| /* |
| * linux/drivers/mmc/core/core.c |
| * |
| * Copyright (C) 2003-2004 Russell King, All Rights Reserved. |
| * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. |
| * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved. |
| * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/completion.h> |
| #include <linux/device.h> |
| #include <linux/delay.h> |
| #include <linux/pagemap.h> |
| #include <linux/err.h> |
| #include <linux/leds.h> |
| #include <linux/scatterlist.h> |
| #include <linux/log2.h> |
| #include <linux/regulator/consumer.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/pm_wakeup.h> |
| #include <linux/suspend.h> |
| #include <linux/fault-inject.h> |
| #include <linux/random.h> |
| #include <linux/slab.h> |
| #include <linux/of.h> |
| |
| #include <linux/mmc/card.h> |
| #include <linux/mmc/host.h> |
| #include <linux/mmc/mmc.h> |
| #include <linux/mmc/sd.h> |
| #include <linux/mmc/slot-gpio.h> |
| |
| #define CREATE_TRACE_POINTS |
| #include <trace/events/mmc.h> |
| |
| #include "core.h" |
| #include "card.h" |
| #include "bus.h" |
| #include "host.h" |
| #include "sdio_bus.h" |
| #include "pwrseq.h" |
| |
| #include "mmc_ops.h" |
| #include "sd_ops.h" |
| #include "sdio_ops.h" |
| |
| /* If the device is not responding */ |
| #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */ |
| |
| /* The max erase timeout, used when host->max_busy_timeout isn't specified */ |
| #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */ |
| |
| static const unsigned freqs[] = { 400000, 300000, 200000, 100000 }; |
| |
| /* |
| * Enabling software CRCs on the data blocks can be a significant (30%) |
| * performance cost, and for other reasons may not always be desired. |
| * So we allow it it to be disabled. |
| */ |
| bool use_spi_crc = 1; |
| module_param(use_spi_crc, bool, 0); |
| |
| static int mmc_schedule_delayed_work(struct delayed_work *work, |
| unsigned long delay) |
| { |
| /* |
| * We use the system_freezable_wq, because of two reasons. |
| * First, it allows several works (not the same work item) to be |
| * executed simultaneously. Second, the queue becomes frozen when |
| * userspace becomes frozen during system PM. |
| */ |
| return queue_delayed_work(system_freezable_wq, work, delay); |
| } |
| |
| #ifdef CONFIG_FAIL_MMC_REQUEST |
| |
| /* |
| * Internal function. Inject random data errors. |
| * If mmc_data is NULL no errors are injected. |
| */ |
| static void mmc_should_fail_request(struct mmc_host *host, |
| struct mmc_request *mrq) |
| { |
| struct mmc_command *cmd = mrq->cmd; |
| struct mmc_data *data = mrq->data; |
| static const int data_errors[] = { |
| -ETIMEDOUT, |
| -EILSEQ, |
| -EIO, |
| }; |
| |
| if (!data) |
| return; |
| |
| if (cmd->error || data->error || |
| !should_fail(&host->fail_mmc_request, data->blksz * data->blocks)) |
| return; |
| |
| data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)]; |
| data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9; |
| } |
| |
| #else /* CONFIG_FAIL_MMC_REQUEST */ |
| |
| static inline void mmc_should_fail_request(struct mmc_host *host, |
| struct mmc_request *mrq) |
| { |
| } |
| |
| #endif /* CONFIG_FAIL_MMC_REQUEST */ |
| |
| static inline void mmc_complete_cmd(struct mmc_request *mrq) |
| { |
| if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion)) |
| complete_all(&mrq->cmd_completion); |
| } |
| |
| void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq) |
| { |
| if (!mrq->cap_cmd_during_tfr) |
| return; |
| |
| mmc_complete_cmd(mrq); |
| |
| pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n", |
| mmc_hostname(host), mrq->cmd->opcode); |
| } |
| EXPORT_SYMBOL(mmc_command_done); |
| |
| /** |
| * mmc_request_done - finish processing an MMC request |
| * @host: MMC host which completed request |
| * @mrq: MMC request which request |
| * |
| * MMC drivers should call this function when they have completed |
| * their processing of a request. |
| */ |
| void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq) |
| { |
| struct mmc_command *cmd = mrq->cmd; |
| int err = cmd->error; |
| |
| /* Flag re-tuning needed on CRC errors */ |
| if ((cmd->opcode != MMC_SEND_TUNING_BLOCK && |
| cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) && |
| (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) || |
| (mrq->data && mrq->data->error == -EILSEQ) || |
| (mrq->stop && mrq->stop->error == -EILSEQ))) |
| mmc_retune_needed(host); |
| |
| if (err && cmd->retries && mmc_host_is_spi(host)) { |
| if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND) |
| cmd->retries = 0; |
| } |
| |
| if (host->ongoing_mrq == mrq) |
| host->ongoing_mrq = NULL; |
| |
| mmc_complete_cmd(mrq); |
| |
| trace_mmc_request_done(host, mrq); |
| |
| /* |
| * We list various conditions for the command to be considered |
| * properly done: |
| * |
| * - There was no error, OK fine then |
| * - We are not doing some kind of retry |
| * - The card was removed (...so just complete everything no matter |
| * if there are errors or retries) |
| */ |
| if (!err || !cmd->retries || mmc_card_removed(host->card)) { |
| mmc_should_fail_request(host, mrq); |
| |
| if (!host->ongoing_mrq) |
| led_trigger_event(host->led, LED_OFF); |
| |
| if (mrq->sbc) { |
| pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n", |
| mmc_hostname(host), mrq->sbc->opcode, |
| mrq->sbc->error, |
| mrq->sbc->resp[0], mrq->sbc->resp[1], |
| mrq->sbc->resp[2], mrq->sbc->resp[3]); |
| } |
| |
| pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n", |
| mmc_hostname(host), cmd->opcode, err, |
| cmd->resp[0], cmd->resp[1], |
| cmd->resp[2], cmd->resp[3]); |
| |
| if (mrq->data) { |
| pr_debug("%s: %d bytes transferred: %d\n", |
| mmc_hostname(host), |
| mrq->data->bytes_xfered, mrq->data->error); |
| } |
| |
| if (mrq->stop) { |
| pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n", |
| mmc_hostname(host), mrq->stop->opcode, |
| mrq->stop->error, |
| mrq->stop->resp[0], mrq->stop->resp[1], |
| mrq->stop->resp[2], mrq->stop->resp[3]); |
| } |
| } |
| /* |
| * Request starter must handle retries - see |
| * mmc_wait_for_req_done(). |
| */ |
| if (mrq->done) |
| mrq->done(mrq); |
| } |
| |
| EXPORT_SYMBOL(mmc_request_done); |
| |
| static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) |
| { |
| int err; |
| |
| /* Assumes host controller has been runtime resumed by mmc_claim_host */ |
| err = mmc_retune(host); |
| if (err) { |
| mrq->cmd->error = err; |
| mmc_request_done(host, mrq); |
| return; |
| } |
| |
| /* |
| * For sdio rw commands we must wait for card busy otherwise some |
| * sdio devices won't work properly. |
| * And bypass I/O abort, reset and bus suspend operations. |
| */ |
| if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) && |
| host->ops->card_busy) { |
| int tries = 500; /* Wait aprox 500ms at maximum */ |
| |
| while (host->ops->card_busy(host) && --tries) |
| mmc_delay(1); |
| |
| if (tries == 0) { |
| mrq->cmd->error = -EBUSY; |
| mmc_request_done(host, mrq); |
| return; |
| } |
| } |
| |
| if (mrq->cap_cmd_during_tfr) { |
| host->ongoing_mrq = mrq; |
| /* |
| * Retry path could come through here without having waiting on |
| * cmd_completion, so ensure it is reinitialised. |
| */ |
| reinit_completion(&mrq->cmd_completion); |
| } |
| |
| trace_mmc_request_start(host, mrq); |
| |
| host->ops->request(host, mrq); |
| } |
| |
| static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq) |
| { |
| if (mrq->sbc) { |
| pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n", |
| mmc_hostname(host), mrq->sbc->opcode, |
| mrq->sbc->arg, mrq->sbc->flags); |
| } |
| |
| if (mrq->cmd) { |
| pr_debug("%s: starting CMD%u arg %08x flags %08x\n", |
| mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->arg, |
| mrq->cmd->flags); |
| } |
| |
| if (mrq->data) { |
| pr_debug("%s: blksz %d blocks %d flags %08x " |
| "tsac %d ms nsac %d\n", |
| mmc_hostname(host), mrq->data->blksz, |
| mrq->data->blocks, mrq->data->flags, |
| mrq->data->timeout_ns / 1000000, |
| mrq->data->timeout_clks); |
| } |
| |
| if (mrq->stop) { |
| pr_debug("%s: CMD%u arg %08x flags %08x\n", |
| mmc_hostname(host), mrq->stop->opcode, |
| mrq->stop->arg, mrq->stop->flags); |
| } |
| } |
| |
| static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq) |
| { |
| #ifdef CONFIG_MMC_DEBUG |
| unsigned int i, sz; |
| struct scatterlist *sg; |
| #endif |
| |
| if (mrq->cmd) { |
| mrq->cmd->error = 0; |
| mrq->cmd->mrq = mrq; |
| mrq->cmd->data = mrq->data; |
| } |
| if (mrq->sbc) { |
| mrq->sbc->error = 0; |
| mrq->sbc->mrq = mrq; |
| } |
| if (mrq->data) { |
| if (mrq->data->blksz > host->max_blk_size || |
| mrq->data->blocks > host->max_blk_count || |
| mrq->data->blocks * mrq->data->blksz > host->max_req_size) |
| return -EINVAL; |
| #ifdef CONFIG_MMC_DEBUG |
| sz = 0; |
| for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i) |
| sz += sg->length; |
| if (sz != mrq->data->blocks * mrq->data->blksz) |
| return -EINVAL; |
| #endif |
| mrq->data->error = 0; |
| mrq->data->mrq = mrq; |
| if (mrq->stop) { |
| mrq->data->stop = mrq->stop; |
| mrq->stop->error = 0; |
| mrq->stop->mrq = mrq; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) |
| { |
| int err; |
| |
| mmc_retune_hold(host); |
| |
| if (mmc_card_removed(host->card)) |
| return -ENOMEDIUM; |
| |
| mmc_mrq_pr_debug(host, mrq); |
| |
| WARN_ON(!host->claimed); |
| |
| err = mmc_mrq_prep(host, mrq); |
| if (err) |
| return err; |
| |
| led_trigger_event(host->led, LED_FULL); |
| __mmc_start_request(host, mrq); |
| |
| return 0; |
| } |
| |
| /* |
| * mmc_wait_data_done() - done callback for data request |
| * @mrq: done data request |
| * |
| * Wakes up mmc context, passed as a callback to host controller driver |
| */ |
| static void mmc_wait_data_done(struct mmc_request *mrq) |
| { |
| struct mmc_context_info *context_info = &mrq->host->context_info; |
| |
| context_info->is_done_rcv = true; |
| wake_up_interruptible(&context_info->wait); |
| } |
| |
| static void mmc_wait_done(struct mmc_request *mrq) |
| { |
| complete(&mrq->completion); |
| } |
| |
| static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host) |
| { |
| struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq); |
| |
| /* |
| * If there is an ongoing transfer, wait for the command line to become |
| * available. |
| */ |
| if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion)) |
| wait_for_completion(&ongoing_mrq->cmd_completion); |
| } |
| |
| /* |
| *__mmc_start_data_req() - starts data request |
| * @host: MMC host to start the request |
| * @mrq: data request to start |
| * |
| * Sets the done callback to be called when request is completed by the card. |
| * Starts data mmc request execution |
| * If an ongoing transfer is already in progress, wait for the command line |
| * to become available before sending another command. |
| */ |
| static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq) |
| { |
| int err; |
| |
| mmc_wait_ongoing_tfr_cmd(host); |
| |
| mrq->done = mmc_wait_data_done; |
| mrq->host = host; |
| |
| init_completion(&mrq->cmd_completion); |
| |
| err = mmc_start_request(host, mrq); |
| if (err) { |
| mrq->cmd->error = err; |
| mmc_complete_cmd(mrq); |
| mmc_wait_data_done(mrq); |
| } |
| |
| return err; |
| } |
| |
| static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq) |
| { |
| int err; |
| |
| mmc_wait_ongoing_tfr_cmd(host); |
| |
| init_completion(&mrq->completion); |
| mrq->done = mmc_wait_done; |
| |
| init_completion(&mrq->cmd_completion); |
| |
| err = mmc_start_request(host, mrq); |
| if (err) { |
| mrq->cmd->error = err; |
| mmc_complete_cmd(mrq); |
| complete(&mrq->completion); |
| } |
| |
| return err; |
| } |
| |
| void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq) |
| { |
| struct mmc_command *cmd; |
| |
| while (1) { |
| wait_for_completion(&mrq->completion); |
| |
| cmd = mrq->cmd; |
| |
| /* |
| * If host has timed out waiting for the sanitize |
| * to complete, card might be still in programming state |
| * so let's try to bring the card out of programming |
| * state. |
| */ |
| if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) { |
| if (!mmc_interrupt_hpi(host->card)) { |
| pr_warn("%s: %s: Interrupted sanitize\n", |
| mmc_hostname(host), __func__); |
| cmd->error = 0; |
| break; |
| } else { |
| pr_err("%s: %s: Failed to interrupt sanitize\n", |
| mmc_hostname(host), __func__); |
| } |
| } |
| if (!cmd->error || !cmd->retries || |
| mmc_card_removed(host->card)) |
| break; |
| |
| mmc_retune_recheck(host); |
| |
| pr_debug("%s: req failed (CMD%u): %d, retrying...\n", |
| mmc_hostname(host), cmd->opcode, cmd->error); |
| cmd->retries--; |
| cmd->error = 0; |
| __mmc_start_request(host, mrq); |
| } |
| |
| mmc_retune_release(host); |
| } |
| EXPORT_SYMBOL(mmc_wait_for_req_done); |
| |
| /** |
| * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done |
| * @host: MMC host |
| * @mrq: MMC request |
| * |
| * mmc_is_req_done() is used with requests that have |
| * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after |
| * starting a request and before waiting for it to complete. That is, |
| * either in between calls to mmc_start_req(), or after mmc_wait_for_req() |
| * and before mmc_wait_for_req_done(). If it is called at other times the |
| * result is not meaningful. |
| */ |
| bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq) |
| { |
| if (host->areq) |
| return host->context_info.is_done_rcv; |
| else |
| return completion_done(&mrq->completion); |
| } |
| EXPORT_SYMBOL(mmc_is_req_done); |
| |
| /** |
| * mmc_pre_req - Prepare for a new request |
| * @host: MMC host to prepare command |
| * @mrq: MMC request to prepare for |
| * |
| * mmc_pre_req() is called in prior to mmc_start_req() to let |
| * host prepare for the new request. Preparation of a request may be |
| * performed while another request is running on the host. |
| */ |
| static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq) |
| { |
| if (host->ops->pre_req) |
| host->ops->pre_req(host, mrq); |
| } |
| |
| /** |
| * mmc_post_req - Post process a completed request |
| * @host: MMC host to post process command |
| * @mrq: MMC request to post process for |
| * @err: Error, if non zero, clean up any resources made in pre_req |
| * |
| * Let the host post process a completed request. Post processing of |
| * a request may be performed while another reuqest is running. |
| */ |
| static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq, |
| int err) |
| { |
| if (host->ops->post_req) |
| host->ops->post_req(host, mrq, err); |
| } |
| |
| /** |
| * mmc_finalize_areq() - finalize an asynchronous request |
| * @host: MMC host to finalize any ongoing request on |
| * |
| * Returns the status of the ongoing asynchronous request, but |
| * MMC_BLK_SUCCESS if no request was going on. |
| */ |
| static enum mmc_blk_status mmc_finalize_areq(struct mmc_host *host) |
| { |
| struct mmc_context_info *context_info = &host->context_info; |
| enum mmc_blk_status status; |
| |
| if (!host->areq) |
| return MMC_BLK_SUCCESS; |
| |
| while (1) { |
| wait_event_interruptible(context_info->wait, |
| (context_info->is_done_rcv || |
| context_info->is_new_req)); |
| |
| if (context_info->is_done_rcv) { |
| struct mmc_command *cmd; |
| |
| context_info->is_done_rcv = false; |
| cmd = host->areq->mrq->cmd; |
| |
| if (!cmd->error || !cmd->retries || |
| mmc_card_removed(host->card)) { |
| status = host->areq->err_check(host->card, |
| host->areq); |
| break; /* return status */ |
| } else { |
| mmc_retune_recheck(host); |
| pr_info("%s: req failed (CMD%u): %d, retrying...\n", |
| mmc_hostname(host), |
| cmd->opcode, cmd->error); |
| cmd->retries--; |
| cmd->error = 0; |
| __mmc_start_request(host, host->areq->mrq); |
| continue; /* wait for done/new event again */ |
| } |
| } |
| |
| return MMC_BLK_NEW_REQUEST; |
| } |
| |
| mmc_retune_release(host); |
| |
| /* |
| * Check BKOPS urgency for each R1 response |
| */ |
| if (host->card && mmc_card_mmc(host->card) && |
| ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) || |
| (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) && |
| (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) { |
| mmc_start_bkops(host->card, true); |
| } |
| |
| return status; |
| } |
| |
| /** |
| * mmc_start_areq - start an asynchronous request |
| * @host: MMC host to start command |
| * @areq: asynchronous request to start |
| * @ret_stat: out parameter for status |
| * |
| * Start a new MMC custom command request for a host. |
| * If there is on ongoing async request wait for completion |
| * of that request and start the new one and return. |
| * Does not wait for the new request to complete. |
| * |
| * Returns the completed request, NULL in case of none completed. |
| * Wait for the an ongoing request (previoulsy started) to complete and |
| * return the completed request. If there is no ongoing request, NULL |
| * is returned without waiting. NULL is not an error condition. |
| */ |
| struct mmc_async_req *mmc_start_areq(struct mmc_host *host, |
| struct mmc_async_req *areq, |
| enum mmc_blk_status *ret_stat) |
| { |
| enum mmc_blk_status status; |
| int start_err = 0; |
| struct mmc_async_req *previous = host->areq; |
| |
| /* Prepare a new request */ |
| if (areq) |
| mmc_pre_req(host, areq->mrq); |
| |
| /* Finalize previous request */ |
| status = mmc_finalize_areq(host); |
| if (ret_stat) |
| *ret_stat = status; |
| |
| /* The previous request is still going on... */ |
| if (status == MMC_BLK_NEW_REQUEST) |
| return NULL; |
| |
| /* Fine so far, start the new request! */ |
| if (status == MMC_BLK_SUCCESS && areq) |
| start_err = __mmc_start_data_req(host, areq->mrq); |
| |
| /* Postprocess the old request at this point */ |
| if (host->areq) |
| mmc_post_req(host, host->areq->mrq, 0); |
| |
| /* Cancel a prepared request if it was not started. */ |
| if ((status != MMC_BLK_SUCCESS || start_err) && areq) |
| mmc_post_req(host, areq->mrq, -EINVAL); |
| |
| if (status != MMC_BLK_SUCCESS) |
| host->areq = NULL; |
| else |
| host->areq = areq; |
| |
| return previous; |
| } |
| EXPORT_SYMBOL(mmc_start_areq); |
| |
| /** |
| * mmc_wait_for_req - start a request and wait for completion |
| * @host: MMC host to start command |
| * @mrq: MMC request to start |
| * |
| * Start a new MMC custom command request for a host, and wait |
| * for the command to complete. In the case of 'cap_cmd_during_tfr' |
| * requests, the transfer is ongoing and the caller can issue further |
| * commands that do not use the data lines, and then wait by calling |
| * mmc_wait_for_req_done(). |
| * Does not attempt to parse the response. |
| */ |
| void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq) |
| { |
| __mmc_start_req(host, mrq); |
| |
| if (!mrq->cap_cmd_during_tfr) |
| mmc_wait_for_req_done(host, mrq); |
| } |
| EXPORT_SYMBOL(mmc_wait_for_req); |
| |
| /** |
| * mmc_wait_for_cmd - start a command and wait for completion |
| * @host: MMC host to start command |
| * @cmd: MMC command to start |
| * @retries: maximum number of retries |
| * |
| * Start a new MMC command for a host, and wait for the command |
| * to complete. Return any error that occurred while the command |
| * was executing. Do not attempt to parse the response. |
| */ |
| int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries) |
| { |
| struct mmc_request mrq = {}; |
| |
| WARN_ON(!host->claimed); |
| |
| memset(cmd->resp, 0, sizeof(cmd->resp)); |
| cmd->retries = retries; |
| |
| mrq.cmd = cmd; |
| cmd->data = NULL; |
| |
| mmc_wait_for_req(host, &mrq); |
| |
| return cmd->error; |
| } |
| |
| EXPORT_SYMBOL(mmc_wait_for_cmd); |
| |
| /** |
| * mmc_set_data_timeout - set the timeout for a data command |
| * @data: data phase for command |
| * @card: the MMC card associated with the data transfer |
| * |
| * Computes the data timeout parameters according to the |
| * correct algorithm given the card type. |
| */ |
| void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card) |
| { |
| unsigned int mult; |
| |
| /* |
| * SDIO cards only define an upper 1 s limit on access. |
| */ |
| if (mmc_card_sdio(card)) { |
| data->timeout_ns = 1000000000; |
| data->timeout_clks = 0; |
| return; |
| } |
| |
| /* |
| * SD cards use a 100 multiplier rather than 10 |
| */ |
| mult = mmc_card_sd(card) ? 100 : 10; |
| |
| /* |
| * Scale up the multiplier (and therefore the timeout) by |
| * the r2w factor for writes. |
| */ |
| if (data->flags & MMC_DATA_WRITE) |
| mult <<= card->csd.r2w_factor; |
| |
| data->timeout_ns = card->csd.tacc_ns * mult; |
| data->timeout_clks = card->csd.tacc_clks * mult; |
| |
| /* |
| * SD cards also have an upper limit on the timeout. |
| */ |
| if (mmc_card_sd(card)) { |
| unsigned int timeout_us, limit_us; |
| |
| timeout_us = data->timeout_ns / 1000; |
| if (card->host->ios.clock) |
| timeout_us += data->timeout_clks * 1000 / |
| (card->host->ios.clock / 1000); |
| |
| if (data->flags & MMC_DATA_WRITE) |
| /* |
| * The MMC spec "It is strongly recommended |
| * for hosts to implement more than 500ms |
| * timeout value even if the card indicates |
| * the 250ms maximum busy length." Even the |
| * previous value of 300ms is known to be |
| * insufficient for some cards. |
| */ |
| limit_us = 3000000; |
| else |
| limit_us = 100000; |
| |
| /* |
| * SDHC cards always use these fixed values. |
| */ |
| if (timeout_us > limit_us || mmc_card_blockaddr(card)) { |
| data->timeout_ns = limit_us * 1000; |
| data->timeout_clks = 0; |
| } |
| |
| /* assign limit value if invalid */ |
| if (timeout_us == 0) |
| data->timeout_ns = limit_us * 1000; |
| } |
| |
| /* |
| * Some cards require longer data read timeout than indicated in CSD. |
| * Address this by setting the read timeout to a "reasonably high" |
| * value. For the cards tested, 600ms has proven enough. If necessary, |
| * this value can be increased if other problematic cards require this. |
| */ |
| if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) { |
| data->timeout_ns = 600000000; |
| data->timeout_clks = 0; |
| } |
| |
| /* |
| * Some cards need very high timeouts if driven in SPI mode. |
| * The worst observed timeout was 900ms after writing a |
| * continuous stream of data until the internal logic |
| * overflowed. |
| */ |
| if (mmc_host_is_spi(card->host)) { |
| if (data->flags & MMC_DATA_WRITE) { |
| if (data->timeout_ns < 1000000000) |
| data->timeout_ns = 1000000000; /* 1s */ |
| } else { |
| if (data->timeout_ns < 100000000) |
| data->timeout_ns = 100000000; /* 100ms */ |
| } |
| } |
| } |
| EXPORT_SYMBOL(mmc_set_data_timeout); |
| |
| /** |
| * mmc_align_data_size - pads a transfer size to a more optimal value |
| * @card: the MMC card associated with the data transfer |
| * @sz: original transfer size |
| * |
| * Pads the original data size with a number of extra bytes in |
| * order to avoid controller bugs and/or performance hits |
| * (e.g. some controllers revert to PIO for certain sizes). |
| * |
| * Returns the improved size, which might be unmodified. |
| * |
| * Note that this function is only relevant when issuing a |
| * single scatter gather entry. |
| */ |
| unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz) |
| { |
| /* |
| * FIXME: We don't have a system for the controller to tell |
| * the core about its problems yet, so for now we just 32-bit |
| * align the size. |
| */ |
| sz = ((sz + 3) / 4) * 4; |
| |
| return sz; |
| } |
| EXPORT_SYMBOL(mmc_align_data_size); |
| |
| /** |
| * __mmc_claim_host - exclusively claim a host |
| * @host: mmc host to claim |
| * @abort: whether or not the operation should be aborted |
| * |
| * Claim a host for a set of operations. If @abort is non null and |
| * dereference a non-zero value then this will return prematurely with |
| * that non-zero value without acquiring the lock. Returns zero |
| * with the lock held otherwise. |
| */ |
| int __mmc_claim_host(struct mmc_host *host, atomic_t *abort) |
| { |
| DECLARE_WAITQUEUE(wait, current); |
| unsigned long flags; |
| int stop; |
| bool pm = false; |
| |
| might_sleep(); |
| |
| add_wait_queue(&host->wq, &wait); |
| spin_lock_irqsave(&host->lock, flags); |
| while (1) { |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| stop = abort ? atomic_read(abort) : 0; |
| if (stop || !host->claimed || host->claimer == current) |
| break; |
| spin_unlock_irqrestore(&host->lock, flags); |
| schedule(); |
| spin_lock_irqsave(&host->lock, flags); |
| } |
| set_current_state(TASK_RUNNING); |
| if (!stop) { |
| host->claimed = 1; |
| host->claimer = current; |
| host->claim_cnt += 1; |
| if (host->claim_cnt == 1) |
| pm = true; |
| } else |
| wake_up(&host->wq); |
| spin_unlock_irqrestore(&host->lock, flags); |
| remove_wait_queue(&host->wq, &wait); |
| |
| if (pm) |
| pm_runtime_get_sync(mmc_dev(host)); |
| |
| return stop; |
| } |
| EXPORT_SYMBOL(__mmc_claim_host); |
| |
| /** |
| * mmc_release_host - release a host |
| * @host: mmc host to release |
| * |
| * Release a MMC host, allowing others to claim the host |
| * for their operations. |
| */ |
| void mmc_release_host(struct mmc_host *host) |
| { |
| unsigned long flags; |
| |
| WARN_ON(!host->claimed); |
| |
| spin_lock_irqsave(&host->lock, flags); |
| if (--host->claim_cnt) { |
| /* Release for nested claim */ |
| spin_unlock_irqrestore(&host->lock, flags); |
| } else { |
| host->claimed = 0; |
| host->claimer = NULL; |
| spin_unlock_irqrestore(&host->lock, flags); |
| wake_up(&host->wq); |
| pm_runtime_mark_last_busy(mmc_dev(host)); |
| pm_runtime_put_autosuspend(mmc_dev(host)); |
| } |
| } |
| EXPORT_SYMBOL(mmc_release_host); |
| |
| /* |
| * This is a helper function, which fetches a runtime pm reference for the |
| * card device and also claims the host. |
| */ |
| void mmc_get_card(struct mmc_card *card) |
| { |
| pm_runtime_get_sync(&card->dev); |
| mmc_claim_host(card->host); |
| } |
| EXPORT_SYMBOL(mmc_get_card); |
| |
| /* |
| * This is a helper function, which releases the host and drops the runtime |
| * pm reference for the card device. |
| */ |
| void mmc_put_card(struct mmc_card *card) |
| { |
| mmc_release_host(card->host); |
| pm_runtime_mark_last_busy(&card->dev); |
| pm_runtime_put_autosuspend(&card->dev); |
| } |
| EXPORT_SYMBOL(mmc_put_card); |
| |
| /* |
| * Internal function that does the actual ios call to the host driver, |
| * optionally printing some debug output. |
| */ |
| static inline void mmc_set_ios(struct mmc_host *host) |
| { |
| struct mmc_ios *ios = &host->ios; |
| |
| pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u " |
| "width %u timing %u\n", |
| mmc_hostname(host), ios->clock, ios->bus_mode, |
| ios->power_mode, ios->chip_select, ios->vdd, |
| 1 << ios->bus_width, ios->timing); |
| |
| host->ops->set_ios(host, ios); |
| } |
| |
| /* |
| * Control chip select pin on a host. |
| */ |
| void mmc_set_chip_select(struct mmc_host *host, int mode) |
| { |
| host->ios.chip_select = mode; |
| mmc_set_ios(host); |
| } |
| |
| /* |
| * Sets the host clock to the highest possible frequency that |
| * is below "hz". |
| */ |
| void mmc_set_clock(struct mmc_host *host, unsigned int hz) |
| { |
| WARN_ON(hz && hz < host->f_min); |
| |
| if (hz > host->f_max) |
| hz = host->f_max; |
| |
| host->ios.clock = hz; |
| mmc_set_ios(host); |
| } |
| |
| int mmc_execute_tuning(struct mmc_card *card) |
| { |
| struct mmc_host *host = card->host; |
| u32 opcode; |
| int err; |
| |
| if (!host->ops->execute_tuning) |
| return 0; |
| |
| if (mmc_card_mmc(card)) |
| opcode = MMC_SEND_TUNING_BLOCK_HS200; |
| else |
| opcode = MMC_SEND_TUNING_BLOCK; |
| |
| err = host->ops->execute_tuning(host, opcode); |
| |
| if (err) |
| pr_err("%s: tuning execution failed: %d\n", |
| mmc_hostname(host), err); |
| else |
| mmc_retune_enable(host); |
| |
| return err; |
| } |
| |
| /* |
| * Change the bus mode (open drain/push-pull) of a host. |
| */ |
| void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode) |
| { |
| host->ios.bus_mode = mode; |
| mmc_set_ios(host); |
| } |
| |
| /* |
| * Change data bus width of a host. |
| */ |
| void mmc_set_bus_width(struct mmc_host *host, unsigned int width) |
| { |
| host->ios.bus_width = width; |
| mmc_set_ios(host); |
| } |
| |
| /* |
| * Set initial state after a power cycle or a hw_reset. |
| */ |
| void mmc_set_initial_state(struct mmc_host *host) |
| { |
| mmc_retune_disable(host); |
| |
| if (mmc_host_is_spi(host)) |
| host->ios.chip_select = MMC_CS_HIGH; |
| else |
| host->ios.chip_select = MMC_CS_DONTCARE; |
| host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; |
| host->ios.bus_width = MMC_BUS_WIDTH_1; |
| host->ios.timing = MMC_TIMING_LEGACY; |
| host->ios.drv_type = 0; |
| host->ios.enhanced_strobe = false; |
| |
| /* |
| * Make sure we are in non-enhanced strobe mode before we |
| * actually enable it in ext_csd. |
| */ |
| if ((host->caps2 & MMC_CAP2_HS400_ES) && |
| host->ops->hs400_enhanced_strobe) |
| host->ops->hs400_enhanced_strobe(host, &host->ios); |
| |
| mmc_set_ios(host); |
| } |
| |
| /** |
| * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number |
| * @vdd: voltage (mV) |
| * @low_bits: prefer low bits in boundary cases |
| * |
| * This function returns the OCR bit number according to the provided @vdd |
| * value. If conversion is not possible a negative errno value returned. |
| * |
| * Depending on the @low_bits flag the function prefers low or high OCR bits |
| * on boundary voltages. For example, |
| * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33); |
| * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34); |
| * |
| * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21). |
| */ |
| static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits) |
| { |
| const int max_bit = ilog2(MMC_VDD_35_36); |
| int bit; |
| |
| if (vdd < 1650 || vdd > 3600) |
| return -EINVAL; |
| |
| if (vdd >= 1650 && vdd <= 1950) |
| return ilog2(MMC_VDD_165_195); |
| |
| if (low_bits) |
| vdd -= 1; |
| |
| /* Base 2000 mV, step 100 mV, bit's base 8. */ |
| bit = (vdd - 2000) / 100 + 8; |
| if (bit > max_bit) |
| return max_bit; |
| return bit; |
| } |
| |
| /** |
| * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask |
| * @vdd_min: minimum voltage value (mV) |
| * @vdd_max: maximum voltage value (mV) |
| * |
| * This function returns the OCR mask bits according to the provided @vdd_min |
| * and @vdd_max values. If conversion is not possible the function returns 0. |
| * |
| * Notes wrt boundary cases: |
| * This function sets the OCR bits for all boundary voltages, for example |
| * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 | |
| * MMC_VDD_34_35 mask. |
| */ |
| u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max) |
| { |
| u32 mask = 0; |
| |
| if (vdd_max < vdd_min) |
| return 0; |
| |
| /* Prefer high bits for the boundary vdd_max values. */ |
| vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false); |
| if (vdd_max < 0) |
| return 0; |
| |
| /* Prefer low bits for the boundary vdd_min values. */ |
| vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true); |
| if (vdd_min < 0) |
| return 0; |
| |
| /* Fill the mask, from max bit to min bit. */ |
| while (vdd_max >= vdd_min) |
| mask |= 1 << vdd_max--; |
| |
| return mask; |
| } |
| EXPORT_SYMBOL(mmc_vddrange_to_ocrmask); |
| |
| #ifdef CONFIG_OF |
| |
| /** |
| * mmc_of_parse_voltage - return mask of supported voltages |
| * @np: The device node need to be parsed. |
| * @mask: mask of voltages available for MMC/SD/SDIO |
| * |
| * Parse the "voltage-ranges" DT property, returning zero if it is not |
| * found, negative errno if the voltage-range specification is invalid, |
| * or one if the voltage-range is specified and successfully parsed. |
| */ |
| int mmc_of_parse_voltage(struct device_node *np, u32 *mask) |
| { |
| const u32 *voltage_ranges; |
| int num_ranges, i; |
| |
| voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges); |
| num_ranges = num_ranges / sizeof(*voltage_ranges) / 2; |
| if (!voltage_ranges) { |
| pr_debug("%s: voltage-ranges unspecified\n", np->full_name); |
| return 0; |
| } |
| if (!num_ranges) { |
| pr_err("%s: voltage-ranges empty\n", np->full_name); |
| return -EINVAL; |
| } |
| |
| for (i = 0; i < num_ranges; i++) { |
| const int j = i * 2; |
| u32 ocr_mask; |
| |
| ocr_mask = mmc_vddrange_to_ocrmask( |
| be32_to_cpu(voltage_ranges[j]), |
| be32_to_cpu(voltage_ranges[j + 1])); |
| if (!ocr_mask) { |
| pr_err("%s: voltage-range #%d is invalid\n", |
| np->full_name, i); |
| return -EINVAL; |
| } |
| *mask |= ocr_mask; |
| } |
| |
| return 1; |
| } |
| EXPORT_SYMBOL(mmc_of_parse_voltage); |
| |
| #endif /* CONFIG_OF */ |
| |
| static int mmc_of_get_func_num(struct device_node *node) |
| { |
| u32 reg; |
| int ret; |
| |
| ret = of_property_read_u32(node, "reg", ®); |
| if (ret < 0) |
| return ret; |
| |
| return reg; |
| } |
| |
| struct device_node *mmc_of_find_child_device(struct mmc_host *host, |
| unsigned func_num) |
| { |
| struct device_node *node; |
| |
| if (!host->parent || !host->parent->of_node) |
| return NULL; |
| |
| for_each_child_of_node(host->parent->of_node, node) { |
| if (mmc_of_get_func_num(node) == func_num) |
| return node; |
| } |
| |
| return NULL; |
| } |
| |
| #ifdef CONFIG_REGULATOR |
| |
| /** |
| * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage |
| * @vdd_bit: OCR bit number |
| * @min_uV: minimum voltage value (mV) |
| * @max_uV: maximum voltage value (mV) |
| * |
| * This function returns the voltage range according to the provided OCR |
| * bit number. If conversion is not possible a negative errno value returned. |
| */ |
| static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV) |
| { |
| int tmp; |
| |
| if (!vdd_bit) |
| return -EINVAL; |
| |
| /* |
| * REVISIT mmc_vddrange_to_ocrmask() may have set some |
| * bits this regulator doesn't quite support ... don't |
| * be too picky, most cards and regulators are OK with |
| * a 0.1V range goof (it's a small error percentage). |
| */ |
| tmp = vdd_bit - ilog2(MMC_VDD_165_195); |
| if (tmp == 0) { |
| *min_uV = 1650 * 1000; |
| *max_uV = 1950 * 1000; |
| } else { |
| *min_uV = 1900 * 1000 + tmp * 100 * 1000; |
| *max_uV = *min_uV + 100 * 1000; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * mmc_regulator_get_ocrmask - return mask of supported voltages |
| * @supply: regulator to use |
| * |
| * This returns either a negative errno, or a mask of voltages that |
| * can be provided to MMC/SD/SDIO devices using the specified voltage |
| * regulator. This would normally be called before registering the |
| * MMC host adapter. |
| */ |
| int mmc_regulator_get_ocrmask(struct regulator *supply) |
| { |
| int result = 0; |
| int count; |
| int i; |
| int vdd_uV; |
| int vdd_mV; |
| |
| count = regulator_count_voltages(supply); |
| if (count < 0) |
| return count; |
| |
| for (i = 0; i < count; i++) { |
| vdd_uV = regulator_list_voltage(supply, i); |
| if (vdd_uV <= 0) |
| continue; |
| |
| vdd_mV = vdd_uV / 1000; |
| result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); |
| } |
| |
| if (!result) { |
| vdd_uV = regulator_get_voltage(supply); |
| if (vdd_uV <= 0) |
| return vdd_uV; |
| |
| vdd_mV = vdd_uV / 1000; |
| result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); |
| } |
| |
| return result; |
| } |
| EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask); |
| |
| /** |
| * mmc_regulator_set_ocr - set regulator to match host->ios voltage |
| * @mmc: the host to regulate |
| * @supply: regulator to use |
| * @vdd_bit: zero for power off, else a bit number (host->ios.vdd) |
| * |
| * Returns zero on success, else negative errno. |
| * |
| * MMC host drivers may use this to enable or disable a regulator using |
| * a particular supply voltage. This would normally be called from the |
| * set_ios() method. |
| */ |
| int mmc_regulator_set_ocr(struct mmc_host *mmc, |
| struct regulator *supply, |
| unsigned short vdd_bit) |
| { |
| int result = 0; |
| int min_uV, max_uV; |
| |
| if (vdd_bit) { |
| mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV); |
| |
| result = regulator_set_voltage(supply, min_uV, max_uV); |
| if (result == 0 && !mmc->regulator_enabled) { |
| result = regulator_enable(supply); |
| if (!result) |
| mmc->regulator_enabled = true; |
| } |
| } else if (mmc->regulator_enabled) { |
| result = regulator_disable(supply); |
| if (result == 0) |
| mmc->regulator_enabled = false; |
| } |
| |
| if (result) |
| dev_err(mmc_dev(mmc), |
| "could not set regulator OCR (%d)\n", result); |
| return result; |
| } |
| EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr); |
| |
| static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator, |
| int min_uV, int target_uV, |
| int max_uV) |
| { |
| /* |
| * Check if supported first to avoid errors since we may try several |
| * signal levels during power up and don't want to show errors. |
| */ |
| if (!regulator_is_supported_voltage(regulator, min_uV, max_uV)) |
| return -EINVAL; |
| |
| return regulator_set_voltage_triplet(regulator, min_uV, target_uV, |
| max_uV); |
| } |
| |
| /** |
| * mmc_regulator_set_vqmmc - Set VQMMC as per the ios |
| * |
| * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible. |
| * That will match the behavior of old boards where VQMMC and VMMC were supplied |
| * by the same supply. The Bus Operating conditions for 3.3V signaling in the |
| * SD card spec also define VQMMC in terms of VMMC. |
| * If this is not possible we'll try the full 2.7-3.6V of the spec. |
| * |
| * For 1.2V and 1.8V signaling we'll try to get as close as possible to the |
| * requested voltage. This is definitely a good idea for UHS where there's a |
| * separate regulator on the card that's trying to make 1.8V and it's best if |
| * we match. |
| * |
| * This function is expected to be used by a controller's |
| * start_signal_voltage_switch() function. |
| */ |
| int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios) |
| { |
| struct device *dev = mmc_dev(mmc); |
| int ret, volt, min_uV, max_uV; |
| |
| /* If no vqmmc supply then we can't change the voltage */ |
| if (IS_ERR(mmc->supply.vqmmc)) |
| return -EINVAL; |
| |
| switch (ios->signal_voltage) { |
| case MMC_SIGNAL_VOLTAGE_120: |
| return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, |
| 1100000, 1200000, 1300000); |
| case MMC_SIGNAL_VOLTAGE_180: |
| return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, |
| 1700000, 1800000, 1950000); |
| case MMC_SIGNAL_VOLTAGE_330: |
| ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV); |
| if (ret < 0) |
| return ret; |
| |
| dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n", |
| __func__, volt, max_uV); |
| |
| min_uV = max(volt - 300000, 2700000); |
| max_uV = min(max_uV + 200000, 3600000); |
| |
| /* |
| * Due to a limitation in the current implementation of |
| * regulator_set_voltage_triplet() which is taking the lowest |
| * voltage possible if below the target, search for a suitable |
| * voltage in two steps and try to stay close to vmmc |
| * with a 0.3V tolerance at first. |
| */ |
| if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, |
| min_uV, volt, max_uV)) |
| return 0; |
| |
| return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, |
| 2700000, volt, 3600000); |
| default: |
| return -EINVAL; |
| } |
| } |
| EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc); |
| |
| #endif /* CONFIG_REGULATOR */ |
| |
| int mmc_regulator_get_supply(struct mmc_host *mmc) |
| { |
| struct device *dev = mmc_dev(mmc); |
| int ret; |
| |
| mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc"); |
| mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc"); |
| |
| if (IS_ERR(mmc->supply.vmmc)) { |
| if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER) |
| return -EPROBE_DEFER; |
| dev_dbg(dev, "No vmmc regulator found\n"); |
| } else { |
| ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc); |
| if (ret > 0) |
| mmc->ocr_avail = ret; |
| else |
| dev_warn(dev, "Failed getting OCR mask: %d\n", ret); |
| } |
| |
| if (IS_ERR(mmc->supply.vqmmc)) { |
| if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER) |
| return -EPROBE_DEFER; |
| dev_dbg(dev, "No vqmmc regulator found\n"); |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(mmc_regulator_get_supply); |
| |
| /* |
| * Mask off any voltages we don't support and select |
| * the lowest voltage |
| */ |
| u32 mmc_select_voltage(struct mmc_host *host, u32 ocr) |
| { |
| int bit; |
| |
| /* |
| * Sanity check the voltages that the card claims to |
| * support. |
| */ |
| if (ocr & 0x7F) { |
| dev_warn(mmc_dev(host), |
| "card claims to support voltages below defined range\n"); |
| ocr &= ~0x7F; |
| } |
| |
| ocr &= host->ocr_avail; |
| if (!ocr) { |
| dev_warn(mmc_dev(host), "no support for card's volts\n"); |
| return 0; |
| } |
| |
| if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) { |
| bit = ffs(ocr) - 1; |
| ocr &= 3 << bit; |
| mmc_power_cycle(host, ocr); |
| } else { |
| bit = fls(ocr) - 1; |
| ocr &= 3 << bit; |
| if (bit != host->ios.vdd) |
| dev_warn(mmc_dev(host), "exceeding card's volts\n"); |
| } |
| |
| return ocr; |
| } |
| |
| int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage) |
| { |
| int err = 0; |
| int old_signal_voltage = host->ios.signal_voltage; |
| |
| host->ios.signal_voltage = signal_voltage; |
| if (host->ops->start_signal_voltage_switch) |
| err = host->ops->start_signal_voltage_switch(host, &host->ios); |
| |
| if (err) |
| host->ios.signal_voltage = old_signal_voltage; |
| |
| return err; |
| |
| } |
| |
| int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr) |
| { |
| struct mmc_command cmd = {}; |
| int err = 0; |
| u32 clock; |
| |
| /* |
| * If we cannot switch voltages, return failure so the caller |
| * can continue without UHS mode |
| */ |
| if (!host->ops->start_signal_voltage_switch) |
| return -EPERM; |
| if (!host->ops->card_busy) |
| pr_warn("%s: cannot verify signal voltage switch\n", |
| mmc_hostname(host)); |
| |
| cmd.opcode = SD_SWITCH_VOLTAGE; |
| cmd.arg = 0; |
| cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; |
| |
| err = mmc_wait_for_cmd(host, &cmd, 0); |
| if (err) |
| return err; |
| |
| if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) |
| return -EIO; |
| |
| /* |
| * The card should drive cmd and dat[0:3] low immediately |
| * after the response of cmd11, but wait 1 ms to be sure |
| */ |
| mmc_delay(1); |
| if (host->ops->card_busy && !host->ops->card_busy(host)) { |
| err = -EAGAIN; |
| goto power_cycle; |
| } |
| /* |
| * During a signal voltage level switch, the clock must be gated |
| * for 5 ms according to the SD spec |
| */ |
| clock = host->ios.clock; |
| host->ios.clock = 0; |
| mmc_set_ios(host); |
| |
| if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180)) { |
| /* |
| * Voltages may not have been switched, but we've already |
| * sent CMD11, so a power cycle is required anyway |
| */ |
| err = -EAGAIN; |
| goto power_cycle; |
| } |
| |
| /* Keep clock gated for at least 10 ms, though spec only says 5 ms */ |
| mmc_delay(10); |
| host->ios.clock = clock; |
| mmc_set_ios(host); |
| |
| /* Wait for at least 1 ms according to spec */ |
| mmc_delay(1); |
| |
| /* |
| * Failure to switch is indicated by the card holding |
| * dat[0:3] low |
| */ |
| if (host->ops->card_busy && host->ops->card_busy(host)) |
| err = -EAGAIN; |
| |
| power_cycle: |
| if (err) { |
| pr_debug("%s: Signal voltage switch failed, " |
| "power cycling card\n", mmc_hostname(host)); |
| mmc_power_cycle(host, ocr); |
| } |
| |
| return err; |
| } |
| |
| /* |
| * Select timing parameters for host. |
| */ |
| void mmc_set_timing(struct mmc_host *host, unsigned int timing) |
| { |
| host->ios.timing = timing; |
| mmc_set_ios(host); |
| } |
| |
| /* |
| * Select appropriate driver type for host. |
| */ |
| void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type) |
| { |
| host->ios.drv_type = drv_type; |
| mmc_set_ios(host); |
| } |
| |
| int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr, |
| int card_drv_type, int *drv_type) |
| { |
| struct mmc_host *host = card->host; |
| int host_drv_type = SD_DRIVER_TYPE_B; |
| |
| *drv_type = 0; |
| |
| if (!host->ops->select_drive_strength) |
| return 0; |
| |
| /* Use SD definition of driver strength for hosts */ |
| if (host->caps & MMC_CAP_DRIVER_TYPE_A) |
| host_drv_type |= SD_DRIVER_TYPE_A; |
| |
| if (host->caps & MMC_CAP_DRIVER_TYPE_C) |
| host_drv_type |= SD_DRIVER_TYPE_C; |
| |
| if (host->caps & MMC_CAP_DRIVER_TYPE_D) |
| host_drv_type |= SD_DRIVER_TYPE_D; |
| |
| /* |
| * The drive strength that the hardware can support |
| * depends on the board design. Pass the appropriate |
| * information and let the hardware specific code |
| * return what is possible given the options |
| */ |
| return host->ops->select_drive_strength(card, max_dtr, |
| host_drv_type, |
| card_drv_type, |
| drv_type); |
| } |
| |
| /* |
| * Apply power to the MMC stack. This is a two-stage process. |
| * First, we enable power to the card without the clock running. |
| * We then wait a bit for the power to stabilise. Finally, |
| * enable the bus drivers and clock to the card. |
| * |
| * We must _NOT_ enable the clock prior to power stablising. |
| * |
| * If a host does all the power sequencing itself, ignore the |
| * initial MMC_POWER_UP stage. |
| */ |
| void mmc_power_up(struct mmc_host *host, u32 ocr) |
| { |
| if (host->ios.power_mode == MMC_POWER_ON) |
| return; |
| |
| mmc_pwrseq_pre_power_on(host); |
| |
| host->ios.vdd = fls(ocr) - 1; |
| host->ios.power_mode = MMC_POWER_UP; |
| /* Set initial state and call mmc_set_ios */ |
| mmc_set_initial_state(host); |
| |
| /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */ |
| if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330)) |
| dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n"); |
| else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180)) |
| dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n"); |
| else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120)) |
| dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n"); |
| |
| /* |
| * This delay should be sufficient to allow the power supply |
| * to reach the minimum voltage. |
| */ |
| mmc_delay(10); |
| |
| mmc_pwrseq_post_power_on(host); |
| |
| host->ios.clock = host->f_init; |
| |
| host->ios.power_mode = MMC_POWER_ON; |
| mmc_set_ios(host); |
| |
| /* |
| * This delay must be at least 74 clock sizes, or 1 ms, or the |
| * time required to reach a stable voltage. |
| */ |
| mmc_delay(10); |
| } |
| |
| void mmc_power_off(struct mmc_host *host) |
| { |
| if (host->ios.power_mode == MMC_POWER_OFF) |
| return; |
| |
| mmc_pwrseq_power_off(host); |
| |
| host->ios.clock = 0; |
| host->ios.vdd = 0; |
| |
| host->ios.power_mode = MMC_POWER_OFF; |
| /* Set initial state and call mmc_set_ios */ |
| mmc_set_initial_state(host); |
| |
| /* |
| * Some configurations, such as the 802.11 SDIO card in the OLPC |
| * XO-1.5, require a short delay after poweroff before the card |
| * can be successfully turned on again. |
| */ |
| mmc_delay(1); |
| } |
| |
| void mmc_power_cycle(struct mmc_host *host, u32 ocr) |
| { |
| mmc_power_off(host); |
| /* Wait at least 1 ms according to SD spec */ |
| mmc_delay(1); |
| mmc_power_up(host, ocr); |
| } |
| |
| /* |
| * Cleanup when the last reference to the bus operator is dropped. |
| */ |
| static void __mmc_release_bus(struct mmc_host *host) |
| { |
| WARN_ON(!host->bus_dead); |
| |
| host->bus_ops = NULL; |
| } |
| |
| /* |
| * Increase reference count of bus operator |
| */ |
| static inline void mmc_bus_get(struct mmc_host *host) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&host->lock, flags); |
| host->bus_refs++; |
| spin_unlock_irqrestore(&host->lock, flags); |
| } |
| |
| /* |
| * Decrease reference count of bus operator and free it if |
| * it is the last reference. |
| */ |
| static inline void mmc_bus_put(struct mmc_host *host) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&host->lock, flags); |
| host->bus_refs--; |
| if ((host->bus_refs == 0) && host->bus_ops) |
| __mmc_release_bus(host); |
| spin_unlock_irqrestore(&host->lock, flags); |
| } |
| |
| /* |
| * Assign a mmc bus handler to a host. Only one bus handler may control a |
| * host at any given time. |
| */ |
| void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops) |
| { |
| unsigned long flags; |
| |
| WARN_ON(!host->claimed); |
| |
| spin_lock_irqsave(&host->lock, flags); |
| |
| WARN_ON(host->bus_ops); |
| WARN_ON(host->bus_refs); |
| |
| host->bus_ops = ops; |
| host->bus_refs = 1; |
| host->bus_dead = 0; |
| |
| spin_unlock_irqrestore(&host->lock, flags); |
| } |
| |
| /* |
| * Remove the current bus handler from a host. |
| */ |
| void mmc_detach_bus(struct mmc_host *host) |
| { |
| unsigned long flags; |
| |
| WARN_ON(!host->claimed); |
| WARN_ON(!host->bus_ops); |
| |
| spin_lock_irqsave(&host->lock, flags); |
| |
| host->bus_dead = 1; |
| |
| spin_unlock_irqrestore(&host->lock, flags); |
| |
| mmc_bus_put(host); |
| } |
| |
| static void _mmc_detect_change(struct mmc_host *host, unsigned long delay, |
| bool cd_irq) |
| { |
| #ifdef CONFIG_MMC_DEBUG |
| unsigned long flags; |
| spin_lock_irqsave(&host->lock, flags); |
| WARN_ON(host->removed); |
| spin_unlock_irqrestore(&host->lock, flags); |
| #endif |
| |
| /* |
| * If the device is configured as wakeup, we prevent a new sleep for |
| * 5 s to give provision for user space to consume the event. |
| */ |
| if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) && |
| device_can_wakeup(mmc_dev(host))) |
| pm_wakeup_event(mmc_dev(host), 5000); |
| |
| host->detect_change = 1; |
| mmc_schedule_delayed_work(&host->detect, delay); |
| } |
| |
| /** |
| * mmc_detect_change - process change of state on a MMC socket |
| * @host: host which changed state. |
| * @delay: optional delay to wait before detection (jiffies) |
| * |
| * MMC drivers should call this when they detect a card has been |
| * inserted or removed. The MMC layer will confirm that any |
| * present card is still functional, and initialize any newly |
| * inserted. |
| */ |
| void mmc_detect_change(struct mmc_host *host, unsigned long delay) |
| { |
| _mmc_detect_change(host, delay, true); |
| } |
| EXPORT_SYMBOL(mmc_detect_change); |
| |
| void mmc_init_erase(struct mmc_card *card) |
| { |
| unsigned int sz; |
| |
| if (is_power_of_2(card->erase_size)) |
| card->erase_shift = ffs(card->erase_size) - 1; |
| else |
| card->erase_shift = 0; |
| |
| /* |
| * It is possible to erase an arbitrarily large area of an SD or MMC |
| * card. That is not desirable because it can take a long time |
| * (minutes) potentially delaying more important I/O, and also the |
| * timeout calculations become increasingly hugely over-estimated. |
| * Consequently, 'pref_erase' is defined as a guide to limit erases |
| * to that size and alignment. |
| * |
| * For SD cards that define Allocation Unit size, limit erases to one |
| * Allocation Unit at a time. |
| * For MMC, have a stab at ai good value and for modern cards it will |
| * end up being 4MiB. Note that if the value is too small, it can end |
| * up taking longer to erase. Also note, erase_size is already set to |
| * High Capacity Erase Size if available when this function is called. |
| */ |
| if (mmc_card_sd(card) && card->ssr.au) { |
| card->pref_erase = card->ssr.au; |
| card->erase_shift = ffs(card->ssr.au) - 1; |
| } else if (card->erase_size) { |
| sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11; |
| if (sz < 128) |
| card->pref_erase = 512 * 1024 / 512; |
| else if (sz < 512) |
| card->pref_erase = 1024 * 1024 / 512; |
| else if (sz < 1024) |
| card->pref_erase = 2 * 1024 * 1024 / 512; |
| else |
| card->pref_erase = 4 * 1024 * 1024 / 512; |
| if (card->pref_erase < card->erase_size) |
| card->pref_erase = card->erase_size; |
| else { |
| sz = card->pref_erase % card->erase_size; |
| if (sz) |
| card->pref_erase += card->erase_size - sz; |
| } |
| } else |
| card->pref_erase = 0; |
| } |
| |
| static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card, |
| unsigned int arg, unsigned int qty) |
| { |
| unsigned int erase_timeout; |
| |
| if (arg == MMC_DISCARD_ARG || |
| (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) { |
| erase_timeout = card->ext_csd.trim_timeout; |
| } else if (card->ext_csd.erase_group_def & 1) { |
| /* High Capacity Erase Group Size uses HC timeouts */ |
| if (arg == MMC_TRIM_ARG) |
| erase_timeout = card->ext_csd.trim_timeout; |
| else |
| erase_timeout = card->ext_csd.hc_erase_timeout; |
| } else { |
| /* CSD Erase Group Size uses write timeout */ |
| unsigned int mult = (10 << card->csd.r2w_factor); |
| unsigned int timeout_clks = card->csd.tacc_clks * mult; |
| unsigned int timeout_us; |
| |
| /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */ |
| if (card->csd.tacc_ns < 1000000) |
| timeout_us = (card->csd.tacc_ns * mult) / 1000; |
| else |
| timeout_us = (card->csd.tacc_ns / 1000) * mult; |
| |
| /* |
| * ios.clock is only a target. The real clock rate might be |
| * less but not that much less, so fudge it by multiplying by 2. |
| */ |
| timeout_clks <<= 1; |
| timeout_us += (timeout_clks * 1000) / |
| (card->host->ios.clock / 1000); |
| |
| erase_timeout = timeout_us / 1000; |
| |
| /* |
| * Theoretically, the calculation could underflow so round up |
| * to 1ms in that case. |
| */ |
| if (!erase_timeout) |
| erase_timeout = 1; |
| } |
| |
| /* Multiplier for secure operations */ |
| if (arg & MMC_SECURE_ARGS) { |
| if (arg == MMC_SECURE_ERASE_ARG) |
| erase_timeout *= card->ext_csd.sec_erase_mult; |
| else |
| erase_timeout *= card->ext_csd.sec_trim_mult; |
| } |
| |
| erase_timeout *= qty; |
| |
| /* |
| * Ensure at least a 1 second timeout for SPI as per |
| * 'mmc_set_data_timeout()' |
| */ |
| if (mmc_host_is_spi(card->host) && erase_timeout < 1000) |
| erase_timeout = 1000; |
| |
| return erase_timeout; |
| } |
| |
| static unsigned int mmc_sd_erase_timeout(struct mmc_card *card, |
| unsigned int arg, |
| unsigned int qty) |
| { |
| unsigned int erase_timeout; |
| |
| if (card->ssr.erase_timeout) { |
| /* Erase timeout specified in SD Status Register (SSR) */ |
| erase_timeout = card->ssr.erase_timeout * qty + |
| card->ssr.erase_offset; |
| } else { |
| /* |
| * Erase timeout not specified in SD Status Register (SSR) so |
| * use 250ms per write block. |
| */ |
| erase_timeout = 250 * qty; |
| } |
| |
| /* Must not be less than 1 second */ |
| if (erase_timeout < 1000) |
| erase_timeout = 1000; |
| |
| return erase_timeout; |
| } |
| |
| static unsigned int mmc_erase_timeout(struct mmc_card *card, |
| unsigned int arg, |
| unsigned int qty) |
| { |
| if (mmc_card_sd(card)) |
| return mmc_sd_erase_timeout(card, arg, qty); |
| else |
| return mmc_mmc_erase_timeout(card, arg, qty); |
| } |
| |
| static int mmc_do_erase(struct mmc_card *card, unsigned int from, |
| unsigned int to, unsigned int arg) |
| { |
| struct mmc_command cmd = {}; |
| unsigned int qty = 0, busy_timeout = 0; |
| bool use_r1b_resp = false; |
| unsigned long timeout; |
| int err; |
| |
| mmc_retune_hold(card->host); |
| |
| /* |
| * qty is used to calculate the erase timeout which depends on how many |
| * erase groups (or allocation units in SD terminology) are affected. |
| * We count erasing part of an erase group as one erase group. |
| * For SD, the allocation units are always a power of 2. For MMC, the |
| * erase group size is almost certainly also power of 2, but it does not |
| * seem to insist on that in the JEDEC standard, so we fall back to |
| * division in that case. SD may not specify an allocation unit size, |
| * in which case the timeout is based on the number of write blocks. |
| * |
| * Note that the timeout for secure trim 2 will only be correct if the |
| * number of erase groups specified is the same as the total of all |
| * preceding secure trim 1 commands. Since the power may have been |
| * lost since the secure trim 1 commands occurred, it is generally |
| * impossible to calculate the secure trim 2 timeout correctly. |
| */ |
| if (card->erase_shift) |
| qty += ((to >> card->erase_shift) - |
| (from >> card->erase_shift)) + 1; |
| else if (mmc_card_sd(card)) |
| qty += to - from + 1; |
| else |
| qty += ((to / card->erase_size) - |
| (from / card->erase_size)) + 1; |
| |
| if (!mmc_card_blockaddr(card)) { |
| from <<= 9; |
| to <<= 9; |
| } |
| |
| if (mmc_card_sd(card)) |
| cmd.opcode = SD_ERASE_WR_BLK_START; |
| else |
| cmd.opcode = MMC_ERASE_GROUP_START; |
| cmd.arg = from; |
| cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; |
| err = mmc_wait_for_cmd(card->host, &cmd, 0); |
| if (err) { |
| pr_err("mmc_erase: group start error %d, " |
| "status %#x\n", err, cmd.resp[0]); |
| err = -EIO; |
| goto out; |
| } |
| |
| memset(&cmd, 0, sizeof(struct mmc_command)); |
| if (mmc_card_sd(card)) |
| cmd.opcode = SD_ERASE_WR_BLK_END; |
| else |
| cmd.opcode = MMC_ERASE_GROUP_END; |
| cmd.arg = to; |
| cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; |
| err = mmc_wait_for_cmd(card->host, &cmd, 0); |
| if (err) { |
| pr_err("mmc_erase: group end error %d, status %#x\n", |
| err, cmd.resp[0]); |
| err = -EIO; |
| goto out; |
| } |
| |
| memset(&cmd, 0, sizeof(struct mmc_command)); |
| cmd.opcode = MMC_ERASE; |
| cmd.arg = arg; |
| busy_timeout = mmc_erase_timeout(card, arg, qty); |
| /* |
| * If the host controller supports busy signalling and the timeout for |
| * the erase operation does not exceed the max_busy_timeout, we should |
| * use R1B response. Or we need to prevent the host from doing hw busy |
| * detection, which is done by converting to a R1 response instead. |
| */ |
| if (card->host->max_busy_timeout && |
| busy_timeout > card->host->max_busy_timeout) { |
| cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; |
| } else { |
| cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; |
| cmd.busy_timeout = busy_timeout; |
| use_r1b_resp = true; |
| } |
| |
| err = mmc_wait_for_cmd(card->host, &cmd, 0); |
| if (err) { |
| pr_err("mmc_erase: erase error %d, status %#x\n", |
| err, cmd.resp[0]); |
| err = -EIO; |
| goto out; |
| } |
| |
| if (mmc_host_is_spi(card->host)) |
| goto out; |
| |
| /* |
| * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling |
| * shall be avoided. |
| */ |
| if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) |
| goto out; |
| |
| timeout = jiffies + msecs_to_jiffies(busy_timeout); |
| do { |
| memset(&cmd, 0, sizeof(struct mmc_command)); |
| cmd.opcode = MMC_SEND_STATUS; |
| cmd.arg = card->rca << 16; |
| cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; |
| /* Do not retry else we can't see errors */ |
| err = mmc_wait_for_cmd(card->host, &cmd, 0); |
| if (err || (cmd.resp[0] & 0xFDF92000)) { |
| pr_err("error %d requesting status %#x\n", |
| err, cmd.resp[0]); |
| err = -EIO; |
| goto out; |
| } |
| |
| /* Timeout if the device never becomes ready for data and |
| * never leaves the program state. |
| */ |
| if (time_after(jiffies, timeout)) { |
| pr_err("%s: Card stuck in programming state! %s\n", |
| mmc_hostname(card->host), __func__); |
| err = -EIO; |
| goto out; |
| } |
| |
| } while (!(cmd.resp[0] & R1_READY_FOR_DATA) || |
| (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG)); |
| out: |
| mmc_retune_release(card->host); |
| return err; |
| } |
| |
| static unsigned int mmc_align_erase_size(struct mmc_card *card, |
| unsigned int *from, |
| unsigned int *to, |
| unsigned int nr) |
| { |
| unsigned int from_new = *from, nr_new = nr, rem; |
| |
| /* |
| * When the 'card->erase_size' is power of 2, we can use round_up/down() |
| * to align the erase size efficiently. |
| */ |
| if (is_power_of_2(card->erase_size)) { |
| unsigned int temp = from_new; |
| |
| from_new = round_up(temp, card->erase_size); |
| rem = from_new - temp; |
| |
| if (nr_new > rem) |
| nr_new -= rem; |
| else |
| return 0; |
| |
| nr_new = round_down(nr_new, card->erase_size); |
| } else { |
| rem = from_new % card->erase_size; |
| if (rem) { |
| rem = card->erase_size - rem; |
| from_new += rem; |
| if (nr_new > rem) |
| nr_new -= rem; |
| else |
| return 0; |
| } |
| |
| rem = nr_new % card->erase_size; |
| if (rem) |
| nr_new -= rem; |
| } |
| |
| if (nr_new == 0) |
| return 0; |
| |
| *to = from_new + nr_new; |
| *from = from_new; |
| |
| return nr_new; |
| } |
| |
| /** |
| * mmc_erase - erase sectors. |
| * @card: card to erase |
| * @from: first sector to erase |
| * @nr: number of sectors to erase |
| * @arg: erase command argument (SD supports only %MMC_ERASE_ARG) |
| * |
| * Caller must claim host before calling this function. |
| */ |
| int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr, |
| unsigned int arg) |
| { |
| unsigned int rem, to = from + nr; |
| int err; |
| |
| if (!(card->host->caps & MMC_CAP_ERASE) || |
| !(card->csd.cmdclass & CCC_ERASE)) |
| return -EOPNOTSUPP; |
| |
| if (!card->erase_size) |
| return -EOPNOTSUPP; |
| |
| if (mmc_card_sd(card) && arg != MMC_ERASE_ARG) |
| return -EOPNOTSUPP; |
| |
| if ((arg & MMC_SECURE_ARGS) && |
| !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)) |
| return -EOPNOTSUPP; |
| |
| if ((arg & MMC_TRIM_ARGS) && |
| !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)) |
| return -EOPNOTSUPP; |
| |
| if (arg == MMC_SECURE_ERASE_ARG) { |
| if (from % card->erase_size || nr % card->erase_size) |
| return -EINVAL; |
| } |
| |
| if (arg == MMC_ERASE_ARG) |
| nr = mmc_align_erase_size(card, &from, &to, nr); |
| |
| if (nr == 0) |
| return 0; |
| |
| if (to <= from) |
| return -EINVAL; |
| |
| /* 'from' and 'to' are inclusive */ |
| to -= 1; |
| |
| /* |
| * Special case where only one erase-group fits in the timeout budget: |
| * If the region crosses an erase-group boundary on this particular |
| * case, we will be trimming more than one erase-group which, does not |
| * fit in the timeout budget of the controller, so we need to split it |
| * and call mmc_do_erase() twice if necessary. This special case is |
| * identified by the card->eg_boundary flag. |
| */ |
| rem = card->erase_size - (from % card->erase_size); |
| if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) { |
| err = mmc_do_erase(card, from, from + rem - 1, arg); |
| from += rem; |
| if ((err) || (to <= from)) |
| return err; |
| } |
| |
| return mmc_do_erase(card, from, to, arg); |
| } |
| EXPORT_SYMBOL(mmc_erase); |
| |
| int mmc_can_erase(struct mmc_card *card) |
| { |
| if ((card->host->caps & MMC_CAP_ERASE) && |
| (card->csd.cmdclass & CCC_ERASE) && card->erase_size) |
| return 1; |
| return 0; |
| } |
| EXPORT_SYMBOL(mmc_can_erase); |
| |
| int mmc_can_trim(struct mmc_card *card) |
| { |
| if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) && |
| (!(card->quirks & MMC_QUIRK_TRIM_BROKEN))) |
| return 1; |
| return 0; |
| } |
| EXPORT_SYMBOL(mmc_can_trim); |
| |
| int mmc_can_discard(struct mmc_card *card) |
| { |
| /* |
| * As there's no way to detect the discard support bit at v4.5 |
| * use the s/w feature support filed. |
| */ |
| if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE) |
| return 1; |
| return 0; |
| } |
| EXPORT_SYMBOL(mmc_can_discard); |
| |
| int mmc_can_sanitize(struct mmc_card *card) |
| { |
| if (!mmc_can_trim(card) && !mmc_can_erase(card)) |
| return 0; |
| if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE) |
| return 1; |
| return 0; |
| } |
| EXPORT_SYMBOL(mmc_can_sanitize); |
| |
| int mmc_can_secure_erase_trim(struct mmc_card *card) |
| { |
| if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) && |
| !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN)) |
| return 1; |
| return 0; |
| } |
| EXPORT_SYMBOL(mmc_can_secure_erase_trim); |
| |
| int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from, |
| unsigned int nr) |
| { |
| if (!card->erase_size) |
| return 0; |
| if (from % card->erase_size || nr % card->erase_size) |
| return 0; |
| return 1; |
| } |
| EXPORT_SYMBOL(mmc_erase_group_aligned); |
| |
| static unsigned int mmc_do_calc_max_discard(struct mmc_card *card, |
| unsigned int arg) |
| { |
| struct mmc_host *host = card->host; |
| unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout; |
| unsigned int last_timeout = 0; |
| unsigned int max_busy_timeout = host->max_busy_timeout ? |
| host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS; |
| |
| if (card->erase_shift) { |
| max_qty = UINT_MAX >> card->erase_shift; |
| min_qty = card->pref_erase >> card->erase_shift; |
| } else if (mmc_card_sd(card)) { |
| max_qty = UINT_MAX; |
| min_qty = card->pref_erase; |
| } else { |
| max_qty = UINT_MAX / card->erase_size; |
| min_qty = card->pref_erase / card->erase_size; |
| } |
| |
| /* |
| * We should not only use 'host->max_busy_timeout' as the limitation |
| * when deciding the max discard sectors. We should set a balance value |
| * to improve the erase speed, and it can not get too long timeout at |
| * the same time. |
| * |
| * Here we set 'card->pref_erase' as the minimal discard sectors no |
| * matter what size of 'host->max_busy_timeout', but if the |
| * 'host->max_busy_timeout' is large enough for more discard sectors, |
| * then we can continue to increase the max discard sectors until we |
| * get a balance value. In cases when the 'host->max_busy_timeout' |
| * isn't specified, use the default max erase timeout. |
| */ |
| do { |
| y = 0; |
| for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) { |
| timeout = mmc_erase_timeout(card, arg, qty + x); |
| |
| if (qty + x > min_qty && timeout > max_busy_timeout) |
| break; |
| |
| if (timeout < last_timeout) |
| break; |
| last_timeout = timeout; |
| y = x; |
| } |
| qty += y; |
| } while (y); |
| |
| if (!qty) |
| return 0; |
| |
| /* |
| * When specifying a sector range to trim, chances are we might cross |
| * an erase-group boundary even if the amount of sectors is less than |
| * one erase-group. |
| * If we can only fit one erase-group in the controller timeout budget, |
| * we have to care that erase-group boundaries are not crossed by a |
| * single trim operation. We flag that special case with "eg_boundary". |
| * In all other cases we can just decrement qty and pretend that we |
| * always touch (qty + 1) erase-groups as a simple optimization. |
| */ |
| if (qty == 1) |
| card->eg_boundary = 1; |
| else |
| qty--; |
| |
| /* Convert qty to sectors */ |
| if (card->erase_shift) |
| max_discard = qty << card->erase_shift; |
| else if (mmc_card_sd(card)) |
| max_discard = qty + 1; |
| else |
| max_discard = qty * card->erase_size; |
| |
| return max_discard; |
| } |
| |
| unsigned int mmc_calc_max_discard(struct mmc_card *card) |
| { |
| struct mmc_host *host = card->host; |
| unsigned int max_discard, max_trim; |
| |
| /* |
| * Without erase_group_def set, MMC erase timeout depends on clock |
| * frequence which can change. In that case, the best choice is |
| * just the preferred erase size. |
| */ |
| if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1)) |
| return card->pref_erase; |
| |
| max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG); |
| if (mmc_can_trim(card)) { |
| max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG); |
| if (max_trim < max_discard) |
| max_discard = max_trim; |
| } else if (max_discard < card->erase_size) { |
| max_discard = 0; |
| } |
| pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n", |
| mmc_hostname(host), max_discard, host->max_busy_timeout ? |
| host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS); |
| return max_discard; |
| } |
| EXPORT_SYMBOL(mmc_calc_max_discard); |
| |
| bool mmc_card_is_blockaddr(struct mmc_card *card) |
| { |
| return card ? mmc_card_blockaddr(card) : false; |
| } |
| EXPORT_SYMBOL(mmc_card_is_blockaddr); |
| |
| int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen) |
| { |
| struct mmc_command cmd = {}; |
| |
| if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) || |
| mmc_card_hs400(card) || mmc_card_hs400es(card)) |
| return 0; |
| |
| cmd.opcode = MMC_SET_BLOCKLEN; |
| cmd.arg = blocklen; |
| cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; |
| return mmc_wait_for_cmd(card->host, &cmd, 5); |
| } |
| EXPORT_SYMBOL(mmc_set_blocklen); |
| |
| int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount, |
| bool is_rel_write) |
| { |
| struct mmc_command cmd = {}; |
| |
| cmd.opcode = MMC_SET_BLOCK_COUNT; |
| cmd.arg = blockcount & 0x0000FFFF; |
| if (is_rel_write) |
| cmd.arg |= 1 << 31; |
| cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; |
| return mmc_wait_for_cmd(card->host, &cmd, 5); |
| } |
| EXPORT_SYMBOL(mmc_set_blockcount); |
| |
| static void mmc_hw_reset_for_init(struct mmc_host *host) |
| { |
| mmc_pwrseq_reset(host); |
| |
| if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset) |
| return; |
| host->ops->hw_reset(host); |
| } |
| |
| int mmc_hw_reset(struct mmc_host *host) |
| { |
| int ret; |
| |
| if (!host->card) |
| return -EINVAL; |
| |
| mmc_bus_get(host); |
| if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) { |
| mmc_bus_put(host); |
| return -EOPNOTSUPP; |
| } |
| |
| ret = host->bus_ops->reset(host); |
| mmc_bus_put(host); |
| |
| if (ret) |
| pr_warn("%s: tried to reset card, got error %d\n", |
| mmc_hostname(host), ret); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(mmc_hw_reset); |
| |
| static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq) |
| { |
| host->f_init = freq; |
| |
| #ifdef CONFIG_MMC_DEBUG |
| pr_info("%s: %s: trying to init card at %u Hz\n", |
| mmc_hostname(host), __func__, host->f_init); |
| #endif |
| mmc_power_up(host, host->ocr_avail); |
| |
| /* |
| * Some eMMCs (with VCCQ always on) may not be reset after power up, so |
| * do a hardware reset if possible. |
| */ |
| mmc_hw_reset_for_init(host); |
| |
| /* |
| * sdio_reset sends CMD52 to reset card. Since we do not know |
| * if the card is being re-initialized, just send it. CMD52 |
| * should be ignored by SD/eMMC cards. |
| * Skip it if we already know that we do not support SDIO commands |
| */ |
| if (!(host->caps2 & MMC_CAP2_NO_SDIO)) |
| sdio_reset(host); |
| |
| mmc_go_idle(host); |
| |
| if (!(host->caps2 & MMC_CAP2_NO_SD)) |
| mmc_send_if_cond(host, host->ocr_avail); |
| |
| /* Order's important: probe SDIO, then SD, then MMC */ |
| if (!(host->caps2 & MMC_CAP2_NO_SDIO)) |
| if (!mmc_attach_sdio(host)) |
| return 0; |
| |
| if (!(host->caps2 & MMC_CAP2_NO_SD)) |
| if (!mmc_attach_sd(host)) |
| return 0; |
| |
| if (!(host->caps2 & MMC_CAP2_NO_MMC)) |
| if (!mmc_attach_mmc(host)) |
| return 0; |
| |
| mmc_power_off(host); |
| return -EIO; |
| } |
| |
| int _mmc_detect_card_removed(struct mmc_host *host) |
| { |
| int ret; |
| |
| if (!host->card || mmc_card_removed(host->card)) |
| return 1; |
| |
| ret = host->bus_ops->alive(host); |
| |
| /* |
| * Card detect status and alive check may be out of sync if card is |
| * removed slowly, when card detect switch changes while card/slot |
| * pads are still contacted in hardware (refer to "SD Card Mechanical |
| * Addendum, Appendix C: Card Detection Switch"). So reschedule a |
| * detect work 200ms later for this case. |
| */ |
| if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) { |
| mmc_detect_change(host, msecs_to_jiffies(200)); |
| pr_debug("%s: card removed too slowly\n", mmc_hostname(host)); |
| } |
| |
| if (ret) { |
| mmc_card_set_removed(host->card); |
| pr_debug("%s: card remove detected\n", mmc_hostname(host)); |
| } |
| |
| return ret; |
| } |
| |
| int mmc_detect_card_removed(struct mmc_host *host) |
| { |
| struct mmc_card *card = host->card; |
| int ret; |
| |
| WARN_ON(!host->claimed); |
| |
| if (!card) |
| return 1; |
| |
| if (!mmc_card_is_removable(host)) |
| return 0; |
| |
| ret = mmc_card_removed(card); |
| /* |
| * The card will be considered unchanged unless we have been asked to |
| * detect a change or host requires polling to provide card detection. |
| */ |
| if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL)) |
| return ret; |
| |
| host->detect_change = 0; |
| if (!ret) { |
| ret = _mmc_detect_card_removed(host); |
| if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) { |
| /* |
| * Schedule a detect work as soon as possible to let a |
| * rescan handle the card removal. |
| */ |
| cancel_delayed_work(&host->detect); |
| _mmc_detect_change(host, 0, false); |
| } |
| } |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(mmc_detect_card_removed); |
| |
| void mmc_rescan(struct work_struct *work) |
| { |
| struct mmc_host *host = |
| container_of(work, struct mmc_host, detect.work); |
| int i; |
| |
| if (host->rescan_disable) |
| return; |
| |
| /* If there is a non-removable card registered, only scan once */ |
| if (!mmc_card_is_removable(host) && host->rescan_entered) |
| return; |
| host->rescan_entered = 1; |
| |
| if (host->trigger_card_event && host->ops->card_event) { |
| mmc_claim_host(host); |
| host->ops->card_event(host); |
| mmc_release_host(host); |
| host->trigger_card_event = false; |
| } |
| |
| mmc_bus_get(host); |
| |
| /* |
| * if there is a _removable_ card registered, check whether it is |
| * still present |
| */ |
| if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host)) |
| host->bus_ops->detect(host); |
| |
| host->detect_change = 0; |
| |
| /* |
| * Let mmc_bus_put() free the bus/bus_ops if we've found that |
| * the card is no longer present. |
| */ |
| mmc_bus_put(host); |
| mmc_bus_get(host); |
| |
| /* if there still is a card present, stop here */ |
| if (host->bus_ops != NULL) { |
| mmc_bus_put(host); |
| goto out; |
| } |
| |
| /* |
| * Only we can add a new handler, so it's safe to |
| * release the lock here. |
| */ |
| mmc_bus_put(host); |
| |
| mmc_claim_host(host); |
| if (mmc_card_is_removable(host) && host->ops->get_cd && |
| host->ops->get_cd(host) == 0) { |
| mmc_power_off(host); |
| mmc_release_host(host); |
| goto out; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(freqs); i++) { |
| if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min))) |
| break; |
| if (freqs[i] <= host->f_min) |
| break; |
| } |
| mmc_release_host(host); |
| |
| out: |
| if (host->caps & MMC_CAP_NEEDS_POLL) |
| mmc_schedule_delayed_work(&host->detect, HZ); |
| } |
| |
| void mmc_start_host(struct mmc_host *host) |
| { |
| host->f_init = max(freqs[0], host->f_min); |
| host->rescan_disable = 0; |
| host->ios.power_mode = MMC_POWER_UNDEFINED; |
| |
| if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) { |
| mmc_claim_host(host); |
| mmc_power_up(host, host->ocr_avail); |
| mmc_release_host(host); |
| } |
| |
| mmc_gpiod_request_cd_irq(host); |
| _mmc_detect_change(host, 0, false); |
| } |
| |
| void mmc_stop_host(struct mmc_host *host) |
| { |
| #ifdef CONFIG_MMC_DEBUG |
| unsigned long flags; |
| spin_lock_irqsave(&host->lock, flags); |
| host->removed = 1; |
| spin_unlock_irqrestore(&host->lock, flags); |
| #endif |
| if (host->slot.cd_irq >= 0) { |
| if (host->slot.cd_wake_enabled) |
| disable_irq_wake(host->slot.cd_irq); |
| disable_irq(host->slot.cd_irq); |
| } |
| |
| host->rescan_disable = 1; |
| cancel_delayed_work_sync(&host->detect); |
| |
| /* clear pm flags now and let card drivers set them as needed */ |
| host->pm_flags = 0; |
| |
| mmc_bus_get(host); |
| if (host->bus_ops && !host->bus_dead) { |
| /* Calling bus_ops->remove() with a claimed host can deadlock */ |
| host->bus_ops->remove(host); |
| mmc_claim_host(host); |
| mmc_detach_bus(host); |
| mmc_power_off(host); |
| mmc_release_host(host); |
| mmc_bus_put(host); |
| return; |
| } |
| mmc_bus_put(host); |
| |
| mmc_claim_host(host); |
| mmc_power_off(host); |
| mmc_release_host(host); |
| } |
| |
| int mmc_power_save_host(struct mmc_host *host) |
| { |
| int ret = 0; |
| |
| #ifdef CONFIG_MMC_DEBUG |
| pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__); |
| #endif |
| |
| mmc_bus_get(host); |
| |
| if (!host->bus_ops || host->bus_dead) { |
| mmc_bus_put(host); |
| return -EINVAL; |
| } |
| |
| if (host->bus_ops->power_save) |
| ret = host->bus_ops->power_save(host); |
| |
| mmc_bus_put(host); |
| |
| mmc_power_off(host); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(mmc_power_save_host); |
| |
| int mmc_power_restore_host(struct mmc_host *host) |
| { |
| int ret; |
| |
| #ifdef CONFIG_MMC_DEBUG |
| pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__); |
| #endif |
| |
| mmc_bus_get(host); |
| |
| if (!host->bus_ops || host->bus_dead) { |
| mmc_bus_put(host); |
| return -EINVAL; |
| } |
| |
| mmc_power_up(host, host->card->ocr); |
| ret = host->bus_ops->power_restore(host); |
| |
| mmc_bus_put(host); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(mmc_power_restore_host); |
| |
| #ifdef CONFIG_PM_SLEEP |
| /* Do the card removal on suspend if card is assumed removeable |
| * Do that in pm notifier while userspace isn't yet frozen, so we will be able |
| to sync the card. |
| */ |
| static int mmc_pm_notify(struct notifier_block *notify_block, |
| unsigned long mode, void *unused) |
| { |
| struct mmc_host *host = container_of( |
| notify_block, struct mmc_host, pm_notify); |
| unsigned long flags; |
| int err = 0; |
| |
| switch (mode) { |
| case PM_HIBERNATION_PREPARE: |
| case PM_SUSPEND_PREPARE: |
| case PM_RESTORE_PREPARE: |
| spin_lock_irqsave(&host->lock, flags); |
| host->rescan_disable = 1; |
| spin_unlock_irqrestore(&host->lock, flags); |
| cancel_delayed_work_sync(&host->detect); |
| |
| if (!host->bus_ops) |
| break; |
| |
| /* Validate prerequisites for suspend */ |
| if (host->bus_ops->pre_suspend) |
| err = host->bus_ops->pre_suspend(host); |
| if (!err) |
| break; |
| |
| /* Calling bus_ops->remove() with a claimed host can deadlock */ |
| host->bus_ops->remove(host); |
| mmc_claim_host(host); |
| mmc_detach_bus(host); |
| mmc_power_off(host); |
| mmc_release_host(host); |
| host->pm_flags = 0; |
| break; |
| |
| case PM_POST_SUSPEND: |
| case PM_POST_HIBERNATION: |
| case PM_POST_RESTORE: |
| |
| spin_lock_irqsave(&host->lock, flags); |
| host->rescan_disable = 0; |
| spin_unlock_irqrestore(&host->lock, flags); |
| _mmc_detect_change(host, 0, false); |
| |
| } |
| |
| return 0; |
| } |
| |
| void mmc_register_pm_notifier(struct mmc_host *host) |
| { |
| host->pm_notify.notifier_call = mmc_pm_notify; |
| register_pm_notifier(&host->pm_notify); |
| } |
| |
| void mmc_unregister_pm_notifier(struct mmc_host *host) |
| { |
| unregister_pm_notifier(&host->pm_notify); |
| } |
| #endif |
| |
| /** |
| * mmc_init_context_info() - init synchronization context |
| * @host: mmc host |
| * |
| * Init struct context_info needed to implement asynchronous |
| * request mechanism, used by mmc core, host driver and mmc requests |
| * supplier. |
| */ |
| void mmc_init_context_info(struct mmc_host *host) |
| { |
| host->context_info.is_new_req = false; |
| host->context_info.is_done_rcv = false; |
| host->context_info.is_waiting_last_req = false; |
| init_waitqueue_head(&host->context_info.wait); |
| } |
| |
| static int __init mmc_init(void) |
| { |
| int ret; |
| |
| ret = mmc_register_bus(); |
| if (ret) |
| return ret; |
| |
| ret = mmc_register_host_class(); |
| if (ret) |
| goto unregister_bus; |
| |
| ret = sdio_register_bus(); |
| if (ret) |
| goto unregister_host_class; |
| |
| return 0; |
| |
| unregister_host_class: |
| mmc_unregister_host_class(); |
| unregister_bus: |
| mmc_unregister_bus(); |
| return ret; |
| } |
| |
| static void __exit mmc_exit(void) |
| { |
| sdio_unregister_bus(); |
| mmc_unregister_host_class(); |
| mmc_unregister_bus(); |
| } |
| |
| subsys_initcall(mmc_init); |
| module_exit(mmc_exit); |
| |
| MODULE_LICENSE("GPL"); |