| /* SPDX-License-Identifier: GPL-2.0 |
| * |
| * page_pool.h |
| * Author: Jesper Dangaard Brouer <netoptimizer@brouer.com> |
| * Copyright (C) 2016 Red Hat, Inc. |
| */ |
| |
| /** |
| * DOC: page_pool allocator |
| * |
| * This page_pool allocator is optimized for the XDP mode that |
| * uses one-frame-per-page, but have fallbacks that act like the |
| * regular page allocator APIs. |
| * |
| * Basic use involve replacing alloc_pages() calls with the |
| * page_pool_alloc_pages() call. Drivers should likely use |
| * page_pool_dev_alloc_pages() replacing dev_alloc_pages(). |
| * |
| * API keeps track of in-flight pages, in-order to let API user know |
| * when it is safe to dealloactor page_pool object. Thus, API users |
| * must make sure to call page_pool_release_page() when a page is |
| * "leaving" the page_pool. Or call page_pool_put_page() where |
| * appropiate. For maintaining correct accounting. |
| * |
| * API user must only call page_pool_put_page() once on a page, as it |
| * will either recycle the page, or in case of elevated refcnt, it |
| * will release the DMA mapping and in-flight state accounting. We |
| * hope to lift this requirement in the future. |
| */ |
| #ifndef _NET_PAGE_POOL_H |
| #define _NET_PAGE_POOL_H |
| |
| #include <linux/mm.h> /* Needed by ptr_ring */ |
| #include <linux/ptr_ring.h> |
| #include <linux/dma-direction.h> |
| |
| #define PP_FLAG_DMA_MAP BIT(0) /* Should page_pool do the DMA |
| * map/unmap |
| */ |
| #define PP_FLAG_DMA_SYNC_DEV BIT(1) /* If set all pages that the driver gets |
| * from page_pool will be |
| * DMA-synced-for-device according to |
| * the length provided by the device |
| * driver. |
| * Please note DMA-sync-for-CPU is still |
| * device driver responsibility |
| */ |
| #define PP_FLAG_ALL (PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV) |
| |
| /* |
| * Fast allocation side cache array/stack |
| * |
| * The cache size and refill watermark is related to the network |
| * use-case. The NAPI budget is 64 packets. After a NAPI poll the RX |
| * ring is usually refilled and the max consumed elements will be 64, |
| * thus a natural max size of objects needed in the cache. |
| * |
| * Keeping room for more objects, is due to XDP_DROP use-case. As |
| * XDP_DROP allows the opportunity to recycle objects directly into |
| * this array, as it shares the same softirq/NAPI protection. If |
| * cache is already full (or partly full) then the XDP_DROP recycles |
| * would have to take a slower code path. |
| */ |
| #define PP_ALLOC_CACHE_SIZE 128 |
| #define PP_ALLOC_CACHE_REFILL 64 |
| struct pp_alloc_cache { |
| u32 count; |
| struct page *cache[PP_ALLOC_CACHE_SIZE]; |
| }; |
| |
| struct page_pool_params { |
| unsigned int flags; |
| unsigned int order; |
| unsigned int pool_size; |
| int nid; /* Numa node id to allocate from pages from */ |
| struct device *dev; /* device, for DMA pre-mapping purposes */ |
| enum dma_data_direction dma_dir; /* DMA mapping direction */ |
| unsigned int max_len; /* max DMA sync memory size */ |
| unsigned int offset; /* DMA addr offset */ |
| }; |
| |
| struct page_pool { |
| struct page_pool_params p; |
| |
| struct delayed_work release_dw; |
| void (*disconnect)(void *); |
| unsigned long defer_start; |
| unsigned long defer_warn; |
| |
| u32 pages_state_hold_cnt; |
| |
| /* |
| * Data structure for allocation side |
| * |
| * Drivers allocation side usually already perform some kind |
| * of resource protection. Piggyback on this protection, and |
| * require driver to protect allocation side. |
| * |
| * For NIC drivers this means, allocate a page_pool per |
| * RX-queue. As the RX-queue is already protected by |
| * Softirq/BH scheduling and napi_schedule. NAPI schedule |
| * guarantee that a single napi_struct will only be scheduled |
| * on a single CPU (see napi_schedule). |
| */ |
| struct pp_alloc_cache alloc ____cacheline_aligned_in_smp; |
| |
| /* Data structure for storing recycled pages. |
| * |
| * Returning/freeing pages is more complicated synchronization |
| * wise, because free's can happen on remote CPUs, with no |
| * association with allocation resource. |
| * |
| * Use ptr_ring, as it separates consumer and producer |
| * effeciently, it a way that doesn't bounce cache-lines. |
| * |
| * TODO: Implement bulk return pages into this structure. |
| */ |
| struct ptr_ring ring; |
| |
| atomic_t pages_state_release_cnt; |
| |
| /* A page_pool is strictly tied to a single RX-queue being |
| * protected by NAPI, due to above pp_alloc_cache. This |
| * refcnt serves purpose is to simplify drivers error handling. |
| */ |
| refcount_t user_cnt; |
| |
| u64 destroy_cnt; |
| }; |
| |
| struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp); |
| |
| static inline struct page *page_pool_dev_alloc_pages(struct page_pool *pool) |
| { |
| gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); |
| |
| return page_pool_alloc_pages(pool, gfp); |
| } |
| |
| /* get the stored dma direction. A driver might decide to treat this locally and |
| * avoid the extra cache line from page_pool to determine the direction |
| */ |
| static |
| inline enum dma_data_direction page_pool_get_dma_dir(struct page_pool *pool) |
| { |
| return pool->p.dma_dir; |
| } |
| |
| bool page_pool_return_skb_page(struct page *page); |
| |
| struct page_pool *page_pool_create(const struct page_pool_params *params); |
| |
| #ifdef CONFIG_PAGE_POOL |
| void page_pool_destroy(struct page_pool *pool); |
| void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *)); |
| void page_pool_release_page(struct page_pool *pool, struct page *page); |
| void page_pool_put_page_bulk(struct page_pool *pool, void **data, |
| int count); |
| #else |
| static inline void page_pool_destroy(struct page_pool *pool) |
| { |
| } |
| |
| static inline void page_pool_use_xdp_mem(struct page_pool *pool, |
| void (*disconnect)(void *)) |
| { |
| } |
| static inline void page_pool_release_page(struct page_pool *pool, |
| struct page *page) |
| { |
| } |
| |
| static inline void page_pool_put_page_bulk(struct page_pool *pool, void **data, |
| int count) |
| { |
| } |
| #endif |
| |
| void page_pool_put_page(struct page_pool *pool, struct page *page, |
| unsigned int dma_sync_size, bool allow_direct); |
| |
| /* Same as above but will try to sync the entire area pool->max_len */ |
| static inline void page_pool_put_full_page(struct page_pool *pool, |
| struct page *page, bool allow_direct) |
| { |
| /* When page_pool isn't compiled-in, net/core/xdp.c doesn't |
| * allow registering MEM_TYPE_PAGE_POOL, but shield linker. |
| */ |
| #ifdef CONFIG_PAGE_POOL |
| page_pool_put_page(pool, page, -1, allow_direct); |
| #endif |
| } |
| |
| /* Same as above but the caller must guarantee safe context. e.g NAPI */ |
| static inline void page_pool_recycle_direct(struct page_pool *pool, |
| struct page *page) |
| { |
| page_pool_put_full_page(pool, page, true); |
| } |
| |
| static inline dma_addr_t page_pool_get_dma_addr(struct page *page) |
| { |
| dma_addr_t ret = page->dma_addr[0]; |
| if (sizeof(dma_addr_t) > sizeof(unsigned long)) |
| ret |= (dma_addr_t)page->dma_addr[1] << 16 << 16; |
| return ret; |
| } |
| |
| static inline void page_pool_set_dma_addr(struct page *page, dma_addr_t addr) |
| { |
| page->dma_addr[0] = addr; |
| if (sizeof(dma_addr_t) > sizeof(unsigned long)) |
| page->dma_addr[1] = upper_32_bits(addr); |
| } |
| |
| static inline bool is_page_pool_compiled_in(void) |
| { |
| #ifdef CONFIG_PAGE_POOL |
| return true; |
| #else |
| return false; |
| #endif |
| } |
| |
| static inline bool page_pool_put(struct page_pool *pool) |
| { |
| return refcount_dec_and_test(&pool->user_cnt); |
| } |
| |
| /* Caller must provide appropriate safe context, e.g. NAPI. */ |
| void page_pool_update_nid(struct page_pool *pool, int new_nid); |
| static inline void page_pool_nid_changed(struct page_pool *pool, int new_nid) |
| { |
| if (unlikely(pool->p.nid != new_nid)) |
| page_pool_update_nid(pool, new_nid); |
| } |
| |
| static inline void page_pool_ring_lock(struct page_pool *pool) |
| __acquires(&pool->ring.producer_lock) |
| { |
| if (in_serving_softirq()) |
| spin_lock(&pool->ring.producer_lock); |
| else |
| spin_lock_bh(&pool->ring.producer_lock); |
| } |
| |
| static inline void page_pool_ring_unlock(struct page_pool *pool) |
| __releases(&pool->ring.producer_lock) |
| { |
| if (in_serving_softirq()) |
| spin_unlock(&pool->ring.producer_lock); |
| else |
| spin_unlock_bh(&pool->ring.producer_lock); |
| } |
| |
| /* Store mem_info on struct page and use it while recycling skb frags */ |
| static inline |
| void page_pool_store_mem_info(struct page *page, struct page_pool *pp) |
| { |
| page->pp = pp; |
| } |
| |
| #endif /* _NET_PAGE_POOL_H */ |