| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Intel PCH/PCU SPI flash driver. |
| * |
| * Copyright (C) 2016 - 2022, Intel Corporation |
| * Author: Mika Westerberg <mika.westerberg@linux.intel.com> |
| */ |
| |
| #include <linux/iopoll.h> |
| #include <linux/module.h> |
| |
| #include <linux/mtd/partitions.h> |
| #include <linux/mtd/spi-nor.h> |
| |
| #include <linux/spi/flash.h> |
| #include <linux/spi/spi.h> |
| #include <linux/spi/spi-mem.h> |
| |
| #include "spi-intel.h" |
| |
| /* Offsets are from @ispi->base */ |
| #define BFPREG 0x00 |
| |
| #define HSFSTS_CTL 0x04 |
| #define HSFSTS_CTL_FSMIE BIT(31) |
| #define HSFSTS_CTL_FDBC_SHIFT 24 |
| #define HSFSTS_CTL_FDBC_MASK (0x3f << HSFSTS_CTL_FDBC_SHIFT) |
| |
| #define HSFSTS_CTL_FCYCLE_SHIFT 17 |
| #define HSFSTS_CTL_FCYCLE_MASK (0x0f << HSFSTS_CTL_FCYCLE_SHIFT) |
| /* HW sequencer opcodes */ |
| #define HSFSTS_CTL_FCYCLE_READ (0x00 << HSFSTS_CTL_FCYCLE_SHIFT) |
| #define HSFSTS_CTL_FCYCLE_WRITE (0x02 << HSFSTS_CTL_FCYCLE_SHIFT) |
| #define HSFSTS_CTL_FCYCLE_ERASE (0x03 << HSFSTS_CTL_FCYCLE_SHIFT) |
| #define HSFSTS_CTL_FCYCLE_ERASE_64K (0x04 << HSFSTS_CTL_FCYCLE_SHIFT) |
| #define HSFSTS_CTL_FCYCLE_RDID (0x06 << HSFSTS_CTL_FCYCLE_SHIFT) |
| #define HSFSTS_CTL_FCYCLE_WRSR (0x07 << HSFSTS_CTL_FCYCLE_SHIFT) |
| #define HSFSTS_CTL_FCYCLE_RDSR (0x08 << HSFSTS_CTL_FCYCLE_SHIFT) |
| |
| #define HSFSTS_CTL_FGO BIT(16) |
| #define HSFSTS_CTL_FLOCKDN BIT(15) |
| #define HSFSTS_CTL_FDV BIT(14) |
| #define HSFSTS_CTL_SCIP BIT(5) |
| #define HSFSTS_CTL_AEL BIT(2) |
| #define HSFSTS_CTL_FCERR BIT(1) |
| #define HSFSTS_CTL_FDONE BIT(0) |
| |
| #define FADDR 0x08 |
| #define DLOCK 0x0c |
| #define FDATA(n) (0x10 + ((n) * 4)) |
| |
| #define FRACC 0x50 |
| |
| #define FREG(n) (0x54 + ((n) * 4)) |
| #define FREG_BASE_MASK 0x3fff |
| #define FREG_LIMIT_SHIFT 16 |
| #define FREG_LIMIT_MASK (0x03fff << FREG_LIMIT_SHIFT) |
| |
| /* Offset is from @ispi->pregs */ |
| #define PR(n) ((n) * 4) |
| #define PR_WPE BIT(31) |
| #define PR_LIMIT_SHIFT 16 |
| #define PR_LIMIT_MASK (0x3fff << PR_LIMIT_SHIFT) |
| #define PR_RPE BIT(15) |
| #define PR_BASE_MASK 0x3fff |
| |
| /* Offsets are from @ispi->sregs */ |
| #define SSFSTS_CTL 0x00 |
| #define SSFSTS_CTL_FSMIE BIT(23) |
| #define SSFSTS_CTL_DS BIT(22) |
| #define SSFSTS_CTL_DBC_SHIFT 16 |
| #define SSFSTS_CTL_SPOP BIT(11) |
| #define SSFSTS_CTL_ACS BIT(10) |
| #define SSFSTS_CTL_SCGO BIT(9) |
| #define SSFSTS_CTL_COP_SHIFT 12 |
| #define SSFSTS_CTL_FRS BIT(7) |
| #define SSFSTS_CTL_DOFRS BIT(6) |
| #define SSFSTS_CTL_AEL BIT(4) |
| #define SSFSTS_CTL_FCERR BIT(3) |
| #define SSFSTS_CTL_FDONE BIT(2) |
| #define SSFSTS_CTL_SCIP BIT(0) |
| |
| #define PREOP_OPTYPE 0x04 |
| #define OPMENU0 0x08 |
| #define OPMENU1 0x0c |
| |
| #define OPTYPE_READ_NO_ADDR 0 |
| #define OPTYPE_WRITE_NO_ADDR 1 |
| #define OPTYPE_READ_WITH_ADDR 2 |
| #define OPTYPE_WRITE_WITH_ADDR 3 |
| |
| /* CPU specifics */ |
| #define BYT_PR 0x74 |
| #define BYT_SSFSTS_CTL 0x90 |
| #define BYT_FREG_NUM 5 |
| #define BYT_PR_NUM 5 |
| |
| #define LPT_PR 0x74 |
| #define LPT_SSFSTS_CTL 0x90 |
| #define LPT_FREG_NUM 5 |
| #define LPT_PR_NUM 5 |
| |
| #define BXT_PR 0x84 |
| #define BXT_SSFSTS_CTL 0xa0 |
| #define BXT_FREG_NUM 12 |
| #define BXT_PR_NUM 6 |
| |
| #define CNL_PR 0x84 |
| #define CNL_FREG_NUM 6 |
| #define CNL_PR_NUM 5 |
| |
| #define LVSCC 0xc4 |
| #define UVSCC 0xc8 |
| #define ERASE_OPCODE_SHIFT 8 |
| #define ERASE_OPCODE_MASK (0xff << ERASE_OPCODE_SHIFT) |
| #define ERASE_64K_OPCODE_SHIFT 16 |
| #define ERASE_64K_OPCODE_MASK (0xff << ERASE_OPCODE_SHIFT) |
| |
| /* Flash descriptor fields */ |
| #define FLVALSIG_MAGIC 0x0ff0a55a |
| #define FLMAP0_NC_MASK GENMASK(9, 8) |
| #define FLMAP0_NC_SHIFT 8 |
| #define FLMAP0_FCBA_MASK GENMASK(7, 0) |
| |
| #define FLCOMP_C0DEN_MASK GENMASK(3, 0) |
| #define FLCOMP_C0DEN_512K 0x00 |
| #define FLCOMP_C0DEN_1M 0x01 |
| #define FLCOMP_C0DEN_2M 0x02 |
| #define FLCOMP_C0DEN_4M 0x03 |
| #define FLCOMP_C0DEN_8M 0x04 |
| #define FLCOMP_C0DEN_16M 0x05 |
| #define FLCOMP_C0DEN_32M 0x06 |
| #define FLCOMP_C0DEN_64M 0x07 |
| |
| #define INTEL_SPI_TIMEOUT 5000 /* ms */ |
| #define INTEL_SPI_FIFO_SZ 64 |
| |
| /** |
| * struct intel_spi - Driver private data |
| * @dev: Device pointer |
| * @info: Pointer to board specific info |
| * @base: Beginning of MMIO space |
| * @pregs: Start of protection registers |
| * @sregs: Start of software sequencer registers |
| * @master: Pointer to the SPI controller structure |
| * @nregions: Maximum number of regions |
| * @pr_num: Maximum number of protected range registers |
| * @chip0_size: Size of the first flash chip in bytes |
| * @locked: Is SPI setting locked |
| * @swseq_reg: Use SW sequencer in register reads/writes |
| * @swseq_erase: Use SW sequencer in erase operation |
| * @atomic_preopcode: Holds preopcode when atomic sequence is requested |
| * @opcodes: Opcodes which are supported. This are programmed by BIOS |
| * before it locks down the controller. |
| * @mem_ops: Pointer to SPI MEM ops supported by the controller |
| */ |
| struct intel_spi { |
| struct device *dev; |
| const struct intel_spi_boardinfo *info; |
| void __iomem *base; |
| void __iomem *pregs; |
| void __iomem *sregs; |
| struct spi_controller *master; |
| size_t nregions; |
| size_t pr_num; |
| size_t chip0_size; |
| bool locked; |
| bool swseq_reg; |
| bool swseq_erase; |
| u8 atomic_preopcode; |
| u8 opcodes[8]; |
| const struct intel_spi_mem_op *mem_ops; |
| }; |
| |
| struct intel_spi_mem_op { |
| struct spi_mem_op mem_op; |
| u32 replacement_op; |
| int (*exec_op)(struct intel_spi *ispi, |
| const struct spi_mem *mem, |
| const struct intel_spi_mem_op *iop, |
| const struct spi_mem_op *op); |
| }; |
| |
| static bool writeable; |
| module_param(writeable, bool, 0); |
| MODULE_PARM_DESC(writeable, "Enable write access to SPI flash chip (default=0)"); |
| |
| static void intel_spi_dump_regs(struct intel_spi *ispi) |
| { |
| u32 value; |
| int i; |
| |
| dev_dbg(ispi->dev, "BFPREG=0x%08x\n", readl(ispi->base + BFPREG)); |
| |
| value = readl(ispi->base + HSFSTS_CTL); |
| dev_dbg(ispi->dev, "HSFSTS_CTL=0x%08x\n", value); |
| if (value & HSFSTS_CTL_FLOCKDN) |
| dev_dbg(ispi->dev, "-> Locked\n"); |
| |
| dev_dbg(ispi->dev, "FADDR=0x%08x\n", readl(ispi->base + FADDR)); |
| dev_dbg(ispi->dev, "DLOCK=0x%08x\n", readl(ispi->base + DLOCK)); |
| |
| for (i = 0; i < 16; i++) |
| dev_dbg(ispi->dev, "FDATA(%d)=0x%08x\n", |
| i, readl(ispi->base + FDATA(i))); |
| |
| dev_dbg(ispi->dev, "FRACC=0x%08x\n", readl(ispi->base + FRACC)); |
| |
| for (i = 0; i < ispi->nregions; i++) |
| dev_dbg(ispi->dev, "FREG(%d)=0x%08x\n", i, |
| readl(ispi->base + FREG(i))); |
| for (i = 0; i < ispi->pr_num; i++) |
| dev_dbg(ispi->dev, "PR(%d)=0x%08x\n", i, |
| readl(ispi->pregs + PR(i))); |
| |
| if (ispi->sregs) { |
| value = readl(ispi->sregs + SSFSTS_CTL); |
| dev_dbg(ispi->dev, "SSFSTS_CTL=0x%08x\n", value); |
| dev_dbg(ispi->dev, "PREOP_OPTYPE=0x%08x\n", |
| readl(ispi->sregs + PREOP_OPTYPE)); |
| dev_dbg(ispi->dev, "OPMENU0=0x%08x\n", |
| readl(ispi->sregs + OPMENU0)); |
| dev_dbg(ispi->dev, "OPMENU1=0x%08x\n", |
| readl(ispi->sregs + OPMENU1)); |
| } |
| |
| dev_dbg(ispi->dev, "LVSCC=0x%08x\n", readl(ispi->base + LVSCC)); |
| dev_dbg(ispi->dev, "UVSCC=0x%08x\n", readl(ispi->base + UVSCC)); |
| |
| dev_dbg(ispi->dev, "Protected regions:\n"); |
| for (i = 0; i < ispi->pr_num; i++) { |
| u32 base, limit; |
| |
| value = readl(ispi->pregs + PR(i)); |
| if (!(value & (PR_WPE | PR_RPE))) |
| continue; |
| |
| limit = (value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT; |
| base = value & PR_BASE_MASK; |
| |
| dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x [%c%c]\n", |
| i, base << 12, (limit << 12) | 0xfff, |
| value & PR_WPE ? 'W' : '.', value & PR_RPE ? 'R' : '.'); |
| } |
| |
| dev_dbg(ispi->dev, "Flash regions:\n"); |
| for (i = 0; i < ispi->nregions; i++) { |
| u32 region, base, limit; |
| |
| region = readl(ispi->base + FREG(i)); |
| base = region & FREG_BASE_MASK; |
| limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT; |
| |
| if (base >= limit || (i > 0 && limit == 0)) |
| dev_dbg(ispi->dev, " %02d disabled\n", i); |
| else |
| dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x\n", |
| i, base << 12, (limit << 12) | 0xfff); |
| } |
| |
| dev_dbg(ispi->dev, "Using %cW sequencer for register access\n", |
| ispi->swseq_reg ? 'S' : 'H'); |
| dev_dbg(ispi->dev, "Using %cW sequencer for erase operation\n", |
| ispi->swseq_erase ? 'S' : 'H'); |
| } |
| |
| /* Reads max INTEL_SPI_FIFO_SZ bytes from the device fifo */ |
| static int intel_spi_read_block(struct intel_spi *ispi, void *buf, size_t size) |
| { |
| size_t bytes; |
| int i = 0; |
| |
| if (size > INTEL_SPI_FIFO_SZ) |
| return -EINVAL; |
| |
| while (size > 0) { |
| bytes = min_t(size_t, size, 4); |
| memcpy_fromio(buf, ispi->base + FDATA(i), bytes); |
| size -= bytes; |
| buf += bytes; |
| i++; |
| } |
| |
| return 0; |
| } |
| |
| /* Writes max INTEL_SPI_FIFO_SZ bytes to the device fifo */ |
| static int intel_spi_write_block(struct intel_spi *ispi, const void *buf, |
| size_t size) |
| { |
| size_t bytes; |
| int i = 0; |
| |
| if (size > INTEL_SPI_FIFO_SZ) |
| return -EINVAL; |
| |
| while (size > 0) { |
| bytes = min_t(size_t, size, 4); |
| memcpy_toio(ispi->base + FDATA(i), buf, bytes); |
| size -= bytes; |
| buf += bytes; |
| i++; |
| } |
| |
| return 0; |
| } |
| |
| static int intel_spi_wait_hw_busy(struct intel_spi *ispi) |
| { |
| u32 val; |
| |
| return readl_poll_timeout(ispi->base + HSFSTS_CTL, val, |
| !(val & HSFSTS_CTL_SCIP), 0, |
| INTEL_SPI_TIMEOUT * 1000); |
| } |
| |
| static int intel_spi_wait_sw_busy(struct intel_spi *ispi) |
| { |
| u32 val; |
| |
| return readl_poll_timeout(ispi->sregs + SSFSTS_CTL, val, |
| !(val & SSFSTS_CTL_SCIP), 0, |
| INTEL_SPI_TIMEOUT * 1000); |
| } |
| |
| static bool intel_spi_set_writeable(struct intel_spi *ispi) |
| { |
| if (!ispi->info->set_writeable) |
| return false; |
| |
| return ispi->info->set_writeable(ispi->base, ispi->info->data); |
| } |
| |
| static int intel_spi_opcode_index(struct intel_spi *ispi, u8 opcode, int optype) |
| { |
| int i; |
| int preop; |
| |
| if (ispi->locked) { |
| for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++) |
| if (ispi->opcodes[i] == opcode) |
| return i; |
| |
| return -EINVAL; |
| } |
| |
| /* The lock is off, so just use index 0 */ |
| writel(opcode, ispi->sregs + OPMENU0); |
| preop = readw(ispi->sregs + PREOP_OPTYPE); |
| writel(optype << 16 | preop, ispi->sregs + PREOP_OPTYPE); |
| |
| return 0; |
| } |
| |
| static int intel_spi_hw_cycle(struct intel_spi *ispi, u8 opcode, size_t len) |
| { |
| u32 val, status; |
| int ret; |
| |
| val = readl(ispi->base + HSFSTS_CTL); |
| val &= ~(HSFSTS_CTL_FCYCLE_MASK | HSFSTS_CTL_FDBC_MASK); |
| |
| switch (opcode) { |
| case SPINOR_OP_RDID: |
| val |= HSFSTS_CTL_FCYCLE_RDID; |
| break; |
| case SPINOR_OP_WRSR: |
| val |= HSFSTS_CTL_FCYCLE_WRSR; |
| break; |
| case SPINOR_OP_RDSR: |
| val |= HSFSTS_CTL_FCYCLE_RDSR; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| if (len > INTEL_SPI_FIFO_SZ) |
| return -EINVAL; |
| |
| val |= (len - 1) << HSFSTS_CTL_FDBC_SHIFT; |
| val |= HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE; |
| val |= HSFSTS_CTL_FGO; |
| writel(val, ispi->base + HSFSTS_CTL); |
| |
| ret = intel_spi_wait_hw_busy(ispi); |
| if (ret) |
| return ret; |
| |
| status = readl(ispi->base + HSFSTS_CTL); |
| if (status & HSFSTS_CTL_FCERR) |
| return -EIO; |
| else if (status & HSFSTS_CTL_AEL) |
| return -EACCES; |
| |
| return 0; |
| } |
| |
| static int intel_spi_sw_cycle(struct intel_spi *ispi, u8 opcode, size_t len, |
| int optype) |
| { |
| u32 val = 0, status; |
| u8 atomic_preopcode; |
| int ret; |
| |
| ret = intel_spi_opcode_index(ispi, opcode, optype); |
| if (ret < 0) |
| return ret; |
| |
| if (len > INTEL_SPI_FIFO_SZ) |
| return -EINVAL; |
| |
| /* |
| * Always clear it after each SW sequencer operation regardless |
| * of whether it is successful or not. |
| */ |
| atomic_preopcode = ispi->atomic_preopcode; |
| ispi->atomic_preopcode = 0; |
| |
| /* Only mark 'Data Cycle' bit when there is data to be transferred */ |
| if (len > 0) |
| val = ((len - 1) << SSFSTS_CTL_DBC_SHIFT) | SSFSTS_CTL_DS; |
| val |= ret << SSFSTS_CTL_COP_SHIFT; |
| val |= SSFSTS_CTL_FCERR | SSFSTS_CTL_FDONE; |
| val |= SSFSTS_CTL_SCGO; |
| if (atomic_preopcode) { |
| u16 preop; |
| |
| switch (optype) { |
| case OPTYPE_WRITE_NO_ADDR: |
| case OPTYPE_WRITE_WITH_ADDR: |
| /* Pick matching preopcode for the atomic sequence */ |
| preop = readw(ispi->sregs + PREOP_OPTYPE); |
| if ((preop & 0xff) == atomic_preopcode) |
| ; /* Do nothing */ |
| else if ((preop >> 8) == atomic_preopcode) |
| val |= SSFSTS_CTL_SPOP; |
| else |
| return -EINVAL; |
| |
| /* Enable atomic sequence */ |
| val |= SSFSTS_CTL_ACS; |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| } |
| writel(val, ispi->sregs + SSFSTS_CTL); |
| |
| ret = intel_spi_wait_sw_busy(ispi); |
| if (ret) |
| return ret; |
| |
| status = readl(ispi->sregs + SSFSTS_CTL); |
| if (status & SSFSTS_CTL_FCERR) |
| return -EIO; |
| else if (status & SSFSTS_CTL_AEL) |
| return -EACCES; |
| |
| return 0; |
| } |
| |
| static u32 intel_spi_chip_addr(const struct intel_spi *ispi, |
| const struct spi_mem *mem) |
| { |
| /* Pick up the correct start address */ |
| if (!mem) |
| return 0; |
| return mem->spi->chip_select == 1 ? ispi->chip0_size : 0; |
| } |
| |
| static int intel_spi_read_reg(struct intel_spi *ispi, const struct spi_mem *mem, |
| const struct intel_spi_mem_op *iop, |
| const struct spi_mem_op *op) |
| { |
| size_t nbytes = op->data.nbytes; |
| u8 opcode = op->cmd.opcode; |
| int ret; |
| |
| writel(intel_spi_chip_addr(ispi, mem), ispi->base + FADDR); |
| |
| if (ispi->swseq_reg) |
| ret = intel_spi_sw_cycle(ispi, opcode, nbytes, |
| OPTYPE_READ_NO_ADDR); |
| else |
| ret = intel_spi_hw_cycle(ispi, opcode, nbytes); |
| |
| if (ret) |
| return ret; |
| |
| return intel_spi_read_block(ispi, op->data.buf.in, nbytes); |
| } |
| |
| static int intel_spi_write_reg(struct intel_spi *ispi, const struct spi_mem *mem, |
| const struct intel_spi_mem_op *iop, |
| const struct spi_mem_op *op) |
| { |
| size_t nbytes = op->data.nbytes; |
| u8 opcode = op->cmd.opcode; |
| int ret; |
| |
| /* |
| * This is handled with atomic operation and preop code in Intel |
| * controller so we only verify that it is available. If the |
| * controller is not locked, program the opcode to the PREOP |
| * register for later use. |
| * |
| * When hardware sequencer is used there is no need to program |
| * any opcodes (it handles them automatically as part of a command). |
| */ |
| if (opcode == SPINOR_OP_WREN) { |
| u16 preop; |
| |
| if (!ispi->swseq_reg) |
| return 0; |
| |
| preop = readw(ispi->sregs + PREOP_OPTYPE); |
| if ((preop & 0xff) != opcode && (preop >> 8) != opcode) { |
| if (ispi->locked) |
| return -EINVAL; |
| writel(opcode, ispi->sregs + PREOP_OPTYPE); |
| } |
| |
| /* |
| * This enables atomic sequence on next SW sycle. Will |
| * be cleared after next operation. |
| */ |
| ispi->atomic_preopcode = opcode; |
| return 0; |
| } |
| |
| /* |
| * We hope that HW sequencer will do the right thing automatically and |
| * with the SW sequencer we cannot use preopcode anyway, so just ignore |
| * the Write Disable operation and pretend it was completed |
| * successfully. |
| */ |
| if (opcode == SPINOR_OP_WRDI) |
| return 0; |
| |
| writel(intel_spi_chip_addr(ispi, mem), ispi->base + FADDR); |
| |
| /* Write the value beforehand */ |
| ret = intel_spi_write_block(ispi, op->data.buf.out, nbytes); |
| if (ret) |
| return ret; |
| |
| if (ispi->swseq_reg) |
| return intel_spi_sw_cycle(ispi, opcode, nbytes, |
| OPTYPE_WRITE_NO_ADDR); |
| return intel_spi_hw_cycle(ispi, opcode, nbytes); |
| } |
| |
| static int intel_spi_read(struct intel_spi *ispi, const struct spi_mem *mem, |
| const struct intel_spi_mem_op *iop, |
| const struct spi_mem_op *op) |
| { |
| u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val; |
| size_t block_size, nbytes = op->data.nbytes; |
| void *read_buf = op->data.buf.in; |
| u32 val, status; |
| int ret; |
| |
| /* |
| * Atomic sequence is not expected with HW sequencer reads. Make |
| * sure it is cleared regardless. |
| */ |
| if (WARN_ON_ONCE(ispi->atomic_preopcode)) |
| ispi->atomic_preopcode = 0; |
| |
| while (nbytes > 0) { |
| block_size = min_t(size_t, nbytes, INTEL_SPI_FIFO_SZ); |
| |
| /* Read cannot cross 4K boundary */ |
| block_size = min_t(loff_t, addr + block_size, |
| round_up(addr + 1, SZ_4K)) - addr; |
| |
| writel(addr, ispi->base + FADDR); |
| |
| val = readl(ispi->base + HSFSTS_CTL); |
| val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK); |
| val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE; |
| val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT; |
| val |= HSFSTS_CTL_FCYCLE_READ; |
| val |= HSFSTS_CTL_FGO; |
| writel(val, ispi->base + HSFSTS_CTL); |
| |
| ret = intel_spi_wait_hw_busy(ispi); |
| if (ret) |
| return ret; |
| |
| status = readl(ispi->base + HSFSTS_CTL); |
| if (status & HSFSTS_CTL_FCERR) |
| ret = -EIO; |
| else if (status & HSFSTS_CTL_AEL) |
| ret = -EACCES; |
| |
| if (ret < 0) { |
| dev_err(ispi->dev, "read error: %x: %#x\n", addr, status); |
| return ret; |
| } |
| |
| ret = intel_spi_read_block(ispi, read_buf, block_size); |
| if (ret) |
| return ret; |
| |
| nbytes -= block_size; |
| addr += block_size; |
| read_buf += block_size; |
| } |
| |
| return 0; |
| } |
| |
| static int intel_spi_write(struct intel_spi *ispi, const struct spi_mem *mem, |
| const struct intel_spi_mem_op *iop, |
| const struct spi_mem_op *op) |
| { |
| u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val; |
| size_t block_size, nbytes = op->data.nbytes; |
| const void *write_buf = op->data.buf.out; |
| u32 val, status; |
| int ret; |
| |
| /* Not needed with HW sequencer write, make sure it is cleared */ |
| ispi->atomic_preopcode = 0; |
| |
| while (nbytes > 0) { |
| block_size = min_t(size_t, nbytes, INTEL_SPI_FIFO_SZ); |
| |
| /* Write cannot cross 4K boundary */ |
| block_size = min_t(loff_t, addr + block_size, |
| round_up(addr + 1, SZ_4K)) - addr; |
| |
| writel(addr, ispi->base + FADDR); |
| |
| val = readl(ispi->base + HSFSTS_CTL); |
| val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK); |
| val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE; |
| val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT; |
| val |= HSFSTS_CTL_FCYCLE_WRITE; |
| |
| ret = intel_spi_write_block(ispi, write_buf, block_size); |
| if (ret) { |
| dev_err(ispi->dev, "failed to write block\n"); |
| return ret; |
| } |
| |
| /* Start the write now */ |
| val |= HSFSTS_CTL_FGO; |
| writel(val, ispi->base + HSFSTS_CTL); |
| |
| ret = intel_spi_wait_hw_busy(ispi); |
| if (ret) { |
| dev_err(ispi->dev, "timeout\n"); |
| return ret; |
| } |
| |
| status = readl(ispi->base + HSFSTS_CTL); |
| if (status & HSFSTS_CTL_FCERR) |
| ret = -EIO; |
| else if (status & HSFSTS_CTL_AEL) |
| ret = -EACCES; |
| |
| if (ret < 0) { |
| dev_err(ispi->dev, "write error: %x: %#x\n", addr, status); |
| return ret; |
| } |
| |
| nbytes -= block_size; |
| addr += block_size; |
| write_buf += block_size; |
| } |
| |
| return 0; |
| } |
| |
| static int intel_spi_erase(struct intel_spi *ispi, const struct spi_mem *mem, |
| const struct intel_spi_mem_op *iop, |
| const struct spi_mem_op *op) |
| { |
| u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val; |
| u8 opcode = op->cmd.opcode; |
| u32 val, status; |
| int ret; |
| |
| writel(addr, ispi->base + FADDR); |
| |
| if (ispi->swseq_erase) |
| return intel_spi_sw_cycle(ispi, opcode, 0, |
| OPTYPE_WRITE_WITH_ADDR); |
| |
| /* Not needed with HW sequencer erase, make sure it is cleared */ |
| ispi->atomic_preopcode = 0; |
| |
| val = readl(ispi->base + HSFSTS_CTL); |
| val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK); |
| val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE; |
| val |= HSFSTS_CTL_FGO; |
| val |= iop->replacement_op; |
| writel(val, ispi->base + HSFSTS_CTL); |
| |
| ret = intel_spi_wait_hw_busy(ispi); |
| if (ret) |
| return ret; |
| |
| status = readl(ispi->base + HSFSTS_CTL); |
| if (status & HSFSTS_CTL_FCERR) |
| return -EIO; |
| if (status & HSFSTS_CTL_AEL) |
| return -EACCES; |
| |
| return 0; |
| } |
| |
| static bool intel_spi_cmp_mem_op(const struct intel_spi_mem_op *iop, |
| const struct spi_mem_op *op) |
| { |
| if (iop->mem_op.cmd.nbytes != op->cmd.nbytes || |
| iop->mem_op.cmd.buswidth != op->cmd.buswidth || |
| iop->mem_op.cmd.dtr != op->cmd.dtr || |
| iop->mem_op.cmd.opcode != op->cmd.opcode) |
| return false; |
| |
| if (iop->mem_op.addr.nbytes != op->addr.nbytes || |
| iop->mem_op.addr.dtr != op->addr.dtr) |
| return false; |
| |
| if (iop->mem_op.data.dir != op->data.dir || |
| iop->mem_op.data.dtr != op->data.dtr) |
| return false; |
| |
| if (iop->mem_op.data.dir != SPI_MEM_NO_DATA) { |
| if (iop->mem_op.data.buswidth != op->data.buswidth) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static const struct intel_spi_mem_op * |
| intel_spi_match_mem_op(struct intel_spi *ispi, const struct spi_mem_op *op) |
| { |
| const struct intel_spi_mem_op *iop; |
| |
| for (iop = ispi->mem_ops; iop->mem_op.cmd.opcode; iop++) { |
| if (intel_spi_cmp_mem_op(iop, op)) |
| break; |
| } |
| |
| return iop->mem_op.cmd.opcode ? iop : NULL; |
| } |
| |
| static bool intel_spi_supports_mem_op(struct spi_mem *mem, |
| const struct spi_mem_op *op) |
| { |
| struct intel_spi *ispi = spi_master_get_devdata(mem->spi->master); |
| const struct intel_spi_mem_op *iop; |
| |
| iop = intel_spi_match_mem_op(ispi, op); |
| if (!iop) { |
| dev_dbg(ispi->dev, "%#x not supported\n", op->cmd.opcode); |
| return false; |
| } |
| |
| /* |
| * For software sequencer check that the opcode is actually |
| * present in the opmenu if it is locked. |
| */ |
| if (ispi->swseq_reg && ispi->locked) { |
| int i; |
| |
| /* Check if it is in the locked opcodes list */ |
| for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++) { |
| if (ispi->opcodes[i] == op->cmd.opcode) |
| return true; |
| } |
| |
| dev_dbg(ispi->dev, "%#x not supported\n", op->cmd.opcode); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static int intel_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op) |
| { |
| struct intel_spi *ispi = spi_master_get_devdata(mem->spi->master); |
| const struct intel_spi_mem_op *iop; |
| |
| iop = intel_spi_match_mem_op(ispi, op); |
| if (!iop) |
| return -EOPNOTSUPP; |
| |
| return iop->exec_op(ispi, mem, iop, op); |
| } |
| |
| static const char *intel_spi_get_name(struct spi_mem *mem) |
| { |
| const struct intel_spi *ispi = spi_master_get_devdata(mem->spi->master); |
| |
| /* |
| * Return name of the flash controller device to be compatible |
| * with the MTD version. |
| */ |
| return dev_name(ispi->dev); |
| } |
| |
| static int intel_spi_dirmap_create(struct spi_mem_dirmap_desc *desc) |
| { |
| struct intel_spi *ispi = spi_master_get_devdata(desc->mem->spi->master); |
| const struct intel_spi_mem_op *iop; |
| |
| iop = intel_spi_match_mem_op(ispi, &desc->info.op_tmpl); |
| if (!iop) |
| return -EOPNOTSUPP; |
| |
| desc->priv = (void *)iop; |
| return 0; |
| } |
| |
| static ssize_t intel_spi_dirmap_read(struct spi_mem_dirmap_desc *desc, u64 offs, |
| size_t len, void *buf) |
| { |
| struct intel_spi *ispi = spi_master_get_devdata(desc->mem->spi->master); |
| const struct intel_spi_mem_op *iop = desc->priv; |
| struct spi_mem_op op = desc->info.op_tmpl; |
| int ret; |
| |
| /* Fill in the gaps */ |
| op.addr.val = offs; |
| op.data.nbytes = len; |
| op.data.buf.in = buf; |
| |
| ret = iop->exec_op(ispi, desc->mem, iop, &op); |
| return ret ? ret : len; |
| } |
| |
| static ssize_t intel_spi_dirmap_write(struct spi_mem_dirmap_desc *desc, u64 offs, |
| size_t len, const void *buf) |
| { |
| struct intel_spi *ispi = spi_master_get_devdata(desc->mem->spi->master); |
| const struct intel_spi_mem_op *iop = desc->priv; |
| struct spi_mem_op op = desc->info.op_tmpl; |
| int ret; |
| |
| op.addr.val = offs; |
| op.data.nbytes = len; |
| op.data.buf.out = buf; |
| |
| ret = iop->exec_op(ispi, desc->mem, iop, &op); |
| return ret ? ret : len; |
| } |
| |
| static const struct spi_controller_mem_ops intel_spi_mem_ops = { |
| .supports_op = intel_spi_supports_mem_op, |
| .exec_op = intel_spi_exec_mem_op, |
| .get_name = intel_spi_get_name, |
| .dirmap_create = intel_spi_dirmap_create, |
| .dirmap_read = intel_spi_dirmap_read, |
| .dirmap_write = intel_spi_dirmap_write, |
| }; |
| |
| #define INTEL_SPI_OP_ADDR(__nbytes) \ |
| { \ |
| .nbytes = __nbytes, \ |
| } |
| |
| #define INTEL_SPI_OP_NO_DATA \ |
| { \ |
| .dir = SPI_MEM_NO_DATA, \ |
| } |
| |
| #define INTEL_SPI_OP_DATA_IN(__buswidth) \ |
| { \ |
| .dir = SPI_MEM_DATA_IN, \ |
| .buswidth = __buswidth, \ |
| } |
| |
| #define INTEL_SPI_OP_DATA_OUT(__buswidth) \ |
| { \ |
| .dir = SPI_MEM_DATA_OUT, \ |
| .buswidth = __buswidth, \ |
| } |
| |
| #define INTEL_SPI_MEM_OP(__cmd, __addr, __data, __exec_op) \ |
| { \ |
| .mem_op = { \ |
| .cmd = __cmd, \ |
| .addr = __addr, \ |
| .data = __data, \ |
| }, \ |
| .exec_op = __exec_op, \ |
| } |
| |
| #define INTEL_SPI_MEM_OP_REPL(__cmd, __addr, __data, __exec_op, __repl) \ |
| { \ |
| .mem_op = { \ |
| .cmd = __cmd, \ |
| .addr = __addr, \ |
| .data = __data, \ |
| }, \ |
| .exec_op = __exec_op, \ |
| .replacement_op = __repl, \ |
| } |
| |
| /* |
| * The controller handles pretty much everything internally based on the |
| * SFDP data but we want to make sure we only support the operations |
| * actually possible. Only check buswidth and transfer direction, the |
| * core validates data. |
| */ |
| #define INTEL_SPI_GENERIC_OPS \ |
| /* Status register operations */ \ |
| INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1), \ |
| SPI_MEM_OP_NO_ADDR, \ |
| INTEL_SPI_OP_DATA_IN(1), \ |
| intel_spi_read_reg), \ |
| INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 1), \ |
| SPI_MEM_OP_NO_ADDR, \ |
| INTEL_SPI_OP_DATA_IN(1), \ |
| intel_spi_read_reg), \ |
| INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 1), \ |
| SPI_MEM_OP_NO_ADDR, \ |
| INTEL_SPI_OP_DATA_OUT(1), \ |
| intel_spi_write_reg), \ |
| /* Normal read */ \ |
| INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \ |
| INTEL_SPI_OP_ADDR(3), \ |
| INTEL_SPI_OP_DATA_IN(1), \ |
| intel_spi_read), \ |
| INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \ |
| INTEL_SPI_OP_ADDR(3), \ |
| INTEL_SPI_OP_DATA_IN(2), \ |
| intel_spi_read), \ |
| INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \ |
| INTEL_SPI_OP_ADDR(3), \ |
| INTEL_SPI_OP_DATA_IN(4), \ |
| intel_spi_read), \ |
| INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \ |
| INTEL_SPI_OP_ADDR(4), \ |
| INTEL_SPI_OP_DATA_IN(1), \ |
| intel_spi_read), \ |
| INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \ |
| INTEL_SPI_OP_ADDR(4), \ |
| INTEL_SPI_OP_DATA_IN(2), \ |
| intel_spi_read), \ |
| INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \ |
| INTEL_SPI_OP_ADDR(4), \ |
| INTEL_SPI_OP_DATA_IN(4), \ |
| intel_spi_read), \ |
| /* Fast read */ \ |
| INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \ |
| INTEL_SPI_OP_ADDR(3), \ |
| INTEL_SPI_OP_DATA_IN(1), \ |
| intel_spi_read), \ |
| INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \ |
| INTEL_SPI_OP_ADDR(3), \ |
| INTEL_SPI_OP_DATA_IN(2), \ |
| intel_spi_read), \ |
| INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \ |
| INTEL_SPI_OP_ADDR(3), \ |
| INTEL_SPI_OP_DATA_IN(4), \ |
| intel_spi_read), \ |
| INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \ |
| INTEL_SPI_OP_ADDR(4), \ |
| INTEL_SPI_OP_DATA_IN(1), \ |
| intel_spi_read), \ |
| INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \ |
| INTEL_SPI_OP_ADDR(4), \ |
| INTEL_SPI_OP_DATA_IN(2), \ |
| intel_spi_read), \ |
| INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \ |
| INTEL_SPI_OP_ADDR(4), \ |
| INTEL_SPI_OP_DATA_IN(4), \ |
| intel_spi_read), \ |
| /* Read with 4-byte address opcode */ \ |
| INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1), \ |
| INTEL_SPI_OP_ADDR(4), \ |
| INTEL_SPI_OP_DATA_IN(1), \ |
| intel_spi_read), \ |
| INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1), \ |
| INTEL_SPI_OP_ADDR(4), \ |
| INTEL_SPI_OP_DATA_IN(2), \ |
| intel_spi_read), \ |
| INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1), \ |
| INTEL_SPI_OP_ADDR(4), \ |
| INTEL_SPI_OP_DATA_IN(4), \ |
| intel_spi_read), \ |
| /* Fast read with 4-byte address opcode */ \ |
| INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1), \ |
| INTEL_SPI_OP_ADDR(4), \ |
| INTEL_SPI_OP_DATA_IN(1), \ |
| intel_spi_read), \ |
| INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1), \ |
| INTEL_SPI_OP_ADDR(4), \ |
| INTEL_SPI_OP_DATA_IN(2), \ |
| intel_spi_read), \ |
| INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1), \ |
| INTEL_SPI_OP_ADDR(4), \ |
| INTEL_SPI_OP_DATA_IN(4), \ |
| intel_spi_read), \ |
| /* Write operations */ \ |
| INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP, 1), \ |
| INTEL_SPI_OP_ADDR(3), \ |
| INTEL_SPI_OP_DATA_OUT(1), \ |
| intel_spi_write), \ |
| INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP, 1), \ |
| INTEL_SPI_OP_ADDR(4), \ |
| INTEL_SPI_OP_DATA_OUT(1), \ |
| intel_spi_write), \ |
| INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP_4B, 1), \ |
| INTEL_SPI_OP_ADDR(4), \ |
| INTEL_SPI_OP_DATA_OUT(1), \ |
| intel_spi_write), \ |
| INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 1), \ |
| SPI_MEM_OP_NO_ADDR, \ |
| SPI_MEM_OP_NO_DATA, \ |
| intel_spi_write_reg), \ |
| INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 1), \ |
| SPI_MEM_OP_NO_ADDR, \ |
| SPI_MEM_OP_NO_DATA, \ |
| intel_spi_write_reg), \ |
| /* Erase operations */ \ |
| INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K, 1), \ |
| INTEL_SPI_OP_ADDR(3), \ |
| SPI_MEM_OP_NO_DATA, \ |
| intel_spi_erase, \ |
| HSFSTS_CTL_FCYCLE_ERASE), \ |
| INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K, 1), \ |
| INTEL_SPI_OP_ADDR(4), \ |
| SPI_MEM_OP_NO_DATA, \ |
| intel_spi_erase, \ |
| HSFSTS_CTL_FCYCLE_ERASE), \ |
| INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K_4B, 1), \ |
| INTEL_SPI_OP_ADDR(4), \ |
| SPI_MEM_OP_NO_DATA, \ |
| intel_spi_erase, \ |
| HSFSTS_CTL_FCYCLE_ERASE) \ |
| |
| static const struct intel_spi_mem_op generic_mem_ops[] = { |
| INTEL_SPI_GENERIC_OPS, |
| { }, |
| }; |
| |
| static const struct intel_spi_mem_op erase_64k_mem_ops[] = { |
| INTEL_SPI_GENERIC_OPS, |
| /* 64k sector erase operations */ |
| INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE, 1), |
| INTEL_SPI_OP_ADDR(3), |
| SPI_MEM_OP_NO_DATA, |
| intel_spi_erase, |
| HSFSTS_CTL_FCYCLE_ERASE_64K), |
| INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE, 1), |
| INTEL_SPI_OP_ADDR(4), |
| SPI_MEM_OP_NO_DATA, |
| intel_spi_erase, |
| HSFSTS_CTL_FCYCLE_ERASE_64K), |
| INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE_4B, 1), |
| INTEL_SPI_OP_ADDR(4), |
| SPI_MEM_OP_NO_DATA, |
| intel_spi_erase, |
| HSFSTS_CTL_FCYCLE_ERASE_64K), |
| { }, |
| }; |
| |
| static int intel_spi_init(struct intel_spi *ispi) |
| { |
| u32 opmenu0, opmenu1, lvscc, uvscc, val; |
| bool erase_64k = false; |
| int i; |
| |
| switch (ispi->info->type) { |
| case INTEL_SPI_BYT: |
| ispi->sregs = ispi->base + BYT_SSFSTS_CTL; |
| ispi->pregs = ispi->base + BYT_PR; |
| ispi->nregions = BYT_FREG_NUM; |
| ispi->pr_num = BYT_PR_NUM; |
| ispi->swseq_reg = true; |
| break; |
| |
| case INTEL_SPI_LPT: |
| ispi->sregs = ispi->base + LPT_SSFSTS_CTL; |
| ispi->pregs = ispi->base + LPT_PR; |
| ispi->nregions = LPT_FREG_NUM; |
| ispi->pr_num = LPT_PR_NUM; |
| ispi->swseq_reg = true; |
| break; |
| |
| case INTEL_SPI_BXT: |
| ispi->sregs = ispi->base + BXT_SSFSTS_CTL; |
| ispi->pregs = ispi->base + BXT_PR; |
| ispi->nregions = BXT_FREG_NUM; |
| ispi->pr_num = BXT_PR_NUM; |
| erase_64k = true; |
| break; |
| |
| case INTEL_SPI_CNL: |
| ispi->sregs = NULL; |
| ispi->pregs = ispi->base + CNL_PR; |
| ispi->nregions = CNL_FREG_NUM; |
| ispi->pr_num = CNL_PR_NUM; |
| erase_64k = true; |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| /* Try to disable write protection if user asked to do so */ |
| if (writeable && !intel_spi_set_writeable(ispi)) { |
| dev_warn(ispi->dev, "can't disable chip write protection\n"); |
| writeable = false; |
| } |
| |
| /* Disable #SMI generation from HW sequencer */ |
| val = readl(ispi->base + HSFSTS_CTL); |
| val &= ~HSFSTS_CTL_FSMIE; |
| writel(val, ispi->base + HSFSTS_CTL); |
| |
| /* |
| * Determine whether erase operation should use HW or SW sequencer. |
| * |
| * The HW sequencer has a predefined list of opcodes, with only the |
| * erase opcode being programmable in LVSCC and UVSCC registers. |
| * If these registers don't contain a valid erase opcode, erase |
| * cannot be done using HW sequencer. |
| */ |
| lvscc = readl(ispi->base + LVSCC); |
| uvscc = readl(ispi->base + UVSCC); |
| if (!(lvscc & ERASE_OPCODE_MASK) || !(uvscc & ERASE_OPCODE_MASK)) |
| ispi->swseq_erase = true; |
| /* SPI controller on Intel BXT supports 64K erase opcode */ |
| if (ispi->info->type == INTEL_SPI_BXT && !ispi->swseq_erase) |
| if (!(lvscc & ERASE_64K_OPCODE_MASK) || |
| !(uvscc & ERASE_64K_OPCODE_MASK)) |
| erase_64k = false; |
| |
| if (!ispi->sregs && (ispi->swseq_reg || ispi->swseq_erase)) { |
| dev_err(ispi->dev, "software sequencer not supported, but required\n"); |
| return -EINVAL; |
| } |
| |
| /* |
| * Some controllers can only do basic operations using hardware |
| * sequencer. All other operations are supposed to be carried out |
| * using software sequencer. |
| */ |
| if (ispi->swseq_reg) { |
| /* Disable #SMI generation from SW sequencer */ |
| val = readl(ispi->sregs + SSFSTS_CTL); |
| val &= ~SSFSTS_CTL_FSMIE; |
| writel(val, ispi->sregs + SSFSTS_CTL); |
| } |
| |
| /* Check controller's lock status */ |
| val = readl(ispi->base + HSFSTS_CTL); |
| ispi->locked = !!(val & HSFSTS_CTL_FLOCKDN); |
| |
| if (ispi->locked && ispi->sregs) { |
| /* |
| * BIOS programs allowed opcodes and then locks down the |
| * register. So read back what opcodes it decided to support. |
| * That's the set we are going to support as well. |
| */ |
| opmenu0 = readl(ispi->sregs + OPMENU0); |
| opmenu1 = readl(ispi->sregs + OPMENU1); |
| |
| if (opmenu0 && opmenu1) { |
| for (i = 0; i < ARRAY_SIZE(ispi->opcodes) / 2; i++) { |
| ispi->opcodes[i] = opmenu0 >> i * 8; |
| ispi->opcodes[i + 4] = opmenu1 >> i * 8; |
| } |
| } |
| } |
| |
| if (erase_64k) { |
| dev_dbg(ispi->dev, "Using erase_64k memory operations"); |
| ispi->mem_ops = erase_64k_mem_ops; |
| } else { |
| dev_dbg(ispi->dev, "Using generic memory operations"); |
| ispi->mem_ops = generic_mem_ops; |
| } |
| |
| intel_spi_dump_regs(ispi); |
| return 0; |
| } |
| |
| static bool intel_spi_is_protected(const struct intel_spi *ispi, |
| unsigned int base, unsigned int limit) |
| { |
| int i; |
| |
| for (i = 0; i < ispi->pr_num; i++) { |
| u32 pr_base, pr_limit, pr_value; |
| |
| pr_value = readl(ispi->pregs + PR(i)); |
| if (!(pr_value & (PR_WPE | PR_RPE))) |
| continue; |
| |
| pr_limit = (pr_value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT; |
| pr_base = pr_value & PR_BASE_MASK; |
| |
| if (pr_base >= base && pr_limit <= limit) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* |
| * There will be a single partition holding all enabled flash regions. We |
| * call this "BIOS". |
| */ |
| static void intel_spi_fill_partition(struct intel_spi *ispi, |
| struct mtd_partition *part) |
| { |
| u64 end; |
| int i; |
| |
| memset(part, 0, sizeof(*part)); |
| |
| /* Start from the mandatory descriptor region */ |
| part->size = 4096; |
| part->name = "BIOS"; |
| |
| /* |
| * Now try to find where this partition ends based on the flash |
| * region registers. |
| */ |
| for (i = 1; i < ispi->nregions; i++) { |
| u32 region, base, limit; |
| |
| region = readl(ispi->base + FREG(i)); |
| base = region & FREG_BASE_MASK; |
| limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT; |
| |
| if (base >= limit || limit == 0) |
| continue; |
| |
| /* |
| * If any of the regions have protection bits set, make the |
| * whole partition read-only to be on the safe side. |
| * |
| * Also if the user did not ask the chip to be writeable |
| * mask the bit too. |
| */ |
| if (!writeable || intel_spi_is_protected(ispi, base, limit)) |
| part->mask_flags |= MTD_WRITEABLE; |
| |
| end = (limit << 12) + 4096; |
| if (end > part->size) |
| part->size = end; |
| } |
| } |
| |
| static int intel_spi_read_desc(struct intel_spi *ispi) |
| { |
| struct spi_mem_op op = |
| SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 0), |
| SPI_MEM_OP_ADDR(3, 0, 0), |
| SPI_MEM_OP_NO_DUMMY, |
| SPI_MEM_OP_DATA_IN(0, NULL, 0)); |
| u32 buf[2], nc, fcba, flcomp; |
| ssize_t ret; |
| |
| op.addr.val = 0x10; |
| op.data.buf.in = buf; |
| op.data.nbytes = sizeof(buf); |
| |
| ret = intel_spi_read(ispi, NULL, NULL, &op); |
| if (ret) { |
| dev_warn(ispi->dev, "failed to read descriptor\n"); |
| return ret; |
| } |
| |
| dev_dbg(ispi->dev, "FLVALSIG=0x%08x\n", buf[0]); |
| dev_dbg(ispi->dev, "FLMAP0=0x%08x\n", buf[1]); |
| |
| if (buf[0] != FLVALSIG_MAGIC) { |
| dev_warn(ispi->dev, "descriptor signature not valid\n"); |
| return -ENODEV; |
| } |
| |
| fcba = (buf[1] & FLMAP0_FCBA_MASK) << 4; |
| dev_dbg(ispi->dev, "FCBA=%#x\n", fcba); |
| |
| op.addr.val = fcba; |
| op.data.buf.in = &flcomp; |
| op.data.nbytes = sizeof(flcomp); |
| |
| ret = intel_spi_read(ispi, NULL, NULL, &op); |
| if (ret) { |
| dev_warn(ispi->dev, "failed to read FLCOMP\n"); |
| return -ENODEV; |
| } |
| |
| dev_dbg(ispi->dev, "FLCOMP=0x%08x\n", flcomp); |
| |
| switch (flcomp & FLCOMP_C0DEN_MASK) { |
| case FLCOMP_C0DEN_512K: |
| ispi->chip0_size = SZ_512K; |
| break; |
| case FLCOMP_C0DEN_1M: |
| ispi->chip0_size = SZ_1M; |
| break; |
| case FLCOMP_C0DEN_2M: |
| ispi->chip0_size = SZ_2M; |
| break; |
| case FLCOMP_C0DEN_4M: |
| ispi->chip0_size = SZ_4M; |
| break; |
| case FLCOMP_C0DEN_8M: |
| ispi->chip0_size = SZ_8M; |
| break; |
| case FLCOMP_C0DEN_16M: |
| ispi->chip0_size = SZ_16M; |
| break; |
| case FLCOMP_C0DEN_32M: |
| ispi->chip0_size = SZ_32M; |
| break; |
| case FLCOMP_C0DEN_64M: |
| ispi->chip0_size = SZ_64M; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| dev_dbg(ispi->dev, "chip0 size %zd KB\n", ispi->chip0_size / SZ_1K); |
| |
| nc = (buf[1] & FLMAP0_NC_MASK) >> FLMAP0_NC_SHIFT; |
| if (!nc) |
| ispi->master->num_chipselect = 1; |
| else if (nc == 1) |
| ispi->master->num_chipselect = 2; |
| else |
| return -EINVAL; |
| |
| dev_dbg(ispi->dev, "%u flash components found\n", |
| ispi->master->num_chipselect); |
| return 0; |
| } |
| |
| static int intel_spi_populate_chip(struct intel_spi *ispi) |
| { |
| struct flash_platform_data *pdata; |
| struct spi_board_info chip; |
| int ret; |
| |
| pdata = devm_kzalloc(ispi->dev, sizeof(*pdata), GFP_KERNEL); |
| if (!pdata) |
| return -ENOMEM; |
| |
| pdata->nr_parts = 1; |
| pdata->parts = devm_kcalloc(ispi->dev, pdata->nr_parts, |
| sizeof(*pdata->parts), GFP_KERNEL); |
| if (!pdata->parts) |
| return -ENOMEM; |
| |
| intel_spi_fill_partition(ispi, pdata->parts); |
| |
| memset(&chip, 0, sizeof(chip)); |
| snprintf(chip.modalias, 8, "spi-nor"); |
| chip.platform_data = pdata; |
| |
| if (!spi_new_device(ispi->master, &chip)) |
| return -ENODEV; |
| |
| /* Add the second chip if present */ |
| if (ispi->master->num_chipselect < 2) |
| return 0; |
| |
| ret = intel_spi_read_desc(ispi); |
| if (ret) |
| return ret; |
| |
| chip.platform_data = NULL; |
| chip.chip_select = 1; |
| |
| if (!spi_new_device(ispi->master, &chip)) |
| return -ENODEV; |
| return 0; |
| } |
| |
| /** |
| * intel_spi_probe() - Probe the Intel SPI flash controller |
| * @dev: Pointer to the parent device |
| * @mem: MMIO resource |
| * @info: Platform specific information |
| * |
| * Probes Intel SPI flash controller and creates the flash chip device. |
| * Returns %0 on success and negative errno in case of failure. |
| */ |
| int intel_spi_probe(struct device *dev, struct resource *mem, |
| const struct intel_spi_boardinfo *info) |
| { |
| struct spi_controller *master; |
| struct intel_spi *ispi; |
| int ret; |
| |
| master = devm_spi_alloc_master(dev, sizeof(*ispi)); |
| if (!master) |
| return -ENOMEM; |
| |
| master->mem_ops = &intel_spi_mem_ops; |
| |
| ispi = spi_master_get_devdata(master); |
| |
| ispi->base = devm_ioremap_resource(dev, mem); |
| if (IS_ERR(ispi->base)) |
| return PTR_ERR(ispi->base); |
| |
| ispi->dev = dev; |
| ispi->master = master; |
| ispi->info = info; |
| |
| ret = intel_spi_init(ispi); |
| if (ret) |
| return ret; |
| |
| ret = devm_spi_register_master(dev, master); |
| if (ret) |
| return ret; |
| |
| return intel_spi_populate_chip(ispi); |
| } |
| EXPORT_SYMBOL_GPL(intel_spi_probe); |
| |
| MODULE_DESCRIPTION("Intel PCH/PCU SPI flash core driver"); |
| MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>"); |
| MODULE_LICENSE("GPL v2"); |