| #ifndef _ASM_X86_MMU_CONTEXT_H |
| #define _ASM_X86_MMU_CONTEXT_H |
| |
| #include <asm/desc.h> |
| #include <linux/atomic.h> |
| #include <linux/mm_types.h> |
| |
| #include <trace/events/tlb.h> |
| |
| #include <asm/pgalloc.h> |
| #include <asm/tlbflush.h> |
| #include <asm/paravirt.h> |
| #include <asm/mpx.h> |
| #ifndef CONFIG_PARAVIRT |
| static inline void paravirt_activate_mm(struct mm_struct *prev, |
| struct mm_struct *next) |
| { |
| } |
| #endif /* !CONFIG_PARAVIRT */ |
| |
| /* |
| * Used for LDT copy/destruction. |
| */ |
| int init_new_context(struct task_struct *tsk, struct mm_struct *mm); |
| void destroy_context(struct mm_struct *mm); |
| |
| |
| static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk) |
| { |
| #ifdef CONFIG_SMP |
| if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) |
| this_cpu_write(cpu_tlbstate.state, TLBSTATE_LAZY); |
| #endif |
| } |
| |
| static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next, |
| struct task_struct *tsk) |
| { |
| unsigned cpu = smp_processor_id(); |
| |
| if (likely(prev != next)) { |
| #ifdef CONFIG_SMP |
| this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK); |
| this_cpu_write(cpu_tlbstate.active_mm, next); |
| #endif |
| cpumask_set_cpu(cpu, mm_cpumask(next)); |
| |
| /* Re-load page tables */ |
| load_cr3(next->pgd); |
| trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL); |
| |
| /* Stop flush ipis for the previous mm */ |
| cpumask_clear_cpu(cpu, mm_cpumask(prev)); |
| |
| /* |
| * Load the LDT, if the LDT is different. |
| * |
| * It's possible leave_mm(prev) has been called. If so, |
| * then prev->context.ldt could be out of sync with the |
| * LDT descriptor or the LDT register. This can only happen |
| * if prev->context.ldt is non-null, since we never free |
| * an LDT. But LDTs can't be shared across mms, so |
| * prev->context.ldt won't be equal to next->context.ldt. |
| */ |
| if (unlikely(prev->context.ldt != next->context.ldt)) |
| load_LDT_nolock(&next->context); |
| } |
| #ifdef CONFIG_SMP |
| else { |
| this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK); |
| BUG_ON(this_cpu_read(cpu_tlbstate.active_mm) != next); |
| |
| if (!cpumask_test_cpu(cpu, mm_cpumask(next))) { |
| /* |
| * On established mms, the mm_cpumask is only changed |
| * from irq context, from ptep_clear_flush() while in |
| * lazy tlb mode, and here. Irqs are blocked during |
| * schedule, protecting us from simultaneous changes. |
| */ |
| cpumask_set_cpu(cpu, mm_cpumask(next)); |
| /* |
| * We were in lazy tlb mode and leave_mm disabled |
| * tlb flush IPI delivery. We must reload CR3 |
| * to make sure to use no freed page tables. |
| */ |
| load_cr3(next->pgd); |
| trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL); |
| load_LDT_nolock(&next->context); |
| } |
| } |
| #endif |
| } |
| |
| #define activate_mm(prev, next) \ |
| do { \ |
| paravirt_activate_mm((prev), (next)); \ |
| switch_mm((prev), (next), NULL); \ |
| } while (0); |
| |
| #ifdef CONFIG_X86_32 |
| #define deactivate_mm(tsk, mm) \ |
| do { \ |
| lazy_load_gs(0); \ |
| } while (0) |
| #else |
| #define deactivate_mm(tsk, mm) \ |
| do { \ |
| load_gs_index(0); \ |
| loadsegment(fs, 0); \ |
| } while (0) |
| #endif |
| |
| static inline void arch_dup_mmap(struct mm_struct *oldmm, |
| struct mm_struct *mm) |
| { |
| paravirt_arch_dup_mmap(oldmm, mm); |
| } |
| |
| static inline void arch_exit_mmap(struct mm_struct *mm) |
| { |
| paravirt_arch_exit_mmap(mm); |
| } |
| |
| static inline void arch_bprm_mm_init(struct mm_struct *mm, |
| struct vm_area_struct *vma) |
| { |
| mpx_mm_init(mm); |
| } |
| |
| static inline void arch_unmap(struct mm_struct *mm, struct vm_area_struct *vma, |
| unsigned long start, unsigned long end) |
| { |
| /* |
| * mpx_notify_unmap() goes and reads a rarely-hot |
| * cacheline in the mm_struct. That can be expensive |
| * enough to be seen in profiles. |
| * |
| * The mpx_notify_unmap() call and its contents have been |
| * observed to affect munmap() performance on hardware |
| * where MPX is not present. |
| * |
| * The unlikely() optimizes for the fast case: no MPX |
| * in the CPU, or no MPX use in the process. Even if |
| * we get this wrong (in the unlikely event that MPX |
| * is widely enabled on some system) the overhead of |
| * MPX itself (reading bounds tables) is expected to |
| * overwhelm the overhead of getting this unlikely() |
| * consistently wrong. |
| */ |
| if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX))) |
| mpx_notify_unmap(mm, vma, start, end); |
| } |
| |
| #endif /* _ASM_X86_MMU_CONTEXT_H */ |