| # SPDX-License-Identifier: GPL-2.0 |
| config ARM |
| bool |
| default y |
| select ARCH_CLOCKSOURCE_DATA |
| select ARCH_DISCARD_MEMBLOCK if !HAVE_ARCH_PFN_VALID && !KEXEC |
| select ARCH_HAS_DEBUG_VIRTUAL if MMU |
| select ARCH_HAS_DEVMEM_IS_ALLOWED |
| select ARCH_HAS_ELF_RANDOMIZE |
| select ARCH_HAS_FORTIFY_SOURCE |
| select ARCH_HAS_KCOV |
| select ARCH_HAS_MEMBARRIER_SYNC_CORE |
| select ARCH_HAS_PTE_SPECIAL if ARM_LPAE |
| select ARCH_HAS_PHYS_TO_DMA |
| select ARCH_HAS_SET_MEMORY |
| select ARCH_HAS_STRICT_KERNEL_RWX if MMU && !XIP_KERNEL |
| select ARCH_HAS_STRICT_MODULE_RWX if MMU |
| select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST |
| select ARCH_HAVE_CUSTOM_GPIO_H |
| select ARCH_HAS_GCOV_PROFILE_ALL |
| select ARCH_MIGHT_HAVE_PC_PARPORT |
| select ARCH_NO_SG_CHAIN if !ARM_HAS_SG_CHAIN |
| select ARCH_OPTIONAL_KERNEL_RWX if ARCH_HAS_STRICT_KERNEL_RWX |
| select ARCH_OPTIONAL_KERNEL_RWX_DEFAULT if CPU_V7 |
| select ARCH_SUPPORTS_ATOMIC_RMW |
| select ARCH_USE_BUILTIN_BSWAP |
| select ARCH_USE_CMPXCHG_LOCKREF |
| select ARCH_WANT_IPC_PARSE_VERSION |
| select BUILDTIME_EXTABLE_SORT if MMU |
| select CLONE_BACKWARDS |
| select CPU_PM if SUSPEND || CPU_IDLE |
| select DCACHE_WORD_ACCESS if HAVE_EFFICIENT_UNALIGNED_ACCESS |
| select DMA_REMAP if MMU |
| select EDAC_SUPPORT |
| select EDAC_ATOMIC_SCRUB |
| select GENERIC_ALLOCATOR |
| select GENERIC_ARCH_TOPOLOGY if ARM_CPU_TOPOLOGY |
| select GENERIC_ATOMIC64 if CPU_V7M || CPU_V6 || !CPU_32v6K || !AEABI |
| select GENERIC_CLOCKEVENTS_BROADCAST if SMP |
| select GENERIC_CPU_AUTOPROBE |
| select GENERIC_EARLY_IOREMAP |
| select GENERIC_IDLE_POLL_SETUP |
| select GENERIC_IRQ_PROBE |
| select GENERIC_IRQ_SHOW |
| select GENERIC_IRQ_SHOW_LEVEL |
| select GENERIC_PCI_IOMAP |
| select GENERIC_SCHED_CLOCK |
| select GENERIC_SMP_IDLE_THREAD |
| select GENERIC_STRNCPY_FROM_USER |
| select GENERIC_STRNLEN_USER |
| select HANDLE_DOMAIN_IRQ |
| select HARDIRQS_SW_RESEND |
| select HAVE_ARCH_AUDITSYSCALL if AEABI && !OABI_COMPAT |
| select HAVE_ARCH_BITREVERSE if (CPU_32v7M || CPU_32v7) && !CPU_32v6 |
| select HAVE_ARCH_JUMP_LABEL if !XIP_KERNEL && !CPU_ENDIAN_BE32 && MMU |
| select HAVE_ARCH_KGDB if !CPU_ENDIAN_BE32 && MMU |
| select HAVE_ARCH_MMAP_RND_BITS if MMU |
| select HAVE_ARCH_SECCOMP_FILTER if AEABI && !OABI_COMPAT |
| select HAVE_ARCH_THREAD_STRUCT_WHITELIST |
| select HAVE_ARCH_TRACEHOOK |
| select HAVE_ARM_SMCCC if CPU_V7 |
| select HAVE_EBPF_JIT if !CPU_ENDIAN_BE32 |
| select HAVE_CONTEXT_TRACKING |
| select HAVE_C_RECORDMCOUNT |
| select HAVE_DEBUG_KMEMLEAK |
| select HAVE_DMA_CONTIGUOUS if MMU |
| select HAVE_DYNAMIC_FTRACE if !XIP_KERNEL && !CPU_ENDIAN_BE32 && MMU |
| select HAVE_DYNAMIC_FTRACE_WITH_REGS if HAVE_DYNAMIC_FTRACE |
| select HAVE_EFFICIENT_UNALIGNED_ACCESS if (CPU_V6 || CPU_V6K || CPU_V7) && MMU |
| select HAVE_EXIT_THREAD |
| select HAVE_FTRACE_MCOUNT_RECORD if !XIP_KERNEL |
| select HAVE_FUNCTION_GRAPH_TRACER if !THUMB2_KERNEL |
| select HAVE_FUNCTION_TRACER if !XIP_KERNEL |
| select HAVE_GCC_PLUGINS |
| select HAVE_GENERIC_DMA_COHERENT |
| select HAVE_HW_BREAKPOINT if PERF_EVENTS && (CPU_V6 || CPU_V6K || CPU_V7) |
| select HAVE_IDE if PCI || ISA || PCMCIA |
| select HAVE_IRQ_TIME_ACCOUNTING |
| select HAVE_KERNEL_GZIP |
| select HAVE_KERNEL_LZ4 |
| select HAVE_KERNEL_LZMA |
| select HAVE_KERNEL_LZO |
| select HAVE_KERNEL_XZ |
| select HAVE_KPROBES if !XIP_KERNEL && !CPU_ENDIAN_BE32 && !CPU_V7M |
| select HAVE_KRETPROBES if HAVE_KPROBES |
| select HAVE_MOD_ARCH_SPECIFIC |
| select HAVE_NMI |
| select HAVE_OPROFILE if HAVE_PERF_EVENTS |
| select HAVE_OPTPROBES if !THUMB2_KERNEL |
| select HAVE_PERF_EVENTS |
| select HAVE_PERF_REGS |
| select HAVE_PERF_USER_STACK_DUMP |
| select HAVE_RCU_TABLE_FREE if SMP && ARM_LPAE |
| select HAVE_REGS_AND_STACK_ACCESS_API |
| select HAVE_RSEQ |
| select HAVE_STACKPROTECTOR |
| select HAVE_SYSCALL_TRACEPOINTS |
| select HAVE_UID16 |
| select HAVE_VIRT_CPU_ACCOUNTING_GEN |
| select IRQ_FORCED_THREADING |
| select MODULES_USE_ELF_REL |
| select NEED_DMA_MAP_STATE |
| select OF_EARLY_FLATTREE if OF |
| select OF_RESERVED_MEM if OF |
| select OLD_SIGACTION |
| select OLD_SIGSUSPEND3 |
| select PCI_SYSCALL if PCI |
| select PERF_USE_VMALLOC |
| select REFCOUNT_FULL |
| select RTC_LIB |
| select SYS_SUPPORTS_APM_EMULATION |
| # Above selects are sorted alphabetically; please add new ones |
| # according to that. Thanks. |
| help |
| The ARM series is a line of low-power-consumption RISC chip designs |
| licensed by ARM Ltd and targeted at embedded applications and |
| handhelds such as the Compaq IPAQ. ARM-based PCs are no longer |
| manufactured, but legacy ARM-based PC hardware remains popular in |
| Europe. There is an ARM Linux project with a web page at |
| <http://www.arm.linux.org.uk/>. |
| |
| config ARM_HAS_SG_CHAIN |
| bool |
| |
| config ARM_DMA_USE_IOMMU |
| bool |
| select ARM_HAS_SG_CHAIN |
| select NEED_SG_DMA_LENGTH |
| |
| if ARM_DMA_USE_IOMMU |
| |
| config ARM_DMA_IOMMU_ALIGNMENT |
| int "Maximum PAGE_SIZE order of alignment for DMA IOMMU buffers" |
| range 4 9 |
| default 8 |
| help |
| DMA mapping framework by default aligns all buffers to the smallest |
| PAGE_SIZE order which is greater than or equal to the requested buffer |
| size. This works well for buffers up to a few hundreds kilobytes, but |
| for larger buffers it just a waste of address space. Drivers which has |
| relatively small addressing window (like 64Mib) might run out of |
| virtual space with just a few allocations. |
| |
| With this parameter you can specify the maximum PAGE_SIZE order for |
| DMA IOMMU buffers. Larger buffers will be aligned only to this |
| specified order. The order is expressed as a power of two multiplied |
| by the PAGE_SIZE. |
| |
| endif |
| |
| config SYS_SUPPORTS_APM_EMULATION |
| bool |
| |
| config HAVE_TCM |
| bool |
| select GENERIC_ALLOCATOR |
| |
| config HAVE_PROC_CPU |
| bool |
| |
| config NO_IOPORT_MAP |
| bool |
| |
| config SBUS |
| bool |
| |
| config STACKTRACE_SUPPORT |
| bool |
| default y |
| |
| config LOCKDEP_SUPPORT |
| bool |
| default y |
| |
| config TRACE_IRQFLAGS_SUPPORT |
| bool |
| default !CPU_V7M |
| |
| config RWSEM_XCHGADD_ALGORITHM |
| bool |
| default y |
| |
| config ARCH_HAS_ILOG2_U32 |
| bool |
| |
| config ARCH_HAS_ILOG2_U64 |
| bool |
| |
| config ARCH_HAS_BANDGAP |
| bool |
| |
| config FIX_EARLYCON_MEM |
| def_bool y if MMU |
| |
| config GENERIC_HWEIGHT |
| bool |
| default y |
| |
| config GENERIC_CALIBRATE_DELAY |
| bool |
| default y |
| |
| config ARCH_MAY_HAVE_PC_FDC |
| bool |
| |
| config ZONE_DMA |
| bool |
| |
| config ARCH_SUPPORTS_UPROBES |
| def_bool y |
| |
| config ARCH_HAS_DMA_SET_COHERENT_MASK |
| bool |
| |
| config GENERIC_ISA_DMA |
| bool |
| |
| config FIQ |
| bool |
| |
| config NEED_RET_TO_USER |
| bool |
| |
| config ARCH_MTD_XIP |
| bool |
| |
| config ARM_PATCH_PHYS_VIRT |
| bool "Patch physical to virtual translations at runtime" if EMBEDDED |
| default y |
| depends on !XIP_KERNEL && MMU |
| help |
| Patch phys-to-virt and virt-to-phys translation functions at |
| boot and module load time according to the position of the |
| kernel in system memory. |
| |
| This can only be used with non-XIP MMU kernels where the base |
| of physical memory is at a 16MB boundary. |
| |
| Only disable this option if you know that you do not require |
| this feature (eg, building a kernel for a single machine) and |
| you need to shrink the kernel to the minimal size. |
| |
| config NEED_MACH_IO_H |
| bool |
| help |
| Select this when mach/io.h is required to provide special |
| definitions for this platform. The need for mach/io.h should |
| be avoided when possible. |
| |
| config NEED_MACH_MEMORY_H |
| bool |
| help |
| Select this when mach/memory.h is required to provide special |
| definitions for this platform. The need for mach/memory.h should |
| be avoided when possible. |
| |
| config PHYS_OFFSET |
| hex "Physical address of main memory" if MMU |
| depends on !ARM_PATCH_PHYS_VIRT |
| default DRAM_BASE if !MMU |
| default 0x00000000 if ARCH_EBSA110 || \ |
| ARCH_FOOTBRIDGE || \ |
| ARCH_INTEGRATOR || \ |
| ARCH_IOP13XX || \ |
| ARCH_KS8695 || \ |
| ARCH_REALVIEW |
| default 0x10000000 if ARCH_OMAP1 || ARCH_RPC |
| default 0x20000000 if ARCH_S5PV210 |
| default 0xc0000000 if ARCH_SA1100 |
| help |
| Please provide the physical address corresponding to the |
| location of main memory in your system. |
| |
| config GENERIC_BUG |
| def_bool y |
| depends on BUG |
| |
| config PGTABLE_LEVELS |
| int |
| default 3 if ARM_LPAE |
| default 2 |
| |
| menu "System Type" |
| |
| config MMU |
| bool "MMU-based Paged Memory Management Support" |
| default y |
| help |
| Select if you want MMU-based virtualised addressing space |
| support by paged memory management. If unsure, say 'Y'. |
| |
| config ARCH_MMAP_RND_BITS_MIN |
| default 8 |
| |
| config ARCH_MMAP_RND_BITS_MAX |
| default 14 if PAGE_OFFSET=0x40000000 |
| default 15 if PAGE_OFFSET=0x80000000 |
| default 16 |
| |
| # |
| # The "ARM system type" choice list is ordered alphabetically by option |
| # text. Please add new entries in the option alphabetic order. |
| # |
| choice |
| prompt "ARM system type" |
| default ARM_SINGLE_ARMV7M if !MMU |
| default ARCH_MULTIPLATFORM if MMU |
| |
| config ARCH_MULTIPLATFORM |
| bool "Allow multiple platforms to be selected" |
| depends on MMU |
| select ARM_HAS_SG_CHAIN |
| select ARM_PATCH_PHYS_VIRT |
| select AUTO_ZRELADDR |
| select TIMER_OF |
| select COMMON_CLK |
| select GENERIC_CLOCKEVENTS |
| select GENERIC_IRQ_MULTI_HANDLER |
| select HAVE_PCI |
| select PCI_DOMAINS_GENERIC if PCI |
| select SPARSE_IRQ |
| select USE_OF |
| |
| config ARM_SINGLE_ARMV7M |
| bool "ARMv7-M based platforms (Cortex-M0/M3/M4)" |
| depends on !MMU |
| select ARM_NVIC |
| select AUTO_ZRELADDR |
| select TIMER_OF |
| select COMMON_CLK |
| select CPU_V7M |
| select GENERIC_CLOCKEVENTS |
| select NO_IOPORT_MAP |
| select SPARSE_IRQ |
| select USE_OF |
| |
| config ARCH_EBSA110 |
| bool "EBSA-110" |
| select ARCH_USES_GETTIMEOFFSET |
| select CPU_SA110 |
| select ISA |
| select NEED_MACH_IO_H |
| select NEED_MACH_MEMORY_H |
| select NO_IOPORT_MAP |
| help |
| This is an evaluation board for the StrongARM processor available |
| from Digital. It has limited hardware on-board, including an |
| Ethernet interface, two PCMCIA sockets, two serial ports and a |
| parallel port. |
| |
| config ARCH_EP93XX |
| bool "EP93xx-based" |
| select ARCH_SPARSEMEM_ENABLE |
| select ARM_AMBA |
| imply ARM_PATCH_PHYS_VIRT |
| select ARM_VIC |
| select AUTO_ZRELADDR |
| select CLKDEV_LOOKUP |
| select CLKSRC_MMIO |
| select CPU_ARM920T |
| select GENERIC_CLOCKEVENTS |
| select GPIOLIB |
| help |
| This enables support for the Cirrus EP93xx series of CPUs. |
| |
| config ARCH_FOOTBRIDGE |
| bool "FootBridge" |
| select CPU_SA110 |
| select FOOTBRIDGE |
| select GENERIC_CLOCKEVENTS |
| select HAVE_IDE |
| select NEED_MACH_IO_H if !MMU |
| select NEED_MACH_MEMORY_H |
| help |
| Support for systems based on the DC21285 companion chip |
| ("FootBridge"), such as the Simtec CATS and the Rebel NetWinder. |
| |
| config ARCH_NETX |
| bool "Hilscher NetX based" |
| select ARM_VIC |
| select CLKSRC_MMIO |
| select CPU_ARM926T |
| select GENERIC_CLOCKEVENTS |
| help |
| This enables support for systems based on the Hilscher NetX Soc |
| |
| config ARCH_IOP13XX |
| bool "IOP13xx-based" |
| depends on MMU |
| select CPU_XSC3 |
| select NEED_MACH_MEMORY_H |
| select NEED_RET_TO_USER |
| select FORCE_PCI |
| select PLAT_IOP |
| select VMSPLIT_1G |
| select SPARSE_IRQ |
| help |
| Support for Intel's IOP13XX (XScale) family of processors. |
| |
| config ARCH_IOP32X |
| bool "IOP32x-based" |
| depends on MMU |
| select CPU_XSCALE |
| select GPIO_IOP |
| select GPIOLIB |
| select NEED_RET_TO_USER |
| select FORCE_PCI |
| select PLAT_IOP |
| help |
| Support for Intel's 80219 and IOP32X (XScale) family of |
| processors. |
| |
| config ARCH_IOP33X |
| bool "IOP33x-based" |
| depends on MMU |
| select CPU_XSCALE |
| select GPIO_IOP |
| select GPIOLIB |
| select NEED_RET_TO_USER |
| select FORCE_PCI |
| select PLAT_IOP |
| help |
| Support for Intel's IOP33X (XScale) family of processors. |
| |
| config ARCH_IXP4XX |
| bool "IXP4xx-based" |
| depends on MMU |
| select ARCH_HAS_DMA_SET_COHERENT_MASK |
| select ARCH_SUPPORTS_BIG_ENDIAN |
| select CLKSRC_MMIO |
| select CPU_XSCALE |
| select DMABOUNCE if PCI |
| select GENERIC_CLOCKEVENTS |
| select GPIOLIB |
| select HAVE_PCI |
| select NEED_MACH_IO_H |
| select USB_EHCI_BIG_ENDIAN_DESC |
| select USB_EHCI_BIG_ENDIAN_MMIO |
| help |
| Support for Intel's IXP4XX (XScale) family of processors. |
| |
| config ARCH_DOVE |
| bool "Marvell Dove" |
| select CPU_PJ4 |
| select GENERIC_CLOCKEVENTS |
| select GENERIC_IRQ_MULTI_HANDLER |
| select GPIOLIB |
| select HAVE_PCI |
| select MVEBU_MBUS |
| select PINCTRL |
| select PINCTRL_DOVE |
| select PLAT_ORION_LEGACY |
| select SPARSE_IRQ |
| select PM_GENERIC_DOMAINS if PM |
| help |
| Support for the Marvell Dove SoC 88AP510 |
| |
| config ARCH_KS8695 |
| bool "Micrel/Kendin KS8695" |
| select CLKSRC_MMIO |
| select CPU_ARM922T |
| select GENERIC_CLOCKEVENTS |
| select GPIOLIB |
| select NEED_MACH_MEMORY_H |
| help |
| Support for Micrel/Kendin KS8695 "Centaur" (ARM922T) based |
| System-on-Chip devices. |
| |
| config ARCH_W90X900 |
| bool "Nuvoton W90X900 CPU" |
| select CLKDEV_LOOKUP |
| select CLKSRC_MMIO |
| select CPU_ARM926T |
| select GENERIC_CLOCKEVENTS |
| select GPIOLIB |
| help |
| Support for Nuvoton (Winbond logic dept.) ARM9 processor, |
| At present, the w90x900 has been renamed nuc900, regarding |
| the ARM series product line, you can login the following |
| link address to know more. |
| |
| <http://www.nuvoton.com/hq/enu/ProductAndSales/ProductLines/ |
| ConsumerElectronicsIC/ARMMicrocontroller/ARMMicrocontroller> |
| |
| config ARCH_LPC32XX |
| bool "NXP LPC32XX" |
| select ARM_AMBA |
| select CLKDEV_LOOKUP |
| select CLKSRC_LPC32XX |
| select COMMON_CLK |
| select CPU_ARM926T |
| select GENERIC_CLOCKEVENTS |
| select GENERIC_IRQ_MULTI_HANDLER |
| select GPIOLIB |
| select SPARSE_IRQ |
| select USE_OF |
| help |
| Support for the NXP LPC32XX family of processors |
| |
| config ARCH_PXA |
| bool "PXA2xx/PXA3xx-based" |
| depends on MMU |
| select ARCH_MTD_XIP |
| select ARM_CPU_SUSPEND if PM |
| select AUTO_ZRELADDR |
| select COMMON_CLK |
| select CLKDEV_LOOKUP |
| select CLKSRC_PXA |
| select CLKSRC_MMIO |
| select TIMER_OF |
| select CPU_XSCALE if !CPU_XSC3 |
| select GENERIC_CLOCKEVENTS |
| select GENERIC_IRQ_MULTI_HANDLER |
| select GPIO_PXA |
| select GPIOLIB |
| select HAVE_IDE |
| select IRQ_DOMAIN |
| select PLAT_PXA |
| select SPARSE_IRQ |
| help |
| Support for Intel/Marvell's PXA2xx/PXA3xx processor line. |
| |
| config ARCH_RPC |
| bool "RiscPC" |
| depends on MMU |
| select ARCH_ACORN |
| select ARCH_MAY_HAVE_PC_FDC |
| select ARCH_SPARSEMEM_ENABLE |
| select ARCH_USES_GETTIMEOFFSET |
| select CPU_SA110 |
| select FIQ |
| select HAVE_IDE |
| select HAVE_PATA_PLATFORM |
| select ISA_DMA_API |
| select NEED_MACH_IO_H |
| select NEED_MACH_MEMORY_H |
| select NO_IOPORT_MAP |
| help |
| On the Acorn Risc-PC, Linux can support the internal IDE disk and |
| CD-ROM interface, serial and parallel port, and the floppy drive. |
| |
| config ARCH_SA1100 |
| bool "SA1100-based" |
| select ARCH_MTD_XIP |
| select ARCH_SPARSEMEM_ENABLE |
| select CLKDEV_LOOKUP |
| select CLKSRC_MMIO |
| select CLKSRC_PXA |
| select TIMER_OF if OF |
| select CPU_FREQ |
| select CPU_SA1100 |
| select GENERIC_CLOCKEVENTS |
| select GENERIC_IRQ_MULTI_HANDLER |
| select GPIOLIB |
| select HAVE_IDE |
| select IRQ_DOMAIN |
| select ISA |
| select NEED_MACH_MEMORY_H |
| select SPARSE_IRQ |
| help |
| Support for StrongARM 11x0 based boards. |
| |
| config ARCH_S3C24XX |
| bool "Samsung S3C24XX SoCs" |
| select ATAGS |
| select CLKDEV_LOOKUP |
| select CLKSRC_SAMSUNG_PWM |
| select GENERIC_CLOCKEVENTS |
| select GPIO_SAMSUNG |
| select GPIOLIB |
| select GENERIC_IRQ_MULTI_HANDLER |
| select HAVE_S3C2410_I2C if I2C |
| select HAVE_S3C2410_WATCHDOG if WATCHDOG |
| select HAVE_S3C_RTC if RTC_CLASS |
| select NEED_MACH_IO_H |
| select SAMSUNG_ATAGS |
| select USE_OF |
| help |
| Samsung S3C2410, S3C2412, S3C2413, S3C2416, S3C2440, S3C2442, S3C2443 |
| and S3C2450 SoCs based systems, such as the Simtec Electronics BAST |
| (<http://www.simtec.co.uk/products/EB110ITX/>), the IPAQ 1940 or the |
| Samsung SMDK2410 development board (and derivatives). |
| |
| config ARCH_DAVINCI |
| bool "TI DaVinci" |
| select ARCH_HAS_HOLES_MEMORYMODEL |
| select COMMON_CLK |
| select CPU_ARM926T |
| select GENERIC_ALLOCATOR |
| select GENERIC_CLOCKEVENTS |
| select GENERIC_IRQ_CHIP |
| select GPIOLIB |
| select HAVE_IDE |
| select PM_GENERIC_DOMAINS if PM |
| select PM_GENERIC_DOMAINS_OF if PM && OF |
| select RESET_CONTROLLER |
| select USE_OF |
| select ZONE_DMA |
| help |
| Support for TI's DaVinci platform. |
| |
| config ARCH_OMAP1 |
| bool "TI OMAP1" |
| depends on MMU |
| select ARCH_HAS_HOLES_MEMORYMODEL |
| select ARCH_OMAP |
| select CLKDEV_LOOKUP |
| select CLKSRC_MMIO |
| select GENERIC_CLOCKEVENTS |
| select GENERIC_IRQ_CHIP |
| select GENERIC_IRQ_MULTI_HANDLER |
| select GPIOLIB |
| select HAVE_IDE |
| select IRQ_DOMAIN |
| select NEED_MACH_IO_H if PCCARD |
| select NEED_MACH_MEMORY_H |
| select SPARSE_IRQ |
| help |
| Support for older TI OMAP1 (omap7xx, omap15xx or omap16xx) |
| |
| endchoice |
| |
| menu "Multiple platform selection" |
| depends on ARCH_MULTIPLATFORM |
| |
| comment "CPU Core family selection" |
| |
| config ARCH_MULTI_V4 |
| bool "ARMv4 based platforms (FA526)" |
| depends on !ARCH_MULTI_V6_V7 |
| select ARCH_MULTI_V4_V5 |
| select CPU_FA526 |
| |
| config ARCH_MULTI_V4T |
| bool "ARMv4T based platforms (ARM720T, ARM920T, ...)" |
| depends on !ARCH_MULTI_V6_V7 |
| select ARCH_MULTI_V4_V5 |
| select CPU_ARM920T if !(CPU_ARM7TDMI || CPU_ARM720T || \ |
| CPU_ARM740T || CPU_ARM9TDMI || CPU_ARM922T || \ |
| CPU_ARM925T || CPU_ARM940T) |
| |
| config ARCH_MULTI_V5 |
| bool "ARMv5 based platforms (ARM926T, XSCALE, PJ1, ...)" |
| depends on !ARCH_MULTI_V6_V7 |
| select ARCH_MULTI_V4_V5 |
| select CPU_ARM926T if !(CPU_ARM946E || CPU_ARM1020 || \ |
| CPU_ARM1020E || CPU_ARM1022 || CPU_ARM1026 || \ |
| CPU_XSCALE || CPU_XSC3 || CPU_MOHAWK || CPU_FEROCEON) |
| |
| config ARCH_MULTI_V4_V5 |
| bool |
| |
| config ARCH_MULTI_V6 |
| bool "ARMv6 based platforms (ARM11)" |
| select ARCH_MULTI_V6_V7 |
| select CPU_V6K |
| |
| config ARCH_MULTI_V7 |
| bool "ARMv7 based platforms (Cortex-A, PJ4, Scorpion, Krait)" |
| default y |
| select ARCH_MULTI_V6_V7 |
| select CPU_V7 |
| select HAVE_SMP |
| |
| config ARCH_MULTI_V6_V7 |
| bool |
| select MIGHT_HAVE_CACHE_L2X0 |
| |
| config ARCH_MULTI_CPU_AUTO |
| def_bool !(ARCH_MULTI_V4 || ARCH_MULTI_V4T || ARCH_MULTI_V6_V7) |
| select ARCH_MULTI_V5 |
| |
| endmenu |
| |
| config ARCH_VIRT |
| bool "Dummy Virtual Machine" |
| depends on ARCH_MULTI_V7 |
| select ARM_AMBA |
| select ARM_GIC |
| select ARM_GIC_V2M if PCI |
| select ARM_GIC_V3 |
| select ARM_GIC_V3_ITS if PCI |
| select ARM_PSCI |
| select HAVE_ARM_ARCH_TIMER |
| select ARCH_SUPPORTS_BIG_ENDIAN |
| |
| # |
| # This is sorted alphabetically by mach-* pathname. However, plat-* |
| # Kconfigs may be included either alphabetically (according to the |
| # plat- suffix) or along side the corresponding mach-* source. |
| # |
| source "arch/arm/mach-actions/Kconfig" |
| |
| source "arch/arm/mach-alpine/Kconfig" |
| |
| source "arch/arm/mach-artpec/Kconfig" |
| |
| source "arch/arm/mach-asm9260/Kconfig" |
| |
| source "arch/arm/mach-aspeed/Kconfig" |
| |
| source "arch/arm/mach-at91/Kconfig" |
| |
| source "arch/arm/mach-axxia/Kconfig" |
| |
| source "arch/arm/mach-bcm/Kconfig" |
| |
| source "arch/arm/mach-berlin/Kconfig" |
| |
| source "arch/arm/mach-clps711x/Kconfig" |
| |
| source "arch/arm/mach-cns3xxx/Kconfig" |
| |
| source "arch/arm/mach-davinci/Kconfig" |
| |
| source "arch/arm/mach-digicolor/Kconfig" |
| |
| source "arch/arm/mach-dove/Kconfig" |
| |
| source "arch/arm/mach-ep93xx/Kconfig" |
| |
| source "arch/arm/mach-exynos/Kconfig" |
| source "arch/arm/plat-samsung/Kconfig" |
| |
| source "arch/arm/mach-footbridge/Kconfig" |
| |
| source "arch/arm/mach-gemini/Kconfig" |
| |
| source "arch/arm/mach-highbank/Kconfig" |
| |
| source "arch/arm/mach-hisi/Kconfig" |
| |
| source "arch/arm/mach-imx/Kconfig" |
| |
| source "arch/arm/mach-integrator/Kconfig" |
| |
| source "arch/arm/mach-iop13xx/Kconfig" |
| |
| source "arch/arm/mach-iop32x/Kconfig" |
| |
| source "arch/arm/mach-iop33x/Kconfig" |
| |
| source "arch/arm/mach-ixp4xx/Kconfig" |
| |
| source "arch/arm/mach-keystone/Kconfig" |
| |
| source "arch/arm/mach-ks8695/Kconfig" |
| |
| source "arch/arm/mach-mediatek/Kconfig" |
| |
| source "arch/arm/mach-meson/Kconfig" |
| |
| source "arch/arm/mach-mmp/Kconfig" |
| |
| source "arch/arm/mach-moxart/Kconfig" |
| |
| source "arch/arm/mach-mv78xx0/Kconfig" |
| |
| source "arch/arm/mach-mvebu/Kconfig" |
| |
| source "arch/arm/mach-mxs/Kconfig" |
| |
| source "arch/arm/mach-netx/Kconfig" |
| |
| source "arch/arm/mach-nomadik/Kconfig" |
| |
| source "arch/arm/mach-npcm/Kconfig" |
| |
| source "arch/arm/mach-nspire/Kconfig" |
| |
| source "arch/arm/plat-omap/Kconfig" |
| |
| source "arch/arm/mach-omap1/Kconfig" |
| |
| source "arch/arm/mach-omap2/Kconfig" |
| |
| source "arch/arm/mach-orion5x/Kconfig" |
| |
| source "arch/arm/mach-oxnas/Kconfig" |
| |
| source "arch/arm/mach-picoxcell/Kconfig" |
| |
| source "arch/arm/mach-prima2/Kconfig" |
| |
| source "arch/arm/mach-pxa/Kconfig" |
| source "arch/arm/plat-pxa/Kconfig" |
| |
| source "arch/arm/mach-qcom/Kconfig" |
| |
| source "arch/arm/mach-rda/Kconfig" |
| |
| source "arch/arm/mach-realview/Kconfig" |
| |
| source "arch/arm/mach-rockchip/Kconfig" |
| |
| source "arch/arm/mach-s3c24xx/Kconfig" |
| |
| source "arch/arm/mach-s3c64xx/Kconfig" |
| |
| source "arch/arm/mach-s5pv210/Kconfig" |
| |
| source "arch/arm/mach-sa1100/Kconfig" |
| |
| source "arch/arm/mach-shmobile/Kconfig" |
| |
| source "arch/arm/mach-socfpga/Kconfig" |
| |
| source "arch/arm/mach-spear/Kconfig" |
| |
| source "arch/arm/mach-sti/Kconfig" |
| |
| source "arch/arm/mach-stm32/Kconfig" |
| |
| source "arch/arm/mach-sunxi/Kconfig" |
| |
| source "arch/arm/mach-tango/Kconfig" |
| |
| source "arch/arm/mach-tegra/Kconfig" |
| |
| source "arch/arm/mach-u300/Kconfig" |
| |
| source "arch/arm/mach-uniphier/Kconfig" |
| |
| source "arch/arm/mach-ux500/Kconfig" |
| |
| source "arch/arm/mach-versatile/Kconfig" |
| |
| source "arch/arm/mach-vexpress/Kconfig" |
| source "arch/arm/plat-versatile/Kconfig" |
| |
| source "arch/arm/mach-vt8500/Kconfig" |
| |
| source "arch/arm/mach-w90x900/Kconfig" |
| |
| source "arch/arm/mach-zx/Kconfig" |
| |
| source "arch/arm/mach-zynq/Kconfig" |
| |
| # ARMv7-M architecture |
| config ARCH_EFM32 |
| bool "Energy Micro efm32" |
| depends on ARM_SINGLE_ARMV7M |
| select GPIOLIB |
| help |
| Support for Energy Micro's (now Silicon Labs) efm32 Giant Gecko |
| processors. |
| |
| config ARCH_LPC18XX |
| bool "NXP LPC18xx/LPC43xx" |
| depends on ARM_SINGLE_ARMV7M |
| select ARCH_HAS_RESET_CONTROLLER |
| select ARM_AMBA |
| select CLKSRC_LPC32XX |
| select PINCTRL |
| help |
| Support for NXP's LPC18xx Cortex-M3 and LPC43xx Cortex-M4 |
| high performance microcontrollers. |
| |
| config ARCH_MPS2 |
| bool "ARM MPS2 platform" |
| depends on ARM_SINGLE_ARMV7M |
| select ARM_AMBA |
| select CLKSRC_MPS2 |
| help |
| Support for Cortex-M Prototyping System (or V2M-MPS2) which comes |
| with a range of available cores like Cortex-M3/M4/M7. |
| |
| Please, note that depends which Application Note is used memory map |
| for the platform may vary, so adjustment of RAM base might be needed. |
| |
| # Definitions to make life easier |
| config ARCH_ACORN |
| bool |
| |
| config PLAT_IOP |
| bool |
| select GENERIC_CLOCKEVENTS |
| |
| config PLAT_ORION |
| bool |
| select CLKSRC_MMIO |
| select COMMON_CLK |
| select GENERIC_IRQ_CHIP |
| select IRQ_DOMAIN |
| |
| config PLAT_ORION_LEGACY |
| bool |
| select PLAT_ORION |
| |
| config PLAT_PXA |
| bool |
| |
| config PLAT_VERSATILE |
| bool |
| |
| source "arch/arm/firmware/Kconfig" |
| |
| source "arch/arm/mm/Kconfig" |
| |
| config IWMMXT |
| bool "Enable iWMMXt support" |
| depends on CPU_XSCALE || CPU_XSC3 || CPU_MOHAWK || CPU_PJ4 || CPU_PJ4B |
| default y if PXA27x || PXA3xx || ARCH_MMP || CPU_PJ4 || CPU_PJ4B |
| help |
| Enable support for iWMMXt context switching at run time if |
| running on a CPU that supports it. |
| |
| if !MMU |
| source "arch/arm/Kconfig-nommu" |
| endif |
| |
| config PJ4B_ERRATA_4742 |
| bool "PJ4B Errata 4742: IDLE Wake Up Commands can Cause the CPU Core to Cease Operation" |
| depends on CPU_PJ4B && MACH_ARMADA_370 |
| default y |
| help |
| When coming out of either a Wait for Interrupt (WFI) or a Wait for |
| Event (WFE) IDLE states, a specific timing sensitivity exists between |
| the retiring WFI/WFE instructions and the newly issued subsequent |
| instructions. This sensitivity can result in a CPU hang scenario. |
| Workaround: |
| The software must insert either a Data Synchronization Barrier (DSB) |
| or Data Memory Barrier (DMB) command immediately after the WFI/WFE |
| instruction |
| |
| config ARM_ERRATA_326103 |
| bool "ARM errata: FSR write bit incorrect on a SWP to read-only memory" |
| depends on CPU_V6 |
| help |
| Executing a SWP instruction to read-only memory does not set bit 11 |
| of the FSR on the ARM 1136 prior to r1p0. This causes the kernel to |
| treat the access as a read, preventing a COW from occurring and |
| causing the faulting task to livelock. |
| |
| config ARM_ERRATA_411920 |
| bool "ARM errata: Invalidation of the Instruction Cache operation can fail" |
| depends on CPU_V6 || CPU_V6K |
| help |
| Invalidation of the Instruction Cache operation can |
| fail. This erratum is present in 1136 (before r1p4), 1156 and 1176. |
| It does not affect the MPCore. This option enables the ARM Ltd. |
| recommended workaround. |
| |
| config ARM_ERRATA_430973 |
| bool "ARM errata: Stale prediction on replaced interworking branch" |
| depends on CPU_V7 |
| help |
| This option enables the workaround for the 430973 Cortex-A8 |
| r1p* erratum. If a code sequence containing an ARM/Thumb |
| interworking branch is replaced with another code sequence at the |
| same virtual address, whether due to self-modifying code or virtual |
| to physical address re-mapping, Cortex-A8 does not recover from the |
| stale interworking branch prediction. This results in Cortex-A8 |
| executing the new code sequence in the incorrect ARM or Thumb state. |
| The workaround enables the BTB/BTAC operations by setting ACTLR.IBE |
| and also flushes the branch target cache at every context switch. |
| Note that setting specific bits in the ACTLR register may not be |
| available in non-secure mode. |
| |
| config ARM_ERRATA_458693 |
| bool "ARM errata: Processor deadlock when a false hazard is created" |
| depends on CPU_V7 |
| depends on !ARCH_MULTIPLATFORM |
| help |
| This option enables the workaround for the 458693 Cortex-A8 (r2p0) |
| erratum. For very specific sequences of memory operations, it is |
| possible for a hazard condition intended for a cache line to instead |
| be incorrectly associated with a different cache line. This false |
| hazard might then cause a processor deadlock. The workaround enables |
| the L1 caching of the NEON accesses and disables the PLD instruction |
| in the ACTLR register. Note that setting specific bits in the ACTLR |
| register may not be available in non-secure mode. |
| |
| config ARM_ERRATA_460075 |
| bool "ARM errata: Data written to the L2 cache can be overwritten with stale data" |
| depends on CPU_V7 |
| depends on !ARCH_MULTIPLATFORM |
| help |
| This option enables the workaround for the 460075 Cortex-A8 (r2p0) |
| erratum. Any asynchronous access to the L2 cache may encounter a |
| situation in which recent store transactions to the L2 cache are lost |
| and overwritten with stale memory contents from external memory. The |
| workaround disables the write-allocate mode for the L2 cache via the |
| ACTLR register. Note that setting specific bits in the ACTLR register |
| may not be available in non-secure mode. |
| |
| config ARM_ERRATA_742230 |
| bool "ARM errata: DMB operation may be faulty" |
| depends on CPU_V7 && SMP |
| depends on !ARCH_MULTIPLATFORM |
| help |
| This option enables the workaround for the 742230 Cortex-A9 |
| (r1p0..r2p2) erratum. Under rare circumstances, a DMB instruction |
| between two write operations may not ensure the correct visibility |
| ordering of the two writes. This workaround sets a specific bit in |
| the diagnostic register of the Cortex-A9 which causes the DMB |
| instruction to behave as a DSB, ensuring the correct behaviour of |
| the two writes. |
| |
| config ARM_ERRATA_742231 |
| bool "ARM errata: Incorrect hazard handling in the SCU may lead to data corruption" |
| depends on CPU_V7 && SMP |
| depends on !ARCH_MULTIPLATFORM |
| help |
| This option enables the workaround for the 742231 Cortex-A9 |
| (r2p0..r2p2) erratum. Under certain conditions, specific to the |
| Cortex-A9 MPCore micro-architecture, two CPUs working in SMP mode, |
| accessing some data located in the same cache line, may get corrupted |
| data due to bad handling of the address hazard when the line gets |
| replaced from one of the CPUs at the same time as another CPU is |
| accessing it. This workaround sets specific bits in the diagnostic |
| register of the Cortex-A9 which reduces the linefill issuing |
| capabilities of the processor. |
| |
| config ARM_ERRATA_643719 |
| bool "ARM errata: LoUIS bit field in CLIDR register is incorrect" |
| depends on CPU_V7 && SMP |
| default y |
| help |
| This option enables the workaround for the 643719 Cortex-A9 (prior to |
| r1p0) erratum. On affected cores the LoUIS bit field of the CLIDR |
| register returns zero when it should return one. The workaround |
| corrects this value, ensuring cache maintenance operations which use |
| it behave as intended and avoiding data corruption. |
| |
| config ARM_ERRATA_720789 |
| bool "ARM errata: TLBIASIDIS and TLBIMVAIS operations can broadcast a faulty ASID" |
| depends on CPU_V7 |
| help |
| This option enables the workaround for the 720789 Cortex-A9 (prior to |
| r2p0) erratum. A faulty ASID can be sent to the other CPUs for the |
| broadcasted CP15 TLB maintenance operations TLBIASIDIS and TLBIMVAIS. |
| As a consequence of this erratum, some TLB entries which should be |
| invalidated are not, resulting in an incoherency in the system page |
| tables. The workaround changes the TLB flushing routines to invalidate |
| entries regardless of the ASID. |
| |
| config ARM_ERRATA_743622 |
| bool "ARM errata: Faulty hazard checking in the Store Buffer may lead to data corruption" |
| depends on CPU_V7 |
| depends on !ARCH_MULTIPLATFORM |
| help |
| This option enables the workaround for the 743622 Cortex-A9 |
| (r2p*) erratum. Under very rare conditions, a faulty |
| optimisation in the Cortex-A9 Store Buffer may lead to data |
| corruption. This workaround sets a specific bit in the diagnostic |
| register of the Cortex-A9 which disables the Store Buffer |
| optimisation, preventing the defect from occurring. This has no |
| visible impact on the overall performance or power consumption of the |
| processor. |
| |
| config ARM_ERRATA_751472 |
| bool "ARM errata: Interrupted ICIALLUIS may prevent completion of broadcasted operation" |
| depends on CPU_V7 |
| depends on !ARCH_MULTIPLATFORM |
| help |
| This option enables the workaround for the 751472 Cortex-A9 (prior |
| to r3p0) erratum. An interrupted ICIALLUIS operation may prevent the |
| completion of a following broadcasted operation if the second |
| operation is received by a CPU before the ICIALLUIS has completed, |
| potentially leading to corrupted entries in the cache or TLB. |
| |
| config ARM_ERRATA_754322 |
| bool "ARM errata: possible faulty MMU translations following an ASID switch" |
| depends on CPU_V7 |
| help |
| This option enables the workaround for the 754322 Cortex-A9 (r2p*, |
| r3p*) erratum. A speculative memory access may cause a page table walk |
| which starts prior to an ASID switch but completes afterwards. This |
| can populate the micro-TLB with a stale entry which may be hit with |
| the new ASID. This workaround places two dsb instructions in the mm |
| switching code so that no page table walks can cross the ASID switch. |
| |
| config ARM_ERRATA_754327 |
| bool "ARM errata: no automatic Store Buffer drain" |
| depends on CPU_V7 && SMP |
| help |
| This option enables the workaround for the 754327 Cortex-A9 (prior to |
| r2p0) erratum. The Store Buffer does not have any automatic draining |
| mechanism and therefore a livelock may occur if an external agent |
| continuously polls a memory location waiting to observe an update. |
| This workaround defines cpu_relax() as smp_mb(), preventing correctly |
| written polling loops from denying visibility of updates to memory. |
| |
| config ARM_ERRATA_364296 |
| bool "ARM errata: Possible cache data corruption with hit-under-miss enabled" |
| depends on CPU_V6 |
| help |
| This options enables the workaround for the 364296 ARM1136 |
| r0p2 erratum (possible cache data corruption with |
| hit-under-miss enabled). It sets the undocumented bit 31 in |
| the auxiliary control register and the FI bit in the control |
| register, thus disabling hit-under-miss without putting the |
| processor into full low interrupt latency mode. ARM11MPCore |
| is not affected. |
| |
| config ARM_ERRATA_764369 |
| bool "ARM errata: Data cache line maintenance operation by MVA may not succeed" |
| depends on CPU_V7 && SMP |
| help |
| This option enables the workaround for erratum 764369 |
| affecting Cortex-A9 MPCore with two or more processors (all |
| current revisions). Under certain timing circumstances, a data |
| cache line maintenance operation by MVA targeting an Inner |
| Shareable memory region may fail to proceed up to either the |
| Point of Coherency or to the Point of Unification of the |
| system. This workaround adds a DSB instruction before the |
| relevant cache maintenance functions and sets a specific bit |
| in the diagnostic control register of the SCU. |
| |
| config ARM_ERRATA_775420 |
| bool "ARM errata: A data cache maintenance operation which aborts, might lead to deadlock" |
| depends on CPU_V7 |
| help |
| This option enables the workaround for the 775420 Cortex-A9 (r2p2, |
| r2p6,r2p8,r2p10,r3p0) erratum. In case a date cache maintenance |
| operation aborts with MMU exception, it might cause the processor |
| to deadlock. This workaround puts DSB before executing ISB if |
| an abort may occur on cache maintenance. |
| |
| config ARM_ERRATA_798181 |
| bool "ARM errata: TLBI/DSB failure on Cortex-A15" |
| depends on CPU_V7 && SMP |
| help |
| On Cortex-A15 (r0p0..r3p2) the TLBI*IS/DSB operations are not |
| adequately shooting down all use of the old entries. This |
| option enables the Linux kernel workaround for this erratum |
| which sends an IPI to the CPUs that are running the same ASID |
| as the one being invalidated. |
| |
| config ARM_ERRATA_773022 |
| bool "ARM errata: incorrect instructions may be executed from loop buffer" |
| depends on CPU_V7 |
| help |
| This option enables the workaround for the 773022 Cortex-A15 |
| (up to r0p4) erratum. In certain rare sequences of code, the |
| loop buffer may deliver incorrect instructions. This |
| workaround disables the loop buffer to avoid the erratum. |
| |
| config ARM_ERRATA_818325_852422 |
| bool "ARM errata: A12: some seqs of opposed cond code instrs => deadlock or corruption" |
| depends on CPU_V7 |
| help |
| This option enables the workaround for: |
| - Cortex-A12 818325: Execution of an UNPREDICTABLE STR or STM |
| instruction might deadlock. Fixed in r0p1. |
| - Cortex-A12 852422: Execution of a sequence of instructions might |
| lead to either a data corruption or a CPU deadlock. Not fixed in |
| any Cortex-A12 cores yet. |
| This workaround for all both errata involves setting bit[12] of the |
| Feature Register. This bit disables an optimisation applied to a |
| sequence of 2 instructions that use opposing condition codes. |
| |
| config ARM_ERRATA_821420 |
| bool "ARM errata: A12: sequence of VMOV to core registers might lead to a dead lock" |
| depends on CPU_V7 |
| help |
| This option enables the workaround for the 821420 Cortex-A12 |
| (all revs) erratum. In very rare timing conditions, a sequence |
| of VMOV to Core registers instructions, for which the second |
| one is in the shadow of a branch or abort, can lead to a |
| deadlock when the VMOV instructions are issued out-of-order. |
| |
| config ARM_ERRATA_825619 |
| bool "ARM errata: A12: DMB NSHST/ISHST mixed ... might cause deadlock" |
| depends on CPU_V7 |
| help |
| This option enables the workaround for the 825619 Cortex-A12 |
| (all revs) erratum. Within rare timing constraints, executing a |
| DMB NSHST or DMB ISHST instruction followed by a mix of Cacheable |
| and Device/Strongly-Ordered loads and stores might cause deadlock |
| |
| config ARM_ERRATA_852421 |
| bool "ARM errata: A17: DMB ST might fail to create order between stores" |
| depends on CPU_V7 |
| help |
| This option enables the workaround for the 852421 Cortex-A17 |
| (r1p0, r1p1, r1p2) erratum. Under very rare timing conditions, |
| execution of a DMB ST instruction might fail to properly order |
| stores from GroupA and stores from GroupB. |
| |
| config ARM_ERRATA_852423 |
| bool "ARM errata: A17: some seqs of opposed cond code instrs => deadlock or corruption" |
| depends on CPU_V7 |
| help |
| This option enables the workaround for: |
| - Cortex-A17 852423: Execution of a sequence of instructions might |
| lead to either a data corruption or a CPU deadlock. Not fixed in |
| any Cortex-A17 cores yet. |
| This is identical to Cortex-A12 erratum 852422. It is a separate |
| config option from the A12 erratum due to the way errata are checked |
| for and handled. |
| |
| endmenu |
| |
| source "arch/arm/common/Kconfig" |
| |
| menu "Bus support" |
| |
| config ISA |
| bool |
| help |
| Find out whether you have ISA slots on your motherboard. ISA is the |
| name of a bus system, i.e. the way the CPU talks to the other stuff |
| inside your box. Other bus systems are PCI, EISA, MicroChannel |
| (MCA) or VESA. ISA is an older system, now being displaced by PCI; |
| newer boards don't support it. If you have ISA, say Y, otherwise N. |
| |
| # Select ISA DMA controller support |
| config ISA_DMA |
| bool |
| select ISA_DMA_API |
| |
| # Select ISA DMA interface |
| config ISA_DMA_API |
| bool |
| |
| config PCI_NANOENGINE |
| bool "BSE nanoEngine PCI support" |
| depends on SA1100_NANOENGINE |
| help |
| Enable PCI on the BSE nanoEngine board. |
| |
| config PCI_HOST_ITE8152 |
| bool |
| depends on PCI && MACH_ARMCORE |
| default y |
| select DMABOUNCE |
| |
| endmenu |
| |
| menu "Kernel Features" |
| |
| config HAVE_SMP |
| bool |
| help |
| This option should be selected by machines which have an SMP- |
| capable CPU. |
| |
| The only effect of this option is to make the SMP-related |
| options available to the user for configuration. |
| |
| config SMP |
| bool "Symmetric Multi-Processing" |
| depends on CPU_V6K || CPU_V7 |
| depends on GENERIC_CLOCKEVENTS |
| depends on HAVE_SMP |
| depends on MMU || ARM_MPU |
| select IRQ_WORK |
| help |
| This enables support for systems with more than one CPU. If you have |
| a system with only one CPU, say N. If you have a system with more |
| than one CPU, say Y. |
| |
| If you say N here, the kernel will run on uni- and multiprocessor |
| machines, but will use only one CPU of a multiprocessor machine. If |
| you say Y here, the kernel will run on many, but not all, |
| uniprocessor machines. On a uniprocessor machine, the kernel |
| will run faster if you say N here. |
| |
| See also <file:Documentation/x86/i386/IO-APIC.txt>, |
| <file:Documentation/lockup-watchdogs.txt> and the SMP-HOWTO available at |
| <http://tldp.org/HOWTO/SMP-HOWTO.html>. |
| |
| If you don't know what to do here, say N. |
| |
| config SMP_ON_UP |
| bool "Allow booting SMP kernel on uniprocessor systems" |
| depends on SMP && !XIP_KERNEL && MMU |
| default y |
| help |
| SMP kernels contain instructions which fail on non-SMP processors. |
| Enabling this option allows the kernel to modify itself to make |
| these instructions safe. Disabling it allows about 1K of space |
| savings. |
| |
| If you don't know what to do here, say Y. |
| |
| config ARM_CPU_TOPOLOGY |
| bool "Support cpu topology definition" |
| depends on SMP && CPU_V7 |
| default y |
| help |
| Support ARM cpu topology definition. The MPIDR register defines |
| affinity between processors which is then used to describe the cpu |
| topology of an ARM System. |
| |
| config SCHED_MC |
| bool "Multi-core scheduler support" |
| depends on ARM_CPU_TOPOLOGY |
| help |
| Multi-core scheduler support improves the CPU scheduler's decision |
| making when dealing with multi-core CPU chips at a cost of slightly |
| increased overhead in some places. If unsure say N here. |
| |
| config SCHED_SMT |
| bool "SMT scheduler support" |
| depends on ARM_CPU_TOPOLOGY |
| help |
| Improves the CPU scheduler's decision making when dealing with |
| MultiThreading at a cost of slightly increased overhead in some |
| places. If unsure say N here. |
| |
| config HAVE_ARM_SCU |
| bool |
| help |
| This option enables support for the ARM system coherency unit |
| |
| config HAVE_ARM_ARCH_TIMER |
| bool "Architected timer support" |
| depends on CPU_V7 |
| select ARM_ARCH_TIMER |
| select GENERIC_CLOCKEVENTS |
| help |
| This option enables support for the ARM architected timer |
| |
| config HAVE_ARM_TWD |
| bool |
| select TIMER_OF if OF |
| help |
| This options enables support for the ARM timer and watchdog unit |
| |
| config MCPM |
| bool "Multi-Cluster Power Management" |
| depends on CPU_V7 && SMP |
| help |
| This option provides the common power management infrastructure |
| for (multi-)cluster based systems, such as big.LITTLE based |
| systems. |
| |
| config MCPM_QUAD_CLUSTER |
| bool |
| depends on MCPM |
| help |
| To avoid wasting resources unnecessarily, MCPM only supports up |
| to 2 clusters by default. |
| Platforms with 3 or 4 clusters that use MCPM must select this |
| option to allow the additional clusters to be managed. |
| |
| config BIG_LITTLE |
| bool "big.LITTLE support (Experimental)" |
| depends on CPU_V7 && SMP |
| select MCPM |
| help |
| This option enables support selections for the big.LITTLE |
| system architecture. |
| |
| config BL_SWITCHER |
| bool "big.LITTLE switcher support" |
| depends on BIG_LITTLE && MCPM && HOTPLUG_CPU && ARM_GIC |
| select CPU_PM |
| help |
| The big.LITTLE "switcher" provides the core functionality to |
| transparently handle transition between a cluster of A15's |
| and a cluster of A7's in a big.LITTLE system. |
| |
| config BL_SWITCHER_DUMMY_IF |
| tristate "Simple big.LITTLE switcher user interface" |
| depends on BL_SWITCHER && DEBUG_KERNEL |
| help |
| This is a simple and dummy char dev interface to control |
| the big.LITTLE switcher core code. It is meant for |
| debugging purposes only. |
| |
| choice |
| prompt "Memory split" |
| depends on MMU |
| default VMSPLIT_3G |
| help |
| Select the desired split between kernel and user memory. |
| |
| If you are not absolutely sure what you are doing, leave this |
| option alone! |
| |
| config VMSPLIT_3G |
| bool "3G/1G user/kernel split" |
| config VMSPLIT_3G_OPT |
| depends on !ARM_LPAE |
| bool "3G/1G user/kernel split (for full 1G low memory)" |
| config VMSPLIT_2G |
| bool "2G/2G user/kernel split" |
| config VMSPLIT_1G |
| bool "1G/3G user/kernel split" |
| endchoice |
| |
| config PAGE_OFFSET |
| hex |
| default PHYS_OFFSET if !MMU |
| default 0x40000000 if VMSPLIT_1G |
| default 0x80000000 if VMSPLIT_2G |
| default 0xB0000000 if VMSPLIT_3G_OPT |
| default 0xC0000000 |
| |
| config NR_CPUS |
| int "Maximum number of CPUs (2-32)" |
| range 2 32 |
| depends on SMP |
| default "4" |
| |
| config HOTPLUG_CPU |
| bool "Support for hot-pluggable CPUs" |
| depends on SMP |
| help |
| Say Y here to experiment with turning CPUs off and on. CPUs |
| can be controlled through /sys/devices/system/cpu. |
| |
| config ARM_PSCI |
| bool "Support for the ARM Power State Coordination Interface (PSCI)" |
| depends on HAVE_ARM_SMCCC |
| select ARM_PSCI_FW |
| help |
| Say Y here if you want Linux to communicate with system firmware |
| implementing the PSCI specification for CPU-centric power |
| management operations described in ARM document number ARM DEN |
| 0022A ("Power State Coordination Interface System Software on |
| ARM processors"). |
| |
| # The GPIO number here must be sorted by descending number. In case of |
| # a multiplatform kernel, we just want the highest value required by the |
| # selected platforms. |
| config ARCH_NR_GPIO |
| int |
| default 2048 if ARCH_SOCFPGA |
| default 1024 if ARCH_BRCMSTB || ARCH_RENESAS || ARCH_TEGRA || \ |
| ARCH_ZYNQ |
| default 512 if ARCH_EXYNOS || ARCH_KEYSTONE || SOC_OMAP5 || \ |
| SOC_DRA7XX || ARCH_S3C24XX || ARCH_S3C64XX || ARCH_S5PV210 |
| default 416 if ARCH_SUNXI |
| default 392 if ARCH_U8500 |
| default 352 if ARCH_VT8500 |
| default 288 if ARCH_ROCKCHIP |
| default 264 if MACH_H4700 |
| default 0 |
| help |
| Maximum number of GPIOs in the system. |
| |
| If unsure, leave the default value. |
| |
| config HZ_FIXED |
| int |
| default 200 if ARCH_EBSA110 |
| default 128 if SOC_AT91RM9200 |
| default 0 |
| |
| choice |
| depends on HZ_FIXED = 0 |
| prompt "Timer frequency" |
| |
| config HZ_100 |
| bool "100 Hz" |
| |
| config HZ_200 |
| bool "200 Hz" |
| |
| config HZ_250 |
| bool "250 Hz" |
| |
| config HZ_300 |
| bool "300 Hz" |
| |
| config HZ_500 |
| bool "500 Hz" |
| |
| config HZ_1000 |
| bool "1000 Hz" |
| |
| endchoice |
| |
| config HZ |
| int |
| default HZ_FIXED if HZ_FIXED != 0 |
| default 100 if HZ_100 |
| default 200 if HZ_200 |
| default 250 if HZ_250 |
| default 300 if HZ_300 |
| default 500 if HZ_500 |
| default 1000 |
| |
| config SCHED_HRTICK |
| def_bool HIGH_RES_TIMERS |
| |
| config THUMB2_KERNEL |
| bool "Compile the kernel in Thumb-2 mode" if !CPU_THUMBONLY |
| depends on (CPU_V7 || CPU_V7M) && !CPU_V6 && !CPU_V6K |
| default y if CPU_THUMBONLY |
| select ARM_UNWIND |
| help |
| By enabling this option, the kernel will be compiled in |
| Thumb-2 mode. |
| |
| If unsure, say N. |
| |
| config THUMB2_AVOID_R_ARM_THM_JUMP11 |
| bool "Work around buggy Thumb-2 short branch relocations in gas" |
| depends on THUMB2_KERNEL && MODULES |
| default y |
| help |
| Various binutils versions can resolve Thumb-2 branches to |
| locally-defined, preemptible global symbols as short-range "b.n" |
| branch instructions. |
| |
| This is a problem, because there's no guarantee the final |
| destination of the symbol, or any candidate locations for a |
| trampoline, are within range of the branch. For this reason, the |
| kernel does not support fixing up the R_ARM_THM_JUMP11 (102) |
| relocation in modules at all, and it makes little sense to add |
| support. |
| |
| The symptom is that the kernel fails with an "unsupported |
| relocation" error when loading some modules. |
| |
| Until fixed tools are available, passing |
| -fno-optimize-sibling-calls to gcc should prevent gcc generating |
| code which hits this problem, at the cost of a bit of extra runtime |
| stack usage in some cases. |
| |
| The problem is described in more detail at: |
| https://bugs.launchpad.net/binutils-linaro/+bug/725126 |
| |
| Only Thumb-2 kernels are affected. |
| |
| Unless you are sure your tools don't have this problem, say Y. |
| |
| config ARM_PATCH_IDIV |
| bool "Runtime patch udiv/sdiv instructions into __aeabi_{u}idiv()" |
| depends on CPU_32v7 && !XIP_KERNEL |
| default y |
| help |
| The ARM compiler inserts calls to __aeabi_idiv() and |
| __aeabi_uidiv() when it needs to perform division on signed |
| and unsigned integers. Some v7 CPUs have support for the sdiv |
| and udiv instructions that can be used to implement those |
| functions. |
| |
| Enabling this option allows the kernel to modify itself to |
| replace the first two instructions of these library functions |
| with the sdiv or udiv plus "bx lr" instructions when the CPU |
| it is running on supports them. Typically this will be faster |
| and less power intensive than running the original library |
| code to do integer division. |
| |
| config AEABI |
| bool "Use the ARM EABI to compile the kernel" if !CPU_V7 && !CPU_V7M && !CPU_V6 && !CPU_V6K |
| default CPU_V7 || CPU_V7M || CPU_V6 || CPU_V6K |
| help |
| This option allows for the kernel to be compiled using the latest |
| ARM ABI (aka EABI). This is only useful if you are using a user |
| space environment that is also compiled with EABI. |
| |
| Since there are major incompatibilities between the legacy ABI and |
| EABI, especially with regard to structure member alignment, this |
| option also changes the kernel syscall calling convention to |
| disambiguate both ABIs and allow for backward compatibility support |
| (selected with CONFIG_OABI_COMPAT). |
| |
| To use this you need GCC version 4.0.0 or later. |
| |
| config OABI_COMPAT |
| bool "Allow old ABI binaries to run with this kernel (EXPERIMENTAL)" |
| depends on AEABI && !THUMB2_KERNEL |
| help |
| This option preserves the old syscall interface along with the |
| new (ARM EABI) one. It also provides a compatibility layer to |
| intercept syscalls that have structure arguments which layout |
| in memory differs between the legacy ABI and the new ARM EABI |
| (only for non "thumb" binaries). This option adds a tiny |
| overhead to all syscalls and produces a slightly larger kernel. |
| |
| The seccomp filter system will not be available when this is |
| selected, since there is no way yet to sensibly distinguish |
| between calling conventions during filtering. |
| |
| If you know you'll be using only pure EABI user space then you |
| can say N here. If this option is not selected and you attempt |
| to execute a legacy ABI binary then the result will be |
| UNPREDICTABLE (in fact it can be predicted that it won't work |
| at all). If in doubt say N. |
| |
| config ARCH_HAS_HOLES_MEMORYMODEL |
| bool |
| |
| config ARCH_SPARSEMEM_ENABLE |
| bool |
| |
| config ARCH_SPARSEMEM_DEFAULT |
| def_bool ARCH_SPARSEMEM_ENABLE |
| |
| config ARCH_SELECT_MEMORY_MODEL |
| def_bool ARCH_SPARSEMEM_ENABLE |
| |
| config HAVE_ARCH_PFN_VALID |
| def_bool ARCH_HAS_HOLES_MEMORYMODEL || !SPARSEMEM |
| |
| config HAVE_GENERIC_GUP |
| def_bool y |
| depends on ARM_LPAE |
| |
| config HIGHMEM |
| bool "High Memory Support" |
| depends on MMU |
| help |
| The address space of ARM processors is only 4 Gigabytes large |
| and it has to accommodate user address space, kernel address |
| space as well as some memory mapped IO. That means that, if you |
| have a large amount of physical memory and/or IO, not all of the |
| memory can be "permanently mapped" by the kernel. The physical |
| memory that is not permanently mapped is called "high memory". |
| |
| Depending on the selected kernel/user memory split, minimum |
| vmalloc space and actual amount of RAM, you may not need this |
| option which should result in a slightly faster kernel. |
| |
| If unsure, say n. |
| |
| config HIGHPTE |
| bool "Allocate 2nd-level pagetables from highmem" if EXPERT |
| depends on HIGHMEM |
| default y |
| help |
| The VM uses one page of physical memory for each page table. |
| For systems with a lot of processes, this can use a lot of |
| precious low memory, eventually leading to low memory being |
| consumed by page tables. Setting this option will allow |
| user-space 2nd level page tables to reside in high memory. |
| |
| config CPU_SW_DOMAIN_PAN |
| bool "Enable use of CPU domains to implement privileged no-access" |
| depends on MMU && !ARM_LPAE |
| default y |
| help |
| Increase kernel security by ensuring that normal kernel accesses |
| are unable to access userspace addresses. This can help prevent |
| use-after-free bugs becoming an exploitable privilege escalation |
| by ensuring that magic values (such as LIST_POISON) will always |
| fault when dereferenced. |
| |
| CPUs with low-vector mappings use a best-efforts implementation. |
| Their lower 1MB needs to remain accessible for the vectors, but |
| the remainder of userspace will become appropriately inaccessible. |
| |
| config HW_PERF_EVENTS |
| def_bool y |
| depends on ARM_PMU |
| |
| config SYS_SUPPORTS_HUGETLBFS |
| def_bool y |
| depends on ARM_LPAE |
| |
| config HAVE_ARCH_TRANSPARENT_HUGEPAGE |
| def_bool y |
| depends on ARM_LPAE |
| |
| config ARCH_WANT_GENERAL_HUGETLB |
| def_bool y |
| |
| config ARM_MODULE_PLTS |
| bool "Use PLTs to allow module memory to spill over into vmalloc area" |
| depends on MODULES |
| default y |
| help |
| Allocate PLTs when loading modules so that jumps and calls whose |
| targets are too far away for their relative offsets to be encoded |
| in the instructions themselves can be bounced via veneers in the |
| module's PLT. This allows modules to be allocated in the generic |
| vmalloc area after the dedicated module memory area has been |
| exhausted. The modules will use slightly more memory, but after |
| rounding up to page size, the actual memory footprint is usually |
| the same. |
| |
| Disabling this is usually safe for small single-platform |
| configurations. If unsure, say y. |
| |
| config FORCE_MAX_ZONEORDER |
| int "Maximum zone order" |
| default "12" if SOC_AM33XX |
| default "9" if SA1111 || ARCH_EFM32 |
| default "11" |
| help |
| The kernel memory allocator divides physically contiguous memory |
| blocks into "zones", where each zone is a power of two number of |
| pages. This option selects the largest power of two that the kernel |
| keeps in the memory allocator. If you need to allocate very large |
| blocks of physically contiguous memory, then you may need to |
| increase this value. |
| |
| This config option is actually maximum order plus one. For example, |
| a value of 11 means that the largest free memory block is 2^10 pages. |
| |
| config ALIGNMENT_TRAP |
| bool |
| depends on CPU_CP15_MMU |
| default y if !ARCH_EBSA110 |
| select HAVE_PROC_CPU if PROC_FS |
| help |
| ARM processors cannot fetch/store information which is not |
| naturally aligned on the bus, i.e., a 4 byte fetch must start at an |
| address divisible by 4. On 32-bit ARM processors, these non-aligned |
| fetch/store instructions will be emulated in software if you say |
| here, which has a severe performance impact. This is necessary for |
| correct operation of some network protocols. With an IP-only |
| configuration it is safe to say N, otherwise say Y. |
| |
| config UACCESS_WITH_MEMCPY |
| bool "Use kernel mem{cpy,set}() for {copy_to,clear}_user()" |
| depends on MMU |
| default y if CPU_FEROCEON |
| help |
| Implement faster copy_to_user and clear_user methods for CPU |
| cores where a 8-word STM instruction give significantly higher |
| memory write throughput than a sequence of individual 32bit stores. |
| |
| A possible side effect is a slight increase in scheduling latency |
| between threads sharing the same address space if they invoke |
| such copy operations with large buffers. |
| |
| However, if the CPU data cache is using a write-allocate mode, |
| this option is unlikely to provide any performance gain. |
| |
| config SECCOMP |
| bool |
| prompt "Enable seccomp to safely compute untrusted bytecode" |
| ---help--- |
| This kernel feature is useful for number crunching applications |
| that may need to compute untrusted bytecode during their |
| execution. By using pipes or other transports made available to |
| the process as file descriptors supporting the read/write |
| syscalls, it's possible to isolate those applications in |
| their own address space using seccomp. Once seccomp is |
| enabled via prctl(PR_SET_SECCOMP), it cannot be disabled |
| and the task is only allowed to execute a few safe syscalls |
| defined by each seccomp mode. |
| |
| config PARAVIRT |
| bool "Enable paravirtualization code" |
| help |
| This changes the kernel so it can modify itself when it is run |
| under a hypervisor, potentially improving performance significantly |
| over full virtualization. |
| |
| config PARAVIRT_TIME_ACCOUNTING |
| bool "Paravirtual steal time accounting" |
| select PARAVIRT |
| help |
| Select this option to enable fine granularity task steal time |
| accounting. Time spent executing other tasks in parallel with |
| the current vCPU is discounted from the vCPU power. To account for |
| that, there can be a small performance impact. |
| |
| If in doubt, say N here. |
| |
| config XEN_DOM0 |
| def_bool y |
| depends on XEN |
| |
| config XEN |
| bool "Xen guest support on ARM" |
| depends on ARM && AEABI && OF |
| depends on CPU_V7 && !CPU_V6 |
| depends on !GENERIC_ATOMIC64 |
| depends on MMU |
| select ARCH_DMA_ADDR_T_64BIT |
| select ARM_PSCI |
| select SWIOTLB |
| select SWIOTLB_XEN |
| select PARAVIRT |
| help |
| Say Y if you want to run Linux in a Virtual Machine on Xen on ARM. |
| |
| config STACKPROTECTOR_PER_TASK |
| bool "Use a unique stack canary value for each task" |
| depends on GCC_PLUGINS && STACKPROTECTOR && SMP && !XIP_DEFLATED_DATA |
| select GCC_PLUGIN_ARM_SSP_PER_TASK |
| default y |
| help |
| Due to the fact that GCC uses an ordinary symbol reference from |
| which to load the value of the stack canary, this value can only |
| change at reboot time on SMP systems, and all tasks running in the |
| kernel's address space are forced to use the same canary value for |
| the entire duration that the system is up. |
| |
| Enable this option to switch to a different method that uses a |
| different canary value for each task. |
| |
| endmenu |
| |
| menu "Boot options" |
| |
| config USE_OF |
| bool "Flattened Device Tree support" |
| select IRQ_DOMAIN |
| select OF |
| help |
| Include support for flattened device tree machine descriptions. |
| |
| config ATAGS |
| bool "Support for the traditional ATAGS boot data passing" if USE_OF |
| default y |
| help |
| This is the traditional way of passing data to the kernel at boot |
| time. If you are solely relying on the flattened device tree (or |
| the ARM_ATAG_DTB_COMPAT option) then you may unselect this option |
| to remove ATAGS support from your kernel binary. If unsure, |
| leave this to y. |
| |
| config DEPRECATED_PARAM_STRUCT |
| bool "Provide old way to pass kernel parameters" |
| depends on ATAGS |
| help |
| This was deprecated in 2001 and announced to live on for 5 years. |
| Some old boot loaders still use this way. |
| |
| # Compressed boot loader in ROM. Yes, we really want to ask about |
| # TEXT and BSS so we preserve their values in the config files. |
| config ZBOOT_ROM_TEXT |
| hex "Compressed ROM boot loader base address" |
| default "0" |
| help |
| The physical address at which the ROM-able zImage is to be |
| placed in the target. Platforms which normally make use of |
| ROM-able zImage formats normally set this to a suitable |
| value in their defconfig file. |
| |
| If ZBOOT_ROM is not enabled, this has no effect. |
| |
| config ZBOOT_ROM_BSS |
| hex "Compressed ROM boot loader BSS address" |
| default "0" |
| help |
| The base address of an area of read/write memory in the target |
| for the ROM-able zImage which must be available while the |
| decompressor is running. It must be large enough to hold the |
| entire decompressed kernel plus an additional 128 KiB. |
| Platforms which normally make use of ROM-able zImage formats |
| normally set this to a suitable value in their defconfig file. |
| |
| If ZBOOT_ROM is not enabled, this has no effect. |
| |
| config ZBOOT_ROM |
| bool "Compressed boot loader in ROM/flash" |
| depends on ZBOOT_ROM_TEXT != ZBOOT_ROM_BSS |
| depends on !ARM_APPENDED_DTB && !XIP_KERNEL && !AUTO_ZRELADDR |
| help |
| Say Y here if you intend to execute your compressed kernel image |
| (zImage) directly from ROM or flash. If unsure, say N. |
| |
| config ARM_APPENDED_DTB |
| bool "Use appended device tree blob to zImage (EXPERIMENTAL)" |
| depends on OF |
| help |
| With this option, the boot code will look for a device tree binary |
| (DTB) appended to zImage |
| (e.g. cat zImage <filename>.dtb > zImage_w_dtb). |
| |
| This is meant as a backward compatibility convenience for those |
| systems with a bootloader that can't be upgraded to accommodate |
| the documented boot protocol using a device tree. |
| |
| Beware that there is very little in terms of protection against |
| this option being confused by leftover garbage in memory that might |
| look like a DTB header after a reboot if no actual DTB is appended |
| to zImage. Do not leave this option active in a production kernel |
| if you don't intend to always append a DTB. Proper passing of the |
| location into r2 of a bootloader provided DTB is always preferable |
| to this option. |
| |
| config ARM_ATAG_DTB_COMPAT |
| bool "Supplement the appended DTB with traditional ATAG information" |
| depends on ARM_APPENDED_DTB |
| help |
| Some old bootloaders can't be updated to a DTB capable one, yet |
| they provide ATAGs with memory configuration, the ramdisk address, |
| the kernel cmdline string, etc. Such information is dynamically |
| provided by the bootloader and can't always be stored in a static |
| DTB. To allow a device tree enabled kernel to be used with such |
| bootloaders, this option allows zImage to extract the information |
| from the ATAG list and store it at run time into the appended DTB. |
| |
| choice |
| prompt "Kernel command line type" if ARM_ATAG_DTB_COMPAT |
| default ARM_ATAG_DTB_COMPAT_CMDLINE_FROM_BOOTLOADER |
| |
| config ARM_ATAG_DTB_COMPAT_CMDLINE_FROM_BOOTLOADER |
| bool "Use bootloader kernel arguments if available" |
| help |
| Uses the command-line options passed by the boot loader instead of |
| the device tree bootargs property. If the boot loader doesn't provide |
| any, the device tree bootargs property will be used. |
| |
| config ARM_ATAG_DTB_COMPAT_CMDLINE_EXTEND |
| bool "Extend with bootloader kernel arguments" |
| help |
| The command-line arguments provided by the boot loader will be |
| appended to the the device tree bootargs property. |
| |
| endchoice |
| |
| config CMDLINE |
| string "Default kernel command string" |
| default "" |
| help |
| On some architectures (EBSA110 and CATS), there is currently no way |
| for the boot loader to pass arguments to the kernel. For these |
| architectures, you should supply some command-line options at build |
| time by entering them here. As a minimum, you should specify the |
| memory size and the root device (e.g., mem=64M root=/dev/nfs). |
| |
| choice |
| prompt "Kernel command line type" if CMDLINE != "" |
| default CMDLINE_FROM_BOOTLOADER |
| depends on ATAGS |
| |
| config CMDLINE_FROM_BOOTLOADER |
| bool "Use bootloader kernel arguments if available" |
| help |
| Uses the command-line options passed by the boot loader. If |
| the boot loader doesn't provide any, the default kernel command |
| string provided in CMDLINE will be used. |
| |
| config CMDLINE_EXTEND |
| bool "Extend bootloader kernel arguments" |
| help |
| The command-line arguments provided by the boot loader will be |
| appended to the default kernel command string. |
| |
| config CMDLINE_FORCE |
| bool "Always use the default kernel command string" |
| help |
| Always use the default kernel command string, even if the boot |
| loader passes other arguments to the kernel. |
| This is useful if you cannot or don't want to change the |
| command-line options your boot loader passes to the kernel. |
| endchoice |
| |
| config XIP_KERNEL |
| bool "Kernel Execute-In-Place from ROM" |
| depends on !ARM_LPAE && !ARCH_MULTIPLATFORM |
| help |
| Execute-In-Place allows the kernel to run from non-volatile storage |
| directly addressable by the CPU, such as NOR flash. This saves RAM |
| space since the text section of the kernel is not loaded from flash |
| to RAM. Read-write sections, such as the data section and stack, |
| are still copied to RAM. The XIP kernel is not compressed since |
| it has to run directly from flash, so it will take more space to |
| store it. The flash address used to link the kernel object files, |
| and for storing it, is configuration dependent. Therefore, if you |
| say Y here, you must know the proper physical address where to |
| store the kernel image depending on your own flash memory usage. |
| |
| Also note that the make target becomes "make xipImage" rather than |
| "make zImage" or "make Image". The final kernel binary to put in |
| ROM memory will be arch/arm/boot/xipImage. |
| |
| If unsure, say N. |
| |
| config XIP_PHYS_ADDR |
| hex "XIP Kernel Physical Location" |
| depends on XIP_KERNEL |
| default "0x00080000" |
| help |
| This is the physical address in your flash memory the kernel will |
| be linked for and stored to. This address is dependent on your |
| own flash usage. |
| |
| config XIP_DEFLATED_DATA |
| bool "Store kernel .data section compressed in ROM" |
| depends on XIP_KERNEL |
| select ZLIB_INFLATE |
| help |
| Before the kernel is actually executed, its .data section has to be |
| copied to RAM from ROM. This option allows for storing that data |
| in compressed form and decompressed to RAM rather than merely being |
| copied, saving some precious ROM space. A possible drawback is a |
| slightly longer boot delay. |
| |
| config KEXEC |
| bool "Kexec system call (EXPERIMENTAL)" |
| depends on (!SMP || PM_SLEEP_SMP) |
| depends on !CPU_V7M |
| select KEXEC_CORE |
| help |
| kexec is a system call that implements the ability to shutdown your |
| current kernel, and to start another kernel. It is like a reboot |
| but it is independent of the system firmware. And like a reboot |
| you can start any kernel with it, not just Linux. |
| |
| It is an ongoing process to be certain the hardware in a machine |
| is properly shutdown, so do not be surprised if this code does not |
| initially work for you. |
| |
| config ATAGS_PROC |
| bool "Export atags in procfs" |
| depends on ATAGS && KEXEC |
| default y |
| help |
| Should the atags used to boot the kernel be exported in an "atags" |
| file in procfs. Useful with kexec. |
| |
| config CRASH_DUMP |
| bool "Build kdump crash kernel (EXPERIMENTAL)" |
| help |
| Generate crash dump after being started by kexec. This should |
| be normally only set in special crash dump kernels which are |
| loaded in the main kernel with kexec-tools into a specially |
| reserved region and then later executed after a crash by |
| kdump/kexec. The crash dump kernel must be compiled to a |
| memory address not used by the main kernel |
| |
| For more details see Documentation/kdump/kdump.txt |
| |
| config AUTO_ZRELADDR |
| bool "Auto calculation of the decompressed kernel image address" |
| help |
| ZRELADDR is the physical address where the decompressed kernel |
| image will be placed. If AUTO_ZRELADDR is selected, the address |
| will be determined at run-time by masking the current IP with |
| 0xf8000000. This assumes the zImage being placed in the first 128MB |
| from start of memory. |
| |
| config EFI_STUB |
| bool |
| |
| config EFI |
| bool "UEFI runtime support" |
| depends on OF && !CPU_BIG_ENDIAN && MMU && AUTO_ZRELADDR && !XIP_KERNEL |
| select UCS2_STRING |
| select EFI_PARAMS_FROM_FDT |
| select EFI_STUB |
| select EFI_ARMSTUB |
| select EFI_RUNTIME_WRAPPERS |
| ---help--- |
| This option provides support for runtime services provided |
| by UEFI firmware (such as non-volatile variables, realtime |
| clock, and platform reset). A UEFI stub is also provided to |
| allow the kernel to be booted as an EFI application. This |
| is only useful for kernels that may run on systems that have |
| UEFI firmware. |
| |
| config DMI |
| bool "Enable support for SMBIOS (DMI) tables" |
| depends on EFI |
| default y |
| help |
| This enables SMBIOS/DMI feature for systems. |
| |
| This option is only useful on systems that have UEFI firmware. |
| However, even with this option, the resultant kernel should |
| continue to boot on existing non-UEFI platforms. |
| |
| NOTE: This does *NOT* enable or encourage the use of DMI quirks, |
| i.e., the the practice of identifying the platform via DMI to |
| decide whether certain workarounds for buggy hardware and/or |
| firmware need to be enabled. This would require the DMI subsystem |
| to be enabled much earlier than we do on ARM, which is non-trivial. |
| |
| endmenu |
| |
| menu "CPU Power Management" |
| |
| source "drivers/cpufreq/Kconfig" |
| |
| source "drivers/cpuidle/Kconfig" |
| |
| endmenu |
| |
| menu "Floating point emulation" |
| |
| comment "At least one emulation must be selected" |
| |
| config FPE_NWFPE |
| bool "NWFPE math emulation" |
| depends on (!AEABI || OABI_COMPAT) && !THUMB2_KERNEL |
| ---help--- |
| Say Y to include the NWFPE floating point emulator in the kernel. |
| This is necessary to run most binaries. Linux does not currently |
| support floating point hardware so you need to say Y here even if |
| your machine has an FPA or floating point co-processor podule. |
| |
| You may say N here if you are going to load the Acorn FPEmulator |
| early in the bootup. |
| |
| config FPE_NWFPE_XP |
| bool "Support extended precision" |
| depends on FPE_NWFPE |
| help |
| Say Y to include 80-bit support in the kernel floating-point |
| emulator. Otherwise, only 32 and 64-bit support is compiled in. |
| Note that gcc does not generate 80-bit operations by default, |
| so in most cases this option only enlarges the size of the |
| floating point emulator without any good reason. |
| |
| You almost surely want to say N here. |
| |
| config FPE_FASTFPE |
| bool "FastFPE math emulation (EXPERIMENTAL)" |
| depends on (!AEABI || OABI_COMPAT) && !CPU_32v3 |
| ---help--- |
| Say Y here to include the FAST floating point emulator in the kernel. |
| This is an experimental much faster emulator which now also has full |
| precision for the mantissa. It does not support any exceptions. |
| It is very simple, and approximately 3-6 times faster than NWFPE. |
| |
| It should be sufficient for most programs. It may be not suitable |
| for scientific calculations, but you have to check this for yourself. |
| If you do not feel you need a faster FP emulation you should better |
| choose NWFPE. |
| |
| config VFP |
| bool "VFP-format floating point maths" |
| depends on CPU_V6 || CPU_V6K || CPU_ARM926T || CPU_V7 || CPU_FEROCEON |
| help |
| Say Y to include VFP support code in the kernel. This is needed |
| if your hardware includes a VFP unit. |
| |
| Please see <file:Documentation/arm/VFP/release-notes.txt> for |
| release notes and additional status information. |
| |
| Say N if your target does not have VFP hardware. |
| |
| config VFPv3 |
| bool |
| depends on VFP |
| default y if CPU_V7 |
| |
| config NEON |
| bool "Advanced SIMD (NEON) Extension support" |
| depends on VFPv3 && CPU_V7 |
| help |
| Say Y to include support code for NEON, the ARMv7 Advanced SIMD |
| Extension. |
| |
| config KERNEL_MODE_NEON |
| bool "Support for NEON in kernel mode" |
| depends on NEON && AEABI |
| help |
| Say Y to include support for NEON in kernel mode. |
| |
| endmenu |
| |
| menu "Power management options" |
| |
| source "kernel/power/Kconfig" |
| |
| config ARCH_SUSPEND_POSSIBLE |
| depends on CPU_ARM920T || CPU_ARM926T || CPU_FEROCEON || CPU_SA1100 || \ |
| CPU_V6 || CPU_V6K || CPU_V7 || CPU_V7M || CPU_XSC3 || CPU_XSCALE || CPU_MOHAWK |
| def_bool y |
| |
| config ARM_CPU_SUSPEND |
| def_bool PM_SLEEP || BL_SWITCHER || ARM_PSCI_FW |
| depends on ARCH_SUSPEND_POSSIBLE |
| |
| config ARCH_HIBERNATION_POSSIBLE |
| bool |
| depends on MMU |
| default y if ARCH_SUSPEND_POSSIBLE |
| |
| endmenu |
| |
| source "drivers/firmware/Kconfig" |
| |
| if CRYPTO |
| source "arch/arm/crypto/Kconfig" |
| endif |
| |
| source "arch/arm/kvm/Kconfig" |