| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * zs.c: Serial port driver for IOASIC DECstations. |
| * |
| * Derived from drivers/sbus/char/sunserial.c by Paul Mackerras. |
| * Derived from drivers/macintosh/macserial.c by Harald Koerfgen. |
| * |
| * DECstation changes |
| * Copyright (C) 1998-2000 Harald Koerfgen |
| * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki |
| * |
| * For the rest of the code the original Copyright applies: |
| * Copyright (C) 1996 Paul Mackerras (Paul.Mackerras@cs.anu.edu.au) |
| * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) |
| * |
| * |
| * Note: for IOASIC systems the wiring is as follows: |
| * |
| * mouse/keyboard: |
| * DIN-7 MJ-4 signal SCC |
| * 2 1 TxD <- A.TxD |
| * 3 4 RxD -> A.RxD |
| * |
| * EIA-232/EIA-423: |
| * DB-25 MMJ-6 signal SCC |
| * 2 2 TxD <- B.TxD |
| * 3 5 RxD -> B.RxD |
| * 4 RTS <- ~A.RTS |
| * 5 CTS -> ~B.CTS |
| * 6 6 DSR -> ~A.SYNC |
| * 8 CD -> ~B.DCD |
| * 12 DSRS(DCE) -> ~A.CTS (*) |
| * 15 TxC -> B.TxC |
| * 17 RxC -> B.RxC |
| * 20 1 DTR <- ~A.DTR |
| * 22 RI -> ~A.DCD |
| * 23 DSRS(DTE) <- ~B.RTS |
| * |
| * (*) EIA-232 defines the signal at this pin to be SCD, while DSRS(DCE) |
| * is shared with DSRS(DTE) at pin 23. |
| * |
| * As you can immediately notice the wiring of the RTS, DTR and DSR signals |
| * is a bit odd. This makes the handling of port B unnecessarily |
| * complicated and prevents the use of some automatic modes of operation. |
| */ |
| |
| #include <linux/bug.h> |
| #include <linux/console.h> |
| #include <linux/delay.h> |
| #include <linux/errno.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/ioport.h> |
| #include <linux/irqflags.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/major.h> |
| #include <linux/serial.h> |
| #include <linux/serial_core.h> |
| #include <linux/spinlock.h> |
| #include <linux/sysrq.h> |
| #include <linux/tty.h> |
| #include <linux/tty_flip.h> |
| #include <linux/types.h> |
| |
| #include <linux/atomic.h> |
| |
| #include <asm/dec/interrupts.h> |
| #include <asm/dec/ioasic_addrs.h> |
| #include <asm/dec/system.h> |
| |
| #include "zs.h" |
| |
| |
| MODULE_AUTHOR("Maciej W. Rozycki <macro@linux-mips.org>"); |
| MODULE_DESCRIPTION("DECstation Z85C30 serial driver"); |
| MODULE_LICENSE("GPL"); |
| |
| |
| static char zs_name[] __initdata = "DECstation Z85C30 serial driver version "; |
| static char zs_version[] __initdata = "0.10"; |
| |
| /* |
| * It would be nice to dynamically allocate everything that |
| * depends on ZS_NUM_SCCS, so we could support any number of |
| * Z85C30s, but for now... |
| */ |
| #define ZS_NUM_SCCS 2 /* Max # of ZS chips supported. */ |
| #define ZS_NUM_CHAN 2 /* 2 channels per chip. */ |
| #define ZS_CHAN_A 0 /* Index of the channel A. */ |
| #define ZS_CHAN_B 1 /* Index of the channel B. */ |
| #define ZS_CHAN_IO_SIZE 8 /* IOMEM space size. */ |
| #define ZS_CHAN_IO_STRIDE 4 /* Register alignment. */ |
| #define ZS_CHAN_IO_OFFSET 1 /* The SCC resides on the high byte |
| of the 16-bit IOBUS. */ |
| #define ZS_CLOCK 7372800 /* Z85C30 PCLK input clock rate. */ |
| |
| #define to_zport(uport) container_of(uport, struct zs_port, port) |
| |
| struct zs_parms { |
| resource_size_t scc[ZS_NUM_SCCS]; |
| int irq[ZS_NUM_SCCS]; |
| }; |
| |
| static struct zs_scc zs_sccs[ZS_NUM_SCCS]; |
| |
| static u8 zs_init_regs[ZS_NUM_REGS] __initdata = { |
| 0, /* write 0 */ |
| PAR_SPEC, /* write 1 */ |
| 0, /* write 2 */ |
| 0, /* write 3 */ |
| X16CLK | SB1, /* write 4 */ |
| 0, /* write 5 */ |
| 0, 0, 0, /* write 6, 7, 8 */ |
| MIE | DLC | NV, /* write 9 */ |
| NRZ, /* write 10 */ |
| TCBR | RCBR, /* write 11 */ |
| 0, 0, /* BRG time constant, write 12 + 13 */ |
| BRSRC | BRENABL, /* write 14 */ |
| 0, /* write 15 */ |
| }; |
| |
| /* |
| * Debugging. |
| */ |
| #undef ZS_DEBUG_REGS |
| |
| |
| /* |
| * Reading and writing Z85C30 registers. |
| */ |
| static void recovery_delay(void) |
| { |
| udelay(2); |
| } |
| |
| static u8 read_zsreg(struct zs_port *zport, int reg) |
| { |
| void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET; |
| u8 retval; |
| |
| if (reg != 0) { |
| writeb(reg & 0xf, control); |
| fast_iob(); |
| recovery_delay(); |
| } |
| retval = readb(control); |
| recovery_delay(); |
| return retval; |
| } |
| |
| static void write_zsreg(struct zs_port *zport, int reg, u8 value) |
| { |
| void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET; |
| |
| if (reg != 0) { |
| writeb(reg & 0xf, control); |
| fast_iob(); recovery_delay(); |
| } |
| writeb(value, control); |
| fast_iob(); |
| recovery_delay(); |
| return; |
| } |
| |
| static u8 read_zsdata(struct zs_port *zport) |
| { |
| void __iomem *data = zport->port.membase + |
| ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET; |
| u8 retval; |
| |
| retval = readb(data); |
| recovery_delay(); |
| return retval; |
| } |
| |
| static void write_zsdata(struct zs_port *zport, u8 value) |
| { |
| void __iomem *data = zport->port.membase + |
| ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET; |
| |
| writeb(value, data); |
| fast_iob(); |
| recovery_delay(); |
| return; |
| } |
| |
| #ifdef ZS_DEBUG_REGS |
| void zs_dump(void) |
| { |
| struct zs_port *zport; |
| int i, j; |
| |
| for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) { |
| zport = &zs_sccs[i / ZS_NUM_CHAN].zport[i % ZS_NUM_CHAN]; |
| |
| if (!zport->scc) |
| continue; |
| |
| for (j = 0; j < 16; j++) |
| printk("W%-2d = 0x%02x\t", j, zport->regs[j]); |
| printk("\n"); |
| for (j = 0; j < 16; j++) |
| printk("R%-2d = 0x%02x\t", j, read_zsreg(zport, j)); |
| printk("\n\n"); |
| } |
| } |
| #endif |
| |
| |
| static void zs_spin_lock_cond_irq(spinlock_t *lock, int irq) |
| { |
| if (irq) |
| spin_lock_irq(lock); |
| else |
| spin_lock(lock); |
| } |
| |
| static void zs_spin_unlock_cond_irq(spinlock_t *lock, int irq) |
| { |
| if (irq) |
| spin_unlock_irq(lock); |
| else |
| spin_unlock(lock); |
| } |
| |
| static int zs_receive_drain(struct zs_port *zport) |
| { |
| int loops = 10000; |
| |
| while ((read_zsreg(zport, R0) & Rx_CH_AV) && --loops) |
| read_zsdata(zport); |
| return loops; |
| } |
| |
| static int zs_transmit_drain(struct zs_port *zport, int irq) |
| { |
| struct zs_scc *scc = zport->scc; |
| int loops = 10000; |
| |
| while (!(read_zsreg(zport, R0) & Tx_BUF_EMP) && --loops) { |
| zs_spin_unlock_cond_irq(&scc->zlock, irq); |
| udelay(2); |
| zs_spin_lock_cond_irq(&scc->zlock, irq); |
| } |
| return loops; |
| } |
| |
| static int zs_line_drain(struct zs_port *zport, int irq) |
| { |
| struct zs_scc *scc = zport->scc; |
| int loops = 10000; |
| |
| while (!(read_zsreg(zport, R1) & ALL_SNT) && --loops) { |
| zs_spin_unlock_cond_irq(&scc->zlock, irq); |
| udelay(2); |
| zs_spin_lock_cond_irq(&scc->zlock, irq); |
| } |
| return loops; |
| } |
| |
| |
| static void load_zsregs(struct zs_port *zport, u8 *regs, int irq) |
| { |
| /* Let the current transmission finish. */ |
| zs_line_drain(zport, irq); |
| /* Load 'em up. */ |
| write_zsreg(zport, R3, regs[3] & ~RxENABLE); |
| write_zsreg(zport, R5, regs[5] & ~TxENAB); |
| write_zsreg(zport, R4, regs[4]); |
| write_zsreg(zport, R9, regs[9]); |
| write_zsreg(zport, R1, regs[1]); |
| write_zsreg(zport, R2, regs[2]); |
| write_zsreg(zport, R10, regs[10]); |
| write_zsreg(zport, R14, regs[14] & ~BRENABL); |
| write_zsreg(zport, R11, regs[11]); |
| write_zsreg(zport, R12, regs[12]); |
| write_zsreg(zport, R13, regs[13]); |
| write_zsreg(zport, R14, regs[14]); |
| write_zsreg(zport, R15, regs[15]); |
| if (regs[3] & RxENABLE) |
| write_zsreg(zport, R3, regs[3]); |
| if (regs[5] & TxENAB) |
| write_zsreg(zport, R5, regs[5]); |
| return; |
| } |
| |
| |
| /* |
| * Status handling routines. |
| */ |
| |
| /* |
| * zs_tx_empty() -- get the transmitter empty status |
| * |
| * Purpose: Let user call ioctl() to get info when the UART physically |
| * is emptied. On bus types like RS485, the transmitter must |
| * release the bus after transmitting. This must be done when |
| * the transmit shift register is empty, not be done when the |
| * transmit holding register is empty. This functionality |
| * allows an RS485 driver to be written in user space. |
| */ |
| static unsigned int zs_tx_empty(struct uart_port *uport) |
| { |
| struct zs_port *zport = to_zport(uport); |
| struct zs_scc *scc = zport->scc; |
| unsigned long flags; |
| u8 status; |
| |
| spin_lock_irqsave(&scc->zlock, flags); |
| status = read_zsreg(zport, R1); |
| spin_unlock_irqrestore(&scc->zlock, flags); |
| |
| return status & ALL_SNT ? TIOCSER_TEMT : 0; |
| } |
| |
| static unsigned int zs_raw_get_ab_mctrl(struct zs_port *zport_a, |
| struct zs_port *zport_b) |
| { |
| u8 status_a, status_b; |
| unsigned int mctrl; |
| |
| status_a = read_zsreg(zport_a, R0); |
| status_b = read_zsreg(zport_b, R0); |
| |
| mctrl = ((status_b & CTS) ? TIOCM_CTS : 0) | |
| ((status_b & DCD) ? TIOCM_CAR : 0) | |
| ((status_a & DCD) ? TIOCM_RNG : 0) | |
| ((status_a & SYNC_HUNT) ? TIOCM_DSR : 0); |
| |
| return mctrl; |
| } |
| |
| static unsigned int zs_raw_get_mctrl(struct zs_port *zport) |
| { |
| struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A]; |
| |
| return zport != zport_a ? zs_raw_get_ab_mctrl(zport_a, zport) : 0; |
| } |
| |
| static unsigned int zs_raw_xor_mctrl(struct zs_port *zport) |
| { |
| struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A]; |
| unsigned int mmask, mctrl, delta; |
| u8 mask_a, mask_b; |
| |
| if (zport == zport_a) |
| return 0; |
| |
| mask_a = zport_a->regs[15]; |
| mask_b = zport->regs[15]; |
| |
| mmask = ((mask_b & CTSIE) ? TIOCM_CTS : 0) | |
| ((mask_b & DCDIE) ? TIOCM_CAR : 0) | |
| ((mask_a & DCDIE) ? TIOCM_RNG : 0) | |
| ((mask_a & SYNCIE) ? TIOCM_DSR : 0); |
| |
| mctrl = zport->mctrl; |
| if (mmask) { |
| mctrl &= ~mmask; |
| mctrl |= zs_raw_get_ab_mctrl(zport_a, zport) & mmask; |
| } |
| |
| delta = mctrl ^ zport->mctrl; |
| if (delta) |
| zport->mctrl = mctrl; |
| |
| return delta; |
| } |
| |
| static unsigned int zs_get_mctrl(struct uart_port *uport) |
| { |
| struct zs_port *zport = to_zport(uport); |
| struct zs_scc *scc = zport->scc; |
| unsigned int mctrl; |
| |
| spin_lock(&scc->zlock); |
| mctrl = zs_raw_get_mctrl(zport); |
| spin_unlock(&scc->zlock); |
| |
| return mctrl; |
| } |
| |
| static void zs_set_mctrl(struct uart_port *uport, unsigned int mctrl) |
| { |
| struct zs_port *zport = to_zport(uport); |
| struct zs_scc *scc = zport->scc; |
| struct zs_port *zport_a = &scc->zport[ZS_CHAN_A]; |
| u8 oldloop, newloop; |
| |
| spin_lock(&scc->zlock); |
| if (zport != zport_a) { |
| if (mctrl & TIOCM_DTR) |
| zport_a->regs[5] |= DTR; |
| else |
| zport_a->regs[5] &= ~DTR; |
| if (mctrl & TIOCM_RTS) |
| zport_a->regs[5] |= RTS; |
| else |
| zport_a->regs[5] &= ~RTS; |
| write_zsreg(zport_a, R5, zport_a->regs[5]); |
| } |
| |
| /* Rarely modified, so don't poke at hardware unless necessary. */ |
| oldloop = zport->regs[14]; |
| newloop = oldloop; |
| if (mctrl & TIOCM_LOOP) |
| newloop |= LOOPBAK; |
| else |
| newloop &= ~LOOPBAK; |
| if (newloop != oldloop) { |
| zport->regs[14] = newloop; |
| write_zsreg(zport, R14, zport->regs[14]); |
| } |
| spin_unlock(&scc->zlock); |
| } |
| |
| static void zs_raw_stop_tx(struct zs_port *zport) |
| { |
| write_zsreg(zport, R0, RES_Tx_P); |
| zport->tx_stopped = 1; |
| } |
| |
| static void zs_stop_tx(struct uart_port *uport) |
| { |
| struct zs_port *zport = to_zport(uport); |
| struct zs_scc *scc = zport->scc; |
| |
| spin_lock(&scc->zlock); |
| zs_raw_stop_tx(zport); |
| spin_unlock(&scc->zlock); |
| } |
| |
| static void zs_raw_transmit_chars(struct zs_port *); |
| |
| static void zs_start_tx(struct uart_port *uport) |
| { |
| struct zs_port *zport = to_zport(uport); |
| struct zs_scc *scc = zport->scc; |
| |
| spin_lock(&scc->zlock); |
| if (zport->tx_stopped) { |
| zs_transmit_drain(zport, 0); |
| zport->tx_stopped = 0; |
| zs_raw_transmit_chars(zport); |
| } |
| spin_unlock(&scc->zlock); |
| } |
| |
| static void zs_stop_rx(struct uart_port *uport) |
| { |
| struct zs_port *zport = to_zport(uport); |
| struct zs_scc *scc = zport->scc; |
| struct zs_port *zport_a = &scc->zport[ZS_CHAN_A]; |
| |
| spin_lock(&scc->zlock); |
| zport->regs[15] &= ~BRKIE; |
| zport->regs[1] &= ~(RxINT_MASK | TxINT_ENAB); |
| zport->regs[1] |= RxINT_DISAB; |
| |
| if (zport != zport_a) { |
| /* A-side DCD tracks RI and SYNC tracks DSR. */ |
| zport_a->regs[15] &= ~(DCDIE | SYNCIE); |
| write_zsreg(zport_a, R15, zport_a->regs[15]); |
| if (!(zport_a->regs[15] & BRKIE)) { |
| zport_a->regs[1] &= ~EXT_INT_ENAB; |
| write_zsreg(zport_a, R1, zport_a->regs[1]); |
| } |
| |
| /* This-side DCD tracks DCD and CTS tracks CTS. */ |
| zport->regs[15] &= ~(DCDIE | CTSIE); |
| zport->regs[1] &= ~EXT_INT_ENAB; |
| } else { |
| /* DCD tracks RI and SYNC tracks DSR for the B side. */ |
| if (!(zport->regs[15] & (DCDIE | SYNCIE))) |
| zport->regs[1] &= ~EXT_INT_ENAB; |
| } |
| |
| write_zsreg(zport, R15, zport->regs[15]); |
| write_zsreg(zport, R1, zport->regs[1]); |
| spin_unlock(&scc->zlock); |
| } |
| |
| static void zs_enable_ms(struct uart_port *uport) |
| { |
| struct zs_port *zport = to_zport(uport); |
| struct zs_scc *scc = zport->scc; |
| struct zs_port *zport_a = &scc->zport[ZS_CHAN_A]; |
| |
| if (zport == zport_a) |
| return; |
| |
| spin_lock(&scc->zlock); |
| |
| /* Clear Ext interrupts if not being handled already. */ |
| if (!(zport_a->regs[1] & EXT_INT_ENAB)) |
| write_zsreg(zport_a, R0, RES_EXT_INT); |
| |
| /* A-side DCD tracks RI and SYNC tracks DSR. */ |
| zport_a->regs[1] |= EXT_INT_ENAB; |
| zport_a->regs[15] |= DCDIE | SYNCIE; |
| |
| /* This-side DCD tracks DCD and CTS tracks CTS. */ |
| zport->regs[15] |= DCDIE | CTSIE; |
| |
| zs_raw_xor_mctrl(zport); |
| |
| write_zsreg(zport_a, R1, zport_a->regs[1]); |
| write_zsreg(zport_a, R15, zport_a->regs[15]); |
| write_zsreg(zport, R15, zport->regs[15]); |
| spin_unlock(&scc->zlock); |
| } |
| |
| static void zs_break_ctl(struct uart_port *uport, int break_state) |
| { |
| struct zs_port *zport = to_zport(uport); |
| struct zs_scc *scc = zport->scc; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&scc->zlock, flags); |
| if (break_state == -1) |
| zport->regs[5] |= SND_BRK; |
| else |
| zport->regs[5] &= ~SND_BRK; |
| write_zsreg(zport, R5, zport->regs[5]); |
| spin_unlock_irqrestore(&scc->zlock, flags); |
| } |
| |
| |
| /* |
| * Interrupt handling routines. |
| */ |
| #define Rx_BRK 0x0100 /* BREAK event software flag. */ |
| #define Rx_SYS 0x0200 /* SysRq event software flag. */ |
| |
| static void zs_receive_chars(struct zs_port *zport) |
| { |
| struct uart_port *uport = &zport->port; |
| struct zs_scc *scc = zport->scc; |
| struct uart_icount *icount; |
| unsigned int avail, status, ch, flag; |
| int count; |
| |
| for (count = 16; count; count--) { |
| spin_lock(&scc->zlock); |
| avail = read_zsreg(zport, R0) & Rx_CH_AV; |
| spin_unlock(&scc->zlock); |
| if (!avail) |
| break; |
| |
| spin_lock(&scc->zlock); |
| status = read_zsreg(zport, R1) & (Rx_OVR | FRM_ERR | PAR_ERR); |
| ch = read_zsdata(zport); |
| spin_unlock(&scc->zlock); |
| |
| flag = TTY_NORMAL; |
| |
| icount = &uport->icount; |
| icount->rx++; |
| |
| /* Handle the null char got when BREAK is removed. */ |
| if (!ch) |
| status |= zport->tty_break; |
| if (unlikely(status & |
| (Rx_OVR | FRM_ERR | PAR_ERR | Rx_SYS | Rx_BRK))) { |
| zport->tty_break = 0; |
| |
| /* Reset the error indication. */ |
| if (status & (Rx_OVR | FRM_ERR | PAR_ERR)) { |
| spin_lock(&scc->zlock); |
| write_zsreg(zport, R0, ERR_RES); |
| spin_unlock(&scc->zlock); |
| } |
| |
| if (status & (Rx_SYS | Rx_BRK)) { |
| icount->brk++; |
| /* SysRq discards the null char. */ |
| if (status & Rx_SYS) |
| continue; |
| } else if (status & FRM_ERR) |
| icount->frame++; |
| else if (status & PAR_ERR) |
| icount->parity++; |
| if (status & Rx_OVR) |
| icount->overrun++; |
| |
| status &= uport->read_status_mask; |
| if (status & Rx_BRK) |
| flag = TTY_BREAK; |
| else if (status & FRM_ERR) |
| flag = TTY_FRAME; |
| else if (status & PAR_ERR) |
| flag = TTY_PARITY; |
| } |
| |
| if (uart_handle_sysrq_char(uport, ch)) |
| continue; |
| |
| uart_insert_char(uport, status, Rx_OVR, ch, flag); |
| } |
| |
| tty_flip_buffer_push(&uport->state->port); |
| } |
| |
| static void zs_raw_transmit_chars(struct zs_port *zport) |
| { |
| struct circ_buf *xmit = &zport->port.state->xmit; |
| |
| /* XON/XOFF chars. */ |
| if (zport->port.x_char) { |
| write_zsdata(zport, zport->port.x_char); |
| zport->port.icount.tx++; |
| zport->port.x_char = 0; |
| return; |
| } |
| |
| /* If nothing to do or stopped or hardware stopped. */ |
| if (uart_circ_empty(xmit) || uart_tx_stopped(&zport->port)) { |
| zs_raw_stop_tx(zport); |
| return; |
| } |
| |
| /* Send char. */ |
| write_zsdata(zport, xmit->buf[xmit->tail]); |
| xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); |
| zport->port.icount.tx++; |
| |
| if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) |
| uart_write_wakeup(&zport->port); |
| |
| /* Are we are done? */ |
| if (uart_circ_empty(xmit)) |
| zs_raw_stop_tx(zport); |
| } |
| |
| static void zs_transmit_chars(struct zs_port *zport) |
| { |
| struct zs_scc *scc = zport->scc; |
| |
| spin_lock(&scc->zlock); |
| zs_raw_transmit_chars(zport); |
| spin_unlock(&scc->zlock); |
| } |
| |
| static void zs_status_handle(struct zs_port *zport, struct zs_port *zport_a) |
| { |
| struct uart_port *uport = &zport->port; |
| struct zs_scc *scc = zport->scc; |
| unsigned int delta; |
| u8 status, brk; |
| |
| spin_lock(&scc->zlock); |
| |
| /* Get status from Read Register 0. */ |
| status = read_zsreg(zport, R0); |
| |
| if (zport->regs[15] & BRKIE) { |
| brk = status & BRK_ABRT; |
| if (brk && !zport->brk) { |
| spin_unlock(&scc->zlock); |
| if (uart_handle_break(uport)) |
| zport->tty_break = Rx_SYS; |
| else |
| zport->tty_break = Rx_BRK; |
| spin_lock(&scc->zlock); |
| } |
| zport->brk = brk; |
| } |
| |
| if (zport != zport_a) { |
| delta = zs_raw_xor_mctrl(zport); |
| spin_unlock(&scc->zlock); |
| |
| if (delta & TIOCM_CTS) |
| uart_handle_cts_change(uport, |
| zport->mctrl & TIOCM_CTS); |
| if (delta & TIOCM_CAR) |
| uart_handle_dcd_change(uport, |
| zport->mctrl & TIOCM_CAR); |
| if (delta & TIOCM_RNG) |
| uport->icount.dsr++; |
| if (delta & TIOCM_DSR) |
| uport->icount.rng++; |
| |
| if (delta) |
| wake_up_interruptible(&uport->state->port.delta_msr_wait); |
| |
| spin_lock(&scc->zlock); |
| } |
| |
| /* Clear the status condition... */ |
| write_zsreg(zport, R0, RES_EXT_INT); |
| |
| spin_unlock(&scc->zlock); |
| } |
| |
| /* |
| * This is the Z85C30 driver's generic interrupt routine. |
| */ |
| static irqreturn_t zs_interrupt(int irq, void *dev_id) |
| { |
| struct zs_scc *scc = dev_id; |
| struct zs_port *zport_a = &scc->zport[ZS_CHAN_A]; |
| struct zs_port *zport_b = &scc->zport[ZS_CHAN_B]; |
| irqreturn_t status = IRQ_NONE; |
| u8 zs_intreg; |
| int count; |
| |
| /* |
| * NOTE: The read register 3, which holds the irq status, |
| * does so for both channels on each chip. Although |
| * the status value itself must be read from the A |
| * channel and is only valid when read from channel A. |
| * Yes... broken hardware... |
| */ |
| for (count = 16; count; count--) { |
| spin_lock(&scc->zlock); |
| zs_intreg = read_zsreg(zport_a, R3); |
| spin_unlock(&scc->zlock); |
| if (!zs_intreg) |
| break; |
| |
| /* |
| * We do not like losing characters, so we prioritise |
| * interrupt sources a little bit differently than |
| * the SCC would, was it allowed to. |
| */ |
| if (zs_intreg & CHBRxIP) |
| zs_receive_chars(zport_b); |
| if (zs_intreg & CHARxIP) |
| zs_receive_chars(zport_a); |
| if (zs_intreg & CHBEXT) |
| zs_status_handle(zport_b, zport_a); |
| if (zs_intreg & CHAEXT) |
| zs_status_handle(zport_a, zport_a); |
| if (zs_intreg & CHBTxIP) |
| zs_transmit_chars(zport_b); |
| if (zs_intreg & CHATxIP) |
| zs_transmit_chars(zport_a); |
| |
| status = IRQ_HANDLED; |
| } |
| |
| return status; |
| } |
| |
| |
| /* |
| * Finally, routines used to initialize the serial port. |
| */ |
| static int zs_startup(struct uart_port *uport) |
| { |
| struct zs_port *zport = to_zport(uport); |
| struct zs_scc *scc = zport->scc; |
| unsigned long flags; |
| int irq_guard; |
| int ret; |
| |
| irq_guard = atomic_add_return(1, &scc->irq_guard); |
| if (irq_guard == 1) { |
| ret = request_irq(zport->port.irq, zs_interrupt, |
| IRQF_SHARED, "scc", scc); |
| if (ret) { |
| atomic_add(-1, &scc->irq_guard); |
| printk(KERN_ERR "zs: can't get irq %d\n", |
| zport->port.irq); |
| return ret; |
| } |
| } |
| |
| spin_lock_irqsave(&scc->zlock, flags); |
| |
| /* Clear the receive FIFO. */ |
| zs_receive_drain(zport); |
| |
| /* Clear the interrupt registers. */ |
| write_zsreg(zport, R0, ERR_RES); |
| write_zsreg(zport, R0, RES_Tx_P); |
| /* But Ext only if not being handled already. */ |
| if (!(zport->regs[1] & EXT_INT_ENAB)) |
| write_zsreg(zport, R0, RES_EXT_INT); |
| |
| /* Finally, enable sequencing and interrupts. */ |
| zport->regs[1] &= ~RxINT_MASK; |
| zport->regs[1] |= RxINT_ALL | TxINT_ENAB | EXT_INT_ENAB; |
| zport->regs[3] |= RxENABLE; |
| zport->regs[15] |= BRKIE; |
| write_zsreg(zport, R1, zport->regs[1]); |
| write_zsreg(zport, R3, zport->regs[3]); |
| write_zsreg(zport, R5, zport->regs[5]); |
| write_zsreg(zport, R15, zport->regs[15]); |
| |
| /* Record the current state of RR0. */ |
| zport->mctrl = zs_raw_get_mctrl(zport); |
| zport->brk = read_zsreg(zport, R0) & BRK_ABRT; |
| |
| zport->tx_stopped = 1; |
| |
| spin_unlock_irqrestore(&scc->zlock, flags); |
| |
| return 0; |
| } |
| |
| static void zs_shutdown(struct uart_port *uport) |
| { |
| struct zs_port *zport = to_zport(uport); |
| struct zs_scc *scc = zport->scc; |
| unsigned long flags; |
| int irq_guard; |
| |
| spin_lock_irqsave(&scc->zlock, flags); |
| |
| zport->regs[3] &= ~RxENABLE; |
| write_zsreg(zport, R5, zport->regs[5]); |
| write_zsreg(zport, R3, zport->regs[3]); |
| |
| spin_unlock_irqrestore(&scc->zlock, flags); |
| |
| irq_guard = atomic_add_return(-1, &scc->irq_guard); |
| if (!irq_guard) |
| free_irq(zport->port.irq, scc); |
| } |
| |
| |
| static void zs_reset(struct zs_port *zport) |
| { |
| struct zs_scc *scc = zport->scc; |
| int irq; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&scc->zlock, flags); |
| irq = !irqs_disabled_flags(flags); |
| if (!scc->initialised) { |
| /* Reset the pointer first, just in case... */ |
| read_zsreg(zport, R0); |
| /* And let the current transmission finish. */ |
| zs_line_drain(zport, irq); |
| write_zsreg(zport, R9, FHWRES); |
| udelay(10); |
| write_zsreg(zport, R9, 0); |
| scc->initialised = 1; |
| } |
| load_zsregs(zport, zport->regs, irq); |
| spin_unlock_irqrestore(&scc->zlock, flags); |
| } |
| |
| static void zs_set_termios(struct uart_port *uport, struct ktermios *termios, |
| const struct ktermios *old_termios) |
| { |
| struct zs_port *zport = to_zport(uport); |
| struct zs_scc *scc = zport->scc; |
| struct zs_port *zport_a = &scc->zport[ZS_CHAN_A]; |
| int irq; |
| unsigned int baud, brg; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&scc->zlock, flags); |
| irq = !irqs_disabled_flags(flags); |
| |
| /* Byte size. */ |
| zport->regs[3] &= ~RxNBITS_MASK; |
| zport->regs[5] &= ~TxNBITS_MASK; |
| switch (termios->c_cflag & CSIZE) { |
| case CS5: |
| zport->regs[3] |= Rx5; |
| zport->regs[5] |= Tx5; |
| break; |
| case CS6: |
| zport->regs[3] |= Rx6; |
| zport->regs[5] |= Tx6; |
| break; |
| case CS7: |
| zport->regs[3] |= Rx7; |
| zport->regs[5] |= Tx7; |
| break; |
| case CS8: |
| default: |
| zport->regs[3] |= Rx8; |
| zport->regs[5] |= Tx8; |
| break; |
| } |
| |
| /* Parity and stop bits. */ |
| zport->regs[4] &= ~(XCLK_MASK | SB_MASK | PAR_ENA | PAR_EVEN); |
| if (termios->c_cflag & CSTOPB) |
| zport->regs[4] |= SB2; |
| else |
| zport->regs[4] |= SB1; |
| if (termios->c_cflag & PARENB) |
| zport->regs[4] |= PAR_ENA; |
| if (!(termios->c_cflag & PARODD)) |
| zport->regs[4] |= PAR_EVEN; |
| switch (zport->clk_mode) { |
| case 64: |
| zport->regs[4] |= X64CLK; |
| break; |
| case 32: |
| zport->regs[4] |= X32CLK; |
| break; |
| case 16: |
| zport->regs[4] |= X16CLK; |
| break; |
| case 1: |
| zport->regs[4] |= X1CLK; |
| break; |
| default: |
| BUG(); |
| } |
| |
| baud = uart_get_baud_rate(uport, termios, old_termios, 0, |
| uport->uartclk / zport->clk_mode / 4); |
| |
| brg = ZS_BPS_TO_BRG(baud, uport->uartclk / zport->clk_mode); |
| zport->regs[12] = brg & 0xff; |
| zport->regs[13] = (brg >> 8) & 0xff; |
| |
| uart_update_timeout(uport, termios->c_cflag, baud); |
| |
| uport->read_status_mask = Rx_OVR; |
| if (termios->c_iflag & INPCK) |
| uport->read_status_mask |= FRM_ERR | PAR_ERR; |
| if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK)) |
| uport->read_status_mask |= Rx_BRK; |
| |
| uport->ignore_status_mask = 0; |
| if (termios->c_iflag & IGNPAR) |
| uport->ignore_status_mask |= FRM_ERR | PAR_ERR; |
| if (termios->c_iflag & IGNBRK) { |
| uport->ignore_status_mask |= Rx_BRK; |
| if (termios->c_iflag & IGNPAR) |
| uport->ignore_status_mask |= Rx_OVR; |
| } |
| |
| if (termios->c_cflag & CREAD) |
| zport->regs[3] |= RxENABLE; |
| else |
| zport->regs[3] &= ~RxENABLE; |
| |
| if (zport != zport_a) { |
| if (!(termios->c_cflag & CLOCAL)) { |
| zport->regs[15] |= DCDIE; |
| } else |
| zport->regs[15] &= ~DCDIE; |
| if (termios->c_cflag & CRTSCTS) { |
| zport->regs[15] |= CTSIE; |
| } else |
| zport->regs[15] &= ~CTSIE; |
| zs_raw_xor_mctrl(zport); |
| } |
| |
| /* Load up the new values. */ |
| load_zsregs(zport, zport->regs, irq); |
| |
| spin_unlock_irqrestore(&scc->zlock, flags); |
| } |
| |
| /* |
| * Hack alert! |
| * Required solely so that the initial PROM-based console |
| * works undisturbed in parallel with this one. |
| */ |
| static void zs_pm(struct uart_port *uport, unsigned int state, |
| unsigned int oldstate) |
| { |
| struct zs_port *zport = to_zport(uport); |
| |
| if (state < 3) |
| zport->regs[5] |= TxENAB; |
| else |
| zport->regs[5] &= ~TxENAB; |
| write_zsreg(zport, R5, zport->regs[5]); |
| } |
| |
| |
| static const char *zs_type(struct uart_port *uport) |
| { |
| return "Z85C30 SCC"; |
| } |
| |
| static void zs_release_port(struct uart_port *uport) |
| { |
| iounmap(uport->membase); |
| uport->membase = NULL; |
| release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE); |
| } |
| |
| static int zs_map_port(struct uart_port *uport) |
| { |
| if (!uport->membase) |
| uport->membase = ioremap(uport->mapbase, |
| ZS_CHAN_IO_SIZE); |
| if (!uport->membase) { |
| printk(KERN_ERR "zs: Cannot map MMIO\n"); |
| return -ENOMEM; |
| } |
| return 0; |
| } |
| |
| static int zs_request_port(struct uart_port *uport) |
| { |
| int ret; |
| |
| if (!request_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE, "scc")) { |
| printk(KERN_ERR "zs: Unable to reserve MMIO resource\n"); |
| return -EBUSY; |
| } |
| ret = zs_map_port(uport); |
| if (ret) { |
| release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE); |
| return ret; |
| } |
| return 0; |
| } |
| |
| static void zs_config_port(struct uart_port *uport, int flags) |
| { |
| struct zs_port *zport = to_zport(uport); |
| |
| if (flags & UART_CONFIG_TYPE) { |
| if (zs_request_port(uport)) |
| return; |
| |
| uport->type = PORT_ZS; |
| |
| zs_reset(zport); |
| } |
| } |
| |
| static int zs_verify_port(struct uart_port *uport, struct serial_struct *ser) |
| { |
| struct zs_port *zport = to_zport(uport); |
| int ret = 0; |
| |
| if (ser->type != PORT_UNKNOWN && ser->type != PORT_ZS) |
| ret = -EINVAL; |
| if (ser->irq != uport->irq) |
| ret = -EINVAL; |
| if (ser->baud_base != uport->uartclk / zport->clk_mode / 4) |
| ret = -EINVAL; |
| return ret; |
| } |
| |
| |
| static const struct uart_ops zs_ops = { |
| .tx_empty = zs_tx_empty, |
| .set_mctrl = zs_set_mctrl, |
| .get_mctrl = zs_get_mctrl, |
| .stop_tx = zs_stop_tx, |
| .start_tx = zs_start_tx, |
| .stop_rx = zs_stop_rx, |
| .enable_ms = zs_enable_ms, |
| .break_ctl = zs_break_ctl, |
| .startup = zs_startup, |
| .shutdown = zs_shutdown, |
| .set_termios = zs_set_termios, |
| .pm = zs_pm, |
| .type = zs_type, |
| .release_port = zs_release_port, |
| .request_port = zs_request_port, |
| .config_port = zs_config_port, |
| .verify_port = zs_verify_port, |
| }; |
| |
| /* |
| * Initialize Z85C30 port structures. |
| */ |
| static int __init zs_probe_sccs(void) |
| { |
| static int probed; |
| struct zs_parms zs_parms; |
| int chip, side, irq; |
| int n_chips = 0; |
| int i; |
| |
| if (probed) |
| return 0; |
| |
| irq = dec_interrupt[DEC_IRQ_SCC0]; |
| if (irq >= 0) { |
| zs_parms.scc[n_chips] = IOASIC_SCC0; |
| zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC0]; |
| n_chips++; |
| } |
| irq = dec_interrupt[DEC_IRQ_SCC1]; |
| if (irq >= 0) { |
| zs_parms.scc[n_chips] = IOASIC_SCC1; |
| zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC1]; |
| n_chips++; |
| } |
| if (!n_chips) |
| return -ENXIO; |
| |
| probed = 1; |
| |
| for (chip = 0; chip < n_chips; chip++) { |
| spin_lock_init(&zs_sccs[chip].zlock); |
| for (side = 0; side < ZS_NUM_CHAN; side++) { |
| struct zs_port *zport = &zs_sccs[chip].zport[side]; |
| struct uart_port *uport = &zport->port; |
| |
| zport->scc = &zs_sccs[chip]; |
| zport->clk_mode = 16; |
| |
| uport->has_sysrq = IS_ENABLED(CONFIG_SERIAL_ZS_CONSOLE); |
| uport->irq = zs_parms.irq[chip]; |
| uport->uartclk = ZS_CLOCK; |
| uport->fifosize = 1; |
| uport->iotype = UPIO_MEM; |
| uport->flags = UPF_BOOT_AUTOCONF; |
| uport->ops = &zs_ops; |
| uport->line = chip * ZS_NUM_CHAN + side; |
| uport->mapbase = dec_kn_slot_base + |
| zs_parms.scc[chip] + |
| (side ^ ZS_CHAN_B) * ZS_CHAN_IO_SIZE; |
| |
| for (i = 0; i < ZS_NUM_REGS; i++) |
| zport->regs[i] = zs_init_regs[i]; |
| } |
| } |
| |
| return 0; |
| } |
| |
| |
| #ifdef CONFIG_SERIAL_ZS_CONSOLE |
| static void zs_console_putchar(struct uart_port *uport, unsigned char ch) |
| { |
| struct zs_port *zport = to_zport(uport); |
| struct zs_scc *scc = zport->scc; |
| int irq; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&scc->zlock, flags); |
| irq = !irqs_disabled_flags(flags); |
| if (zs_transmit_drain(zport, irq)) |
| write_zsdata(zport, ch); |
| spin_unlock_irqrestore(&scc->zlock, flags); |
| } |
| |
| /* |
| * Print a string to the serial port trying not to disturb |
| * any possible real use of the port... |
| */ |
| static void zs_console_write(struct console *co, const char *s, |
| unsigned int count) |
| { |
| int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN; |
| struct zs_port *zport = &zs_sccs[chip].zport[side]; |
| struct zs_scc *scc = zport->scc; |
| unsigned long flags; |
| u8 txint, txenb; |
| int irq; |
| |
| /* Disable transmit interrupts and enable the transmitter. */ |
| spin_lock_irqsave(&scc->zlock, flags); |
| txint = zport->regs[1]; |
| txenb = zport->regs[5]; |
| if (txint & TxINT_ENAB) { |
| zport->regs[1] = txint & ~TxINT_ENAB; |
| write_zsreg(zport, R1, zport->regs[1]); |
| } |
| if (!(txenb & TxENAB)) { |
| zport->regs[5] = txenb | TxENAB; |
| write_zsreg(zport, R5, zport->regs[5]); |
| } |
| spin_unlock_irqrestore(&scc->zlock, flags); |
| |
| uart_console_write(&zport->port, s, count, zs_console_putchar); |
| |
| /* Restore transmit interrupts and the transmitter enable. */ |
| spin_lock_irqsave(&scc->zlock, flags); |
| irq = !irqs_disabled_flags(flags); |
| zs_line_drain(zport, irq); |
| if (!(txenb & TxENAB)) { |
| zport->regs[5] &= ~TxENAB; |
| write_zsreg(zport, R5, zport->regs[5]); |
| } |
| if (txint & TxINT_ENAB) { |
| zport->regs[1] |= TxINT_ENAB; |
| write_zsreg(zport, R1, zport->regs[1]); |
| |
| /* Resume any transmission as the TxIP bit won't be set. */ |
| if (!zport->tx_stopped) |
| zs_raw_transmit_chars(zport); |
| } |
| spin_unlock_irqrestore(&scc->zlock, flags); |
| } |
| |
| /* |
| * Setup serial console baud/bits/parity. We do two things here: |
| * - construct a cflag setting for the first uart_open() |
| * - initialise the serial port |
| * Return non-zero if we didn't find a serial port. |
| */ |
| static int __init zs_console_setup(struct console *co, char *options) |
| { |
| int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN; |
| struct zs_port *zport = &zs_sccs[chip].zport[side]; |
| struct uart_port *uport = &zport->port; |
| int baud = 9600; |
| int bits = 8; |
| int parity = 'n'; |
| int flow = 'n'; |
| int ret; |
| |
| ret = zs_map_port(uport); |
| if (ret) |
| return ret; |
| |
| zs_reset(zport); |
| zs_pm(uport, 0, -1); |
| |
| if (options) |
| uart_parse_options(options, &baud, &parity, &bits, &flow); |
| return uart_set_options(uport, co, baud, parity, bits, flow); |
| } |
| |
| static struct uart_driver zs_reg; |
| static struct console zs_console = { |
| .name = "ttyS", |
| .write = zs_console_write, |
| .device = uart_console_device, |
| .setup = zs_console_setup, |
| .flags = CON_PRINTBUFFER, |
| .index = -1, |
| .data = &zs_reg, |
| }; |
| |
| /* |
| * Register console. |
| */ |
| static int __init zs_serial_console_init(void) |
| { |
| int ret; |
| |
| ret = zs_probe_sccs(); |
| if (ret) |
| return ret; |
| register_console(&zs_console); |
| |
| return 0; |
| } |
| |
| console_initcall(zs_serial_console_init); |
| |
| #define SERIAL_ZS_CONSOLE &zs_console |
| #else |
| #define SERIAL_ZS_CONSOLE NULL |
| #endif /* CONFIG_SERIAL_ZS_CONSOLE */ |
| |
| static struct uart_driver zs_reg = { |
| .owner = THIS_MODULE, |
| .driver_name = "serial", |
| .dev_name = "ttyS", |
| .major = TTY_MAJOR, |
| .minor = 64, |
| .nr = ZS_NUM_SCCS * ZS_NUM_CHAN, |
| .cons = SERIAL_ZS_CONSOLE, |
| }; |
| |
| /* zs_init inits the driver. */ |
| static int __init zs_init(void) |
| { |
| int i, ret; |
| |
| pr_info("%s%s\n", zs_name, zs_version); |
| |
| /* Find out how many Z85C30 SCCs we have. */ |
| ret = zs_probe_sccs(); |
| if (ret) |
| return ret; |
| |
| ret = uart_register_driver(&zs_reg); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) { |
| struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN]; |
| struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN]; |
| struct uart_port *uport = &zport->port; |
| |
| if (zport->scc) |
| uart_add_one_port(&zs_reg, uport); |
| } |
| |
| return 0; |
| } |
| |
| static void __exit zs_exit(void) |
| { |
| int i; |
| |
| for (i = ZS_NUM_SCCS * ZS_NUM_CHAN - 1; i >= 0; i--) { |
| struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN]; |
| struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN]; |
| struct uart_port *uport = &zport->port; |
| |
| if (zport->scc) |
| uart_remove_one_port(&zs_reg, uport); |
| } |
| |
| uart_unregister_driver(&zs_reg); |
| } |
| |
| module_init(zs_init); |
| module_exit(zs_exit); |