blob: e3db3a178760991dc77ed4a211204deaf2acad68 [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2021-2023 Intel Corporation
*/
#include <linux/minmax.h>
#include "xe_mmio.h"
#include <drm/drm_managed.h>
#include <drm/xe_drm.h>
#include "regs/xe_engine_regs.h"
#include "regs/xe_gt_regs.h"
#include "regs/xe_regs.h"
#include "xe_bo.h"
#include "xe_device.h"
#include "xe_ggtt.h"
#include "xe_gt.h"
#include "xe_gt_mcr.h"
#include "xe_macros.h"
#include "xe_module.h"
#include "xe_sriov.h"
#include "xe_tile.h"
#define XEHP_MTCFG_ADDR XE_REG(0x101800)
#define TILE_COUNT REG_GENMASK(15, 8)
#define BAR_SIZE_SHIFT 20
static void
_resize_bar(struct xe_device *xe, int resno, resource_size_t size)
{
struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
int bar_size = pci_rebar_bytes_to_size(size);
int ret;
if (pci_resource_len(pdev, resno))
pci_release_resource(pdev, resno);
ret = pci_resize_resource(pdev, resno, bar_size);
if (ret) {
drm_info(&xe->drm, "Failed to resize BAR%d to %dM (%pe). Consider enabling 'Resizable BAR' support in your BIOS\n",
resno, 1 << bar_size, ERR_PTR(ret));
return;
}
drm_info(&xe->drm, "BAR%d resized to %dM\n", resno, 1 << bar_size);
}
/*
* if force_vram_bar_size is set, attempt to set to the requested size
* else set to maximum possible size
*/
static void xe_resize_vram_bar(struct xe_device *xe)
{
u64 force_vram_bar_size = xe_modparam.force_vram_bar_size;
struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
struct pci_bus *root = pdev->bus;
resource_size_t current_size;
resource_size_t rebar_size;
struct resource *root_res;
u32 bar_size_mask;
u32 pci_cmd;
int i;
/* gather some relevant info */
current_size = pci_resource_len(pdev, LMEM_BAR);
bar_size_mask = pci_rebar_get_possible_sizes(pdev, LMEM_BAR);
if (!bar_size_mask)
return;
/* set to a specific size? */
if (force_vram_bar_size) {
u32 bar_size_bit;
rebar_size = force_vram_bar_size * (resource_size_t)SZ_1M;
bar_size_bit = bar_size_mask & BIT(pci_rebar_bytes_to_size(rebar_size));
if (!bar_size_bit) {
drm_info(&xe->drm,
"Requested size: %lluMiB is not supported by rebar sizes: 0x%x. Leaving default: %lluMiB\n",
(u64)rebar_size >> 20, bar_size_mask, (u64)current_size >> 20);
return;
}
rebar_size = 1ULL << (__fls(bar_size_bit) + BAR_SIZE_SHIFT);
if (rebar_size == current_size)
return;
} else {
rebar_size = 1ULL << (__fls(bar_size_mask) + BAR_SIZE_SHIFT);
/* only resize if larger than current */
if (rebar_size <= current_size)
return;
}
drm_info(&xe->drm, "Attempting to resize bar from %lluMiB -> %lluMiB\n",
(u64)current_size >> 20, (u64)rebar_size >> 20);
while (root->parent)
root = root->parent;
pci_bus_for_each_resource(root, root_res, i) {
if (root_res && root_res->flags & (IORESOURCE_MEM | IORESOURCE_MEM_64) &&
root_res->start > 0x100000000ull)
break;
}
if (!root_res) {
drm_info(&xe->drm, "Can't resize VRAM BAR - platform support is missing. Consider enabling 'Resizable BAR' support in your BIOS\n");
return;
}
pci_read_config_dword(pdev, PCI_COMMAND, &pci_cmd);
pci_write_config_dword(pdev, PCI_COMMAND, pci_cmd & ~PCI_COMMAND_MEMORY);
_resize_bar(xe, LMEM_BAR, rebar_size);
pci_assign_unassigned_bus_resources(pdev->bus);
pci_write_config_dword(pdev, PCI_COMMAND, pci_cmd);
}
static bool xe_pci_resource_valid(struct pci_dev *pdev, int bar)
{
if (!pci_resource_flags(pdev, bar))
return false;
if (pci_resource_flags(pdev, bar) & IORESOURCE_UNSET)
return false;
if (!pci_resource_len(pdev, bar))
return false;
return true;
}
static int xe_determine_lmem_bar_size(struct xe_device *xe)
{
struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
if (!xe_pci_resource_valid(pdev, LMEM_BAR)) {
drm_err(&xe->drm, "pci resource is not valid\n");
return -ENXIO;
}
xe_resize_vram_bar(xe);
xe->mem.vram.io_start = pci_resource_start(pdev, LMEM_BAR);
xe->mem.vram.io_size = pci_resource_len(pdev, LMEM_BAR);
if (!xe->mem.vram.io_size)
return -EIO;
/* XXX: Need to change when xe link code is ready */
xe->mem.vram.dpa_base = 0;
/* set up a map to the total memory area. */
xe->mem.vram.mapping = ioremap_wc(xe->mem.vram.io_start, xe->mem.vram.io_size);
return 0;
}
/**
* xe_mmio_tile_vram_size() - Collect vram size and offset information
* @tile: tile to get info for
* @vram_size: available vram (size - device reserved portions)
* @tile_size: actual vram size
* @tile_offset: physical start point in the vram address space
*
* There are 4 places for size information:
* - io size (from pci_resource_len of LMEM bar) (only used for small bar and DG1)
* - TILEx size (actual vram size)
* - GSMBASE offset (TILEx - "stolen")
* - CSSBASE offset (TILEx - CSS space necessary)
*
* CSSBASE is always a lower/smaller offset then GSMBASE.
*
* The actual available size of memory is to the CCS or GSM base.
* NOTE: multi-tile bases will include the tile offset.
*
*/
static int xe_mmio_tile_vram_size(struct xe_tile *tile, u64 *vram_size,
u64 *tile_size, u64 *tile_offset)
{
struct xe_device *xe = tile_to_xe(tile);
struct xe_gt *gt = tile->primary_gt;
u64 offset;
int err;
u32 reg;
err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
if (err)
return err;
/* actual size */
if (unlikely(xe->info.platform == XE_DG1)) {
*tile_size = pci_resource_len(to_pci_dev(xe->drm.dev), LMEM_BAR);
*tile_offset = 0;
} else {
reg = xe_gt_mcr_unicast_read_any(gt, XEHP_TILE_ADDR_RANGE(gt->info.id));
*tile_size = (u64)REG_FIELD_GET(GENMASK(14, 8), reg) * SZ_1G;
*tile_offset = (u64)REG_FIELD_GET(GENMASK(7, 1), reg) * SZ_1G;
}
/* minus device usage */
if (xe->info.has_flat_ccs) {
reg = xe_gt_mcr_unicast_read_any(gt, XEHP_FLAT_CCS_BASE_ADDR);
offset = (u64)REG_FIELD_GET(GENMASK(31, 8), reg) * SZ_64K;
} else {
offset = xe_mmio_read64_2x32(gt, GSMBASE);
}
/* remove the tile offset so we have just the available size */
*vram_size = offset - *tile_offset;
return xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
}
int xe_mmio_probe_vram(struct xe_device *xe)
{
struct xe_tile *tile;
resource_size_t io_size;
u64 available_size = 0;
u64 total_size = 0;
u64 tile_offset;
u64 tile_size;
u64 vram_size;
int err;
u8 id;
if (!IS_DGFX(xe))
return 0;
/* Get the size of the root tile's vram for later accessibility comparison */
tile = xe_device_get_root_tile(xe);
err = xe_mmio_tile_vram_size(tile, &vram_size, &tile_size, &tile_offset);
if (err)
return err;
err = xe_determine_lmem_bar_size(xe);
if (err)
return err;
drm_info(&xe->drm, "VISIBLE VRAM: %pa, %pa\n", &xe->mem.vram.io_start,
&xe->mem.vram.io_size);
io_size = xe->mem.vram.io_size;
/* tile specific ranges */
for_each_tile(tile, xe, id) {
err = xe_mmio_tile_vram_size(tile, &vram_size, &tile_size, &tile_offset);
if (err)
return err;
tile->mem.vram.actual_physical_size = tile_size;
tile->mem.vram.io_start = xe->mem.vram.io_start + tile_offset;
tile->mem.vram.io_size = min_t(u64, vram_size, io_size);
if (!tile->mem.vram.io_size) {
drm_err(&xe->drm, "Tile without any CPU visible VRAM. Aborting.\n");
return -ENODEV;
}
tile->mem.vram.dpa_base = xe->mem.vram.dpa_base + tile_offset;
tile->mem.vram.usable_size = vram_size;
tile->mem.vram.mapping = xe->mem.vram.mapping + tile_offset;
if (tile->mem.vram.io_size < tile->mem.vram.usable_size)
drm_info(&xe->drm, "Small BAR device\n");
drm_info(&xe->drm, "VRAM[%u, %u]: Actual physical size %pa, usable size exclude stolen %pa, CPU accessible size %pa\n", id,
tile->id, &tile->mem.vram.actual_physical_size, &tile->mem.vram.usable_size, &tile->mem.vram.io_size);
drm_info(&xe->drm, "VRAM[%u, %u]: DPA range: [%pa-%llx], io range: [%pa-%llx]\n", id, tile->id,
&tile->mem.vram.dpa_base, tile->mem.vram.dpa_base + (u64)tile->mem.vram.actual_physical_size,
&tile->mem.vram.io_start, tile->mem.vram.io_start + (u64)tile->mem.vram.io_size);
/* calculate total size using tile size to get the correct HW sizing */
total_size += tile_size;
available_size += vram_size;
if (total_size > xe->mem.vram.io_size) {
drm_info(&xe->drm, "VRAM: %pa is larger than resource %pa\n",
&total_size, &xe->mem.vram.io_size);
}
io_size -= min_t(u64, tile_size, io_size);
}
xe->mem.vram.actual_physical_size = total_size;
drm_info(&xe->drm, "Total VRAM: %pa, %pa\n", &xe->mem.vram.io_start,
&xe->mem.vram.actual_physical_size);
drm_info(&xe->drm, "Available VRAM: %pa, %pa\n", &xe->mem.vram.io_start,
&available_size);
return 0;
}
void xe_mmio_probe_tiles(struct xe_device *xe)
{
size_t tile_mmio_size = SZ_16M, tile_mmio_ext_size = xe->info.tile_mmio_ext_size;
u8 id, tile_count = xe->info.tile_count;
struct xe_gt *gt = xe_root_mmio_gt(xe);
struct xe_tile *tile;
void __iomem *regs;
u32 mtcfg;
if (tile_count == 1)
goto add_mmio_ext;
if (!xe->info.skip_mtcfg) {
mtcfg = xe_mmio_read64_2x32(gt, XEHP_MTCFG_ADDR);
tile_count = REG_FIELD_GET(TILE_COUNT, mtcfg) + 1;
if (tile_count < xe->info.tile_count) {
drm_info(&xe->drm, "tile_count: %d, reduced_tile_count %d\n",
xe->info.tile_count, tile_count);
xe->info.tile_count = tile_count;
/*
* FIXME: Needs some work for standalone media, but should be impossible
* with multi-tile for now.
*/
xe->info.gt_count = xe->info.tile_count;
}
}
regs = xe->mmio.regs;
for_each_tile(tile, xe, id) {
tile->mmio.size = tile_mmio_size;
tile->mmio.regs = regs;
regs += tile_mmio_size;
}
add_mmio_ext:
/*
* By design, there's a contiguous multi-tile MMIO space (16MB hard coded per tile).
* When supported, there could be an additional contiguous multi-tile MMIO extension
* space ON TOP of it, and hence the necessity for distinguished MMIO spaces.
*/
if (xe->info.has_mmio_ext) {
regs = xe->mmio.regs + tile_mmio_size * tile_count;
for_each_tile(tile, xe, id) {
tile->mmio_ext.size = tile_mmio_ext_size;
tile->mmio_ext.regs = regs;
regs += tile_mmio_ext_size;
}
}
}
static void mmio_fini(struct drm_device *drm, void *arg)
{
struct xe_device *xe = arg;
pci_iounmap(to_pci_dev(xe->drm.dev), xe->mmio.regs);
if (xe->mem.vram.mapping)
iounmap(xe->mem.vram.mapping);
}
static int xe_verify_lmem_ready(struct xe_device *xe)
{
struct xe_gt *gt = xe_root_mmio_gt(xe);
if (!IS_DGFX(xe))
return 0;
if (IS_SRIOV_VF(xe))
return 0;
/*
* The boot firmware initializes local memory and assesses its health.
* If memory training fails, the punit will have been instructed to
* keep the GT powered down; we won't be able to communicate with it
* and we should not continue with driver initialization.
*/
if (!(xe_mmio_read32(gt, GU_CNTL) & LMEM_INIT)) {
drm_err(&xe->drm, "VRAM not initialized by firmware\n");
return -ENODEV;
}
return 0;
}
int xe_mmio_init(struct xe_device *xe)
{
struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
const int mmio_bar = 0;
/*
* Map the entire BAR.
* The first 16MB of the BAR, belong to the root tile, and include:
* registers (0-4MB), reserved space (4MB-8MB) and GGTT (8MB-16MB).
*/
xe->mmio.size = pci_resource_len(pdev, mmio_bar);
xe->mmio.regs = pci_iomap(pdev, mmio_bar, 0);
if (xe->mmio.regs == NULL) {
drm_err(&xe->drm, "failed to map registers\n");
return -EIO;
}
return drmm_add_action_or_reset(&xe->drm, mmio_fini, xe);
}
int xe_mmio_root_tile_init(struct xe_device *xe)
{
struct xe_tile *root_tile = xe_device_get_root_tile(xe);
int err;
/* Setup first tile; other tiles (if present) will be setup later. */
root_tile->mmio.size = SZ_16M;
root_tile->mmio.regs = xe->mmio.regs;
err = xe_verify_lmem_ready(xe);
if (err)
return err;
return 0;
}
/**
* xe_mmio_read64_2x32() - Read a 64-bit register as two 32-bit reads
* @gt: MMIO target GT
* @reg: register to read value from
*
* Although Intel GPUs have some 64-bit registers, the hardware officially
* only supports GTTMMADR register reads of 32 bits or smaller. Even if
* a readq operation may return a reasonable value, that violation of the
* spec shouldn't be relied upon and all 64-bit register reads should be
* performed as two 32-bit reads of the upper and lower dwords.
*
* When reading registers that may be changing (such as
* counters), a rollover of the lower dword between the two 32-bit reads
* can be problematic. This function attempts to ensure the upper dword has
* stabilized before returning the 64-bit value.
*
* Note that because this function may re-read the register multiple times
* while waiting for the value to stabilize it should not be used to read
* any registers where read operations have side effects.
*
* Returns the value of the 64-bit register.
*/
u64 xe_mmio_read64_2x32(struct xe_gt *gt, struct xe_reg reg)
{
struct xe_reg reg_udw = { .addr = reg.addr + 0x4 };
u32 ldw, udw, oldudw, retries;
if (reg.addr < gt->mmio.adj_limit) {
reg.addr += gt->mmio.adj_offset;
reg_udw.addr += gt->mmio.adj_offset;
}
oldudw = xe_mmio_read32(gt, reg_udw);
for (retries = 5; retries; --retries) {
ldw = xe_mmio_read32(gt, reg);
udw = xe_mmio_read32(gt, reg_udw);
if (udw == oldudw)
break;
oldudw = udw;
}
xe_gt_WARN(gt, retries == 0,
"64-bit read of %#x did not stabilize\n", reg.addr);
return (u64)udw << 32 | ldw;
}
/**
* xe_mmio_wait32() - Wait for a register to match the desired masked value
* @gt: MMIO target GT
* @reg: register to read value from
* @mask: mask to be applied to the value read from the register
* @val: desired value after applying the mask
* @timeout_us: time out after this period of time. Wait logic tries to be
* smart, applying an exponential backoff until @timeout_us is reached.
* @out_val: if not NULL, points where to store the last unmasked value
* @atomic: needs to be true if calling from an atomic context
*
* This function polls for the desired masked value and returns zero on success
* or -ETIMEDOUT if timed out.
*
* Note that @timeout_us represents the minimum amount of time to wait before
* giving up. The actual time taken by this function can be a little more than
* @timeout_us for different reasons, specially in non-atomic contexts. Thus,
* it is possible that this function succeeds even after @timeout_us has passed.
*/
int xe_mmio_wait32(struct xe_gt *gt, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us,
u32 *out_val, bool atomic)
{
ktime_t cur = ktime_get_raw();
const ktime_t end = ktime_add_us(cur, timeout_us);
int ret = -ETIMEDOUT;
s64 wait = 10;
u32 read;
for (;;) {
read = xe_mmio_read32(gt, reg);
if ((read & mask) == val) {
ret = 0;
break;
}
cur = ktime_get_raw();
if (!ktime_before(cur, end))
break;
if (ktime_after(ktime_add_us(cur, wait), end))
wait = ktime_us_delta(end, cur);
if (atomic)
udelay(wait);
else
usleep_range(wait, wait << 1);
wait <<= 1;
}
if (ret != 0) {
read = xe_mmio_read32(gt, reg);
if ((read & mask) == val)
ret = 0;
}
if (out_val)
*out_val = read;
return ret;
}