| // SPDX-License-Identifier: GPL-2.0 |
| // Copyright (C) 2017 Arm Ltd. |
| #define pr_fmt(fmt) "sdei: " fmt |
| |
| #include <linux/arm-smccc.h> |
| #include <linux/arm_sdei.h> |
| #include <linux/hardirq.h> |
| #include <linux/irqflags.h> |
| #include <linux/sched/task_stack.h> |
| #include <linux/scs.h> |
| #include <linux/uaccess.h> |
| |
| #include <asm/alternative.h> |
| #include <asm/exception.h> |
| #include <asm/kprobes.h> |
| #include <asm/mmu.h> |
| #include <asm/ptrace.h> |
| #include <asm/sections.h> |
| #include <asm/stacktrace.h> |
| #include <asm/sysreg.h> |
| #include <asm/vmap_stack.h> |
| |
| unsigned long sdei_exit_mode; |
| |
| /* |
| * VMAP'd stacks checking for stack overflow on exception using sp as a scratch |
| * register, meaning SDEI has to switch to its own stack. We need two stacks as |
| * a critical event may interrupt a normal event that has just taken a |
| * synchronous exception, and is using sp as scratch register. For a critical |
| * event interrupting a normal event, we can't reliably tell if we were on the |
| * sdei stack. |
| * For now, we allocate stacks when the driver is probed. |
| */ |
| DECLARE_PER_CPU(unsigned long *, sdei_stack_normal_ptr); |
| DECLARE_PER_CPU(unsigned long *, sdei_stack_critical_ptr); |
| |
| #ifdef CONFIG_VMAP_STACK |
| DEFINE_PER_CPU(unsigned long *, sdei_stack_normal_ptr); |
| DEFINE_PER_CPU(unsigned long *, sdei_stack_critical_ptr); |
| #endif |
| |
| DECLARE_PER_CPU(unsigned long *, sdei_shadow_call_stack_normal_ptr); |
| DECLARE_PER_CPU(unsigned long *, sdei_shadow_call_stack_critical_ptr); |
| |
| #ifdef CONFIG_SHADOW_CALL_STACK |
| DEFINE_PER_CPU(unsigned long *, sdei_shadow_call_stack_normal_ptr); |
| DEFINE_PER_CPU(unsigned long *, sdei_shadow_call_stack_critical_ptr); |
| #endif |
| |
| static void _free_sdei_stack(unsigned long * __percpu *ptr, int cpu) |
| { |
| unsigned long *p; |
| |
| p = per_cpu(*ptr, cpu); |
| if (p) { |
| per_cpu(*ptr, cpu) = NULL; |
| vfree(p); |
| } |
| } |
| |
| static void free_sdei_stacks(void) |
| { |
| int cpu; |
| |
| if (!IS_ENABLED(CONFIG_VMAP_STACK)) |
| return; |
| |
| for_each_possible_cpu(cpu) { |
| _free_sdei_stack(&sdei_stack_normal_ptr, cpu); |
| _free_sdei_stack(&sdei_stack_critical_ptr, cpu); |
| } |
| } |
| |
| static int _init_sdei_stack(unsigned long * __percpu *ptr, int cpu) |
| { |
| unsigned long *p; |
| |
| p = arch_alloc_vmap_stack(SDEI_STACK_SIZE, cpu_to_node(cpu)); |
| if (!p) |
| return -ENOMEM; |
| per_cpu(*ptr, cpu) = p; |
| |
| return 0; |
| } |
| |
| static int init_sdei_stacks(void) |
| { |
| int cpu; |
| int err = 0; |
| |
| if (!IS_ENABLED(CONFIG_VMAP_STACK)) |
| return 0; |
| |
| for_each_possible_cpu(cpu) { |
| err = _init_sdei_stack(&sdei_stack_normal_ptr, cpu); |
| if (err) |
| break; |
| err = _init_sdei_stack(&sdei_stack_critical_ptr, cpu); |
| if (err) |
| break; |
| } |
| |
| if (err) |
| free_sdei_stacks(); |
| |
| return err; |
| } |
| |
| static void _free_sdei_scs(unsigned long * __percpu *ptr, int cpu) |
| { |
| void *s; |
| |
| s = per_cpu(*ptr, cpu); |
| if (s) { |
| per_cpu(*ptr, cpu) = NULL; |
| scs_free(s); |
| } |
| } |
| |
| static void free_sdei_scs(void) |
| { |
| int cpu; |
| |
| for_each_possible_cpu(cpu) { |
| _free_sdei_scs(&sdei_shadow_call_stack_normal_ptr, cpu); |
| _free_sdei_scs(&sdei_shadow_call_stack_critical_ptr, cpu); |
| } |
| } |
| |
| static int _init_sdei_scs(unsigned long * __percpu *ptr, int cpu) |
| { |
| void *s; |
| |
| s = scs_alloc(cpu_to_node(cpu)); |
| if (!s) |
| return -ENOMEM; |
| per_cpu(*ptr, cpu) = s; |
| |
| return 0; |
| } |
| |
| static int init_sdei_scs(void) |
| { |
| int cpu; |
| int err = 0; |
| |
| if (!IS_ENABLED(CONFIG_SHADOW_CALL_STACK)) |
| return 0; |
| |
| for_each_possible_cpu(cpu) { |
| err = _init_sdei_scs(&sdei_shadow_call_stack_normal_ptr, cpu); |
| if (err) |
| break; |
| err = _init_sdei_scs(&sdei_shadow_call_stack_critical_ptr, cpu); |
| if (err) |
| break; |
| } |
| |
| if (err) |
| free_sdei_scs(); |
| |
| return err; |
| } |
| |
| unsigned long sdei_arch_get_entry_point(int conduit) |
| { |
| /* |
| * SDEI works between adjacent exception levels. If we booted at EL1 we |
| * assume a hypervisor is marshalling events. If we booted at EL2 and |
| * dropped to EL1 because we don't support VHE, then we can't support |
| * SDEI. |
| */ |
| if (is_hyp_nvhe()) { |
| pr_err("Not supported on this hardware/boot configuration\n"); |
| goto out_err; |
| } |
| |
| if (init_sdei_stacks()) |
| goto out_err; |
| |
| if (init_sdei_scs()) |
| goto out_err_free_stacks; |
| |
| sdei_exit_mode = (conduit == SMCCC_CONDUIT_HVC) ? SDEI_EXIT_HVC : SDEI_EXIT_SMC; |
| |
| #ifdef CONFIG_UNMAP_KERNEL_AT_EL0 |
| if (arm64_kernel_unmapped_at_el0()) { |
| unsigned long offset; |
| |
| offset = (unsigned long)__sdei_asm_entry_trampoline - |
| (unsigned long)__entry_tramp_text_start; |
| return TRAMP_VALIAS + offset; |
| } else |
| #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */ |
| return (unsigned long)__sdei_asm_handler; |
| |
| out_err_free_stacks: |
| free_sdei_stacks(); |
| out_err: |
| return 0; |
| } |
| |
| /* |
| * do_sdei_event() returns one of: |
| * SDEI_EV_HANDLED - success, return to the interrupted context. |
| * SDEI_EV_FAILED - failure, return this error code to firmare. |
| * virtual-address - success, return to this address. |
| */ |
| unsigned long __kprobes do_sdei_event(struct pt_regs *regs, |
| struct sdei_registered_event *arg) |
| { |
| u32 mode; |
| int i, err = 0; |
| int clobbered_registers = 4; |
| u64 elr = read_sysreg(elr_el1); |
| u32 kernel_mode = read_sysreg(CurrentEL) | 1; /* +SPSel */ |
| unsigned long vbar = read_sysreg(vbar_el1); |
| |
| if (arm64_kernel_unmapped_at_el0()) |
| clobbered_registers++; |
| |
| /* Retrieve the missing registers values */ |
| for (i = 0; i < clobbered_registers; i++) { |
| /* from within the handler, this call always succeeds */ |
| sdei_api_event_context(i, ®s->regs[i]); |
| } |
| |
| err = sdei_event_handler(regs, arg); |
| if (err) |
| return SDEI_EV_FAILED; |
| |
| if (elr != read_sysreg(elr_el1)) { |
| /* |
| * We took a synchronous exception from the SDEI handler. |
| * This could deadlock, and if you interrupt KVM it will |
| * hyp-panic instead. |
| */ |
| pr_warn("unsafe: exception during handler\n"); |
| } |
| |
| mode = regs->pstate & (PSR_MODE32_BIT | PSR_MODE_MASK); |
| |
| /* |
| * If we interrupted the kernel with interrupts masked, we always go |
| * back to wherever we came from. |
| */ |
| if (mode == kernel_mode && !interrupts_enabled(regs)) |
| return SDEI_EV_HANDLED; |
| |
| /* |
| * Otherwise, we pretend this was an IRQ. This lets user space tasks |
| * receive signals before we return to them, and KVM to invoke it's |
| * world switch to do the same. |
| * |
| * See DDI0487B.a Table D1-7 'Vector offsets from vector table base |
| * address'. |
| */ |
| if (mode == kernel_mode) |
| return vbar + 0x280; |
| else if (mode & PSR_MODE32_BIT) |
| return vbar + 0x680; |
| |
| return vbar + 0x480; |
| } |