blob: 121cbbf814581d94adf7795567e2318b5debb3d6 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (C) 2015 - 2016 Thomas Körper, esd electronic system design gmbh
* Copyright (C) 2017 - 2023 Stefan Mätje, esd electronics gmbh
*/
#include "esdacc.h"
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/ktime.h>
/* esdACC ID register layout */
#define ACC_ID_ID_MASK GENMASK(28, 0)
#define ACC_ID_EFF_FLAG BIT(29)
/* esdACC DLC register layout */
#define ACC_DLC_DLC_MASK GENMASK(3, 0)
#define ACC_DLC_RTR_FLAG BIT(4)
#define ACC_DLC_TXD_FLAG BIT(5)
/* ecc value of esdACC equals SJA1000's ECC register */
#define ACC_ECC_SEG 0x1f
#define ACC_ECC_DIR 0x20
#define ACC_ECC_BIT 0x00
#define ACC_ECC_FORM 0x40
#define ACC_ECC_STUFF 0x80
#define ACC_ECC_MASK 0xc0
/* esdACC Status Register bits. Unused bits not documented. */
#define ACC_REG_STATUS_MASK_STATUS_ES BIT(17)
#define ACC_REG_STATUS_MASK_STATUS_EP BIT(18)
#define ACC_REG_STATUS_MASK_STATUS_BS BIT(19)
/* esdACC Overview Module BM_IRQ_Mask register related defines */
/* Two bit wide command masks to mask or unmask a single core IRQ */
#define ACC_BM_IRQ_UNMASK BIT(0)
#define ACC_BM_IRQ_MASK (ACC_BM_IRQ_UNMASK << 1)
/* Command to unmask all IRQ sources. Created by shifting
* and oring the two bit wide ACC_BM_IRQ_UNMASK 16 times.
*/
#define ACC_BM_IRQ_UNMASK_ALL 0x55555555U
static void acc_resetmode_enter(struct acc_core *core)
{
acc_set_bits(core, ACC_CORE_OF_CTRL_MODE,
ACC_REG_CONTROL_MASK_MODE_RESETMODE);
/* Read back reset mode bit to flush PCI write posting */
acc_resetmode_entered(core);
}
static void acc_resetmode_leave(struct acc_core *core)
{
acc_clear_bits(core, ACC_CORE_OF_CTRL_MODE,
ACC_REG_CONTROL_MASK_MODE_RESETMODE);
/* Read back reset mode bit to flush PCI write posting */
acc_resetmode_entered(core);
}
static void acc_txq_put(struct acc_core *core, u32 acc_id, u8 acc_dlc,
const void *data)
{
acc_write32_noswap(core, ACC_CORE_OF_TXFIFO_DATA_1,
*((const u32 *)(data + 4)));
acc_write32_noswap(core, ACC_CORE_OF_TXFIFO_DATA_0,
*((const u32 *)data));
acc_write32(core, ACC_CORE_OF_TXFIFO_DLC, acc_dlc);
/* CAN id must be written at last. This write starts TX. */
acc_write32(core, ACC_CORE_OF_TXFIFO_ID, acc_id);
}
static u8 acc_tx_fifo_next(struct acc_core *core, u8 tx_fifo_idx)
{
++tx_fifo_idx;
if (tx_fifo_idx >= core->tx_fifo_size)
tx_fifo_idx = 0U;
return tx_fifo_idx;
}
/* Convert timestamp from esdACC time stamp ticks to ns
*
* The conversion factor ts2ns from time stamp counts to ns is basically
* ts2ns = NSEC_PER_SEC / timestamp_frequency
*
* We handle here only a fixed timestamp frequency of 80MHz. The
* resulting ts2ns factor would be 12.5.
*
* At the end we multiply by 12 and add the half of the HW timestamp
* to get a multiplication by 12.5. This way any overflow is
* avoided until ktime_t itself overflows.
*/
#define ACC_TS_FACTOR (NSEC_PER_SEC / ACC_TS_FREQ_80MHZ)
#define ACC_TS_80MHZ_SHIFT 1
static ktime_t acc_ts2ktime(struct acc_ov *ov, u64 ts)
{
u64 ns;
ns = (ts * ACC_TS_FACTOR) + (ts >> ACC_TS_80MHZ_SHIFT);
return ns_to_ktime(ns);
}
#undef ACC_TS_FACTOR
#undef ACC_TS_80MHZ_SHIFT
void acc_init_ov(struct acc_ov *ov, struct device *dev)
{
u32 temp;
temp = acc_ov_read32(ov, ACC_OV_OF_VERSION);
ov->version = temp;
ov->features = (temp >> 16);
temp = acc_ov_read32(ov, ACC_OV_OF_INFO);
ov->total_cores = temp;
ov->active_cores = (temp >> 8);
ov->core_frequency = acc_ov_read32(ov, ACC_OV_OF_CANCORE_FREQ);
ov->timestamp_frequency = acc_ov_read32(ov, ACC_OV_OF_TS_FREQ_LO);
/* Depending on esdACC feature NEW_PSC enable the new prescaler
* or adjust core_frequency according to the implicit division by 2.
*/
if (ov->features & ACC_OV_REG_FEAT_MASK_NEW_PSC) {
acc_ov_set_bits(ov, ACC_OV_OF_MODE,
ACC_OV_REG_MODE_MASK_NEW_PSC_ENABLE);
} else {
ov->core_frequency /= 2;
}
dev_dbg(dev,
"esdACC v%u, freq: %u/%u, feat/strap: 0x%x/0x%x, cores: %u/%u\n",
ov->version, ov->core_frequency, ov->timestamp_frequency,
ov->features, acc_ov_read32(ov, ACC_OV_OF_INFO) >> 16,
ov->active_cores, ov->total_cores);
}
void acc_init_bm_ptr(struct acc_ov *ov, struct acc_core *cores, const void *mem)
{
unsigned int u;
/* DMA buffer layout as follows where N is the number of CAN cores
* implemented in the FPGA, i.e. N = ov->total_cores
*
* Section Layout Section size
* ----------------------------------------------
* FIFO Card/Overview ACC_CORE_DMABUF_SIZE
* FIFO Core0 ACC_CORE_DMABUF_SIZE
* ... ...
* FIFO CoreN ACC_CORE_DMABUF_SIZE
* irq_cnt Card/Overview sizeof(u32)
* irq_cnt Core0 sizeof(u32)
* ... ...
* irq_cnt CoreN sizeof(u32)
*/
ov->bmfifo.messages = mem;
ov->bmfifo.irq_cnt = mem + (ov->total_cores + 1U) * ACC_CORE_DMABUF_SIZE;
for (u = 0U; u < ov->active_cores; u++) {
struct acc_core *core = &cores[u];
core->bmfifo.messages = mem + (u + 1U) * ACC_CORE_DMABUF_SIZE;
core->bmfifo.irq_cnt = ov->bmfifo.irq_cnt + (u + 1U);
}
}
int acc_open(struct net_device *netdev)
{
struct acc_net_priv *priv = netdev_priv(netdev);
struct acc_core *core = priv->core;
u32 tx_fifo_status;
u32 ctrl_mode;
int err;
/* Retry to enter RESET mode if out of sync. */
if (priv->can.state != CAN_STATE_STOPPED) {
netdev_warn(netdev, "Entered %s() with bad can.state: %s\n",
__func__, can_get_state_str(priv->can.state));
acc_resetmode_enter(core);
priv->can.state = CAN_STATE_STOPPED;
}
err = open_candev(netdev);
if (err)
return err;
ctrl_mode = ACC_REG_CONTROL_MASK_IE_RXTX |
ACC_REG_CONTROL_MASK_IE_TXERROR |
ACC_REG_CONTROL_MASK_IE_ERRWARN |
ACC_REG_CONTROL_MASK_IE_OVERRUN |
ACC_REG_CONTROL_MASK_IE_ERRPASS;
if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)
ctrl_mode |= ACC_REG_CONTROL_MASK_IE_BUSERR;
if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
ctrl_mode |= ACC_REG_CONTROL_MASK_MODE_LOM;
acc_set_bits(core, ACC_CORE_OF_CTRL_MODE, ctrl_mode);
acc_resetmode_leave(core);
priv->can.state = CAN_STATE_ERROR_ACTIVE;
/* Resync TX FIFO indices to HW state after (re-)start. */
tx_fifo_status = acc_read32(core, ACC_CORE_OF_TXFIFO_STATUS);
core->tx_fifo_head = tx_fifo_status & 0xff;
core->tx_fifo_tail = (tx_fifo_status >> 8) & 0xff;
netif_start_queue(netdev);
return 0;
}
int acc_close(struct net_device *netdev)
{
struct acc_net_priv *priv = netdev_priv(netdev);
struct acc_core *core = priv->core;
acc_clear_bits(core, ACC_CORE_OF_CTRL_MODE,
ACC_REG_CONTROL_MASK_IE_RXTX |
ACC_REG_CONTROL_MASK_IE_TXERROR |
ACC_REG_CONTROL_MASK_IE_ERRWARN |
ACC_REG_CONTROL_MASK_IE_OVERRUN |
ACC_REG_CONTROL_MASK_IE_ERRPASS |
ACC_REG_CONTROL_MASK_IE_BUSERR);
netif_stop_queue(netdev);
acc_resetmode_enter(core);
priv->can.state = CAN_STATE_STOPPED;
/* Mark pending TX requests to be aborted after controller restart. */
acc_write32(core, ACC_CORE_OF_TX_ABORT_MASK, 0xffff);
/* ACC_REG_CONTROL_MASK_MODE_LOM is only accessible in RESET mode */
acc_clear_bits(core, ACC_CORE_OF_CTRL_MODE,
ACC_REG_CONTROL_MASK_MODE_LOM);
close_candev(netdev);
return 0;
}
netdev_tx_t acc_start_xmit(struct sk_buff *skb, struct net_device *netdev)
{
struct acc_net_priv *priv = netdev_priv(netdev);
struct acc_core *core = priv->core;
struct can_frame *cf = (struct can_frame *)skb->data;
u8 tx_fifo_head = core->tx_fifo_head;
int fifo_usage;
u32 acc_id;
u8 acc_dlc;
if (can_dropped_invalid_skb(netdev, skb))
return NETDEV_TX_OK;
/* Access core->tx_fifo_tail only once because it may be changed
* from the interrupt level.
*/
fifo_usage = tx_fifo_head - core->tx_fifo_tail;
if (fifo_usage < 0)
fifo_usage += core->tx_fifo_size;
if (fifo_usage >= core->tx_fifo_size - 1) {
netdev_err(core->netdev,
"BUG: TX ring full when queue awake!\n");
netif_stop_queue(netdev);
return NETDEV_TX_BUSY;
}
if (fifo_usage == core->tx_fifo_size - 2)
netif_stop_queue(netdev);
acc_dlc = can_get_cc_dlc(cf, priv->can.ctrlmode);
if (cf->can_id & CAN_RTR_FLAG)
acc_dlc |= ACC_DLC_RTR_FLAG;
if (cf->can_id & CAN_EFF_FLAG) {
acc_id = cf->can_id & CAN_EFF_MASK;
acc_id |= ACC_ID_EFF_FLAG;
} else {
acc_id = cf->can_id & CAN_SFF_MASK;
}
can_put_echo_skb(skb, netdev, core->tx_fifo_head, 0);
core->tx_fifo_head = acc_tx_fifo_next(core, tx_fifo_head);
acc_txq_put(core, acc_id, acc_dlc, cf->data);
return NETDEV_TX_OK;
}
int acc_get_berr_counter(const struct net_device *netdev,
struct can_berr_counter *bec)
{
struct acc_net_priv *priv = netdev_priv(netdev);
u32 core_status = acc_read32(priv->core, ACC_CORE_OF_STATUS);
bec->txerr = (core_status >> 8) & 0xff;
bec->rxerr = core_status & 0xff;
return 0;
}
int acc_set_mode(struct net_device *netdev, enum can_mode mode)
{
struct acc_net_priv *priv = netdev_priv(netdev);
switch (mode) {
case CAN_MODE_START:
/* Paranoid FIFO index check. */
{
const u32 tx_fifo_status =
acc_read32(priv->core, ACC_CORE_OF_TXFIFO_STATUS);
const u8 hw_fifo_head = tx_fifo_status;
if (hw_fifo_head != priv->core->tx_fifo_head ||
hw_fifo_head != priv->core->tx_fifo_tail) {
netdev_warn(netdev,
"TX FIFO mismatch: T %2u H %2u; TFHW %#08x\n",
priv->core->tx_fifo_tail,
priv->core->tx_fifo_head,
tx_fifo_status);
}
}
acc_resetmode_leave(priv->core);
/* To leave the bus-off state the esdACC controller begins
* here a grace period where it counts 128 "idle conditions" (each
* of 11 consecutive recessive bits) on the bus as required
* by the CAN spec.
*
* During this time the TX FIFO may still contain already
* aborted "zombie" frames that are only drained from the FIFO
* at the end of the grace period.
*
* To not to interfere with this drain process we don't
* call netif_wake_queue() here. When the controller reaches
* the error-active state again, it informs us about that
* with an acc_bmmsg_errstatechange message. Then
* netif_wake_queue() is called from
* handle_core_msg_errstatechange() instead.
*/
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
int acc_set_bittiming(struct net_device *netdev)
{
struct acc_net_priv *priv = netdev_priv(netdev);
const struct can_bittiming *bt = &priv->can.bittiming;
u32 brp;
u32 btr;
if (priv->ov->features & ACC_OV_REG_FEAT_MASK_CANFD) {
u32 fbtr = 0;
netdev_dbg(netdev, "bit timing: brp %u, prop %u, ph1 %u ph2 %u, sjw %u\n",
bt->brp, bt->prop_seg,
bt->phase_seg1, bt->phase_seg2, bt->sjw);
brp = FIELD_PREP(ACC_REG_BRP_FD_MASK_BRP, bt->brp - 1);
btr = FIELD_PREP(ACC_REG_BTR_FD_MASK_TSEG1, bt->phase_seg1 + bt->prop_seg - 1);
btr |= FIELD_PREP(ACC_REG_BTR_FD_MASK_TSEG2, bt->phase_seg2 - 1);
btr |= FIELD_PREP(ACC_REG_BTR_FD_MASK_SJW, bt->sjw - 1);
/* Keep order of accesses to ACC_CORE_OF_BRP and ACC_CORE_OF_BTR. */
acc_write32(priv->core, ACC_CORE_OF_BRP, brp);
acc_write32(priv->core, ACC_CORE_OF_BTR, btr);
netdev_dbg(netdev, "esdACC: BRP %u, NBTR 0x%08x, DBTR 0x%08x",
brp, btr, fbtr);
} else {
netdev_dbg(netdev, "bit timing: brp %u, prop %u, ph1 %u ph2 %u, sjw %u\n",
bt->brp, bt->prop_seg,
bt->phase_seg1, bt->phase_seg2, bt->sjw);
brp = FIELD_PREP(ACC_REG_BRP_CL_MASK_BRP, bt->brp - 1);
btr = FIELD_PREP(ACC_REG_BTR_CL_MASK_TSEG1, bt->phase_seg1 + bt->prop_seg - 1);
btr |= FIELD_PREP(ACC_REG_BTR_CL_MASK_TSEG2, bt->phase_seg2 - 1);
btr |= FIELD_PREP(ACC_REG_BTR_CL_MASK_SJW, bt->sjw - 1);
/* Keep order of accesses to ACC_CORE_OF_BRP and ACC_CORE_OF_BTR. */
acc_write32(priv->core, ACC_CORE_OF_BRP, brp);
acc_write32(priv->core, ACC_CORE_OF_BTR, btr);
netdev_dbg(netdev, "esdACC: BRP %u, BTR 0x%08x", brp, btr);
}
return 0;
}
static void handle_core_msg_rxtxdone(struct acc_core *core,
const struct acc_bmmsg_rxtxdone *msg)
{
struct acc_net_priv *priv = netdev_priv(core->netdev);
struct net_device_stats *stats = &core->netdev->stats;
struct sk_buff *skb;
if (msg->acc_dlc.len & ACC_DLC_TXD_FLAG) {
u8 tx_fifo_tail = core->tx_fifo_tail;
if (core->tx_fifo_head == tx_fifo_tail) {
netdev_warn(core->netdev,
"TX interrupt, but queue is empty!?\n");
return;
}
/* Direct access echo skb to attach HW time stamp. */
skb = priv->can.echo_skb[tx_fifo_tail];
if (skb) {
skb_hwtstamps(skb)->hwtstamp =
acc_ts2ktime(priv->ov, msg->ts);
}
stats->tx_packets++;
stats->tx_bytes += can_get_echo_skb(core->netdev, tx_fifo_tail,
NULL);
core->tx_fifo_tail = acc_tx_fifo_next(core, tx_fifo_tail);
netif_wake_queue(core->netdev);
} else {
struct can_frame *cf;
skb = alloc_can_skb(core->netdev, &cf);
if (!skb) {
stats->rx_dropped++;
return;
}
cf->can_id = msg->id & ACC_ID_ID_MASK;
if (msg->id & ACC_ID_EFF_FLAG)
cf->can_id |= CAN_EFF_FLAG;
can_frame_set_cc_len(cf, msg->acc_dlc.len & ACC_DLC_DLC_MASK,
priv->can.ctrlmode);
if (msg->acc_dlc.len & ACC_DLC_RTR_FLAG) {
cf->can_id |= CAN_RTR_FLAG;
} else {
memcpy(cf->data, msg->data, cf->len);
stats->rx_bytes += cf->len;
}
stats->rx_packets++;
skb_hwtstamps(skb)->hwtstamp = acc_ts2ktime(priv->ov, msg->ts);
netif_rx(skb);
}
}
static void handle_core_msg_txabort(struct acc_core *core,
const struct acc_bmmsg_txabort *msg)
{
struct net_device_stats *stats = &core->netdev->stats;
u8 tx_fifo_tail = core->tx_fifo_tail;
u32 abort_mask = msg->abort_mask; /* u32 extend to avoid warnings later */
/* The abort_mask shows which frames were aborted in esdACC's FIFO. */
while (tx_fifo_tail != core->tx_fifo_head && (abort_mask)) {
const u32 tail_mask = (1U << tx_fifo_tail);
if (!(abort_mask & tail_mask))
break;
abort_mask &= ~tail_mask;
can_free_echo_skb(core->netdev, tx_fifo_tail, NULL);
stats->tx_dropped++;
stats->tx_aborted_errors++;
tx_fifo_tail = acc_tx_fifo_next(core, tx_fifo_tail);
}
core->tx_fifo_tail = tx_fifo_tail;
if (abort_mask)
netdev_warn(core->netdev, "Unhandled aborted messages\n");
if (!acc_resetmode_entered(core))
netif_wake_queue(core->netdev);
}
static void handle_core_msg_overrun(struct acc_core *core,
const struct acc_bmmsg_overrun *msg)
{
struct acc_net_priv *priv = netdev_priv(core->netdev);
struct net_device_stats *stats = &core->netdev->stats;
struct can_frame *cf;
struct sk_buff *skb;
/* lost_cnt may be 0 if not supported by esdACC version */
if (msg->lost_cnt) {
stats->rx_errors += msg->lost_cnt;
stats->rx_over_errors += msg->lost_cnt;
} else {
stats->rx_errors++;
stats->rx_over_errors++;
}
skb = alloc_can_err_skb(core->netdev, &cf);
if (!skb)
return;
cf->can_id |= CAN_ERR_CRTL;
cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
skb_hwtstamps(skb)->hwtstamp = acc_ts2ktime(priv->ov, msg->ts);
netif_rx(skb);
}
static void handle_core_msg_buserr(struct acc_core *core,
const struct acc_bmmsg_buserr *msg)
{
struct acc_net_priv *priv = netdev_priv(core->netdev);
struct net_device_stats *stats = &core->netdev->stats;
struct can_frame *cf;
struct sk_buff *skb;
const u32 reg_status = msg->reg_status;
const u8 rxerr = reg_status;
const u8 txerr = (reg_status >> 8);
u8 can_err_prot_type = 0U;
priv->can.can_stats.bus_error++;
/* Error occurred during transmission? */
if (msg->ecc & ACC_ECC_DIR) {
stats->rx_errors++;
} else {
can_err_prot_type |= CAN_ERR_PROT_TX;
stats->tx_errors++;
}
/* Determine error type */
switch (msg->ecc & ACC_ECC_MASK) {
case ACC_ECC_BIT:
can_err_prot_type |= CAN_ERR_PROT_BIT;
break;
case ACC_ECC_FORM:
can_err_prot_type |= CAN_ERR_PROT_FORM;
break;
case ACC_ECC_STUFF:
can_err_prot_type |= CAN_ERR_PROT_STUFF;
break;
default:
can_err_prot_type |= CAN_ERR_PROT_UNSPEC;
break;
}
skb = alloc_can_err_skb(core->netdev, &cf);
if (!skb)
return;
cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR | CAN_ERR_CNT;
/* Set protocol error type */
cf->data[2] = can_err_prot_type;
/* Set error location */
cf->data[3] = msg->ecc & ACC_ECC_SEG;
/* Insert CAN TX and RX error counters. */
cf->data[6] = txerr;
cf->data[7] = rxerr;
skb_hwtstamps(skb)->hwtstamp = acc_ts2ktime(priv->ov, msg->ts);
netif_rx(skb);
}
static void
handle_core_msg_errstatechange(struct acc_core *core,
const struct acc_bmmsg_errstatechange *msg)
{
struct acc_net_priv *priv = netdev_priv(core->netdev);
struct can_frame *cf = NULL;
struct sk_buff *skb;
const u32 reg_status = msg->reg_status;
const u8 rxerr = reg_status;
const u8 txerr = (reg_status >> 8);
enum can_state new_state;
if (reg_status & ACC_REG_STATUS_MASK_STATUS_BS) {
new_state = CAN_STATE_BUS_OFF;
} else if (reg_status & ACC_REG_STATUS_MASK_STATUS_EP) {
new_state = CAN_STATE_ERROR_PASSIVE;
} else if (reg_status & ACC_REG_STATUS_MASK_STATUS_ES) {
new_state = CAN_STATE_ERROR_WARNING;
} else {
new_state = CAN_STATE_ERROR_ACTIVE;
if (priv->can.state == CAN_STATE_BUS_OFF) {
/* See comment in acc_set_mode() for CAN_MODE_START */
netif_wake_queue(core->netdev);
}
}
skb = alloc_can_err_skb(core->netdev, &cf);
if (new_state != priv->can.state) {
enum can_state tx_state, rx_state;
tx_state = (txerr >= rxerr) ?
new_state : CAN_STATE_ERROR_ACTIVE;
rx_state = (rxerr >= txerr) ?
new_state : CAN_STATE_ERROR_ACTIVE;
/* Always call can_change_state() to update the state
* even if alloc_can_err_skb() may have failed.
* can_change_state() can cope with a NULL cf pointer.
*/
can_change_state(core->netdev, cf, tx_state, rx_state);
}
if (skb) {
cf->can_id |= CAN_ERR_CNT;
cf->data[6] = txerr;
cf->data[7] = rxerr;
skb_hwtstamps(skb)->hwtstamp = acc_ts2ktime(priv->ov, msg->ts);
netif_rx(skb);
}
if (new_state == CAN_STATE_BUS_OFF) {
acc_write32(core, ACC_CORE_OF_TX_ABORT_MASK, 0xffff);
can_bus_off(core->netdev);
}
}
static void handle_core_interrupt(struct acc_core *core)
{
u32 msg_fifo_head = core->bmfifo.local_irq_cnt & 0xff;
while (core->bmfifo.msg_fifo_tail != msg_fifo_head) {
const union acc_bmmsg *msg =
&core->bmfifo.messages[core->bmfifo.msg_fifo_tail];
switch (msg->msg_id) {
case BM_MSG_ID_RXTXDONE:
handle_core_msg_rxtxdone(core, &msg->rxtxdone);
break;
case BM_MSG_ID_TXABORT:
handle_core_msg_txabort(core, &msg->txabort);
break;
case BM_MSG_ID_OVERRUN:
handle_core_msg_overrun(core, &msg->overrun);
break;
case BM_MSG_ID_BUSERR:
handle_core_msg_buserr(core, &msg->buserr);
break;
case BM_MSG_ID_ERRPASSIVE:
case BM_MSG_ID_ERRWARN:
handle_core_msg_errstatechange(core,
&msg->errstatechange);
break;
default:
/* Ignore all other BM messages (like the CAN-FD messages) */
break;
}
core->bmfifo.msg_fifo_tail =
(core->bmfifo.msg_fifo_tail + 1) & 0xff;
}
}
/**
* acc_card_interrupt() - handle the interrupts of an esdACC FPGA
*
* @ov: overview module structure
* @cores: array of core structures
*
* This function handles all interrupts pending for the overview module and the
* CAN cores of the esdACC FPGA.
*
* It examines for all cores (the overview module core and the CAN cores)
* the bmfifo.irq_cnt and compares it with the previously saved
* bmfifo.local_irq_cnt. An IRQ is pending if they differ. The esdACC FPGA
* updates the bmfifo.irq_cnt values by DMA.
*
* The pending interrupts are masked by writing to the IRQ mask register at
* ACC_OV_OF_BM_IRQ_MASK. This register has for each core a two bit command
* field evaluated as follows:
*
* Define, bit pattern: meaning
* 00: no action
* ACC_BM_IRQ_UNMASK, 01: unmask interrupt
* ACC_BM_IRQ_MASK, 10: mask interrupt
* 11: no action
*
* For each CAN core with a pending IRQ handle_core_interrupt() handles all
* busmaster messages from the message FIFO. The last handled message (FIFO
* index) is written to the CAN core to acknowledge its handling.
*
* Last step is to unmask all interrupts in the FPGA using
* ACC_BM_IRQ_UNMASK_ALL.
*
* Return:
* IRQ_HANDLED, if card generated an interrupt that was handled
* IRQ_NONE, if the interrupt is not ours
*/
irqreturn_t acc_card_interrupt(struct acc_ov *ov, struct acc_core *cores)
{
u32 irqmask;
int i;
/* First we look for whom interrupts are pending, card/overview
* or any of the cores. Two bits in irqmask are used for each;
* Each two bit field is set to ACC_BM_IRQ_MASK if an IRQ is
* pending.
*/
irqmask = 0U;
if (READ_ONCE(*ov->bmfifo.irq_cnt) != ov->bmfifo.local_irq_cnt) {
irqmask |= ACC_BM_IRQ_MASK;
ov->bmfifo.local_irq_cnt = READ_ONCE(*ov->bmfifo.irq_cnt);
}
for (i = 0; i < ov->active_cores; i++) {
struct acc_core *core = &cores[i];
if (READ_ONCE(*core->bmfifo.irq_cnt) != core->bmfifo.local_irq_cnt) {
irqmask |= (ACC_BM_IRQ_MASK << (2 * (i + 1)));
core->bmfifo.local_irq_cnt = READ_ONCE(*core->bmfifo.irq_cnt);
}
}
if (!irqmask)
return IRQ_NONE;
/* At second we tell the card we're working on them by writing irqmask,
* call handle_{ov|core}_interrupt and then acknowledge the
* interrupts by writing irq_cnt:
*/
acc_ov_write32(ov, ACC_OV_OF_BM_IRQ_MASK, irqmask);
if (irqmask & ACC_BM_IRQ_MASK) {
/* handle_ov_interrupt(); - no use yet. */
acc_ov_write32(ov, ACC_OV_OF_BM_IRQ_COUNTER,
ov->bmfifo.local_irq_cnt);
}
for (i = 0; i < ov->active_cores; i++) {
struct acc_core *core = &cores[i];
if (irqmask & (ACC_BM_IRQ_MASK << (2 * (i + 1)))) {
handle_core_interrupt(core);
acc_write32(core, ACC_OV_OF_BM_IRQ_COUNTER,
core->bmfifo.local_irq_cnt);
}
}
acc_ov_write32(ov, ACC_OV_OF_BM_IRQ_MASK, ACC_BM_IRQ_UNMASK_ALL);
return IRQ_HANDLED;
}