| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * |
| * Bluetooth support for Intel devices |
| * |
| * Copyright (C) 2015 Intel Corporation |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/firmware.h> |
| #include <linux/regmap.h> |
| #include <asm/unaligned.h> |
| |
| #include <net/bluetooth/bluetooth.h> |
| #include <net/bluetooth/hci_core.h> |
| |
| #include "btintel.h" |
| |
| #define VERSION "0.1" |
| |
| #define BDADDR_INTEL (&(bdaddr_t){{0x00, 0x8b, 0x9e, 0x19, 0x03, 0x00}}) |
| #define RSA_HEADER_LEN 644 |
| #define CSS_HEADER_OFFSET 8 |
| #define ECDSA_OFFSET 644 |
| #define ECDSA_HEADER_LEN 320 |
| |
| #define CMD_WRITE_BOOT_PARAMS 0xfc0e |
| struct cmd_write_boot_params { |
| u32 boot_addr; |
| u8 fw_build_num; |
| u8 fw_build_ww; |
| u8 fw_build_yy; |
| } __packed; |
| |
| int btintel_check_bdaddr(struct hci_dev *hdev) |
| { |
| struct hci_rp_read_bd_addr *bda; |
| struct sk_buff *skb; |
| |
| skb = __hci_cmd_sync(hdev, HCI_OP_READ_BD_ADDR, 0, NULL, |
| HCI_INIT_TIMEOUT); |
| if (IS_ERR(skb)) { |
| int err = PTR_ERR(skb); |
| bt_dev_err(hdev, "Reading Intel device address failed (%d)", |
| err); |
| return err; |
| } |
| |
| if (skb->len != sizeof(*bda)) { |
| bt_dev_err(hdev, "Intel device address length mismatch"); |
| kfree_skb(skb); |
| return -EIO; |
| } |
| |
| bda = (struct hci_rp_read_bd_addr *)skb->data; |
| |
| /* For some Intel based controllers, the default Bluetooth device |
| * address 00:03:19:9E:8B:00 can be found. These controllers are |
| * fully operational, but have the danger of duplicate addresses |
| * and that in turn can cause problems with Bluetooth operation. |
| */ |
| if (!bacmp(&bda->bdaddr, BDADDR_INTEL)) { |
| bt_dev_err(hdev, "Found Intel default device address (%pMR)", |
| &bda->bdaddr); |
| set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks); |
| } |
| |
| kfree_skb(skb); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(btintel_check_bdaddr); |
| |
| int btintel_enter_mfg(struct hci_dev *hdev) |
| { |
| static const u8 param[] = { 0x01, 0x00 }; |
| struct sk_buff *skb; |
| |
| skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT); |
| if (IS_ERR(skb)) { |
| bt_dev_err(hdev, "Entering manufacturer mode failed (%ld)", |
| PTR_ERR(skb)); |
| return PTR_ERR(skb); |
| } |
| kfree_skb(skb); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(btintel_enter_mfg); |
| |
| int btintel_exit_mfg(struct hci_dev *hdev, bool reset, bool patched) |
| { |
| u8 param[] = { 0x00, 0x00 }; |
| struct sk_buff *skb; |
| |
| /* The 2nd command parameter specifies the manufacturing exit method: |
| * 0x00: Just disable the manufacturing mode (0x00). |
| * 0x01: Disable manufacturing mode and reset with patches deactivated. |
| * 0x02: Disable manufacturing mode and reset with patches activated. |
| */ |
| if (reset) |
| param[1] |= patched ? 0x02 : 0x01; |
| |
| skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT); |
| if (IS_ERR(skb)) { |
| bt_dev_err(hdev, "Exiting manufacturer mode failed (%ld)", |
| PTR_ERR(skb)); |
| return PTR_ERR(skb); |
| } |
| kfree_skb(skb); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(btintel_exit_mfg); |
| |
| int btintel_set_bdaddr(struct hci_dev *hdev, const bdaddr_t *bdaddr) |
| { |
| struct sk_buff *skb; |
| int err; |
| |
| skb = __hci_cmd_sync(hdev, 0xfc31, 6, bdaddr, HCI_INIT_TIMEOUT); |
| if (IS_ERR(skb)) { |
| err = PTR_ERR(skb); |
| bt_dev_err(hdev, "Changing Intel device address failed (%d)", |
| err); |
| return err; |
| } |
| kfree_skb(skb); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(btintel_set_bdaddr); |
| |
| static int btintel_set_event_mask(struct hci_dev *hdev, bool debug) |
| { |
| u8 mask[8] = { 0x87, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; |
| struct sk_buff *skb; |
| int err; |
| |
| if (debug) |
| mask[1] |= 0x62; |
| |
| skb = __hci_cmd_sync(hdev, 0xfc52, 8, mask, HCI_INIT_TIMEOUT); |
| if (IS_ERR(skb)) { |
| err = PTR_ERR(skb); |
| bt_dev_err(hdev, "Setting Intel event mask failed (%d)", err); |
| return err; |
| } |
| kfree_skb(skb); |
| |
| return 0; |
| } |
| |
| int btintel_set_diag(struct hci_dev *hdev, bool enable) |
| { |
| struct sk_buff *skb; |
| u8 param[3]; |
| int err; |
| |
| if (enable) { |
| param[0] = 0x03; |
| param[1] = 0x03; |
| param[2] = 0x03; |
| } else { |
| param[0] = 0x00; |
| param[1] = 0x00; |
| param[2] = 0x00; |
| } |
| |
| skb = __hci_cmd_sync(hdev, 0xfc43, 3, param, HCI_INIT_TIMEOUT); |
| if (IS_ERR(skb)) { |
| err = PTR_ERR(skb); |
| if (err == -ENODATA) |
| goto done; |
| bt_dev_err(hdev, "Changing Intel diagnostic mode failed (%d)", |
| err); |
| return err; |
| } |
| kfree_skb(skb); |
| |
| done: |
| btintel_set_event_mask(hdev, enable); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(btintel_set_diag); |
| |
| static int btintel_set_diag_mfg(struct hci_dev *hdev, bool enable) |
| { |
| int err, ret; |
| |
| err = btintel_enter_mfg(hdev); |
| if (err) |
| return err; |
| |
| ret = btintel_set_diag(hdev, enable); |
| |
| err = btintel_exit_mfg(hdev, false, false); |
| if (err) |
| return err; |
| |
| return ret; |
| } |
| |
| static int btintel_set_diag_combined(struct hci_dev *hdev, bool enable) |
| { |
| int ret; |
| |
| /* Legacy ROM device needs to be in the manufacturer mode to apply |
| * diagnostic setting |
| * |
| * This flag is set after reading the Intel version. |
| */ |
| if (btintel_test_flag(hdev, INTEL_ROM_LEGACY)) |
| ret = btintel_set_diag_mfg(hdev, enable); |
| else |
| ret = btintel_set_diag(hdev, enable); |
| |
| return ret; |
| } |
| |
| static void btintel_hw_error(struct hci_dev *hdev, u8 code) |
| { |
| struct sk_buff *skb; |
| u8 type = 0x00; |
| |
| bt_dev_err(hdev, "Hardware error 0x%2.2x", code); |
| |
| skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT); |
| if (IS_ERR(skb)) { |
| bt_dev_err(hdev, "Reset after hardware error failed (%ld)", |
| PTR_ERR(skb)); |
| return; |
| } |
| kfree_skb(skb); |
| |
| skb = __hci_cmd_sync(hdev, 0xfc22, 1, &type, HCI_INIT_TIMEOUT); |
| if (IS_ERR(skb)) { |
| bt_dev_err(hdev, "Retrieving Intel exception info failed (%ld)", |
| PTR_ERR(skb)); |
| return; |
| } |
| |
| if (skb->len != 13) { |
| bt_dev_err(hdev, "Exception info size mismatch"); |
| kfree_skb(skb); |
| return; |
| } |
| |
| bt_dev_err(hdev, "Exception info %s", (char *)(skb->data + 1)); |
| |
| kfree_skb(skb); |
| } |
| |
| int btintel_version_info(struct hci_dev *hdev, struct intel_version *ver) |
| { |
| const char *variant; |
| |
| /* The hardware platform number has a fixed value of 0x37 and |
| * for now only accept this single value. |
| */ |
| if (ver->hw_platform != 0x37) { |
| bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)", |
| ver->hw_platform); |
| return -EINVAL; |
| } |
| |
| /* Check for supported iBT hardware variants of this firmware |
| * loading method. |
| * |
| * This check has been put in place to ensure correct forward |
| * compatibility options when newer hardware variants come along. |
| */ |
| switch (ver->hw_variant) { |
| case 0x07: /* WP - Legacy ROM */ |
| case 0x08: /* StP - Legacy ROM */ |
| case 0x0b: /* SfP */ |
| case 0x0c: /* WsP */ |
| case 0x11: /* JfP */ |
| case 0x12: /* ThP */ |
| case 0x13: /* HrP */ |
| case 0x14: /* CcP */ |
| break; |
| default: |
| bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)", |
| ver->hw_variant); |
| return -EINVAL; |
| } |
| |
| switch (ver->fw_variant) { |
| case 0x01: |
| variant = "Legacy ROM 2.5"; |
| break; |
| case 0x06: |
| variant = "Bootloader"; |
| break; |
| case 0x22: |
| variant = "Legacy ROM 2.x"; |
| break; |
| case 0x23: |
| variant = "Firmware"; |
| break; |
| default: |
| bt_dev_err(hdev, "Unsupported firmware variant(%02x)", ver->fw_variant); |
| return -EINVAL; |
| } |
| |
| bt_dev_info(hdev, "%s revision %u.%u build %u week %u %u", |
| variant, ver->fw_revision >> 4, ver->fw_revision & 0x0f, |
| ver->fw_build_num, ver->fw_build_ww, |
| 2000 + ver->fw_build_yy); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(btintel_version_info); |
| |
| static int btintel_secure_send(struct hci_dev *hdev, u8 fragment_type, u32 plen, |
| const void *param) |
| { |
| while (plen > 0) { |
| struct sk_buff *skb; |
| u8 cmd_param[253], fragment_len = (plen > 252) ? 252 : plen; |
| |
| cmd_param[0] = fragment_type; |
| memcpy(cmd_param + 1, param, fragment_len); |
| |
| skb = __hci_cmd_sync(hdev, 0xfc09, fragment_len + 1, |
| cmd_param, HCI_INIT_TIMEOUT); |
| if (IS_ERR(skb)) |
| return PTR_ERR(skb); |
| |
| kfree_skb(skb); |
| |
| plen -= fragment_len; |
| param += fragment_len; |
| } |
| |
| return 0; |
| } |
| |
| int btintel_load_ddc_config(struct hci_dev *hdev, const char *ddc_name) |
| { |
| const struct firmware *fw; |
| struct sk_buff *skb; |
| const u8 *fw_ptr; |
| int err; |
| |
| err = request_firmware_direct(&fw, ddc_name, &hdev->dev); |
| if (err < 0) { |
| bt_dev_err(hdev, "Failed to load Intel DDC file %s (%d)", |
| ddc_name, err); |
| return err; |
| } |
| |
| bt_dev_info(hdev, "Found Intel DDC parameters: %s", ddc_name); |
| |
| fw_ptr = fw->data; |
| |
| /* DDC file contains one or more DDC structure which has |
| * Length (1 byte), DDC ID (2 bytes), and DDC value (Length - 2). |
| */ |
| while (fw->size > fw_ptr - fw->data) { |
| u8 cmd_plen = fw_ptr[0] + sizeof(u8); |
| |
| skb = __hci_cmd_sync(hdev, 0xfc8b, cmd_plen, fw_ptr, |
| HCI_INIT_TIMEOUT); |
| if (IS_ERR(skb)) { |
| bt_dev_err(hdev, "Failed to send Intel_Write_DDC (%ld)", |
| PTR_ERR(skb)); |
| release_firmware(fw); |
| return PTR_ERR(skb); |
| } |
| |
| fw_ptr += cmd_plen; |
| kfree_skb(skb); |
| } |
| |
| release_firmware(fw); |
| |
| bt_dev_info(hdev, "Applying Intel DDC parameters completed"); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(btintel_load_ddc_config); |
| |
| int btintel_set_event_mask_mfg(struct hci_dev *hdev, bool debug) |
| { |
| int err, ret; |
| |
| err = btintel_enter_mfg(hdev); |
| if (err) |
| return err; |
| |
| ret = btintel_set_event_mask(hdev, debug); |
| |
| err = btintel_exit_mfg(hdev, false, false); |
| if (err) |
| return err; |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(btintel_set_event_mask_mfg); |
| |
| int btintel_read_version(struct hci_dev *hdev, struct intel_version *ver) |
| { |
| struct sk_buff *skb; |
| |
| skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT); |
| if (IS_ERR(skb)) { |
| bt_dev_err(hdev, "Reading Intel version information failed (%ld)", |
| PTR_ERR(skb)); |
| return PTR_ERR(skb); |
| } |
| |
| if (skb->len != sizeof(*ver)) { |
| bt_dev_err(hdev, "Intel version event size mismatch"); |
| kfree_skb(skb); |
| return -EILSEQ; |
| } |
| |
| memcpy(ver, skb->data, sizeof(*ver)); |
| |
| kfree_skb(skb); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(btintel_read_version); |
| |
| static int btintel_version_info_tlv(struct hci_dev *hdev, |
| struct intel_version_tlv *version) |
| { |
| const char *variant; |
| |
| /* The hardware platform number has a fixed value of 0x37 and |
| * for now only accept this single value. |
| */ |
| if (INTEL_HW_PLATFORM(version->cnvi_bt) != 0x37) { |
| bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)", |
| INTEL_HW_PLATFORM(version->cnvi_bt)); |
| return -EINVAL; |
| } |
| |
| /* Check for supported iBT hardware variants of this firmware |
| * loading method. |
| * |
| * This check has been put in place to ensure correct forward |
| * compatibility options when newer hardware variants come along. |
| */ |
| switch (INTEL_HW_VARIANT(version->cnvi_bt)) { |
| case 0x17: /* TyP */ |
| case 0x18: /* Slr */ |
| case 0x19: /* Slr-F */ |
| break; |
| default: |
| bt_dev_err(hdev, "Unsupported Intel hardware variant (0x%x)", |
| INTEL_HW_VARIANT(version->cnvi_bt)); |
| return -EINVAL; |
| } |
| |
| switch (version->img_type) { |
| case 0x01: |
| variant = "Bootloader"; |
| /* It is required that every single firmware fragment is acknowledged |
| * with a command complete event. If the boot parameters indicate |
| * that this bootloader does not send them, then abort the setup. |
| */ |
| if (version->limited_cce != 0x00) { |
| bt_dev_err(hdev, "Unsupported Intel firmware loading method (0x%x)", |
| version->limited_cce); |
| return -EINVAL; |
| } |
| |
| /* Secure boot engine type should be either 1 (ECDSA) or 0 (RSA) */ |
| if (version->sbe_type > 0x01) { |
| bt_dev_err(hdev, "Unsupported Intel secure boot engine type (0x%x)", |
| version->sbe_type); |
| return -EINVAL; |
| } |
| |
| bt_dev_info(hdev, "Device revision is %u", version->dev_rev_id); |
| bt_dev_info(hdev, "Secure boot is %s", |
| version->secure_boot ? "enabled" : "disabled"); |
| bt_dev_info(hdev, "OTP lock is %s", |
| version->otp_lock ? "enabled" : "disabled"); |
| bt_dev_info(hdev, "API lock is %s", |
| version->api_lock ? "enabled" : "disabled"); |
| bt_dev_info(hdev, "Debug lock is %s", |
| version->debug_lock ? "enabled" : "disabled"); |
| bt_dev_info(hdev, "Minimum firmware build %u week %u %u", |
| version->min_fw_build_nn, version->min_fw_build_cw, |
| 2000 + version->min_fw_build_yy); |
| break; |
| case 0x03: |
| variant = "Firmware"; |
| break; |
| default: |
| bt_dev_err(hdev, "Unsupported image type(%02x)", version->img_type); |
| return -EINVAL; |
| } |
| |
| bt_dev_info(hdev, "%s timestamp %u.%u buildtype %u build %u", variant, |
| 2000 + (version->timestamp >> 8), version->timestamp & 0xff, |
| version->build_type, version->build_num); |
| |
| return 0; |
| } |
| |
| static int btintel_parse_version_tlv(struct hci_dev *hdev, |
| struct intel_version_tlv *version, |
| struct sk_buff *skb) |
| { |
| /* Consume Command Complete Status field */ |
| skb_pull(skb, 1); |
| |
| /* Event parameters contatin multiple TLVs. Read each of them |
| * and only keep the required data. Also, it use existing legacy |
| * version field like hw_platform, hw_variant, and fw_variant |
| * to keep the existing setup flow |
| */ |
| while (skb->len) { |
| struct intel_tlv *tlv; |
| |
| /* Make sure skb has a minimum length of the header */ |
| if (skb->len < sizeof(*tlv)) |
| return -EINVAL; |
| |
| tlv = (struct intel_tlv *)skb->data; |
| |
| /* Make sure skb has a enough data */ |
| if (skb->len < tlv->len + sizeof(*tlv)) |
| return -EINVAL; |
| |
| switch (tlv->type) { |
| case INTEL_TLV_CNVI_TOP: |
| version->cnvi_top = get_unaligned_le32(tlv->val); |
| break; |
| case INTEL_TLV_CNVR_TOP: |
| version->cnvr_top = get_unaligned_le32(tlv->val); |
| break; |
| case INTEL_TLV_CNVI_BT: |
| version->cnvi_bt = get_unaligned_le32(tlv->val); |
| break; |
| case INTEL_TLV_CNVR_BT: |
| version->cnvr_bt = get_unaligned_le32(tlv->val); |
| break; |
| case INTEL_TLV_DEV_REV_ID: |
| version->dev_rev_id = get_unaligned_le16(tlv->val); |
| break; |
| case INTEL_TLV_IMAGE_TYPE: |
| version->img_type = tlv->val[0]; |
| break; |
| case INTEL_TLV_TIME_STAMP: |
| /* If image type is Operational firmware (0x03), then |
| * running FW Calendar Week and Year information can |
| * be extracted from Timestamp information |
| */ |
| version->min_fw_build_cw = tlv->val[0]; |
| version->min_fw_build_yy = tlv->val[1]; |
| version->timestamp = get_unaligned_le16(tlv->val); |
| break; |
| case INTEL_TLV_BUILD_TYPE: |
| version->build_type = tlv->val[0]; |
| break; |
| case INTEL_TLV_BUILD_NUM: |
| /* If image type is Operational firmware (0x03), then |
| * running FW build number can be extracted from the |
| * Build information |
| */ |
| version->min_fw_build_nn = tlv->val[0]; |
| version->build_num = get_unaligned_le32(tlv->val); |
| break; |
| case INTEL_TLV_SECURE_BOOT: |
| version->secure_boot = tlv->val[0]; |
| break; |
| case INTEL_TLV_OTP_LOCK: |
| version->otp_lock = tlv->val[0]; |
| break; |
| case INTEL_TLV_API_LOCK: |
| version->api_lock = tlv->val[0]; |
| break; |
| case INTEL_TLV_DEBUG_LOCK: |
| version->debug_lock = tlv->val[0]; |
| break; |
| case INTEL_TLV_MIN_FW: |
| version->min_fw_build_nn = tlv->val[0]; |
| version->min_fw_build_cw = tlv->val[1]; |
| version->min_fw_build_yy = tlv->val[2]; |
| break; |
| case INTEL_TLV_LIMITED_CCE: |
| version->limited_cce = tlv->val[0]; |
| break; |
| case INTEL_TLV_SBE_TYPE: |
| version->sbe_type = tlv->val[0]; |
| break; |
| case INTEL_TLV_OTP_BDADDR: |
| memcpy(&version->otp_bd_addr, tlv->val, |
| sizeof(bdaddr_t)); |
| break; |
| default: |
| /* Ignore rest of information */ |
| break; |
| } |
| /* consume the current tlv and move to next*/ |
| skb_pull(skb, tlv->len + sizeof(*tlv)); |
| } |
| |
| return 0; |
| } |
| |
| static int btintel_read_version_tlv(struct hci_dev *hdev, |
| struct intel_version_tlv *version) |
| { |
| struct sk_buff *skb; |
| const u8 param[1] = { 0xFF }; |
| |
| if (!version) |
| return -EINVAL; |
| |
| skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT); |
| if (IS_ERR(skb)) { |
| bt_dev_err(hdev, "Reading Intel version information failed (%ld)", |
| PTR_ERR(skb)); |
| return PTR_ERR(skb); |
| } |
| |
| if (skb->data[0]) { |
| bt_dev_err(hdev, "Intel Read Version command failed (%02x)", |
| skb->data[0]); |
| kfree_skb(skb); |
| return -EIO; |
| } |
| |
| btintel_parse_version_tlv(hdev, version, skb); |
| |
| kfree_skb(skb); |
| return 0; |
| } |
| |
| /* ------- REGMAP IBT SUPPORT ------- */ |
| |
| #define IBT_REG_MODE_8BIT 0x00 |
| #define IBT_REG_MODE_16BIT 0x01 |
| #define IBT_REG_MODE_32BIT 0x02 |
| |
| struct regmap_ibt_context { |
| struct hci_dev *hdev; |
| __u16 op_write; |
| __u16 op_read; |
| }; |
| |
| struct ibt_cp_reg_access { |
| __le32 addr; |
| __u8 mode; |
| __u8 len; |
| __u8 data[]; |
| } __packed; |
| |
| struct ibt_rp_reg_access { |
| __u8 status; |
| __le32 addr; |
| __u8 data[]; |
| } __packed; |
| |
| static int regmap_ibt_read(void *context, const void *addr, size_t reg_size, |
| void *val, size_t val_size) |
| { |
| struct regmap_ibt_context *ctx = context; |
| struct ibt_cp_reg_access cp; |
| struct ibt_rp_reg_access *rp; |
| struct sk_buff *skb; |
| int err = 0; |
| |
| if (reg_size != sizeof(__le32)) |
| return -EINVAL; |
| |
| switch (val_size) { |
| case 1: |
| cp.mode = IBT_REG_MODE_8BIT; |
| break; |
| case 2: |
| cp.mode = IBT_REG_MODE_16BIT; |
| break; |
| case 4: |
| cp.mode = IBT_REG_MODE_32BIT; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| /* regmap provides a little-endian formatted addr */ |
| cp.addr = *(__le32 *)addr; |
| cp.len = val_size; |
| |
| bt_dev_dbg(ctx->hdev, "Register (0x%x) read", le32_to_cpu(cp.addr)); |
| |
| skb = hci_cmd_sync(ctx->hdev, ctx->op_read, sizeof(cp), &cp, |
| HCI_CMD_TIMEOUT); |
| if (IS_ERR(skb)) { |
| err = PTR_ERR(skb); |
| bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error (%d)", |
| le32_to_cpu(cp.addr), err); |
| return err; |
| } |
| |
| if (skb->len != sizeof(*rp) + val_size) { |
| bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad len", |
| le32_to_cpu(cp.addr)); |
| err = -EINVAL; |
| goto done; |
| } |
| |
| rp = (struct ibt_rp_reg_access *)skb->data; |
| |
| if (rp->addr != cp.addr) { |
| bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad addr", |
| le32_to_cpu(rp->addr)); |
| err = -EINVAL; |
| goto done; |
| } |
| |
| memcpy(val, rp->data, val_size); |
| |
| done: |
| kfree_skb(skb); |
| return err; |
| } |
| |
| static int regmap_ibt_gather_write(void *context, |
| const void *addr, size_t reg_size, |
| const void *val, size_t val_size) |
| { |
| struct regmap_ibt_context *ctx = context; |
| struct ibt_cp_reg_access *cp; |
| struct sk_buff *skb; |
| int plen = sizeof(*cp) + val_size; |
| u8 mode; |
| int err = 0; |
| |
| if (reg_size != sizeof(__le32)) |
| return -EINVAL; |
| |
| switch (val_size) { |
| case 1: |
| mode = IBT_REG_MODE_8BIT; |
| break; |
| case 2: |
| mode = IBT_REG_MODE_16BIT; |
| break; |
| case 4: |
| mode = IBT_REG_MODE_32BIT; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| cp = kmalloc(plen, GFP_KERNEL); |
| if (!cp) |
| return -ENOMEM; |
| |
| /* regmap provides a little-endian formatted addr/value */ |
| cp->addr = *(__le32 *)addr; |
| cp->mode = mode; |
| cp->len = val_size; |
| memcpy(&cp->data, val, val_size); |
| |
| bt_dev_dbg(ctx->hdev, "Register (0x%x) write", le32_to_cpu(cp->addr)); |
| |
| skb = hci_cmd_sync(ctx->hdev, ctx->op_write, plen, cp, HCI_CMD_TIMEOUT); |
| if (IS_ERR(skb)) { |
| err = PTR_ERR(skb); |
| bt_dev_err(ctx->hdev, "regmap: Register (0x%x) write error (%d)", |
| le32_to_cpu(cp->addr), err); |
| goto done; |
| } |
| kfree_skb(skb); |
| |
| done: |
| kfree(cp); |
| return err; |
| } |
| |
| static int regmap_ibt_write(void *context, const void *data, size_t count) |
| { |
| /* data contains register+value, since we only support 32bit addr, |
| * minimum data size is 4 bytes. |
| */ |
| if (WARN_ONCE(count < 4, "Invalid register access")) |
| return -EINVAL; |
| |
| return regmap_ibt_gather_write(context, data, 4, data + 4, count - 4); |
| } |
| |
| static void regmap_ibt_free_context(void *context) |
| { |
| kfree(context); |
| } |
| |
| static struct regmap_bus regmap_ibt = { |
| .read = regmap_ibt_read, |
| .write = regmap_ibt_write, |
| .gather_write = regmap_ibt_gather_write, |
| .free_context = regmap_ibt_free_context, |
| .reg_format_endian_default = REGMAP_ENDIAN_LITTLE, |
| .val_format_endian_default = REGMAP_ENDIAN_LITTLE, |
| }; |
| |
| /* Config is the same for all register regions */ |
| static const struct regmap_config regmap_ibt_cfg = { |
| .name = "btintel_regmap", |
| .reg_bits = 32, |
| .val_bits = 32, |
| }; |
| |
| struct regmap *btintel_regmap_init(struct hci_dev *hdev, u16 opcode_read, |
| u16 opcode_write) |
| { |
| struct regmap_ibt_context *ctx; |
| |
| bt_dev_info(hdev, "regmap: Init R%x-W%x region", opcode_read, |
| opcode_write); |
| |
| ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); |
| if (!ctx) |
| return ERR_PTR(-ENOMEM); |
| |
| ctx->op_read = opcode_read; |
| ctx->op_write = opcode_write; |
| ctx->hdev = hdev; |
| |
| return regmap_init(&hdev->dev, ®map_ibt, ctx, ®map_ibt_cfg); |
| } |
| EXPORT_SYMBOL_GPL(btintel_regmap_init); |
| |
| int btintel_send_intel_reset(struct hci_dev *hdev, u32 boot_param) |
| { |
| struct intel_reset params = { 0x00, 0x01, 0x00, 0x01, 0x00000000 }; |
| struct sk_buff *skb; |
| |
| params.boot_param = cpu_to_le32(boot_param); |
| |
| skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params), ¶ms, |
| HCI_INIT_TIMEOUT); |
| if (IS_ERR(skb)) { |
| bt_dev_err(hdev, "Failed to send Intel Reset command"); |
| return PTR_ERR(skb); |
| } |
| |
| kfree_skb(skb); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(btintel_send_intel_reset); |
| |
| int btintel_read_boot_params(struct hci_dev *hdev, |
| struct intel_boot_params *params) |
| { |
| struct sk_buff *skb; |
| |
| skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_INIT_TIMEOUT); |
| if (IS_ERR(skb)) { |
| bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)", |
| PTR_ERR(skb)); |
| return PTR_ERR(skb); |
| } |
| |
| if (skb->len != sizeof(*params)) { |
| bt_dev_err(hdev, "Intel boot parameters size mismatch"); |
| kfree_skb(skb); |
| return -EILSEQ; |
| } |
| |
| memcpy(params, skb->data, sizeof(*params)); |
| |
| kfree_skb(skb); |
| |
| if (params->status) { |
| bt_dev_err(hdev, "Intel boot parameters command failed (%02x)", |
| params->status); |
| return -bt_to_errno(params->status); |
| } |
| |
| bt_dev_info(hdev, "Device revision is %u", |
| le16_to_cpu(params->dev_revid)); |
| |
| bt_dev_info(hdev, "Secure boot is %s", |
| params->secure_boot ? "enabled" : "disabled"); |
| |
| bt_dev_info(hdev, "OTP lock is %s", |
| params->otp_lock ? "enabled" : "disabled"); |
| |
| bt_dev_info(hdev, "API lock is %s", |
| params->api_lock ? "enabled" : "disabled"); |
| |
| bt_dev_info(hdev, "Debug lock is %s", |
| params->debug_lock ? "enabled" : "disabled"); |
| |
| bt_dev_info(hdev, "Minimum firmware build %u week %u %u", |
| params->min_fw_build_nn, params->min_fw_build_cw, |
| 2000 + params->min_fw_build_yy); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(btintel_read_boot_params); |
| |
| static int btintel_sfi_rsa_header_secure_send(struct hci_dev *hdev, |
| const struct firmware *fw) |
| { |
| int err; |
| |
| /* Start the firmware download transaction with the Init fragment |
| * represented by the 128 bytes of CSS header. |
| */ |
| err = btintel_secure_send(hdev, 0x00, 128, fw->data); |
| if (err < 0) { |
| bt_dev_err(hdev, "Failed to send firmware header (%d)", err); |
| goto done; |
| } |
| |
| /* Send the 256 bytes of public key information from the firmware |
| * as the PKey fragment. |
| */ |
| err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128); |
| if (err < 0) { |
| bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err); |
| goto done; |
| } |
| |
| /* Send the 256 bytes of signature information from the firmware |
| * as the Sign fragment. |
| */ |
| err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388); |
| if (err < 0) { |
| bt_dev_err(hdev, "Failed to send firmware signature (%d)", err); |
| goto done; |
| } |
| |
| done: |
| return err; |
| } |
| |
| static int btintel_sfi_ecdsa_header_secure_send(struct hci_dev *hdev, |
| const struct firmware *fw) |
| { |
| int err; |
| |
| /* Start the firmware download transaction with the Init fragment |
| * represented by the 128 bytes of CSS header. |
| */ |
| err = btintel_secure_send(hdev, 0x00, 128, fw->data + 644); |
| if (err < 0) { |
| bt_dev_err(hdev, "Failed to send firmware header (%d)", err); |
| return err; |
| } |
| |
| /* Send the 96 bytes of public key information from the firmware |
| * as the PKey fragment. |
| */ |
| err = btintel_secure_send(hdev, 0x03, 96, fw->data + 644 + 128); |
| if (err < 0) { |
| bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err); |
| return err; |
| } |
| |
| /* Send the 96 bytes of signature information from the firmware |
| * as the Sign fragment |
| */ |
| err = btintel_secure_send(hdev, 0x02, 96, fw->data + 644 + 224); |
| if (err < 0) { |
| bt_dev_err(hdev, "Failed to send firmware signature (%d)", |
| err); |
| return err; |
| } |
| return 0; |
| } |
| |
| static int btintel_download_firmware_payload(struct hci_dev *hdev, |
| const struct firmware *fw, |
| size_t offset) |
| { |
| int err; |
| const u8 *fw_ptr; |
| u32 frag_len; |
| |
| fw_ptr = fw->data + offset; |
| frag_len = 0; |
| err = -EINVAL; |
| |
| while (fw_ptr - fw->data < fw->size) { |
| struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len); |
| |
| frag_len += sizeof(*cmd) + cmd->plen; |
| |
| /* The parameter length of the secure send command requires |
| * a 4 byte alignment. It happens so that the firmware file |
| * contains proper Intel_NOP commands to align the fragments |
| * as needed. |
| * |
| * Send set of commands with 4 byte alignment from the |
| * firmware data buffer as a single Data fragement. |
| */ |
| if (!(frag_len % 4)) { |
| err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr); |
| if (err < 0) { |
| bt_dev_err(hdev, |
| "Failed to send firmware data (%d)", |
| err); |
| goto done; |
| } |
| |
| fw_ptr += frag_len; |
| frag_len = 0; |
| } |
| } |
| |
| done: |
| return err; |
| } |
| |
| static bool btintel_firmware_version(struct hci_dev *hdev, |
| u8 num, u8 ww, u8 yy, |
| const struct firmware *fw, |
| u32 *boot_addr) |
| { |
| const u8 *fw_ptr; |
| |
| fw_ptr = fw->data; |
| |
| while (fw_ptr - fw->data < fw->size) { |
| struct hci_command_hdr *cmd = (void *)(fw_ptr); |
| |
| /* Each SKU has a different reset parameter to use in the |
| * HCI_Intel_Reset command and it is embedded in the firmware |
| * data. So, instead of using static value per SKU, check |
| * the firmware data and save it for later use. |
| */ |
| if (le16_to_cpu(cmd->opcode) == CMD_WRITE_BOOT_PARAMS) { |
| struct cmd_write_boot_params *params; |
| |
| params = (void *)(fw_ptr + sizeof(*cmd)); |
| |
| bt_dev_info(hdev, "Boot Address: 0x%x", |
| le32_to_cpu(params->boot_addr)); |
| |
| bt_dev_info(hdev, "Firmware Version: %u-%u.%u", |
| params->fw_build_num, params->fw_build_ww, |
| params->fw_build_yy); |
| |
| return (num == params->fw_build_num && |
| ww == params->fw_build_ww && |
| yy == params->fw_build_yy); |
| } |
| |
| fw_ptr += sizeof(*cmd) + cmd->plen; |
| } |
| |
| return false; |
| } |
| |
| int btintel_download_firmware(struct hci_dev *hdev, |
| struct intel_version *ver, |
| const struct firmware *fw, |
| u32 *boot_param) |
| { |
| int err; |
| |
| /* SfP and WsP don't seem to update the firmware version on file |
| * so version checking is currently not possible. |
| */ |
| switch (ver->hw_variant) { |
| case 0x0b: /* SfP */ |
| case 0x0c: /* WsP */ |
| /* Skip version checking */ |
| break; |
| default: |
| /* Skip reading firmware file version in bootloader mode */ |
| if (ver->fw_variant == 0x06) |
| break; |
| |
| /* Skip download if firmware has the same version */ |
| if (btintel_firmware_version(hdev, ver->fw_build_num, |
| ver->fw_build_ww, ver->fw_build_yy, |
| fw, boot_param)) { |
| bt_dev_info(hdev, "Firmware already loaded"); |
| /* Return -EALREADY to indicate that the firmware has |
| * already been loaded. |
| */ |
| return -EALREADY; |
| } |
| } |
| |
| /* The firmware variant determines if the device is in bootloader |
| * mode or is running operational firmware. The value 0x06 identifies |
| * the bootloader and the value 0x23 identifies the operational |
| * firmware. |
| * |
| * If the firmware version has changed that means it needs to be reset |
| * to bootloader when operational so the new firmware can be loaded. |
| */ |
| if (ver->fw_variant == 0x23) |
| return -EINVAL; |
| |
| err = btintel_sfi_rsa_header_secure_send(hdev, fw); |
| if (err) |
| return err; |
| |
| return btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN); |
| } |
| EXPORT_SYMBOL_GPL(btintel_download_firmware); |
| |
| static int btintel_download_fw_tlv(struct hci_dev *hdev, |
| struct intel_version_tlv *ver, |
| const struct firmware *fw, u32 *boot_param, |
| u8 hw_variant, u8 sbe_type) |
| { |
| int err; |
| u32 css_header_ver; |
| |
| /* Skip reading firmware file version in bootloader mode */ |
| if (ver->img_type != 0x01) { |
| /* Skip download if firmware has the same version */ |
| if (btintel_firmware_version(hdev, ver->min_fw_build_nn, |
| ver->min_fw_build_cw, |
| ver->min_fw_build_yy, |
| fw, boot_param)) { |
| bt_dev_info(hdev, "Firmware already loaded"); |
| /* Return -EALREADY to indicate that firmware has |
| * already been loaded. |
| */ |
| return -EALREADY; |
| } |
| } |
| |
| /* The firmware variant determines if the device is in bootloader |
| * mode or is running operational firmware. The value 0x01 identifies |
| * the bootloader and the value 0x03 identifies the operational |
| * firmware. |
| * |
| * If the firmware version has changed that means it needs to be reset |
| * to bootloader when operational so the new firmware can be loaded. |
| */ |
| if (ver->img_type == 0x03) |
| return -EINVAL; |
| |
| /* iBT hardware variants 0x0b, 0x0c, 0x11, 0x12, 0x13, 0x14 support |
| * only RSA secure boot engine. Hence, the corresponding sfi file will |
| * have RSA header of 644 bytes followed by Command Buffer. |
| * |
| * iBT hardware variants 0x17, 0x18 onwards support both RSA and ECDSA |
| * secure boot engine. As a result, the corresponding sfi file will |
| * have RSA header of 644, ECDSA header of 320 bytes followed by |
| * Command Buffer. |
| * |
| * CSS Header byte positions 0x08 to 0x0B represent the CSS Header |
| * version: RSA(0x00010000) , ECDSA (0x00020000) |
| */ |
| css_header_ver = get_unaligned_le32(fw->data + CSS_HEADER_OFFSET); |
| if (css_header_ver != 0x00010000) { |
| bt_dev_err(hdev, "Invalid CSS Header version"); |
| return -EINVAL; |
| } |
| |
| if (hw_variant <= 0x14) { |
| if (sbe_type != 0x00) { |
| bt_dev_err(hdev, "Invalid SBE type for hardware variant (%d)", |
| hw_variant); |
| return -EINVAL; |
| } |
| |
| err = btintel_sfi_rsa_header_secure_send(hdev, fw); |
| if (err) |
| return err; |
| |
| err = btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN); |
| if (err) |
| return err; |
| } else if (hw_variant >= 0x17) { |
| /* Check if CSS header for ECDSA follows the RSA header */ |
| if (fw->data[ECDSA_OFFSET] != 0x06) |
| return -EINVAL; |
| |
| /* Check if the CSS Header version is ECDSA(0x00020000) */ |
| css_header_ver = get_unaligned_le32(fw->data + ECDSA_OFFSET + CSS_HEADER_OFFSET); |
| if (css_header_ver != 0x00020000) { |
| bt_dev_err(hdev, "Invalid CSS Header version"); |
| return -EINVAL; |
| } |
| |
| if (sbe_type == 0x00) { |
| err = btintel_sfi_rsa_header_secure_send(hdev, fw); |
| if (err) |
| return err; |
| |
| err = btintel_download_firmware_payload(hdev, fw, |
| RSA_HEADER_LEN + ECDSA_HEADER_LEN); |
| if (err) |
| return err; |
| } else if (sbe_type == 0x01) { |
| err = btintel_sfi_ecdsa_header_secure_send(hdev, fw); |
| if (err) |
| return err; |
| |
| err = btintel_download_firmware_payload(hdev, fw, |
| RSA_HEADER_LEN + ECDSA_HEADER_LEN); |
| if (err) |
| return err; |
| } |
| } |
| return 0; |
| } |
| |
| static void btintel_reset_to_bootloader(struct hci_dev *hdev) |
| { |
| struct intel_reset params; |
| struct sk_buff *skb; |
| |
| /* Send Intel Reset command. This will result in |
| * re-enumeration of BT controller. |
| * |
| * Intel Reset parameter description: |
| * reset_type : 0x00 (Soft reset), |
| * 0x01 (Hard reset) |
| * patch_enable : 0x00 (Do not enable), |
| * 0x01 (Enable) |
| * ddc_reload : 0x00 (Do not reload), |
| * 0x01 (Reload) |
| * boot_option: 0x00 (Current image), |
| * 0x01 (Specified boot address) |
| * boot_param: Boot address |
| * |
| */ |
| params.reset_type = 0x01; |
| params.patch_enable = 0x01; |
| params.ddc_reload = 0x01; |
| params.boot_option = 0x00; |
| params.boot_param = cpu_to_le32(0x00000000); |
| |
| skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params), |
| ¶ms, HCI_INIT_TIMEOUT); |
| if (IS_ERR(skb)) { |
| bt_dev_err(hdev, "FW download error recovery failed (%ld)", |
| PTR_ERR(skb)); |
| return; |
| } |
| bt_dev_info(hdev, "Intel reset sent to retry FW download"); |
| kfree_skb(skb); |
| |
| /* Current Intel BT controllers(ThP/JfP) hold the USB reset |
| * lines for 2ms when it receives Intel Reset in bootloader mode. |
| * Whereas, the upcoming Intel BT controllers will hold USB reset |
| * for 150ms. To keep the delay generic, 150ms is chosen here. |
| */ |
| msleep(150); |
| } |
| |
| static int btintel_read_debug_features(struct hci_dev *hdev, |
| struct intel_debug_features *features) |
| { |
| struct sk_buff *skb; |
| u8 page_no = 1; |
| |
| /* Intel controller supports two pages, each page is of 128-bit |
| * feature bit mask. And each bit defines specific feature support |
| */ |
| skb = __hci_cmd_sync(hdev, 0xfca6, sizeof(page_no), &page_no, |
| HCI_INIT_TIMEOUT); |
| if (IS_ERR(skb)) { |
| bt_dev_err(hdev, "Reading supported features failed (%ld)", |
| PTR_ERR(skb)); |
| return PTR_ERR(skb); |
| } |
| |
| if (skb->len != (sizeof(features->page1) + 3)) { |
| bt_dev_err(hdev, "Supported features event size mismatch"); |
| kfree_skb(skb); |
| return -EILSEQ; |
| } |
| |
| memcpy(features->page1, skb->data + 3, sizeof(features->page1)); |
| |
| /* Read the supported features page2 if required in future. |
| */ |
| kfree_skb(skb); |
| return 0; |
| } |
| |
| static int btintel_set_debug_features(struct hci_dev *hdev, |
| const struct intel_debug_features *features) |
| { |
| u8 mask[11] = { 0x0a, 0x92, 0x02, 0x07, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00 }; |
| struct sk_buff *skb; |
| |
| if (!features) |
| return -EINVAL; |
| |
| if (!(features->page1[0] & 0x3f)) { |
| bt_dev_info(hdev, "Telemetry exception format not supported"); |
| return 0; |
| } |
| |
| skb = __hci_cmd_sync(hdev, 0xfc8b, 11, mask, HCI_INIT_TIMEOUT); |
| if (IS_ERR(skb)) { |
| bt_dev_err(hdev, "Setting Intel telemetry ddc write event mask failed (%ld)", |
| PTR_ERR(skb)); |
| return PTR_ERR(skb); |
| } |
| |
| kfree_skb(skb); |
| return 0; |
| } |
| |
| static const struct firmware *btintel_legacy_rom_get_fw(struct hci_dev *hdev, |
| struct intel_version *ver) |
| { |
| const struct firmware *fw; |
| char fwname[64]; |
| int ret; |
| |
| snprintf(fwname, sizeof(fwname), |
| "intel/ibt-hw-%x.%x.%x-fw-%x.%x.%x.%x.%x.bseq", |
| ver->hw_platform, ver->hw_variant, ver->hw_revision, |
| ver->fw_variant, ver->fw_revision, ver->fw_build_num, |
| ver->fw_build_ww, ver->fw_build_yy); |
| |
| ret = request_firmware(&fw, fwname, &hdev->dev); |
| if (ret < 0) { |
| if (ret == -EINVAL) { |
| bt_dev_err(hdev, "Intel firmware file request failed (%d)", |
| ret); |
| return NULL; |
| } |
| |
| bt_dev_err(hdev, "failed to open Intel firmware file: %s (%d)", |
| fwname, ret); |
| |
| /* If the correct firmware patch file is not found, use the |
| * default firmware patch file instead |
| */ |
| snprintf(fwname, sizeof(fwname), "intel/ibt-hw-%x.%x.bseq", |
| ver->hw_platform, ver->hw_variant); |
| if (request_firmware(&fw, fwname, &hdev->dev) < 0) { |
| bt_dev_err(hdev, "failed to open default fw file: %s", |
| fwname); |
| return NULL; |
| } |
| } |
| |
| bt_dev_info(hdev, "Intel Bluetooth firmware file: %s", fwname); |
| |
| return fw; |
| } |
| |
| static int btintel_legacy_rom_patching(struct hci_dev *hdev, |
| const struct firmware *fw, |
| const u8 **fw_ptr, int *disable_patch) |
| { |
| struct sk_buff *skb; |
| struct hci_command_hdr *cmd; |
| const u8 *cmd_param; |
| struct hci_event_hdr *evt = NULL; |
| const u8 *evt_param = NULL; |
| int remain = fw->size - (*fw_ptr - fw->data); |
| |
| /* The first byte indicates the types of the patch command or event. |
| * 0x01 means HCI command and 0x02 is HCI event. If the first bytes |
| * in the current firmware buffer doesn't start with 0x01 or |
| * the size of remain buffer is smaller than HCI command header, |
| * the firmware file is corrupted and it should stop the patching |
| * process. |
| */ |
| if (remain > HCI_COMMAND_HDR_SIZE && *fw_ptr[0] != 0x01) { |
| bt_dev_err(hdev, "Intel fw corrupted: invalid cmd read"); |
| return -EINVAL; |
| } |
| (*fw_ptr)++; |
| remain--; |
| |
| cmd = (struct hci_command_hdr *)(*fw_ptr); |
| *fw_ptr += sizeof(*cmd); |
| remain -= sizeof(*cmd); |
| |
| /* Ensure that the remain firmware data is long enough than the length |
| * of command parameter. If not, the firmware file is corrupted. |
| */ |
| if (remain < cmd->plen) { |
| bt_dev_err(hdev, "Intel fw corrupted: invalid cmd len"); |
| return -EFAULT; |
| } |
| |
| /* If there is a command that loads a patch in the firmware |
| * file, then enable the patch upon success, otherwise just |
| * disable the manufacturer mode, for example patch activation |
| * is not required when the default firmware patch file is used |
| * because there are no patch data to load. |
| */ |
| if (*disable_patch && le16_to_cpu(cmd->opcode) == 0xfc8e) |
| *disable_patch = 0; |
| |
| cmd_param = *fw_ptr; |
| *fw_ptr += cmd->plen; |
| remain -= cmd->plen; |
| |
| /* This reads the expected events when the above command is sent to the |
| * device. Some vendor commands expects more than one events, for |
| * example command status event followed by vendor specific event. |
| * For this case, it only keeps the last expected event. so the command |
| * can be sent with __hci_cmd_sync_ev() which returns the sk_buff of |
| * last expected event. |
| */ |
| while (remain > HCI_EVENT_HDR_SIZE && *fw_ptr[0] == 0x02) { |
| (*fw_ptr)++; |
| remain--; |
| |
| evt = (struct hci_event_hdr *)(*fw_ptr); |
| *fw_ptr += sizeof(*evt); |
| remain -= sizeof(*evt); |
| |
| if (remain < evt->plen) { |
| bt_dev_err(hdev, "Intel fw corrupted: invalid evt len"); |
| return -EFAULT; |
| } |
| |
| evt_param = *fw_ptr; |
| *fw_ptr += evt->plen; |
| remain -= evt->plen; |
| } |
| |
| /* Every HCI commands in the firmware file has its correspond event. |
| * If event is not found or remain is smaller than zero, the firmware |
| * file is corrupted. |
| */ |
| if (!evt || !evt_param || remain < 0) { |
| bt_dev_err(hdev, "Intel fw corrupted: invalid evt read"); |
| return -EFAULT; |
| } |
| |
| skb = __hci_cmd_sync_ev(hdev, le16_to_cpu(cmd->opcode), cmd->plen, |
| cmd_param, evt->evt, HCI_INIT_TIMEOUT); |
| if (IS_ERR(skb)) { |
| bt_dev_err(hdev, "sending Intel patch command (0x%4.4x) failed (%ld)", |
| cmd->opcode, PTR_ERR(skb)); |
| return PTR_ERR(skb); |
| } |
| |
| /* It ensures that the returned event matches the event data read from |
| * the firmware file. At fist, it checks the length and then |
| * the contents of the event. |
| */ |
| if (skb->len != evt->plen) { |
| bt_dev_err(hdev, "mismatch event length (opcode 0x%4.4x)", |
| le16_to_cpu(cmd->opcode)); |
| kfree_skb(skb); |
| return -EFAULT; |
| } |
| |
| if (memcmp(skb->data, evt_param, evt->plen)) { |
| bt_dev_err(hdev, "mismatch event parameter (opcode 0x%4.4x)", |
| le16_to_cpu(cmd->opcode)); |
| kfree_skb(skb); |
| return -EFAULT; |
| } |
| kfree_skb(skb); |
| |
| return 0; |
| } |
| |
| static int btintel_legacy_rom_setup(struct hci_dev *hdev, |
| struct intel_version *ver) |
| { |
| const struct firmware *fw; |
| const u8 *fw_ptr; |
| int disable_patch, err; |
| struct intel_version new_ver; |
| |
| BT_DBG("%s", hdev->name); |
| |
| /* fw_patch_num indicates the version of patch the device currently |
| * have. If there is no patch data in the device, it is always 0x00. |
| * So, if it is other than 0x00, no need to patch the device again. |
| */ |
| if (ver->fw_patch_num) { |
| bt_dev_info(hdev, |
| "Intel device is already patched. patch num: %02x", |
| ver->fw_patch_num); |
| goto complete; |
| } |
| |
| /* Opens the firmware patch file based on the firmware version read |
| * from the controller. If it fails to open the matching firmware |
| * patch file, it tries to open the default firmware patch file. |
| * If no patch file is found, allow the device to operate without |
| * a patch. |
| */ |
| fw = btintel_legacy_rom_get_fw(hdev, ver); |
| if (!fw) |
| goto complete; |
| fw_ptr = fw->data; |
| |
| /* Enable the manufacturer mode of the controller. |
| * Only while this mode is enabled, the driver can download the |
| * firmware patch data and configuration parameters. |
| */ |
| err = btintel_enter_mfg(hdev); |
| if (err) { |
| release_firmware(fw); |
| return err; |
| } |
| |
| disable_patch = 1; |
| |
| /* The firmware data file consists of list of Intel specific HCI |
| * commands and its expected events. The first byte indicates the |
| * type of the message, either HCI command or HCI event. |
| * |
| * It reads the command and its expected event from the firmware file, |
| * and send to the controller. Once __hci_cmd_sync_ev() returns, |
| * the returned event is compared with the event read from the firmware |
| * file and it will continue until all the messages are downloaded to |
| * the controller. |
| * |
| * Once the firmware patching is completed successfully, |
| * the manufacturer mode is disabled with reset and activating the |
| * downloaded patch. |
| * |
| * If the firmware patching fails, the manufacturer mode is |
| * disabled with reset and deactivating the patch. |
| * |
| * If the default patch file is used, no reset is done when disabling |
| * the manufacturer. |
| */ |
| while (fw->size > fw_ptr - fw->data) { |
| int ret; |
| |
| ret = btintel_legacy_rom_patching(hdev, fw, &fw_ptr, |
| &disable_patch); |
| if (ret < 0) |
| goto exit_mfg_deactivate; |
| } |
| |
| release_firmware(fw); |
| |
| if (disable_patch) |
| goto exit_mfg_disable; |
| |
| /* Patching completed successfully and disable the manufacturer mode |
| * with reset and activate the downloaded firmware patches. |
| */ |
| err = btintel_exit_mfg(hdev, true, true); |
| if (err) |
| return err; |
| |
| /* Need build number for downloaded fw patches in |
| * every power-on boot |
| */ |
| err = btintel_read_version(hdev, &new_ver); |
| if (err) |
| return err; |
| |
| bt_dev_info(hdev, "Intel BT fw patch 0x%02x completed & activated", |
| new_ver.fw_patch_num); |
| |
| goto complete; |
| |
| exit_mfg_disable: |
| /* Disable the manufacturer mode without reset */ |
| err = btintel_exit_mfg(hdev, false, false); |
| if (err) |
| return err; |
| |
| bt_dev_info(hdev, "Intel firmware patch completed"); |
| |
| goto complete; |
| |
| exit_mfg_deactivate: |
| release_firmware(fw); |
| |
| /* Patching failed. Disable the manufacturer mode with reset and |
| * deactivate the downloaded firmware patches. |
| */ |
| err = btintel_exit_mfg(hdev, true, false); |
| if (err) |
| return err; |
| |
| bt_dev_info(hdev, "Intel firmware patch completed and deactivated"); |
| |
| complete: |
| /* Set the event mask for Intel specific vendor events. This enables |
| * a few extra events that are useful during general operation. |
| */ |
| btintel_set_event_mask_mfg(hdev, false); |
| |
| btintel_check_bdaddr(hdev); |
| |
| return 0; |
| } |
| |
| static int btintel_download_wait(struct hci_dev *hdev, ktime_t calltime, int msec) |
| { |
| ktime_t delta, rettime; |
| unsigned long long duration; |
| int err; |
| |
| btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); |
| |
| bt_dev_info(hdev, "Waiting for firmware download to complete"); |
| |
| err = btintel_wait_on_flag_timeout(hdev, INTEL_DOWNLOADING, |
| TASK_INTERRUPTIBLE, |
| msecs_to_jiffies(msec)); |
| if (err == -EINTR) { |
| bt_dev_err(hdev, "Firmware loading interrupted"); |
| return err; |
| } |
| |
| if (err) { |
| bt_dev_err(hdev, "Firmware loading timeout"); |
| return -ETIMEDOUT; |
| } |
| |
| if (btintel_test_flag(hdev, INTEL_FIRMWARE_FAILED)) { |
| bt_dev_err(hdev, "Firmware loading failed"); |
| return -ENOEXEC; |
| } |
| |
| rettime = ktime_get(); |
| delta = ktime_sub(rettime, calltime); |
| duration = (unsigned long long)ktime_to_ns(delta) >> 10; |
| |
| bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration); |
| |
| return 0; |
| } |
| |
| static int btintel_boot_wait(struct hci_dev *hdev, ktime_t calltime, int msec) |
| { |
| ktime_t delta, rettime; |
| unsigned long long duration; |
| int err; |
| |
| bt_dev_info(hdev, "Waiting for device to boot"); |
| |
| err = btintel_wait_on_flag_timeout(hdev, INTEL_BOOTING, |
| TASK_INTERRUPTIBLE, |
| msecs_to_jiffies(msec)); |
| if (err == -EINTR) { |
| bt_dev_err(hdev, "Device boot interrupted"); |
| return -EINTR; |
| } |
| |
| if (err) { |
| bt_dev_err(hdev, "Device boot timeout"); |
| return -ETIMEDOUT; |
| } |
| |
| rettime = ktime_get(); |
| delta = ktime_sub(rettime, calltime); |
| duration = (unsigned long long) ktime_to_ns(delta) >> 10; |
| |
| bt_dev_info(hdev, "Device booted in %llu usecs", duration); |
| |
| return 0; |
| } |
| |
| static int btintel_boot(struct hci_dev *hdev, u32 boot_addr) |
| { |
| ktime_t calltime; |
| int err; |
| |
| calltime = ktime_get(); |
| |
| btintel_set_flag(hdev, INTEL_BOOTING); |
| |
| err = btintel_send_intel_reset(hdev, boot_addr); |
| if (err) { |
| bt_dev_err(hdev, "Intel Soft Reset failed (%d)", err); |
| btintel_reset_to_bootloader(hdev); |
| return err; |
| } |
| |
| /* The bootloader will not indicate when the device is ready. This |
| * is done by the operational firmware sending bootup notification. |
| * |
| * Booting into operational firmware should not take longer than |
| * 1 second. However if that happens, then just fail the setup |
| * since something went wrong. |
| */ |
| err = btintel_boot_wait(hdev, calltime, 1000); |
| if (err == -ETIMEDOUT) |
| btintel_reset_to_bootloader(hdev); |
| |
| return err; |
| } |
| |
| static int btintel_get_fw_name(struct intel_version *ver, |
| struct intel_boot_params *params, |
| char *fw_name, size_t len, |
| const char *suffix) |
| { |
| switch (ver->hw_variant) { |
| case 0x0b: /* SfP */ |
| case 0x0c: /* WsP */ |
| snprintf(fw_name, len, "intel/ibt-%u-%u.%s", |
| le16_to_cpu(ver->hw_variant), |
| le16_to_cpu(params->dev_revid), |
| suffix); |
| break; |
| case 0x11: /* JfP */ |
| case 0x12: /* ThP */ |
| case 0x13: /* HrP */ |
| case 0x14: /* CcP */ |
| snprintf(fw_name, len, "intel/ibt-%u-%u-%u.%s", |
| le16_to_cpu(ver->hw_variant), |
| le16_to_cpu(ver->hw_revision), |
| le16_to_cpu(ver->fw_revision), |
| suffix); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int btintel_download_fw(struct hci_dev *hdev, |
| struct intel_version *ver, |
| struct intel_boot_params *params, |
| u32 *boot_param) |
| { |
| const struct firmware *fw; |
| char fwname[64]; |
| int err; |
| ktime_t calltime; |
| |
| if (!ver || !params) |
| return -EINVAL; |
| |
| /* The firmware variant determines if the device is in bootloader |
| * mode or is running operational firmware. The value 0x06 identifies |
| * the bootloader and the value 0x23 identifies the operational |
| * firmware. |
| * |
| * When the operational firmware is already present, then only |
| * the check for valid Bluetooth device address is needed. This |
| * determines if the device will be added as configured or |
| * unconfigured controller. |
| * |
| * It is not possible to use the Secure Boot Parameters in this |
| * case since that command is only available in bootloader mode. |
| */ |
| if (ver->fw_variant == 0x23) { |
| btintel_clear_flag(hdev, INTEL_BOOTLOADER); |
| btintel_check_bdaddr(hdev); |
| |
| /* SfP and WsP don't seem to update the firmware version on file |
| * so version checking is currently possible. |
| */ |
| switch (ver->hw_variant) { |
| case 0x0b: /* SfP */ |
| case 0x0c: /* WsP */ |
| return 0; |
| } |
| |
| /* Proceed to download to check if the version matches */ |
| goto download; |
| } |
| |
| /* Read the secure boot parameters to identify the operating |
| * details of the bootloader. |
| */ |
| err = btintel_read_boot_params(hdev, params); |
| if (err) |
| return err; |
| |
| /* It is required that every single firmware fragment is acknowledged |
| * with a command complete event. If the boot parameters indicate |
| * that this bootloader does not send them, then abort the setup. |
| */ |
| if (params->limited_cce != 0x00) { |
| bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)", |
| params->limited_cce); |
| return -EINVAL; |
| } |
| |
| /* If the OTP has no valid Bluetooth device address, then there will |
| * also be no valid address for the operational firmware. |
| */ |
| if (!bacmp(¶ms->otp_bdaddr, BDADDR_ANY)) { |
| bt_dev_info(hdev, "No device address configured"); |
| set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks); |
| } |
| |
| download: |
| /* With this Intel bootloader only the hardware variant and device |
| * revision information are used to select the right firmware for SfP |
| * and WsP. |
| * |
| * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi. |
| * |
| * Currently the supported hardware variants are: |
| * 11 (0x0b) for iBT3.0 (LnP/SfP) |
| * 12 (0x0c) for iBT3.5 (WsP) |
| * |
| * For ThP/JfP and for future SKU's, the FW name varies based on HW |
| * variant, HW revision and FW revision, as these are dependent on CNVi |
| * and RF Combination. |
| * |
| * 17 (0x11) for iBT3.5 (JfP) |
| * 18 (0x12) for iBT3.5 (ThP) |
| * |
| * The firmware file name for these will be |
| * ibt-<hw_variant>-<hw_revision>-<fw_revision>.sfi. |
| * |
| */ |
| err = btintel_get_fw_name(ver, params, fwname, sizeof(fwname), "sfi"); |
| if (err < 0) { |
| if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) { |
| /* Firmware has already been loaded */ |
| btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); |
| return 0; |
| } |
| |
| bt_dev_err(hdev, "Unsupported Intel firmware naming"); |
| return -EINVAL; |
| } |
| |
| err = firmware_request_nowarn(&fw, fwname, &hdev->dev); |
| if (err < 0) { |
| if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) { |
| /* Firmware has already been loaded */ |
| btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); |
| return 0; |
| } |
| |
| bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)", |
| fwname, err); |
| return err; |
| } |
| |
| bt_dev_info(hdev, "Found device firmware: %s", fwname); |
| |
| if (fw->size < 644) { |
| bt_dev_err(hdev, "Invalid size of firmware file (%zu)", |
| fw->size); |
| err = -EBADF; |
| goto done; |
| } |
| |
| calltime = ktime_get(); |
| |
| btintel_set_flag(hdev, INTEL_DOWNLOADING); |
| |
| /* Start firmware downloading and get boot parameter */ |
| err = btintel_download_firmware(hdev, ver, fw, boot_param); |
| if (err < 0) { |
| if (err == -EALREADY) { |
| /* Firmware has already been loaded */ |
| btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); |
| err = 0; |
| goto done; |
| } |
| |
| /* When FW download fails, send Intel Reset to retry |
| * FW download. |
| */ |
| btintel_reset_to_bootloader(hdev); |
| goto done; |
| } |
| |
| /* Before switching the device into operational mode and with that |
| * booting the loaded firmware, wait for the bootloader notification |
| * that all fragments have been successfully received. |
| * |
| * When the event processing receives the notification, then the |
| * INTEL_DOWNLOADING flag will be cleared. |
| * |
| * The firmware loading should not take longer than 5 seconds |
| * and thus just timeout if that happens and fail the setup |
| * of this device. |
| */ |
| err = btintel_download_wait(hdev, calltime, 5000); |
| if (err == -ETIMEDOUT) |
| btintel_reset_to_bootloader(hdev); |
| |
| done: |
| release_firmware(fw); |
| return err; |
| } |
| |
| static int btintel_bootloader_setup(struct hci_dev *hdev, |
| struct intel_version *ver) |
| { |
| struct intel_version new_ver; |
| struct intel_boot_params params; |
| u32 boot_param; |
| char ddcname[64]; |
| int err; |
| struct intel_debug_features features; |
| |
| BT_DBG("%s", hdev->name); |
| |
| /* Set the default boot parameter to 0x0 and it is updated to |
| * SKU specific boot parameter after reading Intel_Write_Boot_Params |
| * command while downloading the firmware. |
| */ |
| boot_param = 0x00000000; |
| |
| btintel_set_flag(hdev, INTEL_BOOTLOADER); |
| |
| err = btintel_download_fw(hdev, ver, ¶ms, &boot_param); |
| if (err) |
| return err; |
| |
| /* controller is already having an operational firmware */ |
| if (ver->fw_variant == 0x23) |
| goto finish; |
| |
| err = btintel_boot(hdev, boot_param); |
| if (err) |
| return err; |
| |
| btintel_clear_flag(hdev, INTEL_BOOTLOADER); |
| |
| err = btintel_get_fw_name(ver, ¶ms, ddcname, |
| sizeof(ddcname), "ddc"); |
| |
| if (err < 0) { |
| bt_dev_err(hdev, "Unsupported Intel firmware naming"); |
| } else { |
| /* Once the device is running in operational mode, it needs to |
| * apply the device configuration (DDC) parameters. |
| * |
| * The device can work without DDC parameters, so even if it |
| * fails to load the file, no need to fail the setup. |
| */ |
| btintel_load_ddc_config(hdev, ddcname); |
| } |
| |
| /* Read the Intel supported features and if new exception formats |
| * supported, need to load the additional DDC config to enable. |
| */ |
| err = btintel_read_debug_features(hdev, &features); |
| if (!err) { |
| /* Set DDC mask for available debug features */ |
| btintel_set_debug_features(hdev, &features); |
| } |
| |
| /* Read the Intel version information after loading the FW */ |
| err = btintel_read_version(hdev, &new_ver); |
| if (err) |
| return err; |
| |
| btintel_version_info(hdev, &new_ver); |
| |
| finish: |
| /* Set the event mask for Intel specific vendor events. This enables |
| * a few extra events that are useful during general operation. It |
| * does not enable any debugging related events. |
| * |
| * The device will function correctly without these events enabled |
| * and thus no need to fail the setup. |
| */ |
| btintel_set_event_mask(hdev, false); |
| |
| return 0; |
| } |
| |
| static void btintel_get_fw_name_tlv(const struct intel_version_tlv *ver, |
| char *fw_name, size_t len, |
| const char *suffix) |
| { |
| /* The firmware file name for new generation controllers will be |
| * ibt-<cnvi_top type+cnvi_top step>-<cnvr_top type+cnvr_top step> |
| */ |
| snprintf(fw_name, len, "intel/ibt-%04x-%04x.%s", |
| INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvi_top), |
| INTEL_CNVX_TOP_STEP(ver->cnvi_top)), |
| INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvr_top), |
| INTEL_CNVX_TOP_STEP(ver->cnvr_top)), |
| suffix); |
| } |
| |
| static int btintel_prepare_fw_download_tlv(struct hci_dev *hdev, |
| struct intel_version_tlv *ver, |
| u32 *boot_param) |
| { |
| const struct firmware *fw; |
| char fwname[64]; |
| int err; |
| ktime_t calltime; |
| |
| if (!ver || !boot_param) |
| return -EINVAL; |
| |
| /* The firmware variant determines if the device is in bootloader |
| * mode or is running operational firmware. The value 0x03 identifies |
| * the bootloader and the value 0x23 identifies the operational |
| * firmware. |
| * |
| * When the operational firmware is already present, then only |
| * the check for valid Bluetooth device address is needed. This |
| * determines if the device will be added as configured or |
| * unconfigured controller. |
| * |
| * It is not possible to use the Secure Boot Parameters in this |
| * case since that command is only available in bootloader mode. |
| */ |
| if (ver->img_type == 0x03) { |
| btintel_clear_flag(hdev, INTEL_BOOTLOADER); |
| btintel_check_bdaddr(hdev); |
| } |
| |
| /* If the OTP has no valid Bluetooth device address, then there will |
| * also be no valid address for the operational firmware. |
| */ |
| if (!bacmp(&ver->otp_bd_addr, BDADDR_ANY)) { |
| bt_dev_info(hdev, "No device address configured"); |
| set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks); |
| } |
| |
| btintel_get_fw_name_tlv(ver, fwname, sizeof(fwname), "sfi"); |
| err = firmware_request_nowarn(&fw, fwname, &hdev->dev); |
| if (err < 0) { |
| if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) { |
| /* Firmware has already been loaded */ |
| btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); |
| return 0; |
| } |
| |
| bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)", |
| fwname, err); |
| |
| return err; |
| } |
| |
| bt_dev_info(hdev, "Found device firmware: %s", fwname); |
| |
| if (fw->size < 644) { |
| bt_dev_err(hdev, "Invalid size of firmware file (%zu)", |
| fw->size); |
| err = -EBADF; |
| goto done; |
| } |
| |
| calltime = ktime_get(); |
| |
| btintel_set_flag(hdev, INTEL_DOWNLOADING); |
| |
| /* Start firmware downloading and get boot parameter */ |
| err = btintel_download_fw_tlv(hdev, ver, fw, boot_param, |
| INTEL_HW_VARIANT(ver->cnvi_bt), |
| ver->sbe_type); |
| if (err < 0) { |
| if (err == -EALREADY) { |
| /* Firmware has already been loaded */ |
| btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); |
| err = 0; |
| goto done; |
| } |
| |
| /* When FW download fails, send Intel Reset to retry |
| * FW download. |
| */ |
| btintel_reset_to_bootloader(hdev); |
| goto done; |
| } |
| |
| /* Before switching the device into operational mode and with that |
| * booting the loaded firmware, wait for the bootloader notification |
| * that all fragments have been successfully received. |
| * |
| * When the event processing receives the notification, then the |
| * BTUSB_DOWNLOADING flag will be cleared. |
| * |
| * The firmware loading should not take longer than 5 seconds |
| * and thus just timeout if that happens and fail the setup |
| * of this device. |
| */ |
| err = btintel_download_wait(hdev, calltime, 5000); |
| if (err == -ETIMEDOUT) |
| btintel_reset_to_bootloader(hdev); |
| |
| done: |
| release_firmware(fw); |
| return err; |
| } |
| |
| static int btintel_bootloader_setup_tlv(struct hci_dev *hdev, |
| struct intel_version_tlv *ver) |
| { |
| u32 boot_param; |
| char ddcname[64]; |
| int err; |
| struct intel_debug_features features; |
| struct intel_version_tlv new_ver; |
| |
| bt_dev_dbg(hdev, ""); |
| |
| /* Set the default boot parameter to 0x0 and it is updated to |
| * SKU specific boot parameter after reading Intel_Write_Boot_Params |
| * command while downloading the firmware. |
| */ |
| boot_param = 0x00000000; |
| |
| btintel_set_flag(hdev, INTEL_BOOTLOADER); |
| |
| err = btintel_prepare_fw_download_tlv(hdev, ver, &boot_param); |
| if (err) |
| return err; |
| |
| /* check if controller is already having an operational firmware */ |
| if (ver->img_type == 0x03) |
| goto finish; |
| |
| err = btintel_boot(hdev, boot_param); |
| if (err) |
| return err; |
| |
| btintel_clear_flag(hdev, INTEL_BOOTLOADER); |
| |
| btintel_get_fw_name_tlv(ver, ddcname, sizeof(ddcname), "ddc"); |
| /* Once the device is running in operational mode, it needs to |
| * apply the device configuration (DDC) parameters. |
| * |
| * The device can work without DDC parameters, so even if it |
| * fails to load the file, no need to fail the setup. |
| */ |
| btintel_load_ddc_config(hdev, ddcname); |
| |
| /* Read the Intel supported features and if new exception formats |
| * supported, need to load the additional DDC config to enable. |
| */ |
| err = btintel_read_debug_features(hdev, &features); |
| if (!err) { |
| /* Set DDC mask for available debug features */ |
| btintel_set_debug_features(hdev, &features); |
| } |
| |
| /* Read the Intel version information after loading the FW */ |
| err = btintel_read_version_tlv(hdev, &new_ver); |
| if (err) |
| return err; |
| |
| btintel_version_info_tlv(hdev, &new_ver); |
| |
| finish: |
| /* Set the event mask for Intel specific vendor events. This enables |
| * a few extra events that are useful during general operation. It |
| * does not enable any debugging related events. |
| * |
| * The device will function correctly without these events enabled |
| * and thus no need to fail the setup. |
| */ |
| btintel_set_event_mask(hdev, false); |
| |
| return 0; |
| } |
| |
| static void btintel_set_msft_opcode(struct hci_dev *hdev, u8 hw_variant) |
| { |
| switch (hw_variant) { |
| /* Legacy bootloader devices that supports MSFT Extension */ |
| case 0x11: /* JfP */ |
| case 0x12: /* ThP */ |
| case 0x13: /* HrP */ |
| case 0x14: /* CcP */ |
| /* All Intel new genration controllers support the Microsoft vendor |
| * extension are using 0xFC1E for VsMsftOpCode. |
| */ |
| case 0x17: |
| case 0x18: |
| case 0x19: |
| hci_set_msft_opcode(hdev, 0xFC1E); |
| break; |
| default: |
| /* Not supported */ |
| break; |
| } |
| } |
| |
| static int btintel_setup_combined(struct hci_dev *hdev) |
| { |
| const u8 param[1] = { 0xFF }; |
| struct intel_version ver; |
| struct intel_version_tlv ver_tlv; |
| struct sk_buff *skb; |
| int err; |
| |
| BT_DBG("%s", hdev->name); |
| |
| /* The some controllers have a bug with the first HCI command sent to it |
| * returning number of completed commands as zero. This would stall the |
| * command processing in the Bluetooth core. |
| * |
| * As a workaround, send HCI Reset command first which will reset the |
| * number of completed commands and allow normal command processing |
| * from now on. |
| */ |
| if (btintel_test_flag(hdev, INTEL_BROKEN_INITIAL_NCMD)) { |
| skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, |
| HCI_INIT_TIMEOUT); |
| if (IS_ERR(skb)) { |
| bt_dev_err(hdev, |
| "sending initial HCI reset failed (%ld)", |
| PTR_ERR(skb)); |
| return PTR_ERR(skb); |
| } |
| kfree_skb(skb); |
| } |
| |
| /* Starting from TyP device, the command parameter and response are |
| * changed even though the OCF for HCI_Intel_Read_Version command |
| * remains same. The legacy devices can handle even if the |
| * command has a parameter and returns a correct version information. |
| * So, it uses new format to support both legacy and new format. |
| */ |
| skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT); |
| if (IS_ERR(skb)) { |
| bt_dev_err(hdev, "Reading Intel version command failed (%ld)", |
| PTR_ERR(skb)); |
| return PTR_ERR(skb); |
| } |
| |
| /* Check the status */ |
| if (skb->data[0]) { |
| bt_dev_err(hdev, "Intel Read Version command failed (%02x)", |
| skb->data[0]); |
| err = -EIO; |
| goto exit_error; |
| } |
| |
| /* Apply the common HCI quirks for Intel device */ |
| set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks); |
| set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks); |
| set_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks); |
| |
| /* For Legacy device, check the HW platform value and size */ |
| if (skb->len == sizeof(ver) && skb->data[1] == 0x37) { |
| bt_dev_dbg(hdev, "Read the legacy Intel version information"); |
| |
| memcpy(&ver, skb->data, sizeof(ver)); |
| |
| /* Display version information */ |
| btintel_version_info(hdev, &ver); |
| |
| /* Check for supported iBT hardware variants of this firmware |
| * loading method. |
| * |
| * This check has been put in place to ensure correct forward |
| * compatibility options when newer hardware variants come |
| * along. |
| */ |
| switch (ver.hw_variant) { |
| case 0x07: /* WP */ |
| case 0x08: /* StP */ |
| /* Legacy ROM product */ |
| btintel_set_flag(hdev, INTEL_ROM_LEGACY); |
| |
| /* Apply the device specific HCI quirks |
| * |
| * WBS for SdP - SdP and Stp have a same hw_varaint but |
| * different fw_variant |
| */ |
| if (ver.hw_variant == 0x08 && ver.fw_variant == 0x22) |
| set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, |
| &hdev->quirks); |
| |
| /* These devices have an issue with LED which doesn't |
| * go off immediately during shutdown. Set the flag |
| * here to send the LED OFF command during shutdown. |
| */ |
| btintel_set_flag(hdev, INTEL_BROKEN_LED); |
| |
| err = btintel_legacy_rom_setup(hdev, &ver); |
| break; |
| case 0x0b: /* SfP */ |
| case 0x0c: /* WsP */ |
| case 0x11: /* JfP */ |
| case 0x12: /* ThP */ |
| case 0x13: /* HrP */ |
| case 0x14: /* CcP */ |
| /* Apply the device specific HCI quirks |
| * |
| * All Legacy bootloader devices support WBS |
| */ |
| set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, |
| &hdev->quirks); |
| |
| /* Valid LE States quirk for JfP/ThP familiy */ |
| if (ver.hw_variant == 0x11 || ver.hw_variant == 0x12) |
| set_bit(HCI_QUIRK_VALID_LE_STATES, |
| &hdev->quirks); |
| |
| /* Setup MSFT Extension support */ |
| btintel_set_msft_opcode(hdev, ver.hw_variant); |
| |
| err = btintel_bootloader_setup(hdev, &ver); |
| break; |
| default: |
| bt_dev_err(hdev, "Unsupported Intel hw variant (%u)", |
| ver.hw_variant); |
| err = -EINVAL; |
| } |
| |
| goto exit_error; |
| } |
| |
| /* For TLV type device, parse the tlv data */ |
| err = btintel_parse_version_tlv(hdev, &ver_tlv, skb); |
| if (err) { |
| bt_dev_err(hdev, "Failed to parse TLV version information"); |
| goto exit_error; |
| } |
| |
| if (INTEL_HW_PLATFORM(ver_tlv.cnvi_bt) != 0x37) { |
| bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)", |
| INTEL_HW_PLATFORM(ver_tlv.cnvi_bt)); |
| err = -EINVAL; |
| goto exit_error; |
| } |
| |
| /* Check for supported iBT hardware variants of this firmware |
| * loading method. |
| * |
| * This check has been put in place to ensure correct forward |
| * compatibility options when newer hardware variants come |
| * along. |
| */ |
| switch (INTEL_HW_VARIANT(ver_tlv.cnvi_bt)) { |
| case 0x11: /* JfP */ |
| case 0x12: /* ThP */ |
| case 0x13: /* HrP */ |
| case 0x14: /* CcP */ |
| /* Some legacy bootloader devices from JfP supports both old |
| * and TLV based HCI_Intel_Read_Version command. But we don't |
| * want to use the TLV based setup routines for those legacy |
| * bootloader device. |
| * |
| * Also, it is not easy to convert TLV based version from the |
| * legacy version format. |
| * |
| * So, as a workaround for those devices, use the legacy |
| * HCI_Intel_Read_Version to get the version information and |
| * run the legacy bootloader setup. |
| */ |
| err = btintel_read_version(hdev, &ver); |
| if (err) |
| return err; |
| err = btintel_bootloader_setup(hdev, &ver); |
| break; |
| case 0x17: |
| case 0x18: |
| case 0x19: |
| /* Display version information of TLV type */ |
| btintel_version_info_tlv(hdev, &ver_tlv); |
| |
| /* Apply the device specific HCI quirks for TLV based devices |
| * |
| * All TLV based devices support WBS |
| */ |
| set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks); |
| |
| /* Valid LE States quirk for GfP */ |
| if (INTEL_HW_VARIANT(ver_tlv.cnvi_bt) == 0x18) |
| set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks); |
| |
| /* Setup MSFT Extension support */ |
| btintel_set_msft_opcode(hdev, |
| INTEL_HW_VARIANT(ver_tlv.cnvi_bt)); |
| |
| err = btintel_bootloader_setup_tlv(hdev, &ver_tlv); |
| break; |
| default: |
| bt_dev_err(hdev, "Unsupported Intel hw variant (%u)", |
| INTEL_HW_VARIANT(ver_tlv.cnvi_bt)); |
| return -EINVAL; |
| } |
| |
| exit_error: |
| kfree_skb(skb); |
| |
| return err; |
| } |
| |
| static int btintel_shutdown_combined(struct hci_dev *hdev) |
| { |
| struct sk_buff *skb; |
| int ret; |
| |
| /* Send HCI Reset to the controller to stop any BT activity which |
| * were triggered. This will help to save power and maintain the |
| * sync b/w Host and controller |
| */ |
| skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT); |
| if (IS_ERR(skb)) { |
| bt_dev_err(hdev, "HCI reset during shutdown failed"); |
| return PTR_ERR(skb); |
| } |
| kfree_skb(skb); |
| |
| |
| /* Some platforms have an issue with BT LED when the interface is |
| * down or BT radio is turned off, which takes 5 seconds to BT LED |
| * goes off. This command turns off the BT LED immediately. |
| */ |
| if (btintel_test_flag(hdev, INTEL_BROKEN_LED)) { |
| skb = __hci_cmd_sync(hdev, 0xfc3f, 0, NULL, HCI_INIT_TIMEOUT); |
| if (IS_ERR(skb)) { |
| ret = PTR_ERR(skb); |
| bt_dev_err(hdev, "turning off Intel device LED failed"); |
| return ret; |
| } |
| kfree_skb(skb); |
| } |
| |
| return 0; |
| } |
| |
| int btintel_configure_setup(struct hci_dev *hdev) |
| { |
| hdev->manufacturer = 2; |
| hdev->setup = btintel_setup_combined; |
| hdev->shutdown = btintel_shutdown_combined; |
| hdev->hw_error = btintel_hw_error; |
| hdev->set_diag = btintel_set_diag_combined; |
| hdev->set_bdaddr = btintel_set_bdaddr; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(btintel_configure_setup); |
| |
| void btintel_bootup(struct hci_dev *hdev, const void *ptr, unsigned int len) |
| { |
| const struct intel_bootup *evt = ptr; |
| |
| if (len != sizeof(*evt)) |
| return; |
| |
| if (btintel_test_and_clear_flag(hdev, INTEL_BOOTING)) |
| btintel_wake_up_flag(hdev, INTEL_BOOTING); |
| } |
| EXPORT_SYMBOL_GPL(btintel_bootup); |
| |
| void btintel_secure_send_result(struct hci_dev *hdev, |
| const void *ptr, unsigned int len) |
| { |
| const struct intel_secure_send_result *evt = ptr; |
| |
| if (len != sizeof(*evt)) |
| return; |
| |
| if (evt->result) |
| btintel_set_flag(hdev, INTEL_FIRMWARE_FAILED); |
| |
| if (btintel_test_and_clear_flag(hdev, INTEL_DOWNLOADING) && |
| btintel_test_flag(hdev, INTEL_FIRMWARE_LOADED)) |
| btintel_wake_up_flag(hdev, INTEL_DOWNLOADING); |
| } |
| EXPORT_SYMBOL_GPL(btintel_secure_send_result); |
| |
| MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>"); |
| MODULE_DESCRIPTION("Bluetooth support for Intel devices ver " VERSION); |
| MODULE_VERSION(VERSION); |
| MODULE_LICENSE("GPL"); |
| MODULE_FIRMWARE("intel/ibt-11-5.sfi"); |
| MODULE_FIRMWARE("intel/ibt-11-5.ddc"); |
| MODULE_FIRMWARE("intel/ibt-12-16.sfi"); |
| MODULE_FIRMWARE("intel/ibt-12-16.ddc"); |