| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * VMware vSockets Driver |
| * |
| * Copyright (C) 2007-2013 VMware, Inc. All rights reserved. |
| */ |
| |
| /* Implementation notes: |
| * |
| * - There are two kinds of sockets: those created by user action (such as |
| * calling socket(2)) and those created by incoming connection request packets. |
| * |
| * - There are two "global" tables, one for bound sockets (sockets that have |
| * specified an address that they are responsible for) and one for connected |
| * sockets (sockets that have established a connection with another socket). |
| * These tables are "global" in that all sockets on the system are placed |
| * within them. - Note, though, that the bound table contains an extra entry |
| * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in |
| * that list. The bound table is used solely for lookup of sockets when packets |
| * are received and that's not necessary for SOCK_DGRAM sockets since we create |
| * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM |
| * sockets out of the bound hash buckets will reduce the chance of collisions |
| * when looking for SOCK_STREAM sockets and prevents us from having to check the |
| * socket type in the hash table lookups. |
| * |
| * - Sockets created by user action will either be "client" sockets that |
| * initiate a connection or "server" sockets that listen for connections; we do |
| * not support simultaneous connects (two "client" sockets connecting). |
| * |
| * - "Server" sockets are referred to as listener sockets throughout this |
| * implementation because they are in the TCP_LISTEN state. When a |
| * connection request is received (the second kind of socket mentioned above), |
| * we create a new socket and refer to it as a pending socket. These pending |
| * sockets are placed on the pending connection list of the listener socket. |
| * When future packets are received for the address the listener socket is |
| * bound to, we check if the source of the packet is from one that has an |
| * existing pending connection. If it does, we process the packet for the |
| * pending socket. When that socket reaches the connected state, it is removed |
| * from the listener socket's pending list and enqueued in the listener |
| * socket's accept queue. Callers of accept(2) will accept connected sockets |
| * from the listener socket's accept queue. If the socket cannot be accepted |
| * for some reason then it is marked rejected. Once the connection is |
| * accepted, it is owned by the user process and the responsibility for cleanup |
| * falls with that user process. |
| * |
| * - It is possible that these pending sockets will never reach the connected |
| * state; in fact, we may never receive another packet after the connection |
| * request. Because of this, we must schedule a cleanup function to run in the |
| * future, after some amount of time passes where a connection should have been |
| * established. This function ensures that the socket is off all lists so it |
| * cannot be retrieved, then drops all references to the socket so it is cleaned |
| * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this |
| * function will also cleanup rejected sockets, those that reach the connected |
| * state but leave it before they have been accepted. |
| * |
| * - Lock ordering for pending or accept queue sockets is: |
| * |
| * lock_sock(listener); |
| * lock_sock_nested(pending, SINGLE_DEPTH_NESTING); |
| * |
| * Using explicit nested locking keeps lockdep happy since normally only one |
| * lock of a given class may be taken at a time. |
| * |
| * - Sockets created by user action will be cleaned up when the user process |
| * calls close(2), causing our release implementation to be called. Our release |
| * implementation will perform some cleanup then drop the last reference so our |
| * sk_destruct implementation is invoked. Our sk_destruct implementation will |
| * perform additional cleanup that's common for both types of sockets. |
| * |
| * - A socket's reference count is what ensures that the structure won't be |
| * freed. Each entry in a list (such as the "global" bound and connected tables |
| * and the listener socket's pending list and connected queue) ensures a |
| * reference. When we defer work until process context and pass a socket as our |
| * argument, we must ensure the reference count is increased to ensure the |
| * socket isn't freed before the function is run; the deferred function will |
| * then drop the reference. |
| * |
| * - sk->sk_state uses the TCP state constants because they are widely used by |
| * other address families and exposed to userspace tools like ss(8): |
| * |
| * TCP_CLOSE - unconnected |
| * TCP_SYN_SENT - connecting |
| * TCP_ESTABLISHED - connected |
| * TCP_CLOSING - disconnecting |
| * TCP_LISTEN - listening |
| */ |
| |
| #include <linux/compat.h> |
| #include <linux/types.h> |
| #include <linux/bitops.h> |
| #include <linux/cred.h> |
| #include <linux/errqueue.h> |
| #include <linux/init.h> |
| #include <linux/io.h> |
| #include <linux/kernel.h> |
| #include <linux/sched/signal.h> |
| #include <linux/kmod.h> |
| #include <linux/list.h> |
| #include <linux/miscdevice.h> |
| #include <linux/module.h> |
| #include <linux/mutex.h> |
| #include <linux/net.h> |
| #include <linux/poll.h> |
| #include <linux/random.h> |
| #include <linux/skbuff.h> |
| #include <linux/smp.h> |
| #include <linux/socket.h> |
| #include <linux/stddef.h> |
| #include <linux/unistd.h> |
| #include <linux/wait.h> |
| #include <linux/workqueue.h> |
| #include <net/sock.h> |
| #include <net/af_vsock.h> |
| #include <uapi/linux/vm_sockets.h> |
| |
| static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr); |
| static void vsock_sk_destruct(struct sock *sk); |
| static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); |
| |
| /* Protocol family. */ |
| struct proto vsock_proto = { |
| .name = "AF_VSOCK", |
| .owner = THIS_MODULE, |
| .obj_size = sizeof(struct vsock_sock), |
| #ifdef CONFIG_BPF_SYSCALL |
| .psock_update_sk_prot = vsock_bpf_update_proto, |
| #endif |
| }; |
| |
| /* The default peer timeout indicates how long we will wait for a peer response |
| * to a control message. |
| */ |
| #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ) |
| |
| #define VSOCK_DEFAULT_BUFFER_SIZE (1024 * 256) |
| #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256) |
| #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128 |
| |
| /* Transport used for host->guest communication */ |
| static const struct vsock_transport *transport_h2g; |
| /* Transport used for guest->host communication */ |
| static const struct vsock_transport *transport_g2h; |
| /* Transport used for DGRAM communication */ |
| static const struct vsock_transport *transport_dgram; |
| /* Transport used for local communication */ |
| static const struct vsock_transport *transport_local; |
| static DEFINE_MUTEX(vsock_register_mutex); |
| |
| /**** UTILS ****/ |
| |
| /* Each bound VSocket is stored in the bind hash table and each connected |
| * VSocket is stored in the connected hash table. |
| * |
| * Unbound sockets are all put on the same list attached to the end of the hash |
| * table (vsock_unbound_sockets). Bound sockets are added to the hash table in |
| * the bucket that their local address hashes to (vsock_bound_sockets(addr) |
| * represents the list that addr hashes to). |
| * |
| * Specifically, we initialize the vsock_bind_table array to a size of |
| * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through |
| * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and |
| * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function |
| * mods with VSOCK_HASH_SIZE to ensure this. |
| */ |
| #define MAX_PORT_RETRIES 24 |
| |
| #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE) |
| #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)]) |
| #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE]) |
| |
| /* XXX This can probably be implemented in a better way. */ |
| #define VSOCK_CONN_HASH(src, dst) \ |
| (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE) |
| #define vsock_connected_sockets(src, dst) \ |
| (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)]) |
| #define vsock_connected_sockets_vsk(vsk) \ |
| vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr) |
| |
| struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1]; |
| EXPORT_SYMBOL_GPL(vsock_bind_table); |
| struct list_head vsock_connected_table[VSOCK_HASH_SIZE]; |
| EXPORT_SYMBOL_GPL(vsock_connected_table); |
| DEFINE_SPINLOCK(vsock_table_lock); |
| EXPORT_SYMBOL_GPL(vsock_table_lock); |
| |
| /* Autobind this socket to the local address if necessary. */ |
| static int vsock_auto_bind(struct vsock_sock *vsk) |
| { |
| struct sock *sk = sk_vsock(vsk); |
| struct sockaddr_vm local_addr; |
| |
| if (vsock_addr_bound(&vsk->local_addr)) |
| return 0; |
| vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); |
| return __vsock_bind(sk, &local_addr); |
| } |
| |
| static void vsock_init_tables(void) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++) |
| INIT_LIST_HEAD(&vsock_bind_table[i]); |
| |
| for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) |
| INIT_LIST_HEAD(&vsock_connected_table[i]); |
| } |
| |
| static void __vsock_insert_bound(struct list_head *list, |
| struct vsock_sock *vsk) |
| { |
| sock_hold(&vsk->sk); |
| list_add(&vsk->bound_table, list); |
| } |
| |
| static void __vsock_insert_connected(struct list_head *list, |
| struct vsock_sock *vsk) |
| { |
| sock_hold(&vsk->sk); |
| list_add(&vsk->connected_table, list); |
| } |
| |
| static void __vsock_remove_bound(struct vsock_sock *vsk) |
| { |
| list_del_init(&vsk->bound_table); |
| sock_put(&vsk->sk); |
| } |
| |
| static void __vsock_remove_connected(struct vsock_sock *vsk) |
| { |
| list_del_init(&vsk->connected_table); |
| sock_put(&vsk->sk); |
| } |
| |
| static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr) |
| { |
| struct vsock_sock *vsk; |
| |
| list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) { |
| if (vsock_addr_equals_addr(addr, &vsk->local_addr)) |
| return sk_vsock(vsk); |
| |
| if (addr->svm_port == vsk->local_addr.svm_port && |
| (vsk->local_addr.svm_cid == VMADDR_CID_ANY || |
| addr->svm_cid == VMADDR_CID_ANY)) |
| return sk_vsock(vsk); |
| } |
| |
| return NULL; |
| } |
| |
| static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src, |
| struct sockaddr_vm *dst) |
| { |
| struct vsock_sock *vsk; |
| |
| list_for_each_entry(vsk, vsock_connected_sockets(src, dst), |
| connected_table) { |
| if (vsock_addr_equals_addr(src, &vsk->remote_addr) && |
| dst->svm_port == vsk->local_addr.svm_port) { |
| return sk_vsock(vsk); |
| } |
| } |
| |
| return NULL; |
| } |
| |
| static void vsock_insert_unbound(struct vsock_sock *vsk) |
| { |
| spin_lock_bh(&vsock_table_lock); |
| __vsock_insert_bound(vsock_unbound_sockets, vsk); |
| spin_unlock_bh(&vsock_table_lock); |
| } |
| |
| void vsock_insert_connected(struct vsock_sock *vsk) |
| { |
| struct list_head *list = vsock_connected_sockets( |
| &vsk->remote_addr, &vsk->local_addr); |
| |
| spin_lock_bh(&vsock_table_lock); |
| __vsock_insert_connected(list, vsk); |
| spin_unlock_bh(&vsock_table_lock); |
| } |
| EXPORT_SYMBOL_GPL(vsock_insert_connected); |
| |
| void vsock_remove_bound(struct vsock_sock *vsk) |
| { |
| spin_lock_bh(&vsock_table_lock); |
| if (__vsock_in_bound_table(vsk)) |
| __vsock_remove_bound(vsk); |
| spin_unlock_bh(&vsock_table_lock); |
| } |
| EXPORT_SYMBOL_GPL(vsock_remove_bound); |
| |
| void vsock_remove_connected(struct vsock_sock *vsk) |
| { |
| spin_lock_bh(&vsock_table_lock); |
| if (__vsock_in_connected_table(vsk)) |
| __vsock_remove_connected(vsk); |
| spin_unlock_bh(&vsock_table_lock); |
| } |
| EXPORT_SYMBOL_GPL(vsock_remove_connected); |
| |
| struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr) |
| { |
| struct sock *sk; |
| |
| spin_lock_bh(&vsock_table_lock); |
| sk = __vsock_find_bound_socket(addr); |
| if (sk) |
| sock_hold(sk); |
| |
| spin_unlock_bh(&vsock_table_lock); |
| |
| return sk; |
| } |
| EXPORT_SYMBOL_GPL(vsock_find_bound_socket); |
| |
| struct sock *vsock_find_connected_socket(struct sockaddr_vm *src, |
| struct sockaddr_vm *dst) |
| { |
| struct sock *sk; |
| |
| spin_lock_bh(&vsock_table_lock); |
| sk = __vsock_find_connected_socket(src, dst); |
| if (sk) |
| sock_hold(sk); |
| |
| spin_unlock_bh(&vsock_table_lock); |
| |
| return sk; |
| } |
| EXPORT_SYMBOL_GPL(vsock_find_connected_socket); |
| |
| void vsock_remove_sock(struct vsock_sock *vsk) |
| { |
| vsock_remove_bound(vsk); |
| vsock_remove_connected(vsk); |
| } |
| EXPORT_SYMBOL_GPL(vsock_remove_sock); |
| |
| void vsock_for_each_connected_socket(struct vsock_transport *transport, |
| void (*fn)(struct sock *sk)) |
| { |
| int i; |
| |
| spin_lock_bh(&vsock_table_lock); |
| |
| for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) { |
| struct vsock_sock *vsk; |
| list_for_each_entry(vsk, &vsock_connected_table[i], |
| connected_table) { |
| if (vsk->transport != transport) |
| continue; |
| |
| fn(sk_vsock(vsk)); |
| } |
| } |
| |
| spin_unlock_bh(&vsock_table_lock); |
| } |
| EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket); |
| |
| void vsock_add_pending(struct sock *listener, struct sock *pending) |
| { |
| struct vsock_sock *vlistener; |
| struct vsock_sock *vpending; |
| |
| vlistener = vsock_sk(listener); |
| vpending = vsock_sk(pending); |
| |
| sock_hold(pending); |
| sock_hold(listener); |
| list_add_tail(&vpending->pending_links, &vlistener->pending_links); |
| } |
| EXPORT_SYMBOL_GPL(vsock_add_pending); |
| |
| void vsock_remove_pending(struct sock *listener, struct sock *pending) |
| { |
| struct vsock_sock *vpending = vsock_sk(pending); |
| |
| list_del_init(&vpending->pending_links); |
| sock_put(listener); |
| sock_put(pending); |
| } |
| EXPORT_SYMBOL_GPL(vsock_remove_pending); |
| |
| void vsock_enqueue_accept(struct sock *listener, struct sock *connected) |
| { |
| struct vsock_sock *vlistener; |
| struct vsock_sock *vconnected; |
| |
| vlistener = vsock_sk(listener); |
| vconnected = vsock_sk(connected); |
| |
| sock_hold(connected); |
| sock_hold(listener); |
| list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue); |
| } |
| EXPORT_SYMBOL_GPL(vsock_enqueue_accept); |
| |
| static bool vsock_use_local_transport(unsigned int remote_cid) |
| { |
| if (!transport_local) |
| return false; |
| |
| if (remote_cid == VMADDR_CID_LOCAL) |
| return true; |
| |
| if (transport_g2h) { |
| return remote_cid == transport_g2h->get_local_cid(); |
| } else { |
| return remote_cid == VMADDR_CID_HOST; |
| } |
| } |
| |
| static void vsock_deassign_transport(struct vsock_sock *vsk) |
| { |
| if (!vsk->transport) |
| return; |
| |
| vsk->transport->destruct(vsk); |
| module_put(vsk->transport->module); |
| vsk->transport = NULL; |
| } |
| |
| /* Assign a transport to a socket and call the .init transport callback. |
| * |
| * Note: for connection oriented socket this must be called when vsk->remote_addr |
| * is set (e.g. during the connect() or when a connection request on a listener |
| * socket is received). |
| * The vsk->remote_addr is used to decide which transport to use: |
| * - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if |
| * g2h is not loaded, will use local transport; |
| * - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field |
| * includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport; |
| * - remote CID > VMADDR_CID_HOST will use host->guest transport; |
| */ |
| int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk) |
| { |
| const struct vsock_transport *new_transport; |
| struct sock *sk = sk_vsock(vsk); |
| unsigned int remote_cid = vsk->remote_addr.svm_cid; |
| __u8 remote_flags; |
| int ret; |
| |
| /* If the packet is coming with the source and destination CIDs higher |
| * than VMADDR_CID_HOST, then a vsock channel where all the packets are |
| * forwarded to the host should be established. Then the host will |
| * need to forward the packets to the guest. |
| * |
| * The flag is set on the (listen) receive path (psk is not NULL). On |
| * the connect path the flag can be set by the user space application. |
| */ |
| if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST && |
| vsk->remote_addr.svm_cid > VMADDR_CID_HOST) |
| vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST; |
| |
| remote_flags = vsk->remote_addr.svm_flags; |
| |
| switch (sk->sk_type) { |
| case SOCK_DGRAM: |
| new_transport = transport_dgram; |
| break; |
| case SOCK_STREAM: |
| case SOCK_SEQPACKET: |
| if (vsock_use_local_transport(remote_cid)) |
| new_transport = transport_local; |
| else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g || |
| (remote_flags & VMADDR_FLAG_TO_HOST)) |
| new_transport = transport_g2h; |
| else |
| new_transport = transport_h2g; |
| break; |
| default: |
| return -ESOCKTNOSUPPORT; |
| } |
| |
| if (vsk->transport) { |
| if (vsk->transport == new_transport) |
| return 0; |
| |
| /* transport->release() must be called with sock lock acquired. |
| * This path can only be taken during vsock_connect(), where we |
| * have already held the sock lock. In the other cases, this |
| * function is called on a new socket which is not assigned to |
| * any transport. |
| */ |
| vsk->transport->release(vsk); |
| vsock_deassign_transport(vsk); |
| } |
| |
| /* We increase the module refcnt to prevent the transport unloading |
| * while there are open sockets assigned to it. |
| */ |
| if (!new_transport || !try_module_get(new_transport->module)) |
| return -ENODEV; |
| |
| if (sk->sk_type == SOCK_SEQPACKET) { |
| if (!new_transport->seqpacket_allow || |
| !new_transport->seqpacket_allow(remote_cid)) { |
| module_put(new_transport->module); |
| return -ESOCKTNOSUPPORT; |
| } |
| } |
| |
| ret = new_transport->init(vsk, psk); |
| if (ret) { |
| module_put(new_transport->module); |
| return ret; |
| } |
| |
| vsk->transport = new_transport; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(vsock_assign_transport); |
| |
| bool vsock_find_cid(unsigned int cid) |
| { |
| if (transport_g2h && cid == transport_g2h->get_local_cid()) |
| return true; |
| |
| if (transport_h2g && cid == VMADDR_CID_HOST) |
| return true; |
| |
| if (transport_local && cid == VMADDR_CID_LOCAL) |
| return true; |
| |
| return false; |
| } |
| EXPORT_SYMBOL_GPL(vsock_find_cid); |
| |
| static struct sock *vsock_dequeue_accept(struct sock *listener) |
| { |
| struct vsock_sock *vlistener; |
| struct vsock_sock *vconnected; |
| |
| vlistener = vsock_sk(listener); |
| |
| if (list_empty(&vlistener->accept_queue)) |
| return NULL; |
| |
| vconnected = list_entry(vlistener->accept_queue.next, |
| struct vsock_sock, accept_queue); |
| |
| list_del_init(&vconnected->accept_queue); |
| sock_put(listener); |
| /* The caller will need a reference on the connected socket so we let |
| * it call sock_put(). |
| */ |
| |
| return sk_vsock(vconnected); |
| } |
| |
| static bool vsock_is_accept_queue_empty(struct sock *sk) |
| { |
| struct vsock_sock *vsk = vsock_sk(sk); |
| return list_empty(&vsk->accept_queue); |
| } |
| |
| static bool vsock_is_pending(struct sock *sk) |
| { |
| struct vsock_sock *vsk = vsock_sk(sk); |
| return !list_empty(&vsk->pending_links); |
| } |
| |
| static int vsock_send_shutdown(struct sock *sk, int mode) |
| { |
| struct vsock_sock *vsk = vsock_sk(sk); |
| |
| if (!vsk->transport) |
| return -ENODEV; |
| |
| return vsk->transport->shutdown(vsk, mode); |
| } |
| |
| static void vsock_pending_work(struct work_struct *work) |
| { |
| struct sock *sk; |
| struct sock *listener; |
| struct vsock_sock *vsk; |
| bool cleanup; |
| |
| vsk = container_of(work, struct vsock_sock, pending_work.work); |
| sk = sk_vsock(vsk); |
| listener = vsk->listener; |
| cleanup = true; |
| |
| lock_sock(listener); |
| lock_sock_nested(sk, SINGLE_DEPTH_NESTING); |
| |
| if (vsock_is_pending(sk)) { |
| vsock_remove_pending(listener, sk); |
| |
| sk_acceptq_removed(listener); |
| } else if (!vsk->rejected) { |
| /* We are not on the pending list and accept() did not reject |
| * us, so we must have been accepted by our user process. We |
| * just need to drop our references to the sockets and be on |
| * our way. |
| */ |
| cleanup = false; |
| goto out; |
| } |
| |
| /* We need to remove ourself from the global connected sockets list so |
| * incoming packets can't find this socket, and to reduce the reference |
| * count. |
| */ |
| vsock_remove_connected(vsk); |
| |
| sk->sk_state = TCP_CLOSE; |
| |
| out: |
| release_sock(sk); |
| release_sock(listener); |
| if (cleanup) |
| sock_put(sk); |
| |
| sock_put(sk); |
| sock_put(listener); |
| } |
| |
| /**** SOCKET OPERATIONS ****/ |
| |
| static int __vsock_bind_connectible(struct vsock_sock *vsk, |
| struct sockaddr_vm *addr) |
| { |
| static u32 port; |
| struct sockaddr_vm new_addr; |
| |
| if (!port) |
| port = get_random_u32_above(LAST_RESERVED_PORT); |
| |
| vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port); |
| |
| if (addr->svm_port == VMADDR_PORT_ANY) { |
| bool found = false; |
| unsigned int i; |
| |
| for (i = 0; i < MAX_PORT_RETRIES; i++) { |
| if (port <= LAST_RESERVED_PORT) |
| port = LAST_RESERVED_PORT + 1; |
| |
| new_addr.svm_port = port++; |
| |
| if (!__vsock_find_bound_socket(&new_addr)) { |
| found = true; |
| break; |
| } |
| } |
| |
| if (!found) |
| return -EADDRNOTAVAIL; |
| } else { |
| /* If port is in reserved range, ensure caller |
| * has necessary privileges. |
| */ |
| if (addr->svm_port <= LAST_RESERVED_PORT && |
| !capable(CAP_NET_BIND_SERVICE)) { |
| return -EACCES; |
| } |
| |
| if (__vsock_find_bound_socket(&new_addr)) |
| return -EADDRINUSE; |
| } |
| |
| vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port); |
| |
| /* Remove connection oriented sockets from the unbound list and add them |
| * to the hash table for easy lookup by its address. The unbound list |
| * is simply an extra entry at the end of the hash table, a trick used |
| * by AF_UNIX. |
| */ |
| __vsock_remove_bound(vsk); |
| __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk); |
| |
| return 0; |
| } |
| |
| static int __vsock_bind_dgram(struct vsock_sock *vsk, |
| struct sockaddr_vm *addr) |
| { |
| return vsk->transport->dgram_bind(vsk, addr); |
| } |
| |
| static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr) |
| { |
| struct vsock_sock *vsk = vsock_sk(sk); |
| int retval; |
| |
| /* First ensure this socket isn't already bound. */ |
| if (vsock_addr_bound(&vsk->local_addr)) |
| return -EINVAL; |
| |
| /* Now bind to the provided address or select appropriate values if |
| * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that |
| * like AF_INET prevents binding to a non-local IP address (in most |
| * cases), we only allow binding to a local CID. |
| */ |
| if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid)) |
| return -EADDRNOTAVAIL; |
| |
| switch (sk->sk_socket->type) { |
| case SOCK_STREAM: |
| case SOCK_SEQPACKET: |
| spin_lock_bh(&vsock_table_lock); |
| retval = __vsock_bind_connectible(vsk, addr); |
| spin_unlock_bh(&vsock_table_lock); |
| break; |
| |
| case SOCK_DGRAM: |
| retval = __vsock_bind_dgram(vsk, addr); |
| break; |
| |
| default: |
| retval = -EINVAL; |
| break; |
| } |
| |
| return retval; |
| } |
| |
| static void vsock_connect_timeout(struct work_struct *work); |
| |
| static struct sock *__vsock_create(struct net *net, |
| struct socket *sock, |
| struct sock *parent, |
| gfp_t priority, |
| unsigned short type, |
| int kern) |
| { |
| struct sock *sk; |
| struct vsock_sock *psk; |
| struct vsock_sock *vsk; |
| |
| sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern); |
| if (!sk) |
| return NULL; |
| |
| sock_init_data(sock, sk); |
| |
| /* sk->sk_type is normally set in sock_init_data, but only if sock is |
| * non-NULL. We make sure that our sockets always have a type by |
| * setting it here if needed. |
| */ |
| if (!sock) |
| sk->sk_type = type; |
| |
| vsk = vsock_sk(sk); |
| vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); |
| vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); |
| |
| sk->sk_destruct = vsock_sk_destruct; |
| sk->sk_backlog_rcv = vsock_queue_rcv_skb; |
| sock_reset_flag(sk, SOCK_DONE); |
| |
| INIT_LIST_HEAD(&vsk->bound_table); |
| INIT_LIST_HEAD(&vsk->connected_table); |
| vsk->listener = NULL; |
| INIT_LIST_HEAD(&vsk->pending_links); |
| INIT_LIST_HEAD(&vsk->accept_queue); |
| vsk->rejected = false; |
| vsk->sent_request = false; |
| vsk->ignore_connecting_rst = false; |
| vsk->peer_shutdown = 0; |
| INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout); |
| INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work); |
| |
| psk = parent ? vsock_sk(parent) : NULL; |
| if (parent) { |
| vsk->trusted = psk->trusted; |
| vsk->owner = get_cred(psk->owner); |
| vsk->connect_timeout = psk->connect_timeout; |
| vsk->buffer_size = psk->buffer_size; |
| vsk->buffer_min_size = psk->buffer_min_size; |
| vsk->buffer_max_size = psk->buffer_max_size; |
| security_sk_clone(parent, sk); |
| } else { |
| vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN); |
| vsk->owner = get_current_cred(); |
| vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT; |
| vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE; |
| vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE; |
| vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE; |
| } |
| |
| return sk; |
| } |
| |
| static bool sock_type_connectible(u16 type) |
| { |
| return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET); |
| } |
| |
| static void __vsock_release(struct sock *sk, int level) |
| { |
| if (sk) { |
| struct sock *pending; |
| struct vsock_sock *vsk; |
| |
| vsk = vsock_sk(sk); |
| pending = NULL; /* Compiler warning. */ |
| |
| /* When "level" is SINGLE_DEPTH_NESTING, use the nested |
| * version to avoid the warning "possible recursive locking |
| * detected". When "level" is 0, lock_sock_nested(sk, level) |
| * is the same as lock_sock(sk). |
| */ |
| lock_sock_nested(sk, level); |
| |
| if (vsk->transport) |
| vsk->transport->release(vsk); |
| else if (sock_type_connectible(sk->sk_type)) |
| vsock_remove_sock(vsk); |
| |
| sock_orphan(sk); |
| sk->sk_shutdown = SHUTDOWN_MASK; |
| |
| skb_queue_purge(&sk->sk_receive_queue); |
| |
| /* Clean up any sockets that never were accepted. */ |
| while ((pending = vsock_dequeue_accept(sk)) != NULL) { |
| __vsock_release(pending, SINGLE_DEPTH_NESTING); |
| sock_put(pending); |
| } |
| |
| release_sock(sk); |
| sock_put(sk); |
| } |
| } |
| |
| static void vsock_sk_destruct(struct sock *sk) |
| { |
| struct vsock_sock *vsk = vsock_sk(sk); |
| |
| vsock_deassign_transport(vsk); |
| |
| /* When clearing these addresses, there's no need to set the family and |
| * possibly register the address family with the kernel. |
| */ |
| vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); |
| vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); |
| |
| put_cred(vsk->owner); |
| } |
| |
| static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) |
| { |
| int err; |
| |
| err = sock_queue_rcv_skb(sk, skb); |
| if (err) |
| kfree_skb(skb); |
| |
| return err; |
| } |
| |
| struct sock *vsock_create_connected(struct sock *parent) |
| { |
| return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL, |
| parent->sk_type, 0); |
| } |
| EXPORT_SYMBOL_GPL(vsock_create_connected); |
| |
| s64 vsock_stream_has_data(struct vsock_sock *vsk) |
| { |
| return vsk->transport->stream_has_data(vsk); |
| } |
| EXPORT_SYMBOL_GPL(vsock_stream_has_data); |
| |
| s64 vsock_connectible_has_data(struct vsock_sock *vsk) |
| { |
| struct sock *sk = sk_vsock(vsk); |
| |
| if (sk->sk_type == SOCK_SEQPACKET) |
| return vsk->transport->seqpacket_has_data(vsk); |
| else |
| return vsock_stream_has_data(vsk); |
| } |
| EXPORT_SYMBOL_GPL(vsock_connectible_has_data); |
| |
| s64 vsock_stream_has_space(struct vsock_sock *vsk) |
| { |
| return vsk->transport->stream_has_space(vsk); |
| } |
| EXPORT_SYMBOL_GPL(vsock_stream_has_space); |
| |
| void vsock_data_ready(struct sock *sk) |
| { |
| struct vsock_sock *vsk = vsock_sk(sk); |
| |
| if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat || |
| sock_flag(sk, SOCK_DONE)) |
| sk->sk_data_ready(sk); |
| } |
| EXPORT_SYMBOL_GPL(vsock_data_ready); |
| |
| static int vsock_release(struct socket *sock) |
| { |
| __vsock_release(sock->sk, 0); |
| sock->sk = NULL; |
| sock->state = SS_FREE; |
| |
| return 0; |
| } |
| |
| static int |
| vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len) |
| { |
| int err; |
| struct sock *sk; |
| struct sockaddr_vm *vm_addr; |
| |
| sk = sock->sk; |
| |
| if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0) |
| return -EINVAL; |
| |
| lock_sock(sk); |
| err = __vsock_bind(sk, vm_addr); |
| release_sock(sk); |
| |
| return err; |
| } |
| |
| static int vsock_getname(struct socket *sock, |
| struct sockaddr *addr, int peer) |
| { |
| int err; |
| struct sock *sk; |
| struct vsock_sock *vsk; |
| struct sockaddr_vm *vm_addr; |
| |
| sk = sock->sk; |
| vsk = vsock_sk(sk); |
| err = 0; |
| |
| lock_sock(sk); |
| |
| if (peer) { |
| if (sock->state != SS_CONNECTED) { |
| err = -ENOTCONN; |
| goto out; |
| } |
| vm_addr = &vsk->remote_addr; |
| } else { |
| vm_addr = &vsk->local_addr; |
| } |
| |
| if (!vm_addr) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| /* sys_getsockname() and sys_getpeername() pass us a |
| * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately |
| * that macro is defined in socket.c instead of .h, so we hardcode its |
| * value here. |
| */ |
| BUILD_BUG_ON(sizeof(*vm_addr) > 128); |
| memcpy(addr, vm_addr, sizeof(*vm_addr)); |
| err = sizeof(*vm_addr); |
| |
| out: |
| release_sock(sk); |
| return err; |
| } |
| |
| static int vsock_shutdown(struct socket *sock, int mode) |
| { |
| int err; |
| struct sock *sk; |
| |
| /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses |
| * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode |
| * here like the other address families do. Note also that the |
| * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3), |
| * which is what we want. |
| */ |
| mode++; |
| |
| if ((mode & ~SHUTDOWN_MASK) || !mode) |
| return -EINVAL; |
| |
| /* If this is a connection oriented socket and it is not connected then |
| * bail out immediately. If it is a DGRAM socket then we must first |
| * kick the socket so that it wakes up from any sleeping calls, for |
| * example recv(), and then afterwards return the error. |
| */ |
| |
| sk = sock->sk; |
| |
| lock_sock(sk); |
| if (sock->state == SS_UNCONNECTED) { |
| err = -ENOTCONN; |
| if (sock_type_connectible(sk->sk_type)) |
| goto out; |
| } else { |
| sock->state = SS_DISCONNECTING; |
| err = 0; |
| } |
| |
| /* Receive and send shutdowns are treated alike. */ |
| mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN); |
| if (mode) { |
| sk->sk_shutdown |= mode; |
| sk->sk_state_change(sk); |
| |
| if (sock_type_connectible(sk->sk_type)) { |
| sock_reset_flag(sk, SOCK_DONE); |
| vsock_send_shutdown(sk, mode); |
| } |
| } |
| |
| out: |
| release_sock(sk); |
| return err; |
| } |
| |
| static __poll_t vsock_poll(struct file *file, struct socket *sock, |
| poll_table *wait) |
| { |
| struct sock *sk; |
| __poll_t mask; |
| struct vsock_sock *vsk; |
| |
| sk = sock->sk; |
| vsk = vsock_sk(sk); |
| |
| poll_wait(file, sk_sleep(sk), wait); |
| mask = 0; |
| |
| if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) |
| /* Signify that there has been an error on this socket. */ |
| mask |= EPOLLERR; |
| |
| /* INET sockets treat local write shutdown and peer write shutdown as a |
| * case of EPOLLHUP set. |
| */ |
| if ((sk->sk_shutdown == SHUTDOWN_MASK) || |
| ((sk->sk_shutdown & SEND_SHUTDOWN) && |
| (vsk->peer_shutdown & SEND_SHUTDOWN))) { |
| mask |= EPOLLHUP; |
| } |
| |
| if (sk->sk_shutdown & RCV_SHUTDOWN || |
| vsk->peer_shutdown & SEND_SHUTDOWN) { |
| mask |= EPOLLRDHUP; |
| } |
| |
| if (sock->type == SOCK_DGRAM) { |
| /* For datagram sockets we can read if there is something in |
| * the queue and write as long as the socket isn't shutdown for |
| * sending. |
| */ |
| if (!skb_queue_empty_lockless(&sk->sk_receive_queue) || |
| (sk->sk_shutdown & RCV_SHUTDOWN)) { |
| mask |= EPOLLIN | EPOLLRDNORM; |
| } |
| |
| if (!(sk->sk_shutdown & SEND_SHUTDOWN)) |
| mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND; |
| |
| } else if (sock_type_connectible(sk->sk_type)) { |
| const struct vsock_transport *transport; |
| |
| lock_sock(sk); |
| |
| transport = vsk->transport; |
| |
| /* Listening sockets that have connections in their accept |
| * queue can be read. |
| */ |
| if (sk->sk_state == TCP_LISTEN |
| && !vsock_is_accept_queue_empty(sk)) |
| mask |= EPOLLIN | EPOLLRDNORM; |
| |
| /* If there is something in the queue then we can read. */ |
| if (transport && transport->stream_is_active(vsk) && |
| !(sk->sk_shutdown & RCV_SHUTDOWN)) { |
| bool data_ready_now = false; |
| int target = sock_rcvlowat(sk, 0, INT_MAX); |
| int ret = transport->notify_poll_in( |
| vsk, target, &data_ready_now); |
| if (ret < 0) { |
| mask |= EPOLLERR; |
| } else { |
| if (data_ready_now) |
| mask |= EPOLLIN | EPOLLRDNORM; |
| |
| } |
| } |
| |
| /* Sockets whose connections have been closed, reset, or |
| * terminated should also be considered read, and we check the |
| * shutdown flag for that. |
| */ |
| if (sk->sk_shutdown & RCV_SHUTDOWN || |
| vsk->peer_shutdown & SEND_SHUTDOWN) { |
| mask |= EPOLLIN | EPOLLRDNORM; |
| } |
| |
| /* Connected sockets that can produce data can be written. */ |
| if (transport && sk->sk_state == TCP_ESTABLISHED) { |
| if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { |
| bool space_avail_now = false; |
| int ret = transport->notify_poll_out( |
| vsk, 1, &space_avail_now); |
| if (ret < 0) { |
| mask |= EPOLLERR; |
| } else { |
| if (space_avail_now) |
| /* Remove EPOLLWRBAND since INET |
| * sockets are not setting it. |
| */ |
| mask |= EPOLLOUT | EPOLLWRNORM; |
| |
| } |
| } |
| } |
| |
| /* Simulate INET socket poll behaviors, which sets |
| * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read, |
| * but local send is not shutdown. |
| */ |
| if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) { |
| if (!(sk->sk_shutdown & SEND_SHUTDOWN)) |
| mask |= EPOLLOUT | EPOLLWRNORM; |
| |
| } |
| |
| release_sock(sk); |
| } |
| |
| return mask; |
| } |
| |
| static int vsock_read_skb(struct sock *sk, skb_read_actor_t read_actor) |
| { |
| struct vsock_sock *vsk = vsock_sk(sk); |
| |
| return vsk->transport->read_skb(vsk, read_actor); |
| } |
| |
| static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg, |
| size_t len) |
| { |
| int err; |
| struct sock *sk; |
| struct vsock_sock *vsk; |
| struct sockaddr_vm *remote_addr; |
| const struct vsock_transport *transport; |
| |
| if (msg->msg_flags & MSG_OOB) |
| return -EOPNOTSUPP; |
| |
| /* For now, MSG_DONTWAIT is always assumed... */ |
| err = 0; |
| sk = sock->sk; |
| vsk = vsock_sk(sk); |
| |
| lock_sock(sk); |
| |
| transport = vsk->transport; |
| |
| err = vsock_auto_bind(vsk); |
| if (err) |
| goto out; |
| |
| |
| /* If the provided message contains an address, use that. Otherwise |
| * fall back on the socket's remote handle (if it has been connected). |
| */ |
| if (msg->msg_name && |
| vsock_addr_cast(msg->msg_name, msg->msg_namelen, |
| &remote_addr) == 0) { |
| /* Ensure this address is of the right type and is a valid |
| * destination. |
| */ |
| |
| if (remote_addr->svm_cid == VMADDR_CID_ANY) |
| remote_addr->svm_cid = transport->get_local_cid(); |
| |
| if (!vsock_addr_bound(remote_addr)) { |
| err = -EINVAL; |
| goto out; |
| } |
| } else if (sock->state == SS_CONNECTED) { |
| remote_addr = &vsk->remote_addr; |
| |
| if (remote_addr->svm_cid == VMADDR_CID_ANY) |
| remote_addr->svm_cid = transport->get_local_cid(); |
| |
| /* XXX Should connect() or this function ensure remote_addr is |
| * bound? |
| */ |
| if (!vsock_addr_bound(&vsk->remote_addr)) { |
| err = -EINVAL; |
| goto out; |
| } |
| } else { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| if (!transport->dgram_allow(remote_addr->svm_cid, |
| remote_addr->svm_port)) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| err = transport->dgram_enqueue(vsk, remote_addr, msg, len); |
| |
| out: |
| release_sock(sk); |
| return err; |
| } |
| |
| static int vsock_dgram_connect(struct socket *sock, |
| struct sockaddr *addr, int addr_len, int flags) |
| { |
| int err; |
| struct sock *sk; |
| struct vsock_sock *vsk; |
| struct sockaddr_vm *remote_addr; |
| |
| sk = sock->sk; |
| vsk = vsock_sk(sk); |
| |
| err = vsock_addr_cast(addr, addr_len, &remote_addr); |
| if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) { |
| lock_sock(sk); |
| vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, |
| VMADDR_PORT_ANY); |
| sock->state = SS_UNCONNECTED; |
| release_sock(sk); |
| return 0; |
| } else if (err != 0) |
| return -EINVAL; |
| |
| lock_sock(sk); |
| |
| err = vsock_auto_bind(vsk); |
| if (err) |
| goto out; |
| |
| if (!vsk->transport->dgram_allow(remote_addr->svm_cid, |
| remote_addr->svm_port)) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr)); |
| sock->state = SS_CONNECTED; |
| |
| /* sock map disallows redirection of non-TCP sockets with sk_state != |
| * TCP_ESTABLISHED (see sock_map_redirect_allowed()), so we set |
| * TCP_ESTABLISHED here to allow redirection of connected vsock dgrams. |
| * |
| * This doesn't seem to be abnormal state for datagram sockets, as the |
| * same approach can be see in other datagram socket types as well |
| * (such as unix sockets). |
| */ |
| sk->sk_state = TCP_ESTABLISHED; |
| |
| out: |
| release_sock(sk); |
| return err; |
| } |
| |
| int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg, |
| size_t len, int flags) |
| { |
| #ifdef CONFIG_BPF_SYSCALL |
| const struct proto *prot; |
| #endif |
| struct vsock_sock *vsk; |
| struct sock *sk; |
| |
| sk = sock->sk; |
| vsk = vsock_sk(sk); |
| |
| #ifdef CONFIG_BPF_SYSCALL |
| prot = READ_ONCE(sk->sk_prot); |
| if (prot != &vsock_proto) |
| return prot->recvmsg(sk, msg, len, flags, NULL); |
| #endif |
| |
| return vsk->transport->dgram_dequeue(vsk, msg, len, flags); |
| } |
| EXPORT_SYMBOL_GPL(vsock_dgram_recvmsg); |
| |
| static const struct proto_ops vsock_dgram_ops = { |
| .family = PF_VSOCK, |
| .owner = THIS_MODULE, |
| .release = vsock_release, |
| .bind = vsock_bind, |
| .connect = vsock_dgram_connect, |
| .socketpair = sock_no_socketpair, |
| .accept = sock_no_accept, |
| .getname = vsock_getname, |
| .poll = vsock_poll, |
| .ioctl = sock_no_ioctl, |
| .listen = sock_no_listen, |
| .shutdown = vsock_shutdown, |
| .sendmsg = vsock_dgram_sendmsg, |
| .recvmsg = vsock_dgram_recvmsg, |
| .mmap = sock_no_mmap, |
| .read_skb = vsock_read_skb, |
| }; |
| |
| static int vsock_transport_cancel_pkt(struct vsock_sock *vsk) |
| { |
| const struct vsock_transport *transport = vsk->transport; |
| |
| if (!transport || !transport->cancel_pkt) |
| return -EOPNOTSUPP; |
| |
| return transport->cancel_pkt(vsk); |
| } |
| |
| static void vsock_connect_timeout(struct work_struct *work) |
| { |
| struct sock *sk; |
| struct vsock_sock *vsk; |
| |
| vsk = container_of(work, struct vsock_sock, connect_work.work); |
| sk = sk_vsock(vsk); |
| |
| lock_sock(sk); |
| if (sk->sk_state == TCP_SYN_SENT && |
| (sk->sk_shutdown != SHUTDOWN_MASK)) { |
| sk->sk_state = TCP_CLOSE; |
| sk->sk_socket->state = SS_UNCONNECTED; |
| sk->sk_err = ETIMEDOUT; |
| sk_error_report(sk); |
| vsock_transport_cancel_pkt(vsk); |
| } |
| release_sock(sk); |
| |
| sock_put(sk); |
| } |
| |
| static int vsock_connect(struct socket *sock, struct sockaddr *addr, |
| int addr_len, int flags) |
| { |
| int err; |
| struct sock *sk; |
| struct vsock_sock *vsk; |
| const struct vsock_transport *transport; |
| struct sockaddr_vm *remote_addr; |
| long timeout; |
| DEFINE_WAIT(wait); |
| |
| err = 0; |
| sk = sock->sk; |
| vsk = vsock_sk(sk); |
| |
| lock_sock(sk); |
| |
| /* XXX AF_UNSPEC should make us disconnect like AF_INET. */ |
| switch (sock->state) { |
| case SS_CONNECTED: |
| err = -EISCONN; |
| goto out; |
| case SS_DISCONNECTING: |
| err = -EINVAL; |
| goto out; |
| case SS_CONNECTING: |
| /* This continues on so we can move sock into the SS_CONNECTED |
| * state once the connection has completed (at which point err |
| * will be set to zero also). Otherwise, we will either wait |
| * for the connection or return -EALREADY should this be a |
| * non-blocking call. |
| */ |
| err = -EALREADY; |
| if (flags & O_NONBLOCK) |
| goto out; |
| break; |
| default: |
| if ((sk->sk_state == TCP_LISTEN) || |
| vsock_addr_cast(addr, addr_len, &remote_addr) != 0) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| /* Set the remote address that we are connecting to. */ |
| memcpy(&vsk->remote_addr, remote_addr, |
| sizeof(vsk->remote_addr)); |
| |
| err = vsock_assign_transport(vsk, NULL); |
| if (err) |
| goto out; |
| |
| transport = vsk->transport; |
| |
| /* The hypervisor and well-known contexts do not have socket |
| * endpoints. |
| */ |
| if (!transport || |
| !transport->stream_allow(remote_addr->svm_cid, |
| remote_addr->svm_port)) { |
| err = -ENETUNREACH; |
| goto out; |
| } |
| |
| if (vsock_msgzerocopy_allow(transport)) { |
| set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); |
| } else if (sock_flag(sk, SOCK_ZEROCOPY)) { |
| /* If this option was set before 'connect()', |
| * when transport was unknown, check that this |
| * feature is supported here. |
| */ |
| err = -EOPNOTSUPP; |
| goto out; |
| } |
| |
| err = vsock_auto_bind(vsk); |
| if (err) |
| goto out; |
| |
| sk->sk_state = TCP_SYN_SENT; |
| |
| err = transport->connect(vsk); |
| if (err < 0) |
| goto out; |
| |
| /* Mark sock as connecting and set the error code to in |
| * progress in case this is a non-blocking connect. |
| */ |
| sock->state = SS_CONNECTING; |
| err = -EINPROGRESS; |
| } |
| |
| /* The receive path will handle all communication until we are able to |
| * enter the connected state. Here we wait for the connection to be |
| * completed or a notification of an error. |
| */ |
| timeout = vsk->connect_timeout; |
| prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); |
| |
| while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) { |
| if (flags & O_NONBLOCK) { |
| /* If we're not going to block, we schedule a timeout |
| * function to generate a timeout on the connection |
| * attempt, in case the peer doesn't respond in a |
| * timely manner. We hold on to the socket until the |
| * timeout fires. |
| */ |
| sock_hold(sk); |
| |
| /* If the timeout function is already scheduled, |
| * reschedule it, then ungrab the socket refcount to |
| * keep it balanced. |
| */ |
| if (mod_delayed_work(system_wq, &vsk->connect_work, |
| timeout)) |
| sock_put(sk); |
| |
| /* Skip ahead to preserve error code set above. */ |
| goto out_wait; |
| } |
| |
| release_sock(sk); |
| timeout = schedule_timeout(timeout); |
| lock_sock(sk); |
| |
| if (signal_pending(current)) { |
| err = sock_intr_errno(timeout); |
| sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE; |
| sock->state = SS_UNCONNECTED; |
| vsock_transport_cancel_pkt(vsk); |
| vsock_remove_connected(vsk); |
| goto out_wait; |
| } else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) { |
| err = -ETIMEDOUT; |
| sk->sk_state = TCP_CLOSE; |
| sock->state = SS_UNCONNECTED; |
| vsock_transport_cancel_pkt(vsk); |
| goto out_wait; |
| } |
| |
| prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); |
| } |
| |
| if (sk->sk_err) { |
| err = -sk->sk_err; |
| sk->sk_state = TCP_CLOSE; |
| sock->state = SS_UNCONNECTED; |
| } else { |
| err = 0; |
| } |
| |
| out_wait: |
| finish_wait(sk_sleep(sk), &wait); |
| out: |
| release_sock(sk); |
| return err; |
| } |
| |
| static int vsock_accept(struct socket *sock, struct socket *newsock, int flags, |
| bool kern) |
| { |
| struct sock *listener; |
| int err; |
| struct sock *connected; |
| struct vsock_sock *vconnected; |
| long timeout; |
| DEFINE_WAIT(wait); |
| |
| err = 0; |
| listener = sock->sk; |
| |
| lock_sock(listener); |
| |
| if (!sock_type_connectible(sock->type)) { |
| err = -EOPNOTSUPP; |
| goto out; |
| } |
| |
| if (listener->sk_state != TCP_LISTEN) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| /* Wait for children sockets to appear; these are the new sockets |
| * created upon connection establishment. |
| */ |
| timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK); |
| prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); |
| |
| while ((connected = vsock_dequeue_accept(listener)) == NULL && |
| listener->sk_err == 0) { |
| release_sock(listener); |
| timeout = schedule_timeout(timeout); |
| finish_wait(sk_sleep(listener), &wait); |
| lock_sock(listener); |
| |
| if (signal_pending(current)) { |
| err = sock_intr_errno(timeout); |
| goto out; |
| } else if (timeout == 0) { |
| err = -EAGAIN; |
| goto out; |
| } |
| |
| prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); |
| } |
| finish_wait(sk_sleep(listener), &wait); |
| |
| if (listener->sk_err) |
| err = -listener->sk_err; |
| |
| if (connected) { |
| sk_acceptq_removed(listener); |
| |
| lock_sock_nested(connected, SINGLE_DEPTH_NESTING); |
| vconnected = vsock_sk(connected); |
| |
| /* If the listener socket has received an error, then we should |
| * reject this socket and return. Note that we simply mark the |
| * socket rejected, drop our reference, and let the cleanup |
| * function handle the cleanup; the fact that we found it in |
| * the listener's accept queue guarantees that the cleanup |
| * function hasn't run yet. |
| */ |
| if (err) { |
| vconnected->rejected = true; |
| } else { |
| newsock->state = SS_CONNECTED; |
| sock_graft(connected, newsock); |
| if (vsock_msgzerocopy_allow(vconnected->transport)) |
| set_bit(SOCK_SUPPORT_ZC, |
| &connected->sk_socket->flags); |
| } |
| |
| release_sock(connected); |
| sock_put(connected); |
| } |
| |
| out: |
| release_sock(listener); |
| return err; |
| } |
| |
| static int vsock_listen(struct socket *sock, int backlog) |
| { |
| int err; |
| struct sock *sk; |
| struct vsock_sock *vsk; |
| |
| sk = sock->sk; |
| |
| lock_sock(sk); |
| |
| if (!sock_type_connectible(sk->sk_type)) { |
| err = -EOPNOTSUPP; |
| goto out; |
| } |
| |
| if (sock->state != SS_UNCONNECTED) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| vsk = vsock_sk(sk); |
| |
| if (!vsock_addr_bound(&vsk->local_addr)) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| sk->sk_max_ack_backlog = backlog; |
| sk->sk_state = TCP_LISTEN; |
| |
| err = 0; |
| |
| out: |
| release_sock(sk); |
| return err; |
| } |
| |
| static void vsock_update_buffer_size(struct vsock_sock *vsk, |
| const struct vsock_transport *transport, |
| u64 val) |
| { |
| if (val > vsk->buffer_max_size) |
| val = vsk->buffer_max_size; |
| |
| if (val < vsk->buffer_min_size) |
| val = vsk->buffer_min_size; |
| |
| if (val != vsk->buffer_size && |
| transport && transport->notify_buffer_size) |
| transport->notify_buffer_size(vsk, &val); |
| |
| vsk->buffer_size = val; |
| } |
| |
| static int vsock_connectible_setsockopt(struct socket *sock, |
| int level, |
| int optname, |
| sockptr_t optval, |
| unsigned int optlen) |
| { |
| int err; |
| struct sock *sk; |
| struct vsock_sock *vsk; |
| const struct vsock_transport *transport; |
| u64 val; |
| |
| if (level != AF_VSOCK && level != SOL_SOCKET) |
| return -ENOPROTOOPT; |
| |
| #define COPY_IN(_v) \ |
| do { \ |
| if (optlen < sizeof(_v)) { \ |
| err = -EINVAL; \ |
| goto exit; \ |
| } \ |
| if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) { \ |
| err = -EFAULT; \ |
| goto exit; \ |
| } \ |
| } while (0) |
| |
| err = 0; |
| sk = sock->sk; |
| vsk = vsock_sk(sk); |
| |
| lock_sock(sk); |
| |
| transport = vsk->transport; |
| |
| if (level == SOL_SOCKET) { |
| int zerocopy; |
| |
| if (optname != SO_ZEROCOPY) { |
| release_sock(sk); |
| return sock_setsockopt(sock, level, optname, optval, optlen); |
| } |
| |
| /* Use 'int' type here, because variable to |
| * set this option usually has this type. |
| */ |
| COPY_IN(zerocopy); |
| |
| if (zerocopy < 0 || zerocopy > 1) { |
| err = -EINVAL; |
| goto exit; |
| } |
| |
| if (transport && !vsock_msgzerocopy_allow(transport)) { |
| err = -EOPNOTSUPP; |
| goto exit; |
| } |
| |
| sock_valbool_flag(sk, SOCK_ZEROCOPY, zerocopy); |
| goto exit; |
| } |
| |
| switch (optname) { |
| case SO_VM_SOCKETS_BUFFER_SIZE: |
| COPY_IN(val); |
| vsock_update_buffer_size(vsk, transport, val); |
| break; |
| |
| case SO_VM_SOCKETS_BUFFER_MAX_SIZE: |
| COPY_IN(val); |
| vsk->buffer_max_size = val; |
| vsock_update_buffer_size(vsk, transport, vsk->buffer_size); |
| break; |
| |
| case SO_VM_SOCKETS_BUFFER_MIN_SIZE: |
| COPY_IN(val); |
| vsk->buffer_min_size = val; |
| vsock_update_buffer_size(vsk, transport, vsk->buffer_size); |
| break; |
| |
| case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW: |
| case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: { |
| struct __kernel_sock_timeval tv; |
| |
| err = sock_copy_user_timeval(&tv, optval, optlen, |
| optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD); |
| if (err) |
| break; |
| if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC && |
| tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) { |
| vsk->connect_timeout = tv.tv_sec * HZ + |
| DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ)); |
| if (vsk->connect_timeout == 0) |
| vsk->connect_timeout = |
| VSOCK_DEFAULT_CONNECT_TIMEOUT; |
| |
| } else { |
| err = -ERANGE; |
| } |
| break; |
| } |
| |
| default: |
| err = -ENOPROTOOPT; |
| break; |
| } |
| |
| #undef COPY_IN |
| |
| exit: |
| release_sock(sk); |
| return err; |
| } |
| |
| static int vsock_connectible_getsockopt(struct socket *sock, |
| int level, int optname, |
| char __user *optval, |
| int __user *optlen) |
| { |
| struct sock *sk = sock->sk; |
| struct vsock_sock *vsk = vsock_sk(sk); |
| |
| union { |
| u64 val64; |
| struct old_timeval32 tm32; |
| struct __kernel_old_timeval tm; |
| struct __kernel_sock_timeval stm; |
| } v; |
| |
| int lv = sizeof(v.val64); |
| int len; |
| |
| if (level != AF_VSOCK) |
| return -ENOPROTOOPT; |
| |
| if (get_user(len, optlen)) |
| return -EFAULT; |
| |
| memset(&v, 0, sizeof(v)); |
| |
| switch (optname) { |
| case SO_VM_SOCKETS_BUFFER_SIZE: |
| v.val64 = vsk->buffer_size; |
| break; |
| |
| case SO_VM_SOCKETS_BUFFER_MAX_SIZE: |
| v.val64 = vsk->buffer_max_size; |
| break; |
| |
| case SO_VM_SOCKETS_BUFFER_MIN_SIZE: |
| v.val64 = vsk->buffer_min_size; |
| break; |
| |
| case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW: |
| case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: |
| lv = sock_get_timeout(vsk->connect_timeout, &v, |
| optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD); |
| break; |
| |
| default: |
| return -ENOPROTOOPT; |
| } |
| |
| if (len < lv) |
| return -EINVAL; |
| if (len > lv) |
| len = lv; |
| if (copy_to_user(optval, &v, len)) |
| return -EFAULT; |
| |
| if (put_user(len, optlen)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg, |
| size_t len) |
| { |
| struct sock *sk; |
| struct vsock_sock *vsk; |
| const struct vsock_transport *transport; |
| ssize_t total_written; |
| long timeout; |
| int err; |
| struct vsock_transport_send_notify_data send_data; |
| DEFINE_WAIT_FUNC(wait, woken_wake_function); |
| |
| sk = sock->sk; |
| vsk = vsock_sk(sk); |
| total_written = 0; |
| err = 0; |
| |
| if (msg->msg_flags & MSG_OOB) |
| return -EOPNOTSUPP; |
| |
| lock_sock(sk); |
| |
| transport = vsk->transport; |
| |
| /* Callers should not provide a destination with connection oriented |
| * sockets. |
| */ |
| if (msg->msg_namelen) { |
| err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP; |
| goto out; |
| } |
| |
| /* Send data only if both sides are not shutdown in the direction. */ |
| if (sk->sk_shutdown & SEND_SHUTDOWN || |
| vsk->peer_shutdown & RCV_SHUTDOWN) { |
| err = -EPIPE; |
| goto out; |
| } |
| |
| if (!transport || sk->sk_state != TCP_ESTABLISHED || |
| !vsock_addr_bound(&vsk->local_addr)) { |
| err = -ENOTCONN; |
| goto out; |
| } |
| |
| if (!vsock_addr_bound(&vsk->remote_addr)) { |
| err = -EDESTADDRREQ; |
| goto out; |
| } |
| |
| if (msg->msg_flags & MSG_ZEROCOPY && |
| !vsock_msgzerocopy_allow(transport)) { |
| err = -EOPNOTSUPP; |
| goto out; |
| } |
| |
| /* Wait for room in the produce queue to enqueue our user's data. */ |
| timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); |
| |
| err = transport->notify_send_init(vsk, &send_data); |
| if (err < 0) |
| goto out; |
| |
| while (total_written < len) { |
| ssize_t written; |
| |
| add_wait_queue(sk_sleep(sk), &wait); |
| while (vsock_stream_has_space(vsk) == 0 && |
| sk->sk_err == 0 && |
| !(sk->sk_shutdown & SEND_SHUTDOWN) && |
| !(vsk->peer_shutdown & RCV_SHUTDOWN)) { |
| |
| /* Don't wait for non-blocking sockets. */ |
| if (timeout == 0) { |
| err = -EAGAIN; |
| remove_wait_queue(sk_sleep(sk), &wait); |
| goto out_err; |
| } |
| |
| err = transport->notify_send_pre_block(vsk, &send_data); |
| if (err < 0) { |
| remove_wait_queue(sk_sleep(sk), &wait); |
| goto out_err; |
| } |
| |
| release_sock(sk); |
| timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout); |
| lock_sock(sk); |
| if (signal_pending(current)) { |
| err = sock_intr_errno(timeout); |
| remove_wait_queue(sk_sleep(sk), &wait); |
| goto out_err; |
| } else if (timeout == 0) { |
| err = -EAGAIN; |
| remove_wait_queue(sk_sleep(sk), &wait); |
| goto out_err; |
| } |
| } |
| remove_wait_queue(sk_sleep(sk), &wait); |
| |
| /* These checks occur both as part of and after the loop |
| * conditional since we need to check before and after |
| * sleeping. |
| */ |
| if (sk->sk_err) { |
| err = -sk->sk_err; |
| goto out_err; |
| } else if ((sk->sk_shutdown & SEND_SHUTDOWN) || |
| (vsk->peer_shutdown & RCV_SHUTDOWN)) { |
| err = -EPIPE; |
| goto out_err; |
| } |
| |
| err = transport->notify_send_pre_enqueue(vsk, &send_data); |
| if (err < 0) |
| goto out_err; |
| |
| /* Note that enqueue will only write as many bytes as are free |
| * in the produce queue, so we don't need to ensure len is |
| * smaller than the queue size. It is the caller's |
| * responsibility to check how many bytes we were able to send. |
| */ |
| |
| if (sk->sk_type == SOCK_SEQPACKET) { |
| written = transport->seqpacket_enqueue(vsk, |
| msg, len - total_written); |
| } else { |
| written = transport->stream_enqueue(vsk, |
| msg, len - total_written); |
| } |
| |
| if (written < 0) { |
| err = written; |
| goto out_err; |
| } |
| |
| total_written += written; |
| |
| err = transport->notify_send_post_enqueue( |
| vsk, written, &send_data); |
| if (err < 0) |
| goto out_err; |
| |
| } |
| |
| out_err: |
| if (total_written > 0) { |
| /* Return number of written bytes only if: |
| * 1) SOCK_STREAM socket. |
| * 2) SOCK_SEQPACKET socket when whole buffer is sent. |
| */ |
| if (sk->sk_type == SOCK_STREAM || total_written == len) |
| err = total_written; |
| } |
| out: |
| if (sk->sk_type == SOCK_STREAM) |
| err = sk_stream_error(sk, msg->msg_flags, err); |
| |
| release_sock(sk); |
| return err; |
| } |
| |
| static int vsock_connectible_wait_data(struct sock *sk, |
| struct wait_queue_entry *wait, |
| long timeout, |
| struct vsock_transport_recv_notify_data *recv_data, |
| size_t target) |
| { |
| const struct vsock_transport *transport; |
| struct vsock_sock *vsk; |
| s64 data; |
| int err; |
| |
| vsk = vsock_sk(sk); |
| err = 0; |
| transport = vsk->transport; |
| |
| while (1) { |
| prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE); |
| data = vsock_connectible_has_data(vsk); |
| if (data != 0) |
| break; |
| |
| if (sk->sk_err != 0 || |
| (sk->sk_shutdown & RCV_SHUTDOWN) || |
| (vsk->peer_shutdown & SEND_SHUTDOWN)) { |
| break; |
| } |
| |
| /* Don't wait for non-blocking sockets. */ |
| if (timeout == 0) { |
| err = -EAGAIN; |
| break; |
| } |
| |
| if (recv_data) { |
| err = transport->notify_recv_pre_block(vsk, target, recv_data); |
| if (err < 0) |
| break; |
| } |
| |
| release_sock(sk); |
| timeout = schedule_timeout(timeout); |
| lock_sock(sk); |
| |
| if (signal_pending(current)) { |
| err = sock_intr_errno(timeout); |
| break; |
| } else if (timeout == 0) { |
| err = -EAGAIN; |
| break; |
| } |
| } |
| |
| finish_wait(sk_sleep(sk), wait); |
| |
| if (err) |
| return err; |
| |
| /* Internal transport error when checking for available |
| * data. XXX This should be changed to a connection |
| * reset in a later change. |
| */ |
| if (data < 0) |
| return -ENOMEM; |
| |
| return data; |
| } |
| |
| static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg, |
| size_t len, int flags) |
| { |
| struct vsock_transport_recv_notify_data recv_data; |
| const struct vsock_transport *transport; |
| struct vsock_sock *vsk; |
| ssize_t copied; |
| size_t target; |
| long timeout; |
| int err; |
| |
| DEFINE_WAIT(wait); |
| |
| vsk = vsock_sk(sk); |
| transport = vsk->transport; |
| |
| /* We must not copy less than target bytes into the user's buffer |
| * before returning successfully, so we wait for the consume queue to |
| * have that much data to consume before dequeueing. Note that this |
| * makes it impossible to handle cases where target is greater than the |
| * queue size. |
| */ |
| target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); |
| if (target >= transport->stream_rcvhiwat(vsk)) { |
| err = -ENOMEM; |
| goto out; |
| } |
| timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); |
| copied = 0; |
| |
| err = transport->notify_recv_init(vsk, target, &recv_data); |
| if (err < 0) |
| goto out; |
| |
| |
| while (1) { |
| ssize_t read; |
| |
| err = vsock_connectible_wait_data(sk, &wait, timeout, |
| &recv_data, target); |
| if (err <= 0) |
| break; |
| |
| err = transport->notify_recv_pre_dequeue(vsk, target, |
| &recv_data); |
| if (err < 0) |
| break; |
| |
| read = transport->stream_dequeue(vsk, msg, len - copied, flags); |
| if (read < 0) { |
| err = read; |
| break; |
| } |
| |
| copied += read; |
| |
| err = transport->notify_recv_post_dequeue(vsk, target, read, |
| !(flags & MSG_PEEK), &recv_data); |
| if (err < 0) |
| goto out; |
| |
| if (read >= target || flags & MSG_PEEK) |
| break; |
| |
| target -= read; |
| } |
| |
| if (sk->sk_err) |
| err = -sk->sk_err; |
| else if (sk->sk_shutdown & RCV_SHUTDOWN) |
| err = 0; |
| |
| if (copied > 0) |
| err = copied; |
| |
| out: |
| return err; |
| } |
| |
| static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg, |
| size_t len, int flags) |
| { |
| const struct vsock_transport *transport; |
| struct vsock_sock *vsk; |
| ssize_t msg_len; |
| long timeout; |
| int err = 0; |
| DEFINE_WAIT(wait); |
| |
| vsk = vsock_sk(sk); |
| transport = vsk->transport; |
| |
| timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); |
| |
| err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0); |
| if (err <= 0) |
| goto out; |
| |
| msg_len = transport->seqpacket_dequeue(vsk, msg, flags); |
| |
| if (msg_len < 0) { |
| err = msg_len; |
| goto out; |
| } |
| |
| if (sk->sk_err) { |
| err = -sk->sk_err; |
| } else if (sk->sk_shutdown & RCV_SHUTDOWN) { |
| err = 0; |
| } else { |
| /* User sets MSG_TRUNC, so return real length of |
| * packet. |
| */ |
| if (flags & MSG_TRUNC) |
| err = msg_len; |
| else |
| err = len - msg_data_left(msg); |
| |
| /* Always set MSG_TRUNC if real length of packet is |
| * bigger than user's buffer. |
| */ |
| if (msg_len > len) |
| msg->msg_flags |= MSG_TRUNC; |
| } |
| |
| out: |
| return err; |
| } |
| |
| int |
| vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, |
| int flags) |
| { |
| struct sock *sk; |
| struct vsock_sock *vsk; |
| const struct vsock_transport *transport; |
| #ifdef CONFIG_BPF_SYSCALL |
| const struct proto *prot; |
| #endif |
| int err; |
| |
| sk = sock->sk; |
| |
| if (unlikely(flags & MSG_ERRQUEUE)) |
| return sock_recv_errqueue(sk, msg, len, SOL_VSOCK, VSOCK_RECVERR); |
| |
| vsk = vsock_sk(sk); |
| err = 0; |
| |
| lock_sock(sk); |
| |
| transport = vsk->transport; |
| |
| if (!transport || sk->sk_state != TCP_ESTABLISHED) { |
| /* Recvmsg is supposed to return 0 if a peer performs an |
| * orderly shutdown. Differentiate between that case and when a |
| * peer has not connected or a local shutdown occurred with the |
| * SOCK_DONE flag. |
| */ |
| if (sock_flag(sk, SOCK_DONE)) |
| err = 0; |
| else |
| err = -ENOTCONN; |
| |
| goto out; |
| } |
| |
| if (flags & MSG_OOB) { |
| err = -EOPNOTSUPP; |
| goto out; |
| } |
| |
| /* We don't check peer_shutdown flag here since peer may actually shut |
| * down, but there can be data in the queue that a local socket can |
| * receive. |
| */ |
| if (sk->sk_shutdown & RCV_SHUTDOWN) { |
| err = 0; |
| goto out; |
| } |
| |
| /* It is valid on Linux to pass in a zero-length receive buffer. This |
| * is not an error. We may as well bail out now. |
| */ |
| if (!len) { |
| err = 0; |
| goto out; |
| } |
| |
| #ifdef CONFIG_BPF_SYSCALL |
| prot = READ_ONCE(sk->sk_prot); |
| if (prot != &vsock_proto) { |
| release_sock(sk); |
| return prot->recvmsg(sk, msg, len, flags, NULL); |
| } |
| #endif |
| |
| if (sk->sk_type == SOCK_STREAM) |
| err = __vsock_stream_recvmsg(sk, msg, len, flags); |
| else |
| err = __vsock_seqpacket_recvmsg(sk, msg, len, flags); |
| |
| out: |
| release_sock(sk); |
| return err; |
| } |
| EXPORT_SYMBOL_GPL(vsock_connectible_recvmsg); |
| |
| static int vsock_set_rcvlowat(struct sock *sk, int val) |
| { |
| const struct vsock_transport *transport; |
| struct vsock_sock *vsk; |
| |
| vsk = vsock_sk(sk); |
| |
| if (val > vsk->buffer_size) |
| return -EINVAL; |
| |
| transport = vsk->transport; |
| |
| if (transport && transport->set_rcvlowat) |
| return transport->set_rcvlowat(vsk, val); |
| |
| WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); |
| return 0; |
| } |
| |
| static const struct proto_ops vsock_stream_ops = { |
| .family = PF_VSOCK, |
| .owner = THIS_MODULE, |
| .release = vsock_release, |
| .bind = vsock_bind, |
| .connect = vsock_connect, |
| .socketpair = sock_no_socketpair, |
| .accept = vsock_accept, |
| .getname = vsock_getname, |
| .poll = vsock_poll, |
| .ioctl = sock_no_ioctl, |
| .listen = vsock_listen, |
| .shutdown = vsock_shutdown, |
| .setsockopt = vsock_connectible_setsockopt, |
| .getsockopt = vsock_connectible_getsockopt, |
| .sendmsg = vsock_connectible_sendmsg, |
| .recvmsg = vsock_connectible_recvmsg, |
| .mmap = sock_no_mmap, |
| .set_rcvlowat = vsock_set_rcvlowat, |
| .read_skb = vsock_read_skb, |
| }; |
| |
| static const struct proto_ops vsock_seqpacket_ops = { |
| .family = PF_VSOCK, |
| .owner = THIS_MODULE, |
| .release = vsock_release, |
| .bind = vsock_bind, |
| .connect = vsock_connect, |
| .socketpair = sock_no_socketpair, |
| .accept = vsock_accept, |
| .getname = vsock_getname, |
| .poll = vsock_poll, |
| .ioctl = sock_no_ioctl, |
| .listen = vsock_listen, |
| .shutdown = vsock_shutdown, |
| .setsockopt = vsock_connectible_setsockopt, |
| .getsockopt = vsock_connectible_getsockopt, |
| .sendmsg = vsock_connectible_sendmsg, |
| .recvmsg = vsock_connectible_recvmsg, |
| .mmap = sock_no_mmap, |
| .read_skb = vsock_read_skb, |
| }; |
| |
| static int vsock_create(struct net *net, struct socket *sock, |
| int protocol, int kern) |
| { |
| struct vsock_sock *vsk; |
| struct sock *sk; |
| int ret; |
| |
| if (!sock) |
| return -EINVAL; |
| |
| if (protocol && protocol != PF_VSOCK) |
| return -EPROTONOSUPPORT; |
| |
| switch (sock->type) { |
| case SOCK_DGRAM: |
| sock->ops = &vsock_dgram_ops; |
| break; |
| case SOCK_STREAM: |
| sock->ops = &vsock_stream_ops; |
| break; |
| case SOCK_SEQPACKET: |
| sock->ops = &vsock_seqpacket_ops; |
| break; |
| default: |
| return -ESOCKTNOSUPPORT; |
| } |
| |
| sock->state = SS_UNCONNECTED; |
| |
| sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern); |
| if (!sk) |
| return -ENOMEM; |
| |
| vsk = vsock_sk(sk); |
| |
| if (sock->type == SOCK_DGRAM) { |
| ret = vsock_assign_transport(vsk, NULL); |
| if (ret < 0) { |
| sock_put(sk); |
| return ret; |
| } |
| } |
| |
| /* SOCK_DGRAM doesn't have 'setsockopt' callback set in its |
| * proto_ops, so there is no handler for custom logic. |
| */ |
| if (sock_type_connectible(sock->type)) |
| set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); |
| |
| vsock_insert_unbound(vsk); |
| |
| return 0; |
| } |
| |
| static const struct net_proto_family vsock_family_ops = { |
| .family = AF_VSOCK, |
| .create = vsock_create, |
| .owner = THIS_MODULE, |
| }; |
| |
| static long vsock_dev_do_ioctl(struct file *filp, |
| unsigned int cmd, void __user *ptr) |
| { |
| u32 __user *p = ptr; |
| u32 cid = VMADDR_CID_ANY; |
| int retval = 0; |
| |
| switch (cmd) { |
| case IOCTL_VM_SOCKETS_GET_LOCAL_CID: |
| /* To be compatible with the VMCI behavior, we prioritize the |
| * guest CID instead of well-know host CID (VMADDR_CID_HOST). |
| */ |
| if (transport_g2h) |
| cid = transport_g2h->get_local_cid(); |
| else if (transport_h2g) |
| cid = transport_h2g->get_local_cid(); |
| |
| if (put_user(cid, p) != 0) |
| retval = -EFAULT; |
| break; |
| |
| default: |
| retval = -ENOIOCTLCMD; |
| } |
| |
| return retval; |
| } |
| |
| static long vsock_dev_ioctl(struct file *filp, |
| unsigned int cmd, unsigned long arg) |
| { |
| return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg); |
| } |
| |
| #ifdef CONFIG_COMPAT |
| static long vsock_dev_compat_ioctl(struct file *filp, |
| unsigned int cmd, unsigned long arg) |
| { |
| return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg)); |
| } |
| #endif |
| |
| static const struct file_operations vsock_device_ops = { |
| .owner = THIS_MODULE, |
| .unlocked_ioctl = vsock_dev_ioctl, |
| #ifdef CONFIG_COMPAT |
| .compat_ioctl = vsock_dev_compat_ioctl, |
| #endif |
| .open = nonseekable_open, |
| }; |
| |
| static struct miscdevice vsock_device = { |
| .name = "vsock", |
| .fops = &vsock_device_ops, |
| }; |
| |
| static int __init vsock_init(void) |
| { |
| int err = 0; |
| |
| vsock_init_tables(); |
| |
| vsock_proto.owner = THIS_MODULE; |
| vsock_device.minor = MISC_DYNAMIC_MINOR; |
| err = misc_register(&vsock_device); |
| if (err) { |
| pr_err("Failed to register misc device\n"); |
| goto err_reset_transport; |
| } |
| |
| err = proto_register(&vsock_proto, 1); /* we want our slab */ |
| if (err) { |
| pr_err("Cannot register vsock protocol\n"); |
| goto err_deregister_misc; |
| } |
| |
| err = sock_register(&vsock_family_ops); |
| if (err) { |
| pr_err("could not register af_vsock (%d) address family: %d\n", |
| AF_VSOCK, err); |
| goto err_unregister_proto; |
| } |
| |
| vsock_bpf_build_proto(); |
| |
| return 0; |
| |
| err_unregister_proto: |
| proto_unregister(&vsock_proto); |
| err_deregister_misc: |
| misc_deregister(&vsock_device); |
| err_reset_transport: |
| return err; |
| } |
| |
| static void __exit vsock_exit(void) |
| { |
| misc_deregister(&vsock_device); |
| sock_unregister(AF_VSOCK); |
| proto_unregister(&vsock_proto); |
| } |
| |
| const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk) |
| { |
| return vsk->transport; |
| } |
| EXPORT_SYMBOL_GPL(vsock_core_get_transport); |
| |
| int vsock_core_register(const struct vsock_transport *t, int features) |
| { |
| const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local; |
| int err = mutex_lock_interruptible(&vsock_register_mutex); |
| |
| if (err) |
| return err; |
| |
| t_h2g = transport_h2g; |
| t_g2h = transport_g2h; |
| t_dgram = transport_dgram; |
| t_local = transport_local; |
| |
| if (features & VSOCK_TRANSPORT_F_H2G) { |
| if (t_h2g) { |
| err = -EBUSY; |
| goto err_busy; |
| } |
| t_h2g = t; |
| } |
| |
| if (features & VSOCK_TRANSPORT_F_G2H) { |
| if (t_g2h) { |
| err = -EBUSY; |
| goto err_busy; |
| } |
| t_g2h = t; |
| } |
| |
| if (features & VSOCK_TRANSPORT_F_DGRAM) { |
| if (t_dgram) { |
| err = -EBUSY; |
| goto err_busy; |
| } |
| t_dgram = t; |
| } |
| |
| if (features & VSOCK_TRANSPORT_F_LOCAL) { |
| if (t_local) { |
| err = -EBUSY; |
| goto err_busy; |
| } |
| t_local = t; |
| } |
| |
| transport_h2g = t_h2g; |
| transport_g2h = t_g2h; |
| transport_dgram = t_dgram; |
| transport_local = t_local; |
| |
| err_busy: |
| mutex_unlock(&vsock_register_mutex); |
| return err; |
| } |
| EXPORT_SYMBOL_GPL(vsock_core_register); |
| |
| void vsock_core_unregister(const struct vsock_transport *t) |
| { |
| mutex_lock(&vsock_register_mutex); |
| |
| if (transport_h2g == t) |
| transport_h2g = NULL; |
| |
| if (transport_g2h == t) |
| transport_g2h = NULL; |
| |
| if (transport_dgram == t) |
| transport_dgram = NULL; |
| |
| if (transport_local == t) |
| transport_local = NULL; |
| |
| mutex_unlock(&vsock_register_mutex); |
| } |
| EXPORT_SYMBOL_GPL(vsock_core_unregister); |
| |
| module_init(vsock_init); |
| module_exit(vsock_exit); |
| |
| MODULE_AUTHOR("VMware, Inc."); |
| MODULE_DESCRIPTION("VMware Virtual Socket Family"); |
| MODULE_VERSION("1.0.2.0-k"); |
| MODULE_LICENSE("GPL v2"); |