
| return err; |
| } |
| |
| int btrfs_commit_super(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_root *root = fs_info->tree_root; |
| struct btrfs_trans_handle *trans; |
| |
| mutex_lock(&fs_info->cleaner_mutex); |
| btrfs_run_delayed_iputs(fs_info); |
| mutex_unlock(&fs_info->cleaner_mutex); |
| wake_up_process(fs_info->cleaner_kthread); |
| |
| /* wait until ongoing cleanup work done */ |
| down_write(&fs_info->cleanup_work_sem); |
| up_write(&fs_info->cleanup_work_sem); |
| |
| trans = btrfs_join_transaction(root); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| return btrfs_commit_transaction(trans); |
| } |
| |
| void __cold close_ctree(struct btrfs_fs_info *fs_info) |
| { |
| int ret; |
| |
| set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); |
| /* |
| * We don't want the cleaner to start new transactions, add more delayed |
| * iputs, etc. while we're closing. We can't use kthread_stop() yet |
| * because that frees the task_struct, and the transaction kthread might |
| * still try to wake up the cleaner. |
| */ |
| kthread_park(fs_info->cleaner_kthread); |
| |
| /* wait for the qgroup rescan worker to stop */ |
| btrfs_qgroup_wait_for_completion(fs_info, false); |
| |
| /* wait for the uuid_scan task to finish */ |
| down(&fs_info->uuid_tree_rescan_sem); |
| /* avoid complains from lockdep et al., set sem back to initial state */ |
| up(&fs_info->uuid_tree_rescan_sem); |
| |
| /* pause restriper - we want to resume on mount */ |
| btrfs_pause_balance(fs_info); |
| |
| btrfs_dev_replace_suspend_for_unmount(fs_info); |
| |
| btrfs_scrub_cancel(fs_info); |
| |
| /* wait for any defraggers to finish */ |
| wait_event(fs_info->transaction_wait, |
| (atomic_read(&fs_info->defrag_running) == 0)); |
| |
| /* clear out the rbtree of defraggable inodes */ |
| btrfs_cleanup_defrag_inodes(fs_info); |
| |
| cancel_work_sync(&fs_info->async_reclaim_work); |
| cancel_work_sync(&fs_info->async_data_reclaim_work); |
| |
| /* Cancel or finish ongoing discard work */ |
| btrfs_discard_cleanup(fs_info); |
| |
| if (!sb_rdonly(fs_info->sb)) { |
| /* |
| * The cleaner kthread is stopped, so do one final pass over |
| * unused block groups. |
| */ |
| btrfs_delete_unused_bgs(fs_info); |
| |
| /* |
| * There might be existing delayed inode workers still running |
| * and holding an empty delayed inode item. We must wait for |
| * them to complete first because they can create a transaction. |
| * This happens when someone calls btrfs_balance_delayed_items() |
| * and then a transaction commit runs the same delayed nodes |
| * before any delayed worker has done something with the nodes. |
| * We must wait for any worker here and not at transaction |
| * commit time since that could cause a deadlock. |
| * This is a very rare case. |
| */ |
| btrfs_flush_workqueue(fs_info->delayed_workers); |
| |
| ret = btrfs_commit_super(fs_info); |
| if (ret) |
| btrfs_err(fs_info, "commit super ret %d", ret); |
| } |
| |
| if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) || |
| test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) |
| btrfs_error_commit_super(fs_info); |
| |
| kthread_stop(fs_info->transaction_kthread); |
| kthread_stop(fs_info->cleaner_kthread); |
| |
| ASSERT(list_empty(&fs_info->delayed_iputs)); |
| set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); |
| |
| if (btrfs_check_quota_leak(fs_info)) { |
| WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); |
| btrfs_err(fs_info, "qgroup reserved space leaked"); |
| } |
| |
| btrfs_free_qgroup_config(fs_info); |
| ASSERT(list_empty(&fs_info->delalloc_roots)); |
| |
| if (percpu_counter_sum(&fs_info->delalloc_bytes)) { |
| btrfs_info(fs_info, "at unmount delalloc count %lld", |
| percpu_counter_sum(&fs_info->delalloc_bytes)); |
| } |
| |
| if (percpu_counter_sum(&fs_info->dio_bytes)) |
| btrfs_info(fs_info, "at unmount dio bytes count %lld", |
| percpu_counter_sum(&fs_info->dio_bytes)); |
| |
| btrfs_sysfs_remove_mounted(fs_info); |
| btrfs_sysfs_remove_fsid(fs_info->fs_devices); |
| |
| btrfs_put_block_group_cache(fs_info); |
| |
| /* |
| * we must make sure there is not any read request to |
| * submit after we stopping all workers. |
| */ |
| invalidate_inode_pages2(fs_info->btree_inode->i_mapping); |
| btrfs_stop_all_workers(fs_info); |
| |
| clear_bit(BTRFS_FS_OPEN, &fs_info->flags); |
| free_root_pointers(fs_info, true); |
| btrfs_free_fs_roots(fs_info); |
| |
| /* |
| * We must free the block groups after dropping the fs_roots as we could |
| * have had an IO error and have left over tree log blocks that aren't |
| * cleaned up until the fs roots are freed. This makes the block group |
| * accounting appear to be wrong because there's pending reserved bytes, |
| * so make sure we do the block group cleanup afterwards. |
| */ |
| btrfs_free_block_groups(fs_info); |
| |
| iput(fs_info->btree_inode); |
| |
| #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY |
| if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) |
| btrfsic_unmount(fs_info->fs_devices); |
| #endif |
| |
| btrfs_mapping_tree_free(&fs_info->mapping_tree); |
| btrfs_close_devices(fs_info->fs_devices); |
| } |
| |
| int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, |
| int atomic) |
| { |
| int ret; |
| struct inode *btree_inode = buf->pages[0]->mapping->host; |
| |
| ret = extent_buffer_uptodate(buf); |
| if (!ret) |
| return ret; |
| |
| ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, |
| parent_transid, atomic); |
| if (ret == -EAGAIN) |
| return ret; |
| return !ret; |
| } |
| |
| void btrfs_mark_buffer_dirty(struct extent_buffer *buf) |
| { |
| struct btrfs_fs_info *fs_info = buf->fs_info; |
| u64 transid = btrfs_header_generation(buf); |
| int was_dirty; |
| |
| #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS |
| /* |
| * This is a fast path so only do this check if we have sanity tests |
| * enabled. Normal people shouldn't be using unmapped buffers as dirty |
| * outside of the sanity tests. |
| */ |
| if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) |
| return; |
| #endif |
| btrfs_assert_tree_locked(buf); |
| if (transid != fs_info->generation) |
| WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", |
| buf->start, transid, fs_info->generation); |
| was_dirty = set_extent_buffer_dirty(buf); |
| if (!was_dirty) |
| percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, |
| buf->len, |
| fs_info->dirty_metadata_batch); |
| #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY |
| /* |
| * Since btrfs_mark_buffer_dirty() can be called with item pointer set |
| * but item data not updated. |
| * So here we should only check item pointers, not item data. |
| */ |
| if (btrfs_header_level(buf) == 0 && |
| btrfs_check_leaf_relaxed(buf)) { |
| btrfs_print_leaf(buf); |
| ASSERT(0); |
| } |
| #endif |
| } |
| |
| static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, |
| int flush_delayed) |
| { |
| /* |
| * looks as though older kernels can get into trouble with |
| * this code, they end up stuck in balance_dirty_pages forever |
| */ |
| int ret; |
| |
| if (current->flags & PF_MEMALLOC) |
| return; |
| |
| if (flush_delayed) |
| btrfs_balance_delayed_items(fs_info); |
| |
| ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, |
| BTRFS_DIRTY_METADATA_THRESH, |
| fs_info->dirty_metadata_batch); |
| if (ret > 0) { |
| balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); |
| } |
| } |
| |
| void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) |
| { |
| __btrfs_btree_balance_dirty(fs_info, 1); |
| } |
| |
| void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) |
| { |
| __btrfs_btree_balance_dirty(fs_info, 0); |
| } |
| |
| int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level, |
| struct btrfs_key *first_key) |
| { |
| return btree_read_extent_buffer_pages(buf, parent_transid, |
| level, first_key); |
| } |
| |
| static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) |
| { |
| /* cleanup FS via transaction */ |
| btrfs_cleanup_transaction(fs_info); |
| |
| mutex_lock(&fs_info->cleaner_mutex); |
| btrfs_run_delayed_iputs(fs_info); |
| mutex_unlock(&fs_info->cleaner_mutex); |
| |
| down_write(&fs_info->cleanup_work_sem); |
| up_write(&fs_info->cleanup_work_sem); |
| } |
| |
| static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_root *gang[8]; |
| u64 root_objectid = 0; |
| int ret; |
| |
| spin_lock(&fs_info->fs_roots_radix_lock); |
| while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, |
| (void **)gang, root_objectid, |
| ARRAY_SIZE(gang))) != 0) { |
| int i; |
| |
| for (i = 0; i < ret; i++) |
| gang[i] = btrfs_grab_root(gang[i]); |
| spin_unlock(&fs_info->fs_roots_radix_lock); |
| |
| for (i = 0; i < ret; i++) { |
| if (!gang[i]) |
| continue; |
| root_objectid = gang[i]->root_key.objectid; |
| btrfs_free_log(NULL, gang[i]); |
| btrfs_put_root(gang[i]); |
| } |
| root_objectid++; |
| spin_lock(&fs_info->fs_roots_radix_lock); |
| } |
| spin_unlock(&fs_info->fs_roots_radix_lock); |
| btrfs_free_log_root_tree(NULL, fs_info); |
| } |
| |
| static void btrfs_destroy_ordered_extents(struct btrfs_root *root) |
| { |
| struct btrfs_ordered_extent *ordered; |
| |
| spin_lock(&root->ordered_extent_lock); |
| /* |
| * This will just short circuit the ordered completion stuff which will |
| * make sure the ordered extent gets properly cleaned up. |
| */ |
| list_for_each_entry(ordered, &root->ordered_extents, |
| root_extent_list) |
| set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); |
| spin_unlock(&root->ordered_extent_lock); |
| } |
| |
| static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_root *root; |
| struct list_head splice; |
| |
| INIT_LIST_HEAD(&splice); |
| |
| spin_lock(&fs_info->ordered_root_lock); |
| list_splice_init(&fs_info->ordered_roots, &splice); |
| while (!list_empty(&splice)) { |
| root = list_first_entry(&splice, struct btrfs_root, |
| ordered_root); |
| list_move_tail(&root->ordered_root, |
| &fs_info->ordered_roots); |
| |
| spin_unlock(&fs_info->ordered_root_lock); |
| btrfs_destroy_ordered_extents(root); |
| |
| cond_resched(); |
| spin_lock(&fs_info->ordered_root_lock); |
| } |
| spin_unlock(&fs_info->ordered_root_lock); |
| |
| /* |
| * We need this here because if we've been flipped read-only we won't |
| * get sync() from the umount, so we need to make sure any ordered |
| * extents that haven't had their dirty pages IO start writeout yet |
| * actually get run and error out properly. |
| */ |
| btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); |
| } |
| |
| static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, |
| struct btrfs_fs_info *fs_info) |
| { |
| struct rb_node *node; |
| struct btrfs_delayed_ref_root *delayed_refs; |
| struct btrfs_delayed_ref_node *ref; |
| int ret = 0; |
| |
| delayed_refs = &trans->delayed_refs; |
| |
| spin_lock(&delayed_refs->lock); |
| if (atomic_read(&delayed_refs->num_entries) == 0) { |
| spin_unlock(&delayed_refs->lock); |
| btrfs_debug(fs_info, "delayed_refs has NO entry"); |
| return ret; |
| } |
| |
| while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { |
| struct btrfs_delayed_ref_head *head; |
| struct rb_node *n; |
| bool pin_bytes = false; |
| |
| head = rb_entry(node, struct btrfs_delayed_ref_head, |
| href_node); |
| if (btrfs_delayed_ref_lock(delayed_refs, head)) |
| continue; |
| |
| spin_lock(&head->lock); |
| while ((n = rb_first_cached(&head->ref_tree)) != NULL) { |
| ref = rb_entry(n, struct btrfs_delayed_ref_node, |
| ref_node); |
| ref->in_tree = 0; |
| rb_erase_cached(&ref->ref_node, &head->ref_tree); |
| RB_CLEAR_NODE(&ref->ref_node); |
| if (!list_empty(&ref->add_list)) |
| list_del(&ref->add_list); |
| atomic_dec(&delayed_refs->num_entries); |
| btrfs_put_delayed_ref(ref); |
| } |
| if (head->must_insert_reserved) |
| pin_bytes = true; |
| btrfs_free_delayed_extent_op(head->extent_op); |
| btrfs_delete_ref_head(delayed_refs, head); |
| spin_unlock(&head->lock); |
| spin_unlock(&delayed_refs->lock); |
| mutex_unlock(&head->mutex); |
| |
| if (pin_bytes) { |
| struct btrfs_block_group *cache; |
| |
| cache = btrfs_lookup_block_group(fs_info, head->bytenr); |
| BUG_ON(!cache); |
| |
| spin_lock(&cache->space_info->lock); |
| spin_lock(&cache->lock); |
| cache->pinned += head->num_bytes; |
| btrfs_space_info_update_bytes_pinned(fs_info, |
| cache->space_info, head->num_bytes); |
| cache->reserved -= head->num_bytes; |
| cache->space_info->bytes_reserved -= head->num_bytes; |
| spin_unlock(&cache->lock); |
| spin_unlock(&cache->space_info->lock); |
| percpu_counter_add_batch( |
| &cache->space_info->total_bytes_pinned, |
| head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH); |
| |
| btrfs_put_block_group(cache); |
| |
| btrfs_error_unpin_extent_range(fs_info, head->bytenr, |
| head->bytenr + head->num_bytes - 1); |
| } |
| btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); |
| btrfs_put_delayed_ref_head(head); |
| cond_resched(); |
| spin_lock(&delayed_refs->lock); |
| } |
| btrfs_qgroup_destroy_extent_records(trans); |
| |
| spin_unlock(&delayed_refs->lock); |
| |
| return ret; |
| } |
| |
| static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) |
| { |
| struct btrfs_inode *btrfs_inode; |
| struct list_head splice; |
| |
| INIT_LIST_HEAD(&splice); |
| |
| spin_lock(&root->delalloc_lock); |
| list_splice_init(&root->delalloc_inodes, &splice); |
| |
| while (!list_empty(&splice)) { |
| struct inode *inode = NULL; |
| btrfs_inode = list_first_entry(&splice, struct btrfs_inode, |
| delalloc_inodes); |
| __btrfs_del_delalloc_inode(root, btrfs_inode); |
| spin_unlock(&root->delalloc_lock); |
| |
| /* |
| * Make sure we get a live inode and that it'll not disappear |
| * meanwhile. |
| */ |
| inode = igrab(&btrfs_inode->vfs_inode); |
| if (inode) { |
| invalidate_inode_pages2(inode->i_mapping); |
| iput(inode); |
| } |
| spin_lock(&root->delalloc_lock); |
| } |
| spin_unlock(&root->delalloc_lock); |
| } |
| |
| static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_root *root; |
| struct list_head splice; |
| |
| INIT_LIST_HEAD(&splice); |
| |
| spin_lock(&fs_info->delalloc_root_lock); |
| list_splice_init(&fs_info->delalloc_roots, &splice); |
| while (!list_empty(&splice)) { |
| root = list_first_entry(&splice, struct btrfs_root, |
| delalloc_root); |
| root = btrfs_grab_root(root); |
| BUG_ON(!root); |
| spin_unlock(&fs_info->delalloc_root_lock); |
| |
| btrfs_destroy_delalloc_inodes(root); |
| btrfs_put_root(root); |
| |
| spin_lock(&fs_info->delalloc_root_lock); |
| } |
| spin_unlock(&fs_info->delalloc_root_lock); |
| } |
| |
| static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, |
| struct extent_io_tree *dirty_pages, |
| int mark) |
| { |
| int ret; |
| struct extent_buffer *eb; |
| u64 start = 0; |
| u64 end; |
| |
| while (1) { |
| ret = find_first_extent_bit(dirty_pages, start, &start, &end, |
| mark, NULL); |
| if (ret) |
| break; |
| |
| clear_extent_bits(dirty_pages, start, end, mark); |
| while (start <= end) { |
| eb = find_extent_buffer(fs_info, start); |
| start += fs_info->nodesize; |
| if (!eb) |
| continue; |
| wait_on_extent_buffer_writeback(eb); |
| |
| if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, |
| &eb->bflags)) |
| clear_extent_buffer_dirty(eb); |
| free_extent_buffer_stale(eb); |
| } |
| } |
| |
| return ret; |
| } |
| |
| static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, |
| struct extent_io_tree *unpin) |
| { |
| u64 start; |
| u64 end; |
| int ret; |
| |
| while (1) { |
| struct extent_state *cached_state = NULL; |
| |
| /* |
| * The btrfs_finish_extent_commit() may get the same range as |
| * ours between find_first_extent_bit and clear_extent_dirty. |
| * Hence, hold the unused_bg_unpin_mutex to avoid double unpin |
| * the same extent range. |
| */ |
| mutex_lock(&fs_info->unused_bg_unpin_mutex); |
| ret = find_first_extent_bit(unpin, 0, &start, &end, |
| EXTENT_DIRTY, &cached_state); |
| if (ret) { |
| mutex_unlock(&fs_info->unused_bg_unpin_mutex); |
| break; |
| } |
| |
| clear_extent_dirty(unpin, start, end, &cached_state); |
| free_extent_state(cached_state); |
| btrfs_error_unpin_extent_range(fs_info, start, end); |
| mutex_unlock(&fs_info->unused_bg_unpin_mutex); |
| cond_resched(); |
| } |
| |
| return 0; |
| } |
| |
| static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) |
| { |
| struct inode *inode; |
| |
| inode = cache->io_ctl.inode; |
| if (inode) { |
| invalidate_inode_pages2(inode->i_mapping); |
| BTRFS_I(inode)->generation = 0; |
| cache->io_ctl.inode = NULL; |
| iput(inode); |
| } |
| ASSERT(cache->io_ctl.pages == NULL); |
| btrfs_put_block_group(cache); |
| } |
| |
| void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, |
| struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_block_group *cache; |
| |
| spin_lock(&cur_trans->dirty_bgs_lock); |
| while (!list_empty(&cur_trans->dirty_bgs)) { |
| cache = list_first_entry(&cur_trans->dirty_bgs, |
| struct btrfs_block_group, |
| dirty_list); |
| |
| if (!list_empty(&cache->io_list)) { |
| spin_unlock(&cur_trans->dirty_bgs_lock); |
| list_del_init(&cache->io_list); |
| btrfs_cleanup_bg_io(cache); |
| spin_lock(&cur_trans->dirty_bgs_lock); |
| } |
| |
| list_del_init(&cache->dirty_list); |
| spin_lock(&cache->lock); |
| cache->disk_cache_state = BTRFS_DC_ERROR; |
| spin_unlock(&cache->lock); |
| |
| spin_unlock(&cur_trans->dirty_bgs_lock); |
| btrfs_put_block_group(cache); |
| btrfs_delayed_refs_rsv_release(fs_info, 1); |
| spin_lock(&cur_trans->dirty_bgs_lock); |
| } |
| spin_unlock(&cur_trans->dirty_bgs_lock); |
| |
| /* |
| * Refer to the definition of io_bgs member for details why it's safe |
| * to use it without any locking |
| */ |
| while (!list_empty(&cur_trans->io_bgs)) { |
| cache = list_first_entry(&cur_trans->io_bgs, |
| struct btrfs_block_group, |
| io_list); |
| |
| list_del_init(&cache->io_list); |
| spin_lock(&cache->lock); |
| cache->disk_cache_state = BTRFS_DC_ERROR; |
| spin_unlock(&cache->lock); |
| btrfs_cleanup_bg_io(cache); |
| } |
| } |
| |
| void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, |
| struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_device *dev, *tmp; |
| |
| btrfs_cleanup_dirty_bgs(cur_trans, fs_info); |
| ASSERT(list_empty(&cur_trans->dirty_bgs)); |
| ASSERT(list_empty(&cur_trans->io_bgs)); |
| |
| list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, |
| post_commit_list) { |
| list_del_init(&dev->post_commit_list); |
| } |
| |
| btrfs_destroy_delayed_refs(cur_trans, fs_info); |
| |
| cur_trans->state = TRANS_STATE_COMMIT_START; |
| wake_up(&fs_info->transaction_blocked_wait); |
| |
| cur_trans->state = TRANS_STATE_UNBLOCKED; |
| wake_up(&fs_info->transaction_wait); |
| |
| btrfs_destroy_delayed_inodes(fs_info); |
| |
| btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, |
| EXTENT_DIRTY); |
| btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); |
| |
| cur_trans->state =TRANS_STATE_COMPLETED; |
| wake_up(&cur_trans->commit_wait); |
| } |
| |
| static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_transaction *t; |
| |
| mutex_lock(&fs_info->transaction_kthread_mutex); |
| |
| spin_lock(&fs_info->trans_lock); |
| while (!list_empty(&fs_info->trans_list)) { |
| t = list_first_entry(&fs_info->trans_list, |
| struct btrfs_transaction, list); |
| if (t->state >= TRANS_STATE_COMMIT_START) { |
| refcount_inc(&t->use_count); |
| spin_unlock(&fs_info->trans_lock); |
| btrfs_wait_for_commit(fs_info, t->transid); |
| btrfs_put_transaction(t); |
| spin_lock(&fs_info->trans_lock); |
| continue; |
| } |
| if (t == fs_info->running_transaction) { |
| t->state = TRANS_STATE_COMMIT_DOING; |
| spin_unlock(&fs_info->trans_lock); |
| /* |
| * We wait for 0 num_writers since we don't hold a trans |
| * handle open currently for this transaction. |
| */ |
| wait_event(t->writer_wait, |
| atomic_read(&t->num_writers) == 0); |
| } else { |
| spin_unlock(&fs_info->trans_lock); |
| } |
| btrfs_cleanup_one_transaction(t, fs_info); |
| |
| spin_lock(&fs_info->trans_lock); |
| if (t == fs_info->running_transaction) |
| fs_info->running_transaction = NULL; |
| list_del_init(&t->list); |
| spin_unlock(&fs_info->trans_lock); |
| |
| btrfs_put_transaction(t); |
| trace_btrfs_transaction_commit(fs_info->tree_root); |
| spin_lock(&fs_info->trans_lock); |
| } |
| spin_unlock(&fs_info->trans_lock); |
| btrfs_destroy_all_ordered_extents(fs_info); |
| btrfs_destroy_delayed_inodes(fs_info); |
| btrfs_assert_delayed_root_empty(fs_info); |
| btrfs_destroy_all_delalloc_inodes(fs_info); |
| btrfs_drop_all_logs(fs_info); |
| mutex_unlock(&fs_info->transaction_kthread_mutex); |
| |
| return 0; |
| } |
| |
| int btrfs_find_highest_objectid(struct btrfs_root *root, u64 *objectid) |
| { |
| struct btrfs_path *path; |
| int ret; |
| struct extent_buffer *l; |
| struct btrfs_key search_key; |
| struct btrfs_key found_key; |
| int slot; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| search_key.objectid = BTRFS_LAST_FREE_OBJECTID; |
| search_key.type = -1; |
| search_key.offset = (u64)-1; |
| ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); |
| if (ret < 0) |
| goto error; |
| BUG_ON(ret == 0); /* Corruption */ |
| if (path->slots[0] > 0) { |
| slot = path->slots[0] - 1; |
| l = path->nodes[0]; |
| btrfs_item_key_to_cpu(l, &found_key, slot); |
| *objectid = max_t(u64, found_key.objectid, |
| BTRFS_FIRST_FREE_OBJECTID - 1); |
| } else { |
| *objectid = BTRFS_FIRST_FREE_OBJECTID - 1; |
| } |
| ret = 0; |
| error: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| int btrfs_find_free_objectid(struct btrfs_root *root, u64 *objectid) |
| { |
| int ret; |
| mutex_lock(&root->objectid_mutex); |
| |
| if (unlikely(root->highest_objectid >= BTRFS_LAST_FREE_OBJECTID)) { |
| btrfs_warn(root->fs_info, |
| "the objectid of root %llu reaches its highest value", |
| root->root_key.objectid); |
| ret = -ENOSPC; |
| goto out; |
| } |
| |
| *objectid = ++root->highest_objectid; |
| ret = 0; |
| out: |
| mutex_unlock(&root->objectid_mutex); |
| return ret; |
| } |