| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright IBM Corporation, 2018 |
| * Authors Suraj Jitindar Singh <sjitindarsingh@gmail.com> |
| * Paul Mackerras <paulus@ozlabs.org> |
| * |
| * Description: KVM functions specific to running nested KVM-HV guests |
| * on Book3S processors (specifically POWER9 and later). |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/kvm_host.h> |
| #include <linux/llist.h> |
| #include <linux/pgtable.h> |
| |
| #include <asm/kvm_ppc.h> |
| #include <asm/kvm_book3s.h> |
| #include <asm/mmu.h> |
| #include <asm/pgalloc.h> |
| #include <asm/pte-walk.h> |
| #include <asm/reg.h> |
| #include <asm/plpar_wrappers.h> |
| #include <asm/firmware.h> |
| |
| static struct patb_entry *pseries_partition_tb; |
| |
| static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp); |
| static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free); |
| |
| void kvmhv_save_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr) |
| { |
| struct kvmppc_vcore *vc = vcpu->arch.vcore; |
| |
| hr->pcr = vc->pcr | PCR_MASK; |
| hr->dpdes = vc->dpdes; |
| hr->hfscr = vcpu->arch.hfscr; |
| hr->tb_offset = vc->tb_offset; |
| hr->dawr0 = vcpu->arch.dawr0; |
| hr->dawrx0 = vcpu->arch.dawrx0; |
| hr->ciabr = vcpu->arch.ciabr; |
| hr->purr = vcpu->arch.purr; |
| hr->spurr = vcpu->arch.spurr; |
| hr->ic = vcpu->arch.ic; |
| hr->vtb = vc->vtb; |
| hr->srr0 = vcpu->arch.shregs.srr0; |
| hr->srr1 = vcpu->arch.shregs.srr1; |
| hr->sprg[0] = vcpu->arch.shregs.sprg0; |
| hr->sprg[1] = vcpu->arch.shregs.sprg1; |
| hr->sprg[2] = vcpu->arch.shregs.sprg2; |
| hr->sprg[3] = vcpu->arch.shregs.sprg3; |
| hr->pidr = vcpu->arch.pid; |
| hr->cfar = vcpu->arch.cfar; |
| hr->ppr = vcpu->arch.ppr; |
| hr->dawr1 = vcpu->arch.dawr1; |
| hr->dawrx1 = vcpu->arch.dawrx1; |
| } |
| |
| /* Use noinline_for_stack due to https://bugs.llvm.org/show_bug.cgi?id=49610 */ |
| static noinline_for_stack void byteswap_pt_regs(struct pt_regs *regs) |
| { |
| unsigned long *addr = (unsigned long *) regs; |
| |
| for (; addr < ((unsigned long *) (regs + 1)); addr++) |
| *addr = swab64(*addr); |
| } |
| |
| static void byteswap_hv_regs(struct hv_guest_state *hr) |
| { |
| hr->version = swab64(hr->version); |
| hr->lpid = swab32(hr->lpid); |
| hr->vcpu_token = swab32(hr->vcpu_token); |
| hr->lpcr = swab64(hr->lpcr); |
| hr->pcr = swab64(hr->pcr) | PCR_MASK; |
| hr->amor = swab64(hr->amor); |
| hr->dpdes = swab64(hr->dpdes); |
| hr->hfscr = swab64(hr->hfscr); |
| hr->tb_offset = swab64(hr->tb_offset); |
| hr->dawr0 = swab64(hr->dawr0); |
| hr->dawrx0 = swab64(hr->dawrx0); |
| hr->ciabr = swab64(hr->ciabr); |
| hr->hdec_expiry = swab64(hr->hdec_expiry); |
| hr->purr = swab64(hr->purr); |
| hr->spurr = swab64(hr->spurr); |
| hr->ic = swab64(hr->ic); |
| hr->vtb = swab64(hr->vtb); |
| hr->hdar = swab64(hr->hdar); |
| hr->hdsisr = swab64(hr->hdsisr); |
| hr->heir = swab64(hr->heir); |
| hr->asdr = swab64(hr->asdr); |
| hr->srr0 = swab64(hr->srr0); |
| hr->srr1 = swab64(hr->srr1); |
| hr->sprg[0] = swab64(hr->sprg[0]); |
| hr->sprg[1] = swab64(hr->sprg[1]); |
| hr->sprg[2] = swab64(hr->sprg[2]); |
| hr->sprg[3] = swab64(hr->sprg[3]); |
| hr->pidr = swab64(hr->pidr); |
| hr->cfar = swab64(hr->cfar); |
| hr->ppr = swab64(hr->ppr); |
| hr->dawr1 = swab64(hr->dawr1); |
| hr->dawrx1 = swab64(hr->dawrx1); |
| } |
| |
| static void save_hv_return_state(struct kvm_vcpu *vcpu, |
| struct hv_guest_state *hr) |
| { |
| struct kvmppc_vcore *vc = vcpu->arch.vcore; |
| |
| hr->dpdes = vc->dpdes; |
| hr->purr = vcpu->arch.purr; |
| hr->spurr = vcpu->arch.spurr; |
| hr->ic = vcpu->arch.ic; |
| hr->vtb = vc->vtb; |
| hr->srr0 = vcpu->arch.shregs.srr0; |
| hr->srr1 = vcpu->arch.shregs.srr1; |
| hr->sprg[0] = vcpu->arch.shregs.sprg0; |
| hr->sprg[1] = vcpu->arch.shregs.sprg1; |
| hr->sprg[2] = vcpu->arch.shregs.sprg2; |
| hr->sprg[3] = vcpu->arch.shregs.sprg3; |
| hr->pidr = vcpu->arch.pid; |
| hr->cfar = vcpu->arch.cfar; |
| hr->ppr = vcpu->arch.ppr; |
| switch (vcpu->arch.trap) { |
| case BOOK3S_INTERRUPT_H_DATA_STORAGE: |
| hr->hdar = vcpu->arch.fault_dar; |
| hr->hdsisr = vcpu->arch.fault_dsisr; |
| hr->asdr = vcpu->arch.fault_gpa; |
| break; |
| case BOOK3S_INTERRUPT_H_INST_STORAGE: |
| hr->asdr = vcpu->arch.fault_gpa; |
| break; |
| case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: |
| hr->hfscr = ((~HFSCR_INTR_CAUSE & hr->hfscr) | |
| (HFSCR_INTR_CAUSE & vcpu->arch.hfscr)); |
| break; |
| case BOOK3S_INTERRUPT_H_EMUL_ASSIST: |
| hr->heir = vcpu->arch.emul_inst; |
| break; |
| } |
| } |
| |
| static void restore_hv_regs(struct kvm_vcpu *vcpu, const struct hv_guest_state *hr) |
| { |
| struct kvmppc_vcore *vc = vcpu->arch.vcore; |
| |
| vc->pcr = hr->pcr | PCR_MASK; |
| vc->dpdes = hr->dpdes; |
| vcpu->arch.hfscr = hr->hfscr; |
| vcpu->arch.dawr0 = hr->dawr0; |
| vcpu->arch.dawrx0 = hr->dawrx0; |
| vcpu->arch.ciabr = hr->ciabr; |
| vcpu->arch.purr = hr->purr; |
| vcpu->arch.spurr = hr->spurr; |
| vcpu->arch.ic = hr->ic; |
| vc->vtb = hr->vtb; |
| vcpu->arch.shregs.srr0 = hr->srr0; |
| vcpu->arch.shregs.srr1 = hr->srr1; |
| vcpu->arch.shregs.sprg0 = hr->sprg[0]; |
| vcpu->arch.shregs.sprg1 = hr->sprg[1]; |
| vcpu->arch.shregs.sprg2 = hr->sprg[2]; |
| vcpu->arch.shregs.sprg3 = hr->sprg[3]; |
| vcpu->arch.pid = hr->pidr; |
| vcpu->arch.cfar = hr->cfar; |
| vcpu->arch.ppr = hr->ppr; |
| vcpu->arch.dawr1 = hr->dawr1; |
| vcpu->arch.dawrx1 = hr->dawrx1; |
| } |
| |
| void kvmhv_restore_hv_return_state(struct kvm_vcpu *vcpu, |
| struct hv_guest_state *hr) |
| { |
| struct kvmppc_vcore *vc = vcpu->arch.vcore; |
| |
| vc->dpdes = hr->dpdes; |
| vcpu->arch.hfscr = hr->hfscr; |
| vcpu->arch.purr = hr->purr; |
| vcpu->arch.spurr = hr->spurr; |
| vcpu->arch.ic = hr->ic; |
| vc->vtb = hr->vtb; |
| vcpu->arch.fault_dar = hr->hdar; |
| vcpu->arch.fault_dsisr = hr->hdsisr; |
| vcpu->arch.fault_gpa = hr->asdr; |
| vcpu->arch.emul_inst = hr->heir; |
| vcpu->arch.shregs.srr0 = hr->srr0; |
| vcpu->arch.shregs.srr1 = hr->srr1; |
| vcpu->arch.shregs.sprg0 = hr->sprg[0]; |
| vcpu->arch.shregs.sprg1 = hr->sprg[1]; |
| vcpu->arch.shregs.sprg2 = hr->sprg[2]; |
| vcpu->arch.shregs.sprg3 = hr->sprg[3]; |
| vcpu->arch.pid = hr->pidr; |
| vcpu->arch.cfar = hr->cfar; |
| vcpu->arch.ppr = hr->ppr; |
| } |
| |
| static void kvmhv_nested_mmio_needed(struct kvm_vcpu *vcpu, u64 regs_ptr) |
| { |
| /* No need to reflect the page fault to L1, we've handled it */ |
| vcpu->arch.trap = 0; |
| |
| /* |
| * Since the L2 gprs have already been written back into L1 memory when |
| * we complete the mmio, store the L1 memory location of the L2 gpr |
| * being loaded into by the mmio so that the loaded value can be |
| * written there in kvmppc_complete_mmio_load() |
| */ |
| if (((vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) == KVM_MMIO_REG_GPR) |
| && (vcpu->mmio_is_write == 0)) { |
| vcpu->arch.nested_io_gpr = (gpa_t) regs_ptr + |
| offsetof(struct pt_regs, |
| gpr[vcpu->arch.io_gpr]); |
| vcpu->arch.io_gpr = KVM_MMIO_REG_NESTED_GPR; |
| } |
| } |
| |
| static int kvmhv_read_guest_state_and_regs(struct kvm_vcpu *vcpu, |
| struct hv_guest_state *l2_hv, |
| struct pt_regs *l2_regs, |
| u64 hv_ptr, u64 regs_ptr) |
| { |
| int size; |
| |
| if (kvm_vcpu_read_guest(vcpu, hv_ptr, &l2_hv->version, |
| sizeof(l2_hv->version))) |
| return -1; |
| |
| if (kvmppc_need_byteswap(vcpu)) |
| l2_hv->version = swab64(l2_hv->version); |
| |
| size = hv_guest_state_size(l2_hv->version); |
| if (size < 0) |
| return -1; |
| |
| return kvm_vcpu_read_guest(vcpu, hv_ptr, l2_hv, size) || |
| kvm_vcpu_read_guest(vcpu, regs_ptr, l2_regs, |
| sizeof(struct pt_regs)); |
| } |
| |
| static int kvmhv_write_guest_state_and_regs(struct kvm_vcpu *vcpu, |
| struct hv_guest_state *l2_hv, |
| struct pt_regs *l2_regs, |
| u64 hv_ptr, u64 regs_ptr) |
| { |
| int size; |
| |
| size = hv_guest_state_size(l2_hv->version); |
| if (size < 0) |
| return -1; |
| |
| return kvm_vcpu_write_guest(vcpu, hv_ptr, l2_hv, size) || |
| kvm_vcpu_write_guest(vcpu, regs_ptr, l2_regs, |
| sizeof(struct pt_regs)); |
| } |
| |
| static void load_l2_hv_regs(struct kvm_vcpu *vcpu, |
| const struct hv_guest_state *l2_hv, |
| const struct hv_guest_state *l1_hv, u64 *lpcr) |
| { |
| struct kvmppc_vcore *vc = vcpu->arch.vcore; |
| u64 mask; |
| |
| restore_hv_regs(vcpu, l2_hv); |
| |
| /* |
| * Don't let L1 change LPCR bits for the L2 except these: |
| */ |
| mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD | LPCR_MER; |
| |
| /* |
| * Additional filtering is required depending on hardware |
| * and configuration. |
| */ |
| *lpcr = kvmppc_filter_lpcr_hv(vcpu->kvm, |
| (vc->lpcr & ~mask) | (*lpcr & mask)); |
| |
| /* |
| * Don't let L1 enable features for L2 which we don't allow for L1, |
| * but preserve the interrupt cause field. |
| */ |
| vcpu->arch.hfscr = l2_hv->hfscr & (HFSCR_INTR_CAUSE | vcpu->arch.hfscr_permitted); |
| |
| /* Don't let data address watchpoint match in hypervisor state */ |
| vcpu->arch.dawrx0 = l2_hv->dawrx0 & ~DAWRX_HYP; |
| vcpu->arch.dawrx1 = l2_hv->dawrx1 & ~DAWRX_HYP; |
| |
| /* Don't let completed instruction address breakpt match in HV state */ |
| if ((l2_hv->ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) |
| vcpu->arch.ciabr = l2_hv->ciabr & ~CIABR_PRIV; |
| } |
| |
| long kvmhv_enter_nested_guest(struct kvm_vcpu *vcpu) |
| { |
| long int err, r; |
| struct kvm_nested_guest *l2; |
| struct pt_regs l2_regs, saved_l1_regs; |
| struct hv_guest_state l2_hv = {0}, saved_l1_hv; |
| struct kvmppc_vcore *vc = vcpu->arch.vcore; |
| u64 hv_ptr, regs_ptr; |
| u64 hdec_exp, lpcr; |
| s64 delta_purr, delta_spurr, delta_ic, delta_vtb; |
| |
| if (vcpu->kvm->arch.l1_ptcr == 0) |
| return H_NOT_AVAILABLE; |
| |
| if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr)) |
| return H_BAD_MODE; |
| |
| /* copy parameters in */ |
| hv_ptr = kvmppc_get_gpr(vcpu, 4); |
| regs_ptr = kvmppc_get_gpr(vcpu, 5); |
| kvm_vcpu_srcu_read_lock(vcpu); |
| err = kvmhv_read_guest_state_and_regs(vcpu, &l2_hv, &l2_regs, |
| hv_ptr, regs_ptr); |
| kvm_vcpu_srcu_read_unlock(vcpu); |
| if (err) |
| return H_PARAMETER; |
| |
| if (kvmppc_need_byteswap(vcpu)) |
| byteswap_hv_regs(&l2_hv); |
| if (l2_hv.version > HV_GUEST_STATE_VERSION) |
| return H_P2; |
| |
| if (kvmppc_need_byteswap(vcpu)) |
| byteswap_pt_regs(&l2_regs); |
| if (l2_hv.vcpu_token >= NR_CPUS) |
| return H_PARAMETER; |
| |
| /* |
| * L1 must have set up a suspended state to enter the L2 in a |
| * transactional state, and only in that case. These have to be |
| * filtered out here to prevent causing a TM Bad Thing in the |
| * host HRFID. We could synthesize a TM Bad Thing back to the L1 |
| * here but there doesn't seem like much point. |
| */ |
| if (MSR_TM_SUSPENDED(vcpu->arch.shregs.msr)) { |
| if (!MSR_TM_ACTIVE(l2_regs.msr)) |
| return H_BAD_MODE; |
| } else { |
| if (l2_regs.msr & MSR_TS_MASK) |
| return H_BAD_MODE; |
| if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_TS_MASK)) |
| return H_BAD_MODE; |
| } |
| |
| /* translate lpid */ |
| l2 = kvmhv_get_nested(vcpu->kvm, l2_hv.lpid, true); |
| if (!l2) |
| return H_PARAMETER; |
| if (!l2->l1_gr_to_hr) { |
| mutex_lock(&l2->tlb_lock); |
| kvmhv_update_ptbl_cache(l2); |
| mutex_unlock(&l2->tlb_lock); |
| } |
| |
| /* save l1 values of things */ |
| vcpu->arch.regs.msr = vcpu->arch.shregs.msr; |
| saved_l1_regs = vcpu->arch.regs; |
| kvmhv_save_hv_regs(vcpu, &saved_l1_hv); |
| |
| /* convert TB values/offsets to host (L0) values */ |
| hdec_exp = l2_hv.hdec_expiry - vc->tb_offset; |
| vc->tb_offset += l2_hv.tb_offset; |
| vcpu->arch.dec_expires += l2_hv.tb_offset; |
| |
| /* set L1 state to L2 state */ |
| vcpu->arch.nested = l2; |
| vcpu->arch.nested_vcpu_id = l2_hv.vcpu_token; |
| vcpu->arch.nested_hfscr = l2_hv.hfscr; |
| vcpu->arch.regs = l2_regs; |
| |
| /* Guest must always run with ME enabled, HV disabled. */ |
| vcpu->arch.shregs.msr = (vcpu->arch.regs.msr | MSR_ME) & ~MSR_HV; |
| |
| lpcr = l2_hv.lpcr; |
| load_l2_hv_regs(vcpu, &l2_hv, &saved_l1_hv, &lpcr); |
| |
| vcpu->arch.ret = RESUME_GUEST; |
| vcpu->arch.trap = 0; |
| do { |
| r = kvmhv_run_single_vcpu(vcpu, hdec_exp, lpcr); |
| } while (is_kvmppc_resume_guest(r)); |
| |
| /* save L2 state for return */ |
| l2_regs = vcpu->arch.regs; |
| l2_regs.msr = vcpu->arch.shregs.msr; |
| delta_purr = vcpu->arch.purr - l2_hv.purr; |
| delta_spurr = vcpu->arch.spurr - l2_hv.spurr; |
| delta_ic = vcpu->arch.ic - l2_hv.ic; |
| delta_vtb = vc->vtb - l2_hv.vtb; |
| save_hv_return_state(vcpu, &l2_hv); |
| |
| /* restore L1 state */ |
| vcpu->arch.nested = NULL; |
| vcpu->arch.regs = saved_l1_regs; |
| vcpu->arch.shregs.msr = saved_l1_regs.msr & ~MSR_TS_MASK; |
| /* set L1 MSR TS field according to L2 transaction state */ |
| if (l2_regs.msr & MSR_TS_MASK) |
| vcpu->arch.shregs.msr |= MSR_TS_S; |
| vc->tb_offset = saved_l1_hv.tb_offset; |
| /* XXX: is this always the same delta as saved_l1_hv.tb_offset? */ |
| vcpu->arch.dec_expires -= l2_hv.tb_offset; |
| restore_hv_regs(vcpu, &saved_l1_hv); |
| vcpu->arch.purr += delta_purr; |
| vcpu->arch.spurr += delta_spurr; |
| vcpu->arch.ic += delta_ic; |
| vc->vtb += delta_vtb; |
| |
| kvmhv_put_nested(l2); |
| |
| /* copy l2_hv_state and regs back to guest */ |
| if (kvmppc_need_byteswap(vcpu)) { |
| byteswap_hv_regs(&l2_hv); |
| byteswap_pt_regs(&l2_regs); |
| } |
| kvm_vcpu_srcu_read_lock(vcpu); |
| err = kvmhv_write_guest_state_and_regs(vcpu, &l2_hv, &l2_regs, |
| hv_ptr, regs_ptr); |
| kvm_vcpu_srcu_read_unlock(vcpu); |
| if (err) |
| return H_AUTHORITY; |
| |
| if (r == -EINTR) |
| return H_INTERRUPT; |
| |
| if (vcpu->mmio_needed) { |
| kvmhv_nested_mmio_needed(vcpu, regs_ptr); |
| return H_TOO_HARD; |
| } |
| |
| return vcpu->arch.trap; |
| } |
| |
| unsigned long nested_capabilities; |
| |
| long kvmhv_nested_init(void) |
| { |
| long int ptb_order; |
| unsigned long ptcr, host_capabilities; |
| long rc; |
| |
| if (!kvmhv_on_pseries()) |
| return 0; |
| if (!radix_enabled()) |
| return -ENODEV; |
| |
| rc = plpar_guest_get_capabilities(0, &host_capabilities); |
| if (rc == H_SUCCESS) { |
| unsigned long capabilities = 0; |
| |
| if (cpu_has_feature(CPU_FTR_ARCH_31)) |
| capabilities |= H_GUEST_CAP_POWER10; |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) |
| capabilities |= H_GUEST_CAP_POWER9; |
| |
| nested_capabilities = capabilities & host_capabilities; |
| rc = plpar_guest_set_capabilities(0, nested_capabilities); |
| if (rc != H_SUCCESS) { |
| pr_err("kvm-hv: Could not configure parent hypervisor capabilities (rc=%ld)", |
| rc); |
| return -ENODEV; |
| } |
| |
| static_branch_enable(&__kvmhv_is_nestedv2); |
| return 0; |
| } |
| |
| pr_info("kvm-hv: nestedv2 get capabilities hcall failed, falling back to nestedv1 (rc=%ld)\n", |
| rc); |
| /* Partition table entry is 1<<4 bytes in size, hence the 4. */ |
| ptb_order = KVM_MAX_NESTED_GUESTS_SHIFT + 4; |
| /* Minimum partition table size is 1<<12 bytes */ |
| if (ptb_order < 12) |
| ptb_order = 12; |
| pseries_partition_tb = kmalloc(sizeof(struct patb_entry) << ptb_order, |
| GFP_KERNEL); |
| if (!pseries_partition_tb) { |
| pr_err("kvm-hv: failed to allocated nested partition table\n"); |
| return -ENOMEM; |
| } |
| |
| ptcr = __pa(pseries_partition_tb) | (ptb_order - 12); |
| rc = plpar_hcall_norets(H_SET_PARTITION_TABLE, ptcr); |
| if (rc != H_SUCCESS) { |
| pr_err("kvm-hv: Parent hypervisor does not support nesting (rc=%ld)\n", |
| rc); |
| kfree(pseries_partition_tb); |
| pseries_partition_tb = NULL; |
| return -ENODEV; |
| } |
| |
| return 0; |
| } |
| |
| void kvmhv_nested_exit(void) |
| { |
| /* |
| * N.B. the kvmhv_on_pseries() test is there because it enables |
| * the compiler to remove the call to plpar_hcall_norets() |
| * when CONFIG_PPC_PSERIES=n. |
| */ |
| if (kvmhv_on_pseries() && pseries_partition_tb) { |
| plpar_hcall_norets(H_SET_PARTITION_TABLE, 0); |
| kfree(pseries_partition_tb); |
| pseries_partition_tb = NULL; |
| } |
| } |
| |
| void kvmhv_flush_lpid(u64 lpid) |
| { |
| long rc; |
| |
| if (!kvmhv_on_pseries()) { |
| radix__flush_all_lpid(lpid); |
| return; |
| } |
| |
| if (!firmware_has_feature(FW_FEATURE_RPT_INVALIDATE)) |
| rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(2, 0, 1), |
| lpid, TLBIEL_INVAL_SET_LPID); |
| else |
| rc = pseries_rpt_invalidate(lpid, H_RPTI_TARGET_CMMU, |
| H_RPTI_TYPE_NESTED | |
| H_RPTI_TYPE_TLB | H_RPTI_TYPE_PWC | |
| H_RPTI_TYPE_PAT, |
| H_RPTI_PAGE_ALL, 0, -1UL); |
| if (rc) |
| pr_err("KVM: TLB LPID invalidation hcall failed, rc=%ld\n", rc); |
| } |
| |
| void kvmhv_set_ptbl_entry(u64 lpid, u64 dw0, u64 dw1) |
| { |
| if (!kvmhv_on_pseries()) { |
| mmu_partition_table_set_entry(lpid, dw0, dw1, true); |
| return; |
| } |
| |
| if (kvmhv_is_nestedv1()) { |
| pseries_partition_tb[lpid].patb0 = cpu_to_be64(dw0); |
| pseries_partition_tb[lpid].patb1 = cpu_to_be64(dw1); |
| /* L0 will do the necessary barriers */ |
| kvmhv_flush_lpid(lpid); |
| } |
| |
| if (kvmhv_is_nestedv2()) |
| kvmhv_nestedv2_set_ptbl_entry(lpid, dw0, dw1); |
| } |
| |
| static void kvmhv_set_nested_ptbl(struct kvm_nested_guest *gp) |
| { |
| unsigned long dw0; |
| |
| dw0 = PATB_HR | radix__get_tree_size() | |
| __pa(gp->shadow_pgtable) | RADIX_PGD_INDEX_SIZE; |
| kvmhv_set_ptbl_entry(gp->shadow_lpid, dw0, gp->process_table); |
| } |
| |
| /* |
| * Handle the H_SET_PARTITION_TABLE hcall. |
| * r4 = guest real address of partition table + log_2(size) - 12 |
| * (formatted as for the PTCR). |
| */ |
| long kvmhv_set_partition_table(struct kvm_vcpu *vcpu) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| unsigned long ptcr = kvmppc_get_gpr(vcpu, 4); |
| int srcu_idx; |
| long ret = H_SUCCESS; |
| |
| srcu_idx = srcu_read_lock(&kvm->srcu); |
| /* Check partition size and base address. */ |
| if ((ptcr & PRTS_MASK) + 12 - 4 > KVM_MAX_NESTED_GUESTS_SHIFT || |
| !kvm_is_visible_gfn(vcpu->kvm, (ptcr & PRTB_MASK) >> PAGE_SHIFT)) |
| ret = H_PARAMETER; |
| srcu_read_unlock(&kvm->srcu, srcu_idx); |
| if (ret == H_SUCCESS) |
| kvm->arch.l1_ptcr = ptcr; |
| |
| return ret; |
| } |
| |
| /* |
| * Handle the H_COPY_TOFROM_GUEST hcall. |
| * r4 = L1 lpid of nested guest |
| * r5 = pid |
| * r6 = eaddr to access |
| * r7 = to buffer (L1 gpa) |
| * r8 = from buffer (L1 gpa) |
| * r9 = n bytes to copy |
| */ |
| long kvmhv_copy_tofrom_guest_nested(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_nested_guest *gp; |
| int l1_lpid = kvmppc_get_gpr(vcpu, 4); |
| int pid = kvmppc_get_gpr(vcpu, 5); |
| gva_t eaddr = kvmppc_get_gpr(vcpu, 6); |
| gpa_t gp_to = (gpa_t) kvmppc_get_gpr(vcpu, 7); |
| gpa_t gp_from = (gpa_t) kvmppc_get_gpr(vcpu, 8); |
| void *buf; |
| unsigned long n = kvmppc_get_gpr(vcpu, 9); |
| bool is_load = !!gp_to; |
| long rc; |
| |
| if (gp_to && gp_from) /* One must be NULL to determine the direction */ |
| return H_PARAMETER; |
| |
| if (eaddr & (0xFFFUL << 52)) |
| return H_PARAMETER; |
| |
| buf = kzalloc(n, GFP_KERNEL | __GFP_NOWARN); |
| if (!buf) |
| return H_NO_MEM; |
| |
| gp = kvmhv_get_nested(vcpu->kvm, l1_lpid, false); |
| if (!gp) { |
| rc = H_PARAMETER; |
| goto out_free; |
| } |
| |
| mutex_lock(&gp->tlb_lock); |
| |
| if (is_load) { |
| /* Load from the nested guest into our buffer */ |
| rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid, |
| eaddr, buf, NULL, n); |
| if (rc) |
| goto not_found; |
| |
| /* Write what was loaded into our buffer back to the L1 guest */ |
| kvm_vcpu_srcu_read_lock(vcpu); |
| rc = kvm_vcpu_write_guest(vcpu, gp_to, buf, n); |
| kvm_vcpu_srcu_read_unlock(vcpu); |
| if (rc) |
| goto not_found; |
| } else { |
| /* Load the data to be stored from the L1 guest into our buf */ |
| kvm_vcpu_srcu_read_lock(vcpu); |
| rc = kvm_vcpu_read_guest(vcpu, gp_from, buf, n); |
| kvm_vcpu_srcu_read_unlock(vcpu); |
| if (rc) |
| goto not_found; |
| |
| /* Store from our buffer into the nested guest */ |
| rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid, |
| eaddr, NULL, buf, n); |
| if (rc) |
| goto not_found; |
| } |
| |
| out_unlock: |
| mutex_unlock(&gp->tlb_lock); |
| kvmhv_put_nested(gp); |
| out_free: |
| kfree(buf); |
| return rc; |
| not_found: |
| rc = H_NOT_FOUND; |
| goto out_unlock; |
| } |
| |
| /* |
| * Reload the partition table entry for a guest. |
| * Caller must hold gp->tlb_lock. |
| */ |
| static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp) |
| { |
| int ret; |
| struct patb_entry ptbl_entry; |
| unsigned long ptbl_addr; |
| struct kvm *kvm = gp->l1_host; |
| |
| ret = -EFAULT; |
| ptbl_addr = (kvm->arch.l1_ptcr & PRTB_MASK) + (gp->l1_lpid << 4); |
| if (gp->l1_lpid < (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 12 - 4))) { |
| int srcu_idx = srcu_read_lock(&kvm->srcu); |
| ret = kvm_read_guest(kvm, ptbl_addr, |
| &ptbl_entry, sizeof(ptbl_entry)); |
| srcu_read_unlock(&kvm->srcu, srcu_idx); |
| } |
| if (ret) { |
| gp->l1_gr_to_hr = 0; |
| gp->process_table = 0; |
| } else { |
| gp->l1_gr_to_hr = be64_to_cpu(ptbl_entry.patb0); |
| gp->process_table = be64_to_cpu(ptbl_entry.patb1); |
| } |
| kvmhv_set_nested_ptbl(gp); |
| } |
| |
| void kvmhv_vm_nested_init(struct kvm *kvm) |
| { |
| idr_init(&kvm->arch.kvm_nested_guest_idr); |
| } |
| |
| static struct kvm_nested_guest *__find_nested(struct kvm *kvm, int lpid) |
| { |
| return idr_find(&kvm->arch.kvm_nested_guest_idr, lpid); |
| } |
| |
| static bool __prealloc_nested(struct kvm *kvm, int lpid) |
| { |
| if (idr_alloc(&kvm->arch.kvm_nested_guest_idr, |
| NULL, lpid, lpid + 1, GFP_KERNEL) != lpid) |
| return false; |
| return true; |
| } |
| |
| static void __add_nested(struct kvm *kvm, int lpid, struct kvm_nested_guest *gp) |
| { |
| if (idr_replace(&kvm->arch.kvm_nested_guest_idr, gp, lpid)) |
| WARN_ON(1); |
| } |
| |
| static void __remove_nested(struct kvm *kvm, int lpid) |
| { |
| idr_remove(&kvm->arch.kvm_nested_guest_idr, lpid); |
| } |
| |
| static struct kvm_nested_guest *kvmhv_alloc_nested(struct kvm *kvm, unsigned int lpid) |
| { |
| struct kvm_nested_guest *gp; |
| long shadow_lpid; |
| |
| gp = kzalloc(sizeof(*gp), GFP_KERNEL); |
| if (!gp) |
| return NULL; |
| gp->l1_host = kvm; |
| gp->l1_lpid = lpid; |
| mutex_init(&gp->tlb_lock); |
| gp->shadow_pgtable = pgd_alloc(kvm->mm); |
| if (!gp->shadow_pgtable) |
| goto out_free; |
| shadow_lpid = kvmppc_alloc_lpid(); |
| if (shadow_lpid < 0) |
| goto out_free2; |
| gp->shadow_lpid = shadow_lpid; |
| gp->radix = 1; |
| |
| memset(gp->prev_cpu, -1, sizeof(gp->prev_cpu)); |
| |
| return gp; |
| |
| out_free2: |
| pgd_free(kvm->mm, gp->shadow_pgtable); |
| out_free: |
| kfree(gp); |
| return NULL; |
| } |
| |
| /* |
| * Free up any resources allocated for a nested guest. |
| */ |
| static void kvmhv_release_nested(struct kvm_nested_guest *gp) |
| { |
| struct kvm *kvm = gp->l1_host; |
| |
| if (gp->shadow_pgtable) { |
| /* |
| * No vcpu is using this struct and no call to |
| * kvmhv_get_nested can find this struct, |
| * so we don't need to hold kvm->mmu_lock. |
| */ |
| kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, |
| gp->shadow_lpid); |
| pgd_free(kvm->mm, gp->shadow_pgtable); |
| } |
| kvmhv_set_ptbl_entry(gp->shadow_lpid, 0, 0); |
| kvmppc_free_lpid(gp->shadow_lpid); |
| kfree(gp); |
| } |
| |
| static void kvmhv_remove_nested(struct kvm_nested_guest *gp) |
| { |
| struct kvm *kvm = gp->l1_host; |
| int lpid = gp->l1_lpid; |
| long ref; |
| |
| spin_lock(&kvm->mmu_lock); |
| if (gp == __find_nested(kvm, lpid)) { |
| __remove_nested(kvm, lpid); |
| --gp->refcnt; |
| } |
| ref = gp->refcnt; |
| spin_unlock(&kvm->mmu_lock); |
| if (ref == 0) |
| kvmhv_release_nested(gp); |
| } |
| |
| /* |
| * Free up all nested resources allocated for this guest. |
| * This is called with no vcpus of the guest running, when |
| * switching the guest to HPT mode or when destroying the |
| * guest. |
| */ |
| void kvmhv_release_all_nested(struct kvm *kvm) |
| { |
| int lpid; |
| struct kvm_nested_guest *gp; |
| struct kvm_nested_guest *freelist = NULL; |
| struct kvm_memory_slot *memslot; |
| int srcu_idx, bkt; |
| |
| spin_lock(&kvm->mmu_lock); |
| idr_for_each_entry(&kvm->arch.kvm_nested_guest_idr, gp, lpid) { |
| __remove_nested(kvm, lpid); |
| if (--gp->refcnt == 0) { |
| gp->next = freelist; |
| freelist = gp; |
| } |
| } |
| idr_destroy(&kvm->arch.kvm_nested_guest_idr); |
| /* idr is empty and may be reused at this point */ |
| spin_unlock(&kvm->mmu_lock); |
| while ((gp = freelist) != NULL) { |
| freelist = gp->next; |
| kvmhv_release_nested(gp); |
| } |
| |
| srcu_idx = srcu_read_lock(&kvm->srcu); |
| kvm_for_each_memslot(memslot, bkt, kvm_memslots(kvm)) |
| kvmhv_free_memslot_nest_rmap(memslot); |
| srcu_read_unlock(&kvm->srcu, srcu_idx); |
| } |
| |
| /* caller must hold gp->tlb_lock */ |
| static void kvmhv_flush_nested(struct kvm_nested_guest *gp) |
| { |
| struct kvm *kvm = gp->l1_host; |
| |
| spin_lock(&kvm->mmu_lock); |
| kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, gp->shadow_lpid); |
| spin_unlock(&kvm->mmu_lock); |
| kvmhv_flush_lpid(gp->shadow_lpid); |
| kvmhv_update_ptbl_cache(gp); |
| if (gp->l1_gr_to_hr == 0) |
| kvmhv_remove_nested(gp); |
| } |
| |
| struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid, |
| bool create) |
| { |
| struct kvm_nested_guest *gp, *newgp; |
| |
| if (l1_lpid >= (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 12 - 4))) |
| return NULL; |
| |
| spin_lock(&kvm->mmu_lock); |
| gp = __find_nested(kvm, l1_lpid); |
| if (gp) |
| ++gp->refcnt; |
| spin_unlock(&kvm->mmu_lock); |
| |
| if (gp || !create) |
| return gp; |
| |
| newgp = kvmhv_alloc_nested(kvm, l1_lpid); |
| if (!newgp) |
| return NULL; |
| |
| if (!__prealloc_nested(kvm, l1_lpid)) { |
| kvmhv_release_nested(newgp); |
| return NULL; |
| } |
| |
| spin_lock(&kvm->mmu_lock); |
| gp = __find_nested(kvm, l1_lpid); |
| if (!gp) { |
| __add_nested(kvm, l1_lpid, newgp); |
| ++newgp->refcnt; |
| gp = newgp; |
| newgp = NULL; |
| } |
| ++gp->refcnt; |
| spin_unlock(&kvm->mmu_lock); |
| |
| if (newgp) |
| kvmhv_release_nested(newgp); |
| |
| return gp; |
| } |
| |
| void kvmhv_put_nested(struct kvm_nested_guest *gp) |
| { |
| struct kvm *kvm = gp->l1_host; |
| long ref; |
| |
| spin_lock(&kvm->mmu_lock); |
| ref = --gp->refcnt; |
| spin_unlock(&kvm->mmu_lock); |
| if (ref == 0) |
| kvmhv_release_nested(gp); |
| } |
| |
| pte_t *find_kvm_nested_guest_pte(struct kvm *kvm, unsigned long lpid, |
| unsigned long ea, unsigned *hshift) |
| { |
| struct kvm_nested_guest *gp; |
| pte_t *pte; |
| |
| gp = __find_nested(kvm, lpid); |
| if (!gp) |
| return NULL; |
| |
| VM_WARN(!spin_is_locked(&kvm->mmu_lock), |
| "%s called with kvm mmu_lock not held \n", __func__); |
| pte = __find_linux_pte(gp->shadow_pgtable, ea, NULL, hshift); |
| |
| return pte; |
| } |
| |
| static inline bool kvmhv_n_rmap_is_equal(u64 rmap_1, u64 rmap_2) |
| { |
| return !((rmap_1 ^ rmap_2) & (RMAP_NESTED_LPID_MASK | |
| RMAP_NESTED_GPA_MASK)); |
| } |
| |
| void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp, |
| struct rmap_nested **n_rmap) |
| { |
| struct llist_node *entry = ((struct llist_head *) rmapp)->first; |
| struct rmap_nested *cursor; |
| u64 rmap, new_rmap = (*n_rmap)->rmap; |
| |
| /* Are there any existing entries? */ |
| if (!(*rmapp)) { |
| /* No -> use the rmap as a single entry */ |
| *rmapp = new_rmap | RMAP_NESTED_IS_SINGLE_ENTRY; |
| return; |
| } |
| |
| /* Do any entries match what we're trying to insert? */ |
| for_each_nest_rmap_safe(cursor, entry, &rmap) { |
| if (kvmhv_n_rmap_is_equal(rmap, new_rmap)) |
| return; |
| } |
| |
| /* Do we need to create a list or just add the new entry? */ |
| rmap = *rmapp; |
| if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */ |
| *rmapp = 0UL; |
| llist_add(&((*n_rmap)->list), (struct llist_head *) rmapp); |
| if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */ |
| (*n_rmap)->list.next = (struct llist_node *) rmap; |
| |
| /* Set NULL so not freed by caller */ |
| *n_rmap = NULL; |
| } |
| |
| static void kvmhv_update_nest_rmap_rc(struct kvm *kvm, u64 n_rmap, |
| unsigned long clr, unsigned long set, |
| unsigned long hpa, unsigned long mask) |
| { |
| unsigned long gpa; |
| unsigned int shift, lpid; |
| pte_t *ptep; |
| |
| gpa = n_rmap & RMAP_NESTED_GPA_MASK; |
| lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT; |
| |
| /* Find the pte */ |
| ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift); |
| /* |
| * If the pte is present and the pfn is still the same, update the pte. |
| * If the pfn has changed then this is a stale rmap entry, the nested |
| * gpa actually points somewhere else now, and there is nothing to do. |
| * XXX A future optimisation would be to remove the rmap entry here. |
| */ |
| if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa)) { |
| __radix_pte_update(ptep, clr, set); |
| kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid); |
| } |
| } |
| |
| /* |
| * For a given list of rmap entries, update the rc bits in all ptes in shadow |
| * page tables for nested guests which are referenced by the rmap list. |
| */ |
| void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp, |
| unsigned long clr, unsigned long set, |
| unsigned long hpa, unsigned long nbytes) |
| { |
| struct llist_node *entry = ((struct llist_head *) rmapp)->first; |
| struct rmap_nested *cursor; |
| unsigned long rmap, mask; |
| |
| if ((clr | set) & ~(_PAGE_DIRTY | _PAGE_ACCESSED)) |
| return; |
| |
| mask = PTE_RPN_MASK & ~(nbytes - 1); |
| hpa &= mask; |
| |
| for_each_nest_rmap_safe(cursor, entry, &rmap) |
| kvmhv_update_nest_rmap_rc(kvm, rmap, clr, set, hpa, mask); |
| } |
| |
| static void kvmhv_remove_nest_rmap(struct kvm *kvm, u64 n_rmap, |
| unsigned long hpa, unsigned long mask) |
| { |
| struct kvm_nested_guest *gp; |
| unsigned long gpa; |
| unsigned int shift, lpid; |
| pte_t *ptep; |
| |
| gpa = n_rmap & RMAP_NESTED_GPA_MASK; |
| lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT; |
| gp = __find_nested(kvm, lpid); |
| if (!gp) |
| return; |
| |
| /* Find and invalidate the pte */ |
| ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift); |
| /* Don't spuriously invalidate ptes if the pfn has changed */ |
| if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa)) |
| kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid); |
| } |
| |
| static void kvmhv_remove_nest_rmap_list(struct kvm *kvm, unsigned long *rmapp, |
| unsigned long hpa, unsigned long mask) |
| { |
| struct llist_node *entry = llist_del_all((struct llist_head *) rmapp); |
| struct rmap_nested *cursor; |
| unsigned long rmap; |
| |
| for_each_nest_rmap_safe(cursor, entry, &rmap) { |
| kvmhv_remove_nest_rmap(kvm, rmap, hpa, mask); |
| kfree(cursor); |
| } |
| } |
| |
| /* called with kvm->mmu_lock held */ |
| void kvmhv_remove_nest_rmap_range(struct kvm *kvm, |
| const struct kvm_memory_slot *memslot, |
| unsigned long gpa, unsigned long hpa, |
| unsigned long nbytes) |
| { |
| unsigned long gfn, end_gfn; |
| unsigned long addr_mask; |
| |
| if (!memslot) |
| return; |
| gfn = (gpa >> PAGE_SHIFT) - memslot->base_gfn; |
| end_gfn = gfn + (nbytes >> PAGE_SHIFT); |
| |
| addr_mask = PTE_RPN_MASK & ~(nbytes - 1); |
| hpa &= addr_mask; |
| |
| for (; gfn < end_gfn; gfn++) { |
| unsigned long *rmap = &memslot->arch.rmap[gfn]; |
| kvmhv_remove_nest_rmap_list(kvm, rmap, hpa, addr_mask); |
| } |
| } |
| |
| static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free) |
| { |
| unsigned long page; |
| |
| for (page = 0; page < free->npages; page++) { |
| unsigned long rmap, *rmapp = &free->arch.rmap[page]; |
| struct rmap_nested *cursor; |
| struct llist_node *entry; |
| |
| entry = llist_del_all((struct llist_head *) rmapp); |
| for_each_nest_rmap_safe(cursor, entry, &rmap) |
| kfree(cursor); |
| } |
| } |
| |
| static bool kvmhv_invalidate_shadow_pte(struct kvm_vcpu *vcpu, |
| struct kvm_nested_guest *gp, |
| long gpa, int *shift_ret) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| bool ret = false; |
| pte_t *ptep; |
| int shift; |
| |
| spin_lock(&kvm->mmu_lock); |
| ptep = find_kvm_nested_guest_pte(kvm, gp->l1_lpid, gpa, &shift); |
| if (!shift) |
| shift = PAGE_SHIFT; |
| if (ptep && pte_present(*ptep)) { |
| kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid); |
| ret = true; |
| } |
| spin_unlock(&kvm->mmu_lock); |
| |
| if (shift_ret) |
| *shift_ret = shift; |
| return ret; |
| } |
| |
| static inline int get_ric(unsigned int instr) |
| { |
| return (instr >> 18) & 0x3; |
| } |
| |
| static inline int get_prs(unsigned int instr) |
| { |
| return (instr >> 17) & 0x1; |
| } |
| |
| static inline int get_r(unsigned int instr) |
| { |
| return (instr >> 16) & 0x1; |
| } |
| |
| static inline int get_lpid(unsigned long r_val) |
| { |
| return r_val & 0xffffffff; |
| } |
| |
| static inline int get_is(unsigned long r_val) |
| { |
| return (r_val >> 10) & 0x3; |
| } |
| |
| static inline int get_ap(unsigned long r_val) |
| { |
| return (r_val >> 5) & 0x7; |
| } |
| |
| static inline long get_epn(unsigned long r_val) |
| { |
| return r_val >> 12; |
| } |
| |
| static int kvmhv_emulate_tlbie_tlb_addr(struct kvm_vcpu *vcpu, int lpid, |
| int ap, long epn) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| struct kvm_nested_guest *gp; |
| long npages; |
| int shift, shadow_shift; |
| unsigned long addr; |
| |
| shift = ap_to_shift(ap); |
| addr = epn << 12; |
| if (shift < 0) |
| /* Invalid ap encoding */ |
| return -EINVAL; |
| |
| addr &= ~((1UL << shift) - 1); |
| npages = 1UL << (shift - PAGE_SHIFT); |
| |
| gp = kvmhv_get_nested(kvm, lpid, false); |
| if (!gp) /* No such guest -> nothing to do */ |
| return 0; |
| mutex_lock(&gp->tlb_lock); |
| |
| /* There may be more than one host page backing this single guest pte */ |
| do { |
| kvmhv_invalidate_shadow_pte(vcpu, gp, addr, &shadow_shift); |
| |
| npages -= 1UL << (shadow_shift - PAGE_SHIFT); |
| addr += 1UL << shadow_shift; |
| } while (npages > 0); |
| |
| mutex_unlock(&gp->tlb_lock); |
| kvmhv_put_nested(gp); |
| return 0; |
| } |
| |
| static void kvmhv_emulate_tlbie_lpid(struct kvm_vcpu *vcpu, |
| struct kvm_nested_guest *gp, int ric) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| |
| mutex_lock(&gp->tlb_lock); |
| switch (ric) { |
| case 0: |
| /* Invalidate TLB */ |
| spin_lock(&kvm->mmu_lock); |
| kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, |
| gp->shadow_lpid); |
| kvmhv_flush_lpid(gp->shadow_lpid); |
| spin_unlock(&kvm->mmu_lock); |
| break; |
| case 1: |
| /* |
| * Invalidate PWC |
| * We don't cache this -> nothing to do |
| */ |
| break; |
| case 2: |
| /* Invalidate TLB, PWC and caching of partition table entries */ |
| kvmhv_flush_nested(gp); |
| break; |
| default: |
| break; |
| } |
| mutex_unlock(&gp->tlb_lock); |
| } |
| |
| static void kvmhv_emulate_tlbie_all_lpid(struct kvm_vcpu *vcpu, int ric) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| struct kvm_nested_guest *gp; |
| int lpid; |
| |
| spin_lock(&kvm->mmu_lock); |
| idr_for_each_entry(&kvm->arch.kvm_nested_guest_idr, gp, lpid) { |
| spin_unlock(&kvm->mmu_lock); |
| kvmhv_emulate_tlbie_lpid(vcpu, gp, ric); |
| spin_lock(&kvm->mmu_lock); |
| } |
| spin_unlock(&kvm->mmu_lock); |
| } |
| |
| static int kvmhv_emulate_priv_tlbie(struct kvm_vcpu *vcpu, unsigned int instr, |
| unsigned long rsval, unsigned long rbval) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| struct kvm_nested_guest *gp; |
| int r, ric, prs, is, ap; |
| int lpid; |
| long epn; |
| int ret = 0; |
| |
| ric = get_ric(instr); |
| prs = get_prs(instr); |
| r = get_r(instr); |
| lpid = get_lpid(rsval); |
| is = get_is(rbval); |
| |
| /* |
| * These cases are invalid and are not handled: |
| * r != 1 -> Only radix supported |
| * prs == 1 -> Not HV privileged |
| * ric == 3 -> No cluster bombs for radix |
| * is == 1 -> Partition scoped translations not associated with pid |
| * (!is) && (ric == 1 || ric == 2) -> Not supported by ISA |
| */ |
| if ((!r) || (prs) || (ric == 3) || (is == 1) || |
| ((!is) && (ric == 1 || ric == 2))) |
| return -EINVAL; |
| |
| switch (is) { |
| case 0: |
| /* |
| * We know ric == 0 |
| * Invalidate TLB for a given target address |
| */ |
| epn = get_epn(rbval); |
| ap = get_ap(rbval); |
| ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap, epn); |
| break; |
| case 2: |
| /* Invalidate matching LPID */ |
| gp = kvmhv_get_nested(kvm, lpid, false); |
| if (gp) { |
| kvmhv_emulate_tlbie_lpid(vcpu, gp, ric); |
| kvmhv_put_nested(gp); |
| } |
| break; |
| case 3: |
| /* Invalidate ALL LPIDs */ |
| kvmhv_emulate_tlbie_all_lpid(vcpu, ric); |
| break; |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * This handles the H_TLB_INVALIDATE hcall. |
| * Parameters are (r4) tlbie instruction code, (r5) rS contents, |
| * (r6) rB contents. |
| */ |
| long kvmhv_do_nested_tlbie(struct kvm_vcpu *vcpu) |
| { |
| int ret; |
| |
| ret = kvmhv_emulate_priv_tlbie(vcpu, kvmppc_get_gpr(vcpu, 4), |
| kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6)); |
| if (ret) |
| return H_PARAMETER; |
| return H_SUCCESS; |
| } |
| |
| static long do_tlb_invalidate_nested_all(struct kvm_vcpu *vcpu, |
| unsigned long lpid, unsigned long ric) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| struct kvm_nested_guest *gp; |
| |
| gp = kvmhv_get_nested(kvm, lpid, false); |
| if (gp) { |
| kvmhv_emulate_tlbie_lpid(vcpu, gp, ric); |
| kvmhv_put_nested(gp); |
| } |
| return H_SUCCESS; |
| } |
| |
| /* |
| * Number of pages above which we invalidate the entire LPID rather than |
| * flush individual pages. |
| */ |
| static unsigned long tlb_range_flush_page_ceiling __read_mostly = 33; |
| |
| static long do_tlb_invalidate_nested_tlb(struct kvm_vcpu *vcpu, |
| unsigned long lpid, |
| unsigned long pg_sizes, |
| unsigned long start, |
| unsigned long end) |
| { |
| int ret = H_P4; |
| unsigned long addr, nr_pages; |
| struct mmu_psize_def *def; |
| unsigned long psize, ap, page_size; |
| bool flush_lpid; |
| |
| for (psize = 0; psize < MMU_PAGE_COUNT; psize++) { |
| def = &mmu_psize_defs[psize]; |
| if (!(pg_sizes & def->h_rpt_pgsize)) |
| continue; |
| |
| nr_pages = (end - start) >> def->shift; |
| flush_lpid = nr_pages > tlb_range_flush_page_ceiling; |
| if (flush_lpid) |
| return do_tlb_invalidate_nested_all(vcpu, lpid, |
| RIC_FLUSH_TLB); |
| addr = start; |
| ap = mmu_get_ap(psize); |
| page_size = 1UL << def->shift; |
| do { |
| ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap, |
| get_epn(addr)); |
| if (ret) |
| return H_P4; |
| addr += page_size; |
| } while (addr < end); |
| } |
| return ret; |
| } |
| |
| /* |
| * Performs partition-scoped invalidations for nested guests |
| * as part of H_RPT_INVALIDATE hcall. |
| */ |
| long do_h_rpt_invalidate_pat(struct kvm_vcpu *vcpu, unsigned long lpid, |
| unsigned long type, unsigned long pg_sizes, |
| unsigned long start, unsigned long end) |
| { |
| /* |
| * If L2 lpid isn't valid, we need to return H_PARAMETER. |
| * |
| * However, nested KVM issues a L2 lpid flush call when creating |
| * partition table entries for L2. This happens even before the |
| * corresponding shadow lpid is created in HV which happens in |
| * H_ENTER_NESTED call. Since we can't differentiate this case from |
| * the invalid case, we ignore such flush requests and return success. |
| */ |
| if (!__find_nested(vcpu->kvm, lpid)) |
| return H_SUCCESS; |
| |
| /* |
| * A flush all request can be handled by a full lpid flush only. |
| */ |
| if ((type & H_RPTI_TYPE_NESTED_ALL) == H_RPTI_TYPE_NESTED_ALL) |
| return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_ALL); |
| |
| /* |
| * We don't need to handle a PWC flush like process table here, |
| * because intermediate partition scoped table in nested guest doesn't |
| * really have PWC. Only level we have PWC is in L0 and for nested |
| * invalidate at L0 we always do kvm_flush_lpid() which does |
| * radix__flush_all_lpid(). For range invalidate at any level, we |
| * are not removing the higher level page tables and hence there is |
| * no PWC invalidate needed. |
| * |
| * if (type & H_RPTI_TYPE_PWC) { |
| * ret = do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_PWC); |
| * if (ret) |
| * return H_P4; |
| * } |
| */ |
| |
| if (start == 0 && end == -1) |
| return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_TLB); |
| |
| if (type & H_RPTI_TYPE_TLB) |
| return do_tlb_invalidate_nested_tlb(vcpu, lpid, pg_sizes, |
| start, end); |
| return H_SUCCESS; |
| } |
| |
| /* Used to convert a nested guest real address to a L1 guest real address */ |
| static int kvmhv_translate_addr_nested(struct kvm_vcpu *vcpu, |
| struct kvm_nested_guest *gp, |
| unsigned long n_gpa, unsigned long dsisr, |
| struct kvmppc_pte *gpte_p) |
| { |
| u64 fault_addr, flags = dsisr & DSISR_ISSTORE; |
| int ret; |
| |
| ret = kvmppc_mmu_walk_radix_tree(vcpu, n_gpa, gpte_p, gp->l1_gr_to_hr, |
| &fault_addr); |
| |
| if (ret) { |
| /* We didn't find a pte */ |
| if (ret == -EINVAL) { |
| /* Unsupported mmu config */ |
| flags |= DSISR_UNSUPP_MMU; |
| } else if (ret == -ENOENT) { |
| /* No translation found */ |
| flags |= DSISR_NOHPTE; |
| } else if (ret == -EFAULT) { |
| /* Couldn't access L1 real address */ |
| flags |= DSISR_PRTABLE_FAULT; |
| vcpu->arch.fault_gpa = fault_addr; |
| } else { |
| /* Unknown error */ |
| return ret; |
| } |
| goto forward_to_l1; |
| } else { |
| /* We found a pte -> check permissions */ |
| if (dsisr & DSISR_ISSTORE) { |
| /* Can we write? */ |
| if (!gpte_p->may_write) { |
| flags |= DSISR_PROTFAULT; |
| goto forward_to_l1; |
| } |
| } else if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) { |
| /* Can we execute? */ |
| if (!gpte_p->may_execute) { |
| flags |= SRR1_ISI_N_G_OR_CIP; |
| goto forward_to_l1; |
| } |
| } else { |
| /* Can we read? */ |
| if (!gpte_p->may_read && !gpte_p->may_write) { |
| flags |= DSISR_PROTFAULT; |
| goto forward_to_l1; |
| } |
| } |
| } |
| |
| return 0; |
| |
| forward_to_l1: |
| vcpu->arch.fault_dsisr = flags; |
| if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) { |
| vcpu->arch.shregs.msr &= SRR1_MSR_BITS; |
| vcpu->arch.shregs.msr |= flags; |
| } |
| return RESUME_HOST; |
| } |
| |
| static long kvmhv_handle_nested_set_rc(struct kvm_vcpu *vcpu, |
| struct kvm_nested_guest *gp, |
| unsigned long n_gpa, |
| struct kvmppc_pte gpte, |
| unsigned long dsisr) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| bool writing = !!(dsisr & DSISR_ISSTORE); |
| u64 pgflags; |
| long ret; |
| |
| /* Are the rc bits set in the L1 partition scoped pte? */ |
| pgflags = _PAGE_ACCESSED; |
| if (writing) |
| pgflags |= _PAGE_DIRTY; |
| if (pgflags & ~gpte.rc) |
| return RESUME_HOST; |
| |
| spin_lock(&kvm->mmu_lock); |
| /* Set the rc bit in the pte of our (L0) pgtable for the L1 guest */ |
| ret = kvmppc_hv_handle_set_rc(kvm, false, writing, |
| gpte.raddr, kvm->arch.lpid); |
| if (!ret) { |
| ret = -EINVAL; |
| goto out_unlock; |
| } |
| |
| /* Set the rc bit in the pte of the shadow_pgtable for the nest guest */ |
| ret = kvmppc_hv_handle_set_rc(kvm, true, writing, |
| n_gpa, gp->l1_lpid); |
| if (!ret) |
| ret = -EINVAL; |
| else |
| ret = 0; |
| |
| out_unlock: |
| spin_unlock(&kvm->mmu_lock); |
| return ret; |
| } |
| |
| static inline int kvmppc_radix_level_to_shift(int level) |
| { |
| switch (level) { |
| case 2: |
| return PUD_SHIFT; |
| case 1: |
| return PMD_SHIFT; |
| default: |
| return PAGE_SHIFT; |
| } |
| } |
| |
| static inline int kvmppc_radix_shift_to_level(int shift) |
| { |
| if (shift == PUD_SHIFT) |
| return 2; |
| if (shift == PMD_SHIFT) |
| return 1; |
| if (shift == PAGE_SHIFT) |
| return 0; |
| WARN_ON_ONCE(1); |
| return 0; |
| } |
| |
| /* called with gp->tlb_lock held */ |
| static long int __kvmhv_nested_page_fault(struct kvm_vcpu *vcpu, |
| struct kvm_nested_guest *gp) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| struct kvm_memory_slot *memslot; |
| struct rmap_nested *n_rmap; |
| struct kvmppc_pte gpte; |
| pte_t pte, *pte_p; |
| unsigned long mmu_seq; |
| unsigned long dsisr = vcpu->arch.fault_dsisr; |
| unsigned long ea = vcpu->arch.fault_dar; |
| unsigned long *rmapp; |
| unsigned long n_gpa, gpa, gfn, perm = 0UL; |
| unsigned int shift, l1_shift, level; |
| bool writing = !!(dsisr & DSISR_ISSTORE); |
| bool kvm_ro = false; |
| long int ret; |
| |
| if (!gp->l1_gr_to_hr) { |
| kvmhv_update_ptbl_cache(gp); |
| if (!gp->l1_gr_to_hr) |
| return RESUME_HOST; |
| } |
| |
| /* Convert the nested guest real address into a L1 guest real address */ |
| |
| n_gpa = vcpu->arch.fault_gpa & ~0xF000000000000FFFULL; |
| if (!(dsisr & DSISR_PRTABLE_FAULT)) |
| n_gpa |= ea & 0xFFF; |
| ret = kvmhv_translate_addr_nested(vcpu, gp, n_gpa, dsisr, &gpte); |
| |
| /* |
| * If the hardware found a translation but we don't now have a usable |
| * translation in the l1 partition-scoped tree, remove the shadow pte |
| * and let the guest retry. |
| */ |
| if (ret == RESUME_HOST && |
| (dsisr & (DSISR_PROTFAULT | DSISR_BADACCESS | DSISR_NOEXEC_OR_G | |
| DSISR_BAD_COPYPASTE))) |
| goto inval; |
| if (ret) |
| return ret; |
| |
| /* Failed to set the reference/change bits */ |
| if (dsisr & DSISR_SET_RC) { |
| ret = kvmhv_handle_nested_set_rc(vcpu, gp, n_gpa, gpte, dsisr); |
| if (ret == RESUME_HOST) |
| return ret; |
| if (ret) |
| goto inval; |
| dsisr &= ~DSISR_SET_RC; |
| if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE | |
| DSISR_PROTFAULT))) |
| return RESUME_GUEST; |
| } |
| |
| /* |
| * We took an HISI or HDSI while we were running a nested guest which |
| * means we have no partition scoped translation for that. This means |
| * we need to insert a pte for the mapping into our shadow_pgtable. |
| */ |
| |
| l1_shift = gpte.page_shift; |
| if (l1_shift < PAGE_SHIFT) { |
| /* We don't support l1 using a page size smaller than our own */ |
| pr_err("KVM: L1 guest page shift (%d) less than our own (%d)\n", |
| l1_shift, PAGE_SHIFT); |
| return -EINVAL; |
| } |
| gpa = gpte.raddr; |
| gfn = gpa >> PAGE_SHIFT; |
| |
| /* 1. Get the corresponding host memslot */ |
| |
| memslot = gfn_to_memslot(kvm, gfn); |
| if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) { |
| if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS)) { |
| /* unusual error -> reflect to the guest as a DSI */ |
| kvmppc_core_queue_data_storage(vcpu, |
| kvmppc_get_msr(vcpu) & SRR1_PREFIXED, |
| ea, dsisr); |
| return RESUME_GUEST; |
| } |
| |
| /* passthrough of emulated MMIO case */ |
| return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, writing); |
| } |
| if (memslot->flags & KVM_MEM_READONLY) { |
| if (writing) { |
| /* Give the guest a DSI */ |
| kvmppc_core_queue_data_storage(vcpu, |
| kvmppc_get_msr(vcpu) & SRR1_PREFIXED, |
| ea, DSISR_ISSTORE | DSISR_PROTFAULT); |
| return RESUME_GUEST; |
| } |
| kvm_ro = true; |
| } |
| |
| /* 2. Find the host pte for this L1 guest real address */ |
| |
| /* Used to check for invalidations in progress */ |
| mmu_seq = kvm->mmu_invalidate_seq; |
| smp_rmb(); |
| |
| /* See if can find translation in our partition scoped tables for L1 */ |
| pte = __pte(0); |
| spin_lock(&kvm->mmu_lock); |
| pte_p = find_kvm_secondary_pte(kvm, gpa, &shift); |
| if (!shift) |
| shift = PAGE_SHIFT; |
| if (pte_p) |
| pte = *pte_p; |
| spin_unlock(&kvm->mmu_lock); |
| |
| if (!pte_present(pte) || (writing && !(pte_val(pte) & _PAGE_WRITE))) { |
| /* No suitable pte found -> try to insert a mapping */ |
| ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot, |
| writing, kvm_ro, &pte, &level); |
| if (ret == -EAGAIN) |
| return RESUME_GUEST; |
| else if (ret) |
| return ret; |
| shift = kvmppc_radix_level_to_shift(level); |
| } |
| /* Align gfn to the start of the page */ |
| gfn = (gpa & ~((1UL << shift) - 1)) >> PAGE_SHIFT; |
| |
| /* 3. Compute the pte we need to insert for nest_gpa -> host r_addr */ |
| |
| /* The permissions is the combination of the host and l1 guest ptes */ |
| perm |= gpte.may_read ? 0UL : _PAGE_READ; |
| perm |= gpte.may_write ? 0UL : _PAGE_WRITE; |
| perm |= gpte.may_execute ? 0UL : _PAGE_EXEC; |
| /* Only set accessed/dirty (rc) bits if set in host and l1 guest ptes */ |
| perm |= (gpte.rc & _PAGE_ACCESSED) ? 0UL : _PAGE_ACCESSED; |
| perm |= ((gpte.rc & _PAGE_DIRTY) && writing) ? 0UL : _PAGE_DIRTY; |
| pte = __pte(pte_val(pte) & ~perm); |
| |
| /* What size pte can we insert? */ |
| if (shift > l1_shift) { |
| u64 mask; |
| unsigned int actual_shift = PAGE_SHIFT; |
| if (PMD_SHIFT < l1_shift) |
| actual_shift = PMD_SHIFT; |
| mask = (1UL << shift) - (1UL << actual_shift); |
| pte = __pte(pte_val(pte) | (gpa & mask)); |
| shift = actual_shift; |
| } |
| level = kvmppc_radix_shift_to_level(shift); |
| n_gpa &= ~((1UL << shift) - 1); |
| |
| /* 4. Insert the pte into our shadow_pgtable */ |
| |
| n_rmap = kzalloc(sizeof(*n_rmap), GFP_KERNEL); |
| if (!n_rmap) |
| return RESUME_GUEST; /* Let the guest try again */ |
| n_rmap->rmap = (n_gpa & RMAP_NESTED_GPA_MASK) | |
| (((unsigned long) gp->l1_lpid) << RMAP_NESTED_LPID_SHIFT); |
| rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; |
| ret = kvmppc_create_pte(kvm, gp->shadow_pgtable, pte, n_gpa, level, |
| mmu_seq, gp->shadow_lpid, rmapp, &n_rmap); |
| kfree(n_rmap); |
| if (ret == -EAGAIN) |
| ret = RESUME_GUEST; /* Let the guest try again */ |
| |
| return ret; |
| |
| inval: |
| kvmhv_invalidate_shadow_pte(vcpu, gp, n_gpa, NULL); |
| return RESUME_GUEST; |
| } |
| |
| long int kvmhv_nested_page_fault(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_nested_guest *gp = vcpu->arch.nested; |
| long int ret; |
| |
| mutex_lock(&gp->tlb_lock); |
| ret = __kvmhv_nested_page_fault(vcpu, gp); |
| mutex_unlock(&gp->tlb_lock); |
| return ret; |
| } |
| |
| int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid) |
| { |
| int ret = lpid + 1; |
| |
| spin_lock(&kvm->mmu_lock); |
| if (!idr_get_next(&kvm->arch.kvm_nested_guest_idr, &ret)) |
| ret = -1; |
| spin_unlock(&kvm->mmu_lock); |
| |
| return ret; |
| } |