| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Procedures for creating, accessing and interpreting the device tree. |
| * |
| * Paul Mackerras August 1996. |
| * Copyright (C) 1996-2005 Paul Mackerras. |
| * |
| * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. |
| * {engebret|bergner}@us.ibm.com |
| */ |
| |
| #undef DEBUG |
| |
| #include <linux/kernel.h> |
| #include <linux/string.h> |
| #include <linux/init.h> |
| #include <linux/threads.h> |
| #include <linux/spinlock.h> |
| #include <linux/types.h> |
| #include <linux/pci.h> |
| #include <linux/delay.h> |
| #include <linux/initrd.h> |
| #include <linux/bitops.h> |
| #include <linux/export.h> |
| #include <linux/kexec.h> |
| #include <linux/irq.h> |
| #include <linux/memblock.h> |
| #include <linux/of.h> |
| #include <linux/of_fdt.h> |
| #include <linux/libfdt.h> |
| #include <linux/cpu.h> |
| #include <linux/pgtable.h> |
| #include <linux/seq_buf.h> |
| |
| #include <asm/rtas.h> |
| #include <asm/page.h> |
| #include <asm/processor.h> |
| #include <asm/irq.h> |
| #include <asm/io.h> |
| #include <asm/kdump.h> |
| #include <asm/smp.h> |
| #include <asm/mmu.h> |
| #include <asm/paca.h> |
| #include <asm/powernv.h> |
| #include <asm/iommu.h> |
| #include <asm/btext.h> |
| #include <asm/sections.h> |
| #include <asm/setup.h> |
| #include <asm/pci-bridge.h> |
| #include <asm/kexec.h> |
| #include <asm/opal.h> |
| #include <asm/fadump.h> |
| #include <asm/epapr_hcalls.h> |
| #include <asm/firmware.h> |
| #include <asm/dt_cpu_ftrs.h> |
| #include <asm/drmem.h> |
| #include <asm/ultravisor.h> |
| #include <asm/prom.h> |
| |
| #include <mm/mmu_decl.h> |
| |
| #ifdef DEBUG |
| #define DBG(fmt...) printk(KERN_ERR fmt) |
| #else |
| #define DBG(fmt...) |
| #endif |
| |
| int *chip_id_lookup_table; |
| |
| #ifdef CONFIG_PPC64 |
| int __initdata iommu_is_off; |
| int __initdata iommu_force_on; |
| unsigned long tce_alloc_start, tce_alloc_end; |
| u64 ppc64_rma_size; |
| #endif |
| static phys_addr_t first_memblock_size; |
| static int __initdata boot_cpu_count; |
| |
| static int __init early_parse_mem(char *p) |
| { |
| if (!p) |
| return 1; |
| |
| memory_limit = PAGE_ALIGN(memparse(p, &p)); |
| DBG("memory limit = 0x%llx\n", memory_limit); |
| |
| return 0; |
| } |
| early_param("mem", early_parse_mem); |
| |
| /* |
| * overlaps_initrd - check for overlap with page aligned extension of |
| * initrd. |
| */ |
| static inline int overlaps_initrd(unsigned long start, unsigned long size) |
| { |
| #ifdef CONFIG_BLK_DEV_INITRD |
| if (!initrd_start) |
| return 0; |
| |
| return (start + size) > ALIGN_DOWN(initrd_start, PAGE_SIZE) && |
| start <= ALIGN(initrd_end, PAGE_SIZE); |
| #else |
| return 0; |
| #endif |
| } |
| |
| /** |
| * move_device_tree - move tree to an unused area, if needed. |
| * |
| * The device tree may be allocated beyond our memory limit, or inside the |
| * crash kernel region for kdump, or within the page aligned range of initrd. |
| * If so, move it out of the way. |
| */ |
| static void __init move_device_tree(void) |
| { |
| unsigned long start, size; |
| void *p; |
| |
| DBG("-> move_device_tree\n"); |
| |
| start = __pa(initial_boot_params); |
| size = fdt_totalsize(initial_boot_params); |
| |
| if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) || |
| !memblock_is_memory(start + size - 1) || |
| overlaps_crashkernel(start, size) || overlaps_initrd(start, size)) { |
| p = memblock_alloc_raw(size, PAGE_SIZE); |
| if (!p) |
| panic("Failed to allocate %lu bytes to move device tree\n", |
| size); |
| memcpy(p, initial_boot_params, size); |
| initial_boot_params = p; |
| DBG("Moved device tree to 0x%px\n", p); |
| } |
| |
| DBG("<- move_device_tree\n"); |
| } |
| |
| /* |
| * ibm,pa/pi-features is a per-cpu property that contains a string of |
| * attribute descriptors, each of which has a 2 byte header plus up |
| * to 254 bytes worth of processor attribute bits. First header |
| * byte specifies the number of bytes following the header. |
| * Second header byte is an "attribute-specifier" type, of which |
| * zero is the only currently-defined value. |
| * Implementation: Pass in the byte and bit offset for the feature |
| * that we are interested in. The function will return -1 if the |
| * pa-features property is missing, or a 1/0 to indicate if the feature |
| * is supported/not supported. Note that the bit numbers are |
| * big-endian to match the definition in PAPR. |
| */ |
| struct ibm_feature { |
| unsigned long cpu_features; /* CPU_FTR_xxx bit */ |
| unsigned long mmu_features; /* MMU_FTR_xxx bit */ |
| unsigned int cpu_user_ftrs; /* PPC_FEATURE_xxx bit */ |
| unsigned int cpu_user_ftrs2; /* PPC_FEATURE2_xxx bit */ |
| unsigned char pabyte; /* byte number in ibm,pa/pi-features */ |
| unsigned char pabit; /* bit number (big-endian) */ |
| unsigned char invert; /* if 1, pa bit set => clear feature */ |
| }; |
| |
| static struct ibm_feature ibm_pa_features[] __initdata = { |
| { .pabyte = 0, .pabit = 0, .cpu_user_ftrs = PPC_FEATURE_HAS_MMU }, |
| { .pabyte = 0, .pabit = 1, .cpu_user_ftrs = PPC_FEATURE_HAS_FPU }, |
| { .pabyte = 0, .pabit = 3, .cpu_features = CPU_FTR_CTRL }, |
| { .pabyte = 0, .pabit = 6, .cpu_features = CPU_FTR_NOEXECUTE }, |
| { .pabyte = 1, .pabit = 2, .mmu_features = MMU_FTR_CI_LARGE_PAGE }, |
| #ifdef CONFIG_PPC_RADIX_MMU |
| { .pabyte = 40, .pabit = 0, .mmu_features = MMU_FTR_TYPE_RADIX | MMU_FTR_GTSE }, |
| #endif |
| { .pabyte = 5, .pabit = 0, .cpu_features = CPU_FTR_REAL_LE, |
| .cpu_user_ftrs = PPC_FEATURE_TRUE_LE }, |
| /* |
| * If the kernel doesn't support TM (ie CONFIG_PPC_TRANSACTIONAL_MEM=n), |
| * we don't want to turn on TM here, so we use the *_COMP versions |
| * which are 0 if the kernel doesn't support TM. |
| */ |
| { .pabyte = 22, .pabit = 0, .cpu_features = CPU_FTR_TM_COMP, |
| .cpu_user_ftrs2 = PPC_FEATURE2_HTM_COMP | PPC_FEATURE2_HTM_NOSC_COMP }, |
| |
| { .pabyte = 64, .pabit = 0, .cpu_features = CPU_FTR_DAWR1 }, |
| }; |
| |
| /* |
| * ibm,pi-features property provides the support of processor specific |
| * options not described in ibm,pa-features. Right now use byte 0, bit 3 |
| * which indicates the occurrence of DSI interrupt when the paste operation |
| * on the suspended NX window. |
| */ |
| static struct ibm_feature ibm_pi_features[] __initdata = { |
| { .pabyte = 0, .pabit = 3, .mmu_features = MMU_FTR_NX_DSI }, |
| }; |
| |
| static void __init scan_features(unsigned long node, const unsigned char *ftrs, |
| unsigned long tablelen, |
| struct ibm_feature *fp, |
| unsigned long ft_size) |
| { |
| unsigned long i, len, bit; |
| |
| /* find descriptor with type == 0 */ |
| for (;;) { |
| if (tablelen < 3) |
| return; |
| len = 2 + ftrs[0]; |
| if (tablelen < len) |
| return; /* descriptor 0 not found */ |
| if (ftrs[1] == 0) |
| break; |
| tablelen -= len; |
| ftrs += len; |
| } |
| |
| /* loop over bits we know about */ |
| for (i = 0; i < ft_size; ++i, ++fp) { |
| if (fp->pabyte >= ftrs[0]) |
| continue; |
| bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1; |
| if (bit ^ fp->invert) { |
| cur_cpu_spec->cpu_features |= fp->cpu_features; |
| cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs; |
| cur_cpu_spec->cpu_user_features2 |= fp->cpu_user_ftrs2; |
| cur_cpu_spec->mmu_features |= fp->mmu_features; |
| } else { |
| cur_cpu_spec->cpu_features &= ~fp->cpu_features; |
| cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs; |
| cur_cpu_spec->cpu_user_features2 &= ~fp->cpu_user_ftrs2; |
| cur_cpu_spec->mmu_features &= ~fp->mmu_features; |
| } |
| } |
| } |
| |
| static void __init check_cpu_features(unsigned long node, char *name, |
| struct ibm_feature *fp, |
| unsigned long size) |
| { |
| const unsigned char *pa_ftrs; |
| int tablelen; |
| |
| pa_ftrs = of_get_flat_dt_prop(node, name, &tablelen); |
| if (pa_ftrs == NULL) |
| return; |
| |
| scan_features(node, pa_ftrs, tablelen, fp, size); |
| } |
| |
| #ifdef CONFIG_PPC_64S_HASH_MMU |
| static void __init init_mmu_slb_size(unsigned long node) |
| { |
| const __be32 *slb_size_ptr; |
| |
| slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL) ? : |
| of_get_flat_dt_prop(node, "ibm,slb-size", NULL); |
| |
| if (slb_size_ptr) |
| mmu_slb_size = be32_to_cpup(slb_size_ptr); |
| } |
| #else |
| #define init_mmu_slb_size(node) do { } while(0) |
| #endif |
| |
| static struct feature_property { |
| const char *name; |
| u32 min_value; |
| unsigned long cpu_feature; |
| unsigned long cpu_user_ftr; |
| } feature_properties[] __initdata = { |
| #ifdef CONFIG_ALTIVEC |
| {"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, |
| {"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, |
| #endif /* CONFIG_ALTIVEC */ |
| #ifdef CONFIG_VSX |
| /* Yes, this _really_ is ibm,vmx == 2 to enable VSX */ |
| {"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX}, |
| #endif /* CONFIG_VSX */ |
| #ifdef CONFIG_PPC64 |
| {"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP}, |
| {"ibm,purr", 1, CPU_FTR_PURR, 0}, |
| {"ibm,spurr", 1, CPU_FTR_SPURR, 0}, |
| #endif /* CONFIG_PPC64 */ |
| }; |
| |
| #if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU) |
| static __init void identical_pvr_fixup(unsigned long node) |
| { |
| unsigned int pvr; |
| const char *model = of_get_flat_dt_prop(node, "model", NULL); |
| |
| /* |
| * Since 440GR(x)/440EP(x) processors have the same pvr, |
| * we check the node path and set bit 28 in the cur_cpu_spec |
| * pvr for EP(x) processor version. This bit is always 0 in |
| * the "real" pvr. Then we call identify_cpu again with |
| * the new logical pvr to enable FPU support. |
| */ |
| if (model && strstr(model, "440EP")) { |
| pvr = cur_cpu_spec->pvr_value | 0x8; |
| identify_cpu(0, pvr); |
| DBG("Using logical pvr %x for %s\n", pvr, model); |
| } |
| } |
| #else |
| #define identical_pvr_fixup(node) do { } while(0) |
| #endif |
| |
| static void __init check_cpu_feature_properties(unsigned long node) |
| { |
| int i; |
| struct feature_property *fp = feature_properties; |
| const __be32 *prop; |
| |
| for (i = 0; i < (int)ARRAY_SIZE(feature_properties); ++i, ++fp) { |
| prop = of_get_flat_dt_prop(node, fp->name, NULL); |
| if (prop && be32_to_cpup(prop) >= fp->min_value) { |
| cur_cpu_spec->cpu_features |= fp->cpu_feature; |
| cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr; |
| } |
| } |
| } |
| |
| static int __init early_init_dt_scan_cpus(unsigned long node, |
| const char *uname, int depth, |
| void *data) |
| { |
| const char *type = of_get_flat_dt_prop(node, "device_type", NULL); |
| const __be32 *prop; |
| const __be32 *intserv; |
| int i, nthreads; |
| int len; |
| int found = -1; |
| int found_thread = 0; |
| |
| /* We are scanning "cpu" nodes only */ |
| if (type == NULL || strcmp(type, "cpu") != 0) |
| return 0; |
| |
| /* Get physical cpuid */ |
| intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len); |
| if (!intserv) |
| intserv = of_get_flat_dt_prop(node, "reg", &len); |
| |
| nthreads = len / sizeof(int); |
| |
| /* |
| * Now see if any of these threads match our boot cpu. |
| * NOTE: This must match the parsing done in smp_setup_cpu_maps. |
| */ |
| for (i = 0; i < nthreads; i++) { |
| if (be32_to_cpu(intserv[i]) == |
| fdt_boot_cpuid_phys(initial_boot_params)) { |
| found = boot_cpu_count; |
| found_thread = i; |
| } |
| #ifdef CONFIG_SMP |
| /* logical cpu id is always 0 on UP kernels */ |
| boot_cpu_count++; |
| #endif |
| } |
| |
| /* Not the boot CPU */ |
| if (found < 0) |
| return 0; |
| |
| DBG("boot cpu: logical %d physical %d\n", found, |
| be32_to_cpu(intserv[found_thread])); |
| boot_cpuid = found; |
| |
| // Pass the boot CPU's hard CPU id back to our caller |
| *((u32 *)data) = be32_to_cpu(intserv[found_thread]); |
| |
| /* |
| * PAPR defines "logical" PVR values for cpus that |
| * meet various levels of the architecture: |
| * 0x0f000001 Architecture version 2.04 |
| * 0x0f000002 Architecture version 2.05 |
| * If the cpu-version property in the cpu node contains |
| * such a value, we call identify_cpu again with the |
| * logical PVR value in order to use the cpu feature |
| * bits appropriate for the architecture level. |
| * |
| * A POWER6 partition in "POWER6 architected" mode |
| * uses the 0x0f000002 PVR value; in POWER5+ mode |
| * it uses 0x0f000001. |
| * |
| * If we're using device tree CPU feature discovery then we don't |
| * support the cpu-version property, and it's the responsibility of the |
| * firmware/hypervisor to provide the correct feature set for the |
| * architecture level via the ibm,powerpc-cpu-features binding. |
| */ |
| if (!dt_cpu_ftrs_in_use()) { |
| prop = of_get_flat_dt_prop(node, "cpu-version", NULL); |
| if (prop && (be32_to_cpup(prop) & 0xff000000) == 0x0f000000) { |
| identify_cpu(0, be32_to_cpup(prop)); |
| seq_buf_printf(&ppc_hw_desc, "0x%04x ", be32_to_cpup(prop)); |
| } |
| |
| check_cpu_feature_properties(node); |
| check_cpu_features(node, "ibm,pa-features", ibm_pa_features, |
| ARRAY_SIZE(ibm_pa_features)); |
| check_cpu_features(node, "ibm,pi-features", ibm_pi_features, |
| ARRAY_SIZE(ibm_pi_features)); |
| } |
| |
| identical_pvr_fixup(node); |
| init_mmu_slb_size(node); |
| |
| #ifdef CONFIG_PPC64 |
| if (nthreads == 1) |
| cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT; |
| else if (!dt_cpu_ftrs_in_use()) |
| cur_cpu_spec->cpu_features |= CPU_FTR_SMT; |
| #endif |
| |
| return 0; |
| } |
| |
| static int __init early_init_dt_scan_chosen_ppc(unsigned long node, |
| const char *uname, |
| int depth, void *data) |
| { |
| const unsigned long *lprop; /* All these set by kernel, so no need to convert endian */ |
| |
| /* Use common scan routine to determine if this is the chosen node */ |
| if (early_init_dt_scan_chosen(data) < 0) |
| return 0; |
| |
| #ifdef CONFIG_PPC64 |
| /* check if iommu is forced on or off */ |
| if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL) |
| iommu_is_off = 1; |
| if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL) |
| iommu_force_on = 1; |
| #endif |
| |
| /* mem=x on the command line is the preferred mechanism */ |
| lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL); |
| if (lprop) |
| memory_limit = *lprop; |
| |
| #ifdef CONFIG_PPC64 |
| lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL); |
| if (lprop) |
| tce_alloc_start = *lprop; |
| lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL); |
| if (lprop) |
| tce_alloc_end = *lprop; |
| #endif |
| |
| #ifdef CONFIG_KEXEC_CORE |
| lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL); |
| if (lprop) |
| crashk_res.start = *lprop; |
| |
| lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL); |
| if (lprop) |
| crashk_res.end = crashk_res.start + *lprop - 1; |
| #endif |
| |
| /* break now */ |
| return 1; |
| } |
| |
| /* |
| * Compare the range against max mem limit and update |
| * size if it cross the limit. |
| */ |
| |
| #ifdef CONFIG_SPARSEMEM |
| static bool __init validate_mem_limit(u64 base, u64 *size) |
| { |
| u64 max_mem = 1UL << (MAX_PHYSMEM_BITS); |
| |
| if (base >= max_mem) |
| return false; |
| if ((base + *size) > max_mem) |
| *size = max_mem - base; |
| return true; |
| } |
| #else |
| static bool __init validate_mem_limit(u64 base, u64 *size) |
| { |
| return true; |
| } |
| #endif |
| |
| #ifdef CONFIG_PPC_PSERIES |
| /* |
| * Interpret the ibm dynamic reconfiguration memory LMBs. |
| * This contains a list of memory blocks along with NUMA affinity |
| * information. |
| */ |
| static int __init early_init_drmem_lmb(struct drmem_lmb *lmb, |
| const __be32 **usm, |
| void *data) |
| { |
| u64 base, size; |
| int is_kexec_kdump = 0, rngs; |
| |
| base = lmb->base_addr; |
| size = drmem_lmb_size(); |
| rngs = 1; |
| |
| /* |
| * Skip this block if the reserved bit is set in flags |
| * or if the block is not assigned to this partition. |
| */ |
| if ((lmb->flags & DRCONF_MEM_RESERVED) || |
| !(lmb->flags & DRCONF_MEM_ASSIGNED)) |
| return 0; |
| |
| if (*usm) |
| is_kexec_kdump = 1; |
| |
| if (is_kexec_kdump) { |
| /* |
| * For each memblock in ibm,dynamic-memory, a |
| * corresponding entry in linux,drconf-usable-memory |
| * property contains a counter 'p' followed by 'p' |
| * (base, size) duple. Now read the counter from |
| * linux,drconf-usable-memory property |
| */ |
| rngs = dt_mem_next_cell(dt_root_size_cells, usm); |
| if (!rngs) /* there are no (base, size) duple */ |
| return 0; |
| } |
| |
| do { |
| if (is_kexec_kdump) { |
| base = dt_mem_next_cell(dt_root_addr_cells, usm); |
| size = dt_mem_next_cell(dt_root_size_cells, usm); |
| } |
| |
| if (iommu_is_off) { |
| if (base >= 0x80000000ul) |
| continue; |
| if ((base + size) > 0x80000000ul) |
| size = 0x80000000ul - base; |
| } |
| |
| if (!validate_mem_limit(base, &size)) |
| continue; |
| |
| DBG("Adding: %llx -> %llx\n", base, size); |
| memblock_add(base, size); |
| |
| if (lmb->flags & DRCONF_MEM_HOTREMOVABLE) |
| memblock_mark_hotplug(base, size); |
| } while (--rngs); |
| |
| return 0; |
| } |
| #endif /* CONFIG_PPC_PSERIES */ |
| |
| static int __init early_init_dt_scan_memory_ppc(void) |
| { |
| #ifdef CONFIG_PPC_PSERIES |
| const void *fdt = initial_boot_params; |
| int node = fdt_path_offset(fdt, "/ibm,dynamic-reconfiguration-memory"); |
| |
| if (node > 0) |
| walk_drmem_lmbs_early(node, NULL, early_init_drmem_lmb); |
| |
| #endif |
| |
| return early_init_dt_scan_memory(); |
| } |
| |
| /* |
| * For a relocatable kernel, we need to get the memstart_addr first, |
| * then use it to calculate the virtual kernel start address. This has |
| * to happen at a very early stage (before machine_init). In this case, |
| * we just want to get the memstart_address and would not like to mess the |
| * memblock at this stage. So introduce a variable to skip the memblock_add() |
| * for this reason. |
| */ |
| #ifdef CONFIG_RELOCATABLE |
| static int add_mem_to_memblock = 1; |
| #else |
| #define add_mem_to_memblock 1 |
| #endif |
| |
| void __init early_init_dt_add_memory_arch(u64 base, u64 size) |
| { |
| #ifdef CONFIG_PPC64 |
| if (iommu_is_off) { |
| if (base >= 0x80000000ul) |
| return; |
| if ((base + size) > 0x80000000ul) |
| size = 0x80000000ul - base; |
| } |
| #endif |
| /* Keep track of the beginning of memory -and- the size of |
| * the very first block in the device-tree as it represents |
| * the RMA on ppc64 server |
| */ |
| if (base < memstart_addr) { |
| memstart_addr = base; |
| first_memblock_size = size; |
| } |
| |
| /* Add the chunk to the MEMBLOCK list */ |
| if (add_mem_to_memblock) { |
| if (validate_mem_limit(base, &size)) |
| memblock_add(base, size); |
| } |
| } |
| |
| static void __init early_reserve_mem_dt(void) |
| { |
| unsigned long i, dt_root; |
| int len; |
| const __be32 *prop; |
| |
| early_init_fdt_reserve_self(); |
| early_init_fdt_scan_reserved_mem(); |
| |
| dt_root = of_get_flat_dt_root(); |
| |
| prop = of_get_flat_dt_prop(dt_root, "reserved-ranges", &len); |
| |
| if (!prop) |
| return; |
| |
| DBG("Found new-style reserved-ranges\n"); |
| |
| /* Each reserved range is an (address,size) pair, 2 cells each, |
| * totalling 4 cells per range. */ |
| for (i = 0; i < len / (sizeof(*prop) * 4); i++) { |
| u64 base, size; |
| |
| base = of_read_number(prop + (i * 4) + 0, 2); |
| size = of_read_number(prop + (i * 4) + 2, 2); |
| |
| if (size) { |
| DBG("reserving: %llx -> %llx\n", base, size); |
| memblock_reserve(base, size); |
| } |
| } |
| } |
| |
| static void __init early_reserve_mem(void) |
| { |
| __be64 *reserve_map; |
| |
| reserve_map = (__be64 *)(((unsigned long)initial_boot_params) + |
| fdt_off_mem_rsvmap(initial_boot_params)); |
| |
| /* Look for the new "reserved-regions" property in the DT */ |
| early_reserve_mem_dt(); |
| |
| #ifdef CONFIG_BLK_DEV_INITRD |
| /* Then reserve the initrd, if any */ |
| if (initrd_start && (initrd_end > initrd_start)) { |
| memblock_reserve(ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE), |
| ALIGN(initrd_end, PAGE_SIZE) - |
| ALIGN_DOWN(initrd_start, PAGE_SIZE)); |
| } |
| #endif /* CONFIG_BLK_DEV_INITRD */ |
| |
| if (!IS_ENABLED(CONFIG_PPC32)) |
| return; |
| |
| /* |
| * Handle the case where we might be booting from an old kexec |
| * image that setup the mem_rsvmap as pairs of 32-bit values |
| */ |
| if (be64_to_cpup(reserve_map) > 0xffffffffull) { |
| u32 base_32, size_32; |
| __be32 *reserve_map_32 = (__be32 *)reserve_map; |
| |
| DBG("Found old 32-bit reserve map\n"); |
| |
| while (1) { |
| base_32 = be32_to_cpup(reserve_map_32++); |
| size_32 = be32_to_cpup(reserve_map_32++); |
| if (size_32 == 0) |
| break; |
| DBG("reserving: %x -> %x\n", base_32, size_32); |
| memblock_reserve(base_32, size_32); |
| } |
| return; |
| } |
| } |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| static bool tm_disabled __initdata; |
| |
| static int __init parse_ppc_tm(char *str) |
| { |
| bool res; |
| |
| if (kstrtobool(str, &res)) |
| return -EINVAL; |
| |
| tm_disabled = !res; |
| |
| return 0; |
| } |
| early_param("ppc_tm", parse_ppc_tm); |
| |
| static void __init tm_init(void) |
| { |
| if (tm_disabled) { |
| pr_info("Disabling hardware transactional memory (HTM)\n"); |
| cur_cpu_spec->cpu_user_features2 &= |
| ~(PPC_FEATURE2_HTM_NOSC | PPC_FEATURE2_HTM); |
| cur_cpu_spec->cpu_features &= ~CPU_FTR_TM; |
| return; |
| } |
| |
| pnv_tm_init(); |
| } |
| #else |
| static void tm_init(void) { } |
| #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ |
| |
| static int __init |
| early_init_dt_scan_model(unsigned long node, const char *uname, |
| int depth, void *data) |
| { |
| const char *prop; |
| |
| if (depth != 0) |
| return 0; |
| |
| prop = of_get_flat_dt_prop(node, "model", NULL); |
| if (prop) |
| seq_buf_printf(&ppc_hw_desc, "%s ", prop); |
| |
| /* break now */ |
| return 1; |
| } |
| |
| #ifdef CONFIG_PPC64 |
| static void __init save_fscr_to_task(void) |
| { |
| /* |
| * Ensure the init_task (pid 0, aka swapper) uses the value of FSCR we |
| * have configured via the device tree features or via __init_FSCR(). |
| * That value will then be propagated to pid 1 (init) and all future |
| * processes. |
| */ |
| if (early_cpu_has_feature(CPU_FTR_ARCH_207S)) |
| init_task.thread.fscr = mfspr(SPRN_FSCR); |
| } |
| #else |
| static inline void save_fscr_to_task(void) {} |
| #endif |
| |
| |
| void __init early_init_devtree(void *params) |
| { |
| u32 boot_cpu_hwid; |
| phys_addr_t limit; |
| |
| DBG(" -> early_init_devtree(%px)\n", params); |
| |
| /* Too early to BUG_ON(), do it by hand */ |
| if (!early_init_dt_verify(params)) |
| panic("BUG: Failed verifying flat device tree, bad version?"); |
| |
| of_scan_flat_dt(early_init_dt_scan_model, NULL); |
| |
| #ifdef CONFIG_PPC_RTAS |
| /* Some machines might need RTAS info for debugging, grab it now. */ |
| of_scan_flat_dt(early_init_dt_scan_rtas, NULL); |
| #endif |
| |
| #ifdef CONFIG_PPC_POWERNV |
| /* Some machines might need OPAL info for debugging, grab it now. */ |
| of_scan_flat_dt(early_init_dt_scan_opal, NULL); |
| |
| /* Scan tree for ultravisor feature */ |
| of_scan_flat_dt(early_init_dt_scan_ultravisor, NULL); |
| #endif |
| |
| #if defined(CONFIG_FA_DUMP) || defined(CONFIG_PRESERVE_FA_DUMP) |
| /* scan tree to see if dump is active during last boot */ |
| of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL); |
| #endif |
| |
| /* Retrieve various informations from the /chosen node of the |
| * device-tree, including the platform type, initrd location and |
| * size, TCE reserve, and more ... |
| */ |
| of_scan_flat_dt(early_init_dt_scan_chosen_ppc, boot_command_line); |
| |
| /* Scan memory nodes and rebuild MEMBLOCKs */ |
| early_init_dt_scan_root(); |
| early_init_dt_scan_memory_ppc(); |
| |
| /* |
| * As generic code authors expect to be able to use static keys |
| * in early_param() handlers, we initialize the static keys just |
| * before parsing early params (it's fine to call jump_label_init() |
| * more than once). |
| */ |
| jump_label_init(); |
| parse_early_param(); |
| |
| /* make sure we've parsed cmdline for mem= before this */ |
| if (memory_limit) |
| first_memblock_size = min_t(u64, first_memblock_size, memory_limit); |
| setup_initial_memory_limit(memstart_addr, first_memblock_size); |
| /* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */ |
| memblock_reserve(PHYSICAL_START, __pa(_end) - PHYSICAL_START); |
| /* If relocatable, reserve first 32k for interrupt vectors etc. */ |
| if (PHYSICAL_START > MEMORY_START) |
| memblock_reserve(MEMORY_START, 0x8000); |
| reserve_kdump_trampoline(); |
| #if defined(CONFIG_FA_DUMP) || defined(CONFIG_PRESERVE_FA_DUMP) |
| /* |
| * If we fail to reserve memory for firmware-assisted dump then |
| * fallback to kexec based kdump. |
| */ |
| if (fadump_reserve_mem() == 0) |
| #endif |
| reserve_crashkernel(); |
| early_reserve_mem(); |
| |
| /* Ensure that total memory size is page-aligned. */ |
| limit = ALIGN(memory_limit ?: memblock_phys_mem_size(), PAGE_SIZE); |
| memblock_enforce_memory_limit(limit); |
| |
| #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_PPC_4K_PAGES) |
| if (!early_radix_enabled()) |
| memblock_cap_memory_range(0, 1UL << (H_MAX_PHYSMEM_BITS)); |
| #endif |
| |
| memblock_allow_resize(); |
| memblock_dump_all(); |
| |
| DBG("Phys. mem: %llx\n", (unsigned long long)memblock_phys_mem_size()); |
| |
| /* We may need to relocate the flat tree, do it now. |
| * FIXME .. and the initrd too? */ |
| move_device_tree(); |
| |
| DBG("Scanning CPUs ...\n"); |
| |
| dt_cpu_ftrs_scan(); |
| |
| // We can now add the CPU name & PVR to the hardware description |
| seq_buf_printf(&ppc_hw_desc, "%s 0x%04lx ", cur_cpu_spec->cpu_name, mfspr(SPRN_PVR)); |
| |
| /* Retrieve CPU related informations from the flat tree |
| * (altivec support, boot CPU ID, ...) |
| */ |
| of_scan_flat_dt(early_init_dt_scan_cpus, &boot_cpu_hwid); |
| if (boot_cpuid < 0) { |
| printk("Failed to identify boot CPU !\n"); |
| BUG(); |
| } |
| |
| save_fscr_to_task(); |
| |
| #if defined(CONFIG_SMP) && defined(CONFIG_PPC64) |
| /* We'll later wait for secondaries to check in; there are |
| * NCPUS-1 non-boot CPUs :-) |
| */ |
| spinning_secondaries = boot_cpu_count - 1; |
| #endif |
| |
| mmu_early_init_devtree(); |
| |
| // NB. paca is not installed until later in early_setup() |
| allocate_paca_ptrs(); |
| allocate_paca(boot_cpuid); |
| set_hard_smp_processor_id(boot_cpuid, boot_cpu_hwid); |
| |
| #ifdef CONFIG_PPC_POWERNV |
| /* Scan and build the list of machine check recoverable ranges */ |
| of_scan_flat_dt(early_init_dt_scan_recoverable_ranges, NULL); |
| #endif |
| epapr_paravirt_early_init(); |
| |
| /* Now try to figure out if we are running on LPAR and so on */ |
| pseries_probe_fw_features(); |
| |
| /* |
| * Initialize pkey features and default AMR/IAMR values |
| */ |
| pkey_early_init_devtree(); |
| |
| #ifdef CONFIG_PPC_PS3 |
| /* Identify PS3 firmware */ |
| if (of_flat_dt_is_compatible(of_get_flat_dt_root(), "sony,ps3")) |
| powerpc_firmware_features |= FW_FEATURE_PS3_POSSIBLE; |
| #endif |
| |
| tm_init(); |
| |
| DBG(" <- early_init_devtree()\n"); |
| } |
| |
| #ifdef CONFIG_RELOCATABLE |
| /* |
| * This function run before early_init_devtree, so we have to init |
| * initial_boot_params. |
| */ |
| void __init early_get_first_memblock_info(void *params, phys_addr_t *size) |
| { |
| /* Setup flat device-tree pointer */ |
| initial_boot_params = params; |
| |
| /* |
| * Scan the memory nodes and set add_mem_to_memblock to 0 to avoid |
| * mess the memblock. |
| */ |
| add_mem_to_memblock = 0; |
| early_init_dt_scan_root(); |
| early_init_dt_scan_memory_ppc(); |
| add_mem_to_memblock = 1; |
| |
| if (size) |
| *size = first_memblock_size; |
| } |
| #endif |
| |
| /******* |
| * |
| * New implementation of the OF "find" APIs, return a refcounted |
| * object, call of_node_put() when done. The device tree and list |
| * are protected by a rw_lock. |
| * |
| * Note that property management will need some locking as well, |
| * this isn't dealt with yet. |
| * |
| *******/ |
| |
| /** |
| * of_get_ibm_chip_id - Returns the IBM "chip-id" of a device |
| * @np: device node of the device |
| * |
| * This looks for a property "ibm,chip-id" in the node or any |
| * of its parents and returns its content, or -1 if it cannot |
| * be found. |
| */ |
| int of_get_ibm_chip_id(struct device_node *np) |
| { |
| of_node_get(np); |
| while (np) { |
| u32 chip_id; |
| |
| /* |
| * Skiboot may produce memory nodes that contain more than one |
| * cell in chip-id, we only read the first one here. |
| */ |
| if (!of_property_read_u32(np, "ibm,chip-id", &chip_id)) { |
| of_node_put(np); |
| return chip_id; |
| } |
| |
| np = of_get_next_parent(np); |
| } |
| return -1; |
| } |
| EXPORT_SYMBOL(of_get_ibm_chip_id); |
| |
| /** |
| * cpu_to_chip_id - Return the cpus chip-id |
| * @cpu: The logical cpu number. |
| * |
| * Return the value of the ibm,chip-id property corresponding to the given |
| * logical cpu number. If the chip-id can not be found, returns -1. |
| */ |
| int cpu_to_chip_id(int cpu) |
| { |
| struct device_node *np; |
| int ret = -1, idx; |
| |
| idx = cpu / threads_per_core; |
| if (chip_id_lookup_table && chip_id_lookup_table[idx] != -1) |
| return chip_id_lookup_table[idx]; |
| |
| np = of_get_cpu_node(cpu, NULL); |
| if (np) { |
| ret = of_get_ibm_chip_id(np); |
| of_node_put(np); |
| |
| if (chip_id_lookup_table) |
| chip_id_lookup_table[idx] = ret; |
| } |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(cpu_to_chip_id); |
| |
| bool arch_match_cpu_phys_id(int cpu, u64 phys_id) |
| { |
| #ifdef CONFIG_SMP |
| /* |
| * Early firmware scanning must use this rather than |
| * get_hard_smp_processor_id because we don't have pacas allocated |
| * until memory topology is discovered. |
| */ |
| if (cpu_to_phys_id != NULL) |
| return (int)phys_id == cpu_to_phys_id[cpu]; |
| #endif |
| |
| return (int)phys_id == get_hard_smp_processor_id(cpu); |
| } |