| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * EFI stub implementation that is shared by arm and arm64 architectures. |
| * This should be #included by the EFI stub implementation files. |
| * |
| * Copyright (C) 2013,2014 Linaro Limited |
| * Roy Franz <roy.franz@linaro.org |
| * Copyright (C) 2013 Red Hat, Inc. |
| * Mark Salter <msalter@redhat.com> |
| */ |
| |
| #include <linux/efi.h> |
| #include <asm/efi.h> |
| |
| #include "efistub.h" |
| |
| /* |
| * This is the base address at which to start allocating virtual memory ranges |
| * for UEFI Runtime Services. |
| * |
| * For ARM/ARM64: |
| * This is in the low TTBR0 range so that we can use |
| * any allocation we choose, and eliminate the risk of a conflict after kexec. |
| * The value chosen is the largest non-zero power of 2 suitable for this purpose |
| * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can |
| * be mapped efficiently. |
| * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split, |
| * map everything below 1 GB. (512 MB is a reasonable upper bound for the |
| * entire footprint of the UEFI runtime services memory regions) |
| * |
| * For RISC-V: |
| * There is no specific reason for which, this address (512MB) can't be used |
| * EFI runtime virtual address for RISC-V. It also helps to use EFI runtime |
| * services on both RV32/RV64. Keep the same runtime virtual address for RISC-V |
| * as well to minimize the code churn. |
| */ |
| #define EFI_RT_VIRTUAL_BASE SZ_512M |
| |
| /* |
| * Some architectures map the EFI regions into the kernel's linear map using a |
| * fixed offset. |
| */ |
| #ifndef EFI_RT_VIRTUAL_OFFSET |
| #define EFI_RT_VIRTUAL_OFFSET 0 |
| #endif |
| |
| static u64 virtmap_base = EFI_RT_VIRTUAL_BASE; |
| static bool flat_va_mapping = (EFI_RT_VIRTUAL_OFFSET != 0); |
| |
| void __weak free_screen_info(struct screen_info *si) |
| { |
| } |
| |
| static struct screen_info *setup_graphics(void) |
| { |
| efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID; |
| efi_status_t status; |
| unsigned long size; |
| void **gop_handle = NULL; |
| struct screen_info *si = NULL; |
| |
| size = 0; |
| status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL, |
| &gop_proto, NULL, &size, gop_handle); |
| if (status == EFI_BUFFER_TOO_SMALL) { |
| si = alloc_screen_info(); |
| if (!si) |
| return NULL; |
| status = efi_setup_gop(si, &gop_proto, size); |
| if (status != EFI_SUCCESS) { |
| free_screen_info(si); |
| return NULL; |
| } |
| } |
| return si; |
| } |
| |
| static void install_memreserve_table(void) |
| { |
| struct linux_efi_memreserve *rsv; |
| efi_guid_t memreserve_table_guid = LINUX_EFI_MEMRESERVE_TABLE_GUID; |
| efi_status_t status; |
| |
| status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, sizeof(*rsv), |
| (void **)&rsv); |
| if (status != EFI_SUCCESS) { |
| efi_err("Failed to allocate memreserve entry!\n"); |
| return; |
| } |
| |
| rsv->next = 0; |
| rsv->size = 0; |
| atomic_set(&rsv->count, 0); |
| |
| status = efi_bs_call(install_configuration_table, |
| &memreserve_table_guid, rsv); |
| if (status != EFI_SUCCESS) |
| efi_err("Failed to install memreserve config table!\n"); |
| } |
| |
| static u32 get_supported_rt_services(void) |
| { |
| const efi_rt_properties_table_t *rt_prop_table; |
| u32 supported = EFI_RT_SUPPORTED_ALL; |
| |
| rt_prop_table = get_efi_config_table(EFI_RT_PROPERTIES_TABLE_GUID); |
| if (rt_prop_table) |
| supported &= rt_prop_table->runtime_services_supported; |
| |
| return supported; |
| } |
| |
| efi_status_t efi_handle_cmdline(efi_loaded_image_t *image, char **cmdline_ptr) |
| { |
| int cmdline_size = 0; |
| efi_status_t status; |
| char *cmdline; |
| |
| /* |
| * Get the command line from EFI, using the LOADED_IMAGE |
| * protocol. We are going to copy the command line into the |
| * device tree, so this can be allocated anywhere. |
| */ |
| cmdline = efi_convert_cmdline(image, &cmdline_size); |
| if (!cmdline) { |
| efi_err("getting command line via LOADED_IMAGE_PROTOCOL\n"); |
| return EFI_OUT_OF_RESOURCES; |
| } |
| |
| if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) || |
| IS_ENABLED(CONFIG_CMDLINE_FORCE) || |
| cmdline_size == 0) { |
| status = efi_parse_options(CONFIG_CMDLINE); |
| if (status != EFI_SUCCESS) { |
| efi_err("Failed to parse options\n"); |
| goto fail_free_cmdline; |
| } |
| } |
| |
| if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0) { |
| status = efi_parse_options(cmdline); |
| if (status != EFI_SUCCESS) { |
| efi_err("Failed to parse options\n"); |
| goto fail_free_cmdline; |
| } |
| } |
| |
| *cmdline_ptr = cmdline; |
| return EFI_SUCCESS; |
| |
| fail_free_cmdline: |
| efi_bs_call(free_pool, cmdline_ptr); |
| return status; |
| } |
| |
| efi_status_t efi_stub_common(efi_handle_t handle, |
| efi_loaded_image_t *image, |
| unsigned long image_addr, |
| char *cmdline_ptr) |
| { |
| struct screen_info *si; |
| efi_status_t status; |
| |
| status = check_platform_features(); |
| if (status != EFI_SUCCESS) |
| return status; |
| |
| si = setup_graphics(); |
| |
| efi_retrieve_tpm2_eventlog(); |
| |
| /* Ask the firmware to clear memory on unclean shutdown */ |
| efi_enable_reset_attack_mitigation(); |
| |
| efi_load_initrd(image, ULONG_MAX, efi_get_max_initrd_addr(image_addr), |
| NULL); |
| |
| efi_random_get_seed(); |
| |
| /* force efi_novamap if SetVirtualAddressMap() is unsupported */ |
| efi_novamap |= !(get_supported_rt_services() & |
| EFI_RT_SUPPORTED_SET_VIRTUAL_ADDRESS_MAP); |
| |
| install_memreserve_table(); |
| |
| status = efi_boot_kernel(handle, image, image_addr, cmdline_ptr); |
| |
| free_screen_info(si); |
| return status; |
| } |
| |
| /* |
| * efi_allocate_virtmap() - create a pool allocation for the virtmap |
| * |
| * Create an allocation that is of sufficient size to hold all the memory |
| * descriptors that will be passed to SetVirtualAddressMap() to inform the |
| * firmware about the virtual mapping that will be used under the OS to call |
| * into the firmware. |
| */ |
| efi_status_t efi_alloc_virtmap(efi_memory_desc_t **virtmap, |
| unsigned long *desc_size, u32 *desc_ver) |
| { |
| unsigned long size, mmap_key; |
| efi_status_t status; |
| |
| /* |
| * Use the size of the current memory map as an upper bound for the |
| * size of the buffer we need to pass to SetVirtualAddressMap() to |
| * cover all EFI_MEMORY_RUNTIME regions. |
| */ |
| size = 0; |
| status = efi_bs_call(get_memory_map, &size, NULL, &mmap_key, desc_size, |
| desc_ver); |
| if (status != EFI_BUFFER_TOO_SMALL) |
| return EFI_LOAD_ERROR; |
| |
| return efi_bs_call(allocate_pool, EFI_LOADER_DATA, size, |
| (void **)virtmap); |
| } |
| |
| /* |
| * efi_get_virtmap() - create a virtual mapping for the EFI memory map |
| * |
| * This function populates the virt_addr fields of all memory region descriptors |
| * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors |
| * are also copied to @runtime_map, and their total count is returned in @count. |
| */ |
| void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size, |
| unsigned long desc_size, efi_memory_desc_t *runtime_map, |
| int *count) |
| { |
| u64 efi_virt_base = virtmap_base; |
| efi_memory_desc_t *in, *out = runtime_map; |
| int l; |
| |
| *count = 0; |
| |
| for (l = 0; l < map_size; l += desc_size) { |
| u64 paddr, size; |
| |
| in = (void *)memory_map + l; |
| if (!(in->attribute & EFI_MEMORY_RUNTIME)) |
| continue; |
| |
| paddr = in->phys_addr; |
| size = in->num_pages * EFI_PAGE_SIZE; |
| |
| in->virt_addr = in->phys_addr + EFI_RT_VIRTUAL_OFFSET; |
| if (efi_novamap) { |
| continue; |
| } |
| |
| /* |
| * Make the mapping compatible with 64k pages: this allows |
| * a 4k page size kernel to kexec a 64k page size kernel and |
| * vice versa. |
| */ |
| if (!flat_va_mapping) { |
| |
| paddr = round_down(in->phys_addr, SZ_64K); |
| size += in->phys_addr - paddr; |
| |
| /* |
| * Avoid wasting memory on PTEs by choosing a virtual |
| * base that is compatible with section mappings if this |
| * region has the appropriate size and physical |
| * alignment. (Sections are 2 MB on 4k granule kernels) |
| */ |
| if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M) |
| efi_virt_base = round_up(efi_virt_base, SZ_2M); |
| else |
| efi_virt_base = round_up(efi_virt_base, SZ_64K); |
| |
| in->virt_addr += efi_virt_base - paddr; |
| efi_virt_base += size; |
| } |
| |
| memcpy(out, in, desc_size); |
| out = (void *)out + desc_size; |
| ++*count; |
| } |
| } |