blob: b39b339fbf96ce31f4c3e858e8aef52710b6fd72 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2007,2008 Oracle. All rights reserved.
*/
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/rbtree.h>
#include <linux/mm.h>
#include <linux/error-injection.h>
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "print-tree.h"
#include "locking.h"
#include "volumes.h"
#include "qgroup.h"
#include "tree-mod-log.h"
#include "tree-checker.h"
static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
*root, struct btrfs_path *path, int level);
static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
const struct btrfs_key *ins_key, struct btrfs_path *path,
int data_size, int extend);
static int push_node_left(struct btrfs_trans_handle *trans,
struct extent_buffer *dst,
struct extent_buffer *src, int empty);
static int balance_node_right(struct btrfs_trans_handle *trans,
struct extent_buffer *dst_buf,
struct extent_buffer *src_buf);
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
int level, int slot);
static const struct btrfs_csums {
u16 size;
const char name[10];
const char driver[12];
} btrfs_csums[] = {
[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
.driver = "blake2b-256" },
};
int btrfs_super_csum_size(const struct btrfs_super_block *s)
{
u16 t = btrfs_super_csum_type(s);
/*
* csum type is validated at mount time
*/
return btrfs_csums[t].size;
}
const char *btrfs_super_csum_name(u16 csum_type)
{
/* csum type is validated at mount time */
return btrfs_csums[csum_type].name;
}
/*
* Return driver name if defined, otherwise the name that's also a valid driver
* name
*/
const char *btrfs_super_csum_driver(u16 csum_type)
{
/* csum type is validated at mount time */
return btrfs_csums[csum_type].driver[0] ?
btrfs_csums[csum_type].driver :
btrfs_csums[csum_type].name;
}
size_t __attribute_const__ btrfs_get_num_csums(void)
{
return ARRAY_SIZE(btrfs_csums);
}
struct btrfs_path *btrfs_alloc_path(void)
{
return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
}
/* this also releases the path */
void btrfs_free_path(struct btrfs_path *p)
{
if (!p)
return;
btrfs_release_path(p);
kmem_cache_free(btrfs_path_cachep, p);
}
/*
* path release drops references on the extent buffers in the path
* and it drops any locks held by this path
*
* It is safe to call this on paths that no locks or extent buffers held.
*/
noinline void btrfs_release_path(struct btrfs_path *p)
{
int i;
for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
p->slots[i] = 0;
if (!p->nodes[i])
continue;
if (p->locks[i]) {
btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
p->locks[i] = 0;
}
free_extent_buffer(p->nodes[i]);
p->nodes[i] = NULL;
}
}
/*
* safely gets a reference on the root node of a tree. A lock
* is not taken, so a concurrent writer may put a different node
* at the root of the tree. See btrfs_lock_root_node for the
* looping required.
*
* The extent buffer returned by this has a reference taken, so
* it won't disappear. It may stop being the root of the tree
* at any time because there are no locks held.
*/
struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
{
struct extent_buffer *eb;
while (1) {
rcu_read_lock();
eb = rcu_dereference(root->node);
/*
* RCU really hurts here, we could free up the root node because
* it was COWed but we may not get the new root node yet so do
* the inc_not_zero dance and if it doesn't work then
* synchronize_rcu and try again.
*/
if (atomic_inc_not_zero(&eb->refs)) {
rcu_read_unlock();
break;
}
rcu_read_unlock();
synchronize_rcu();
}
return eb;
}
/*
* Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
* just get put onto a simple dirty list. Transaction walks this list to make
* sure they get properly updated on disk.
*/
static void add_root_to_dirty_list(struct btrfs_root *root)
{
struct btrfs_fs_info *fs_info = root->fs_info;
if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
!test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
return;
spin_lock(&fs_info->trans_lock);
if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
/* Want the extent tree to be the last on the list */
if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
list_move_tail(&root->dirty_list,
&fs_info->dirty_cowonly_roots);
else
list_move(&root->dirty_list,
&fs_info->dirty_cowonly_roots);
}
spin_unlock(&fs_info->trans_lock);
}
/*
* used by snapshot creation to make a copy of a root for a tree with
* a given objectid. The buffer with the new root node is returned in
* cow_ret, and this func returns zero on success or a negative error code.
*/
int btrfs_copy_root(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct extent_buffer *buf,
struct extent_buffer **cow_ret, u64 new_root_objectid)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct extent_buffer *cow;
int ret = 0;
int level;
struct btrfs_disk_key disk_key;
WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
trans->transid != fs_info->running_transaction->transid);
WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
trans->transid != root->last_trans);
level = btrfs_header_level(buf);
if (level == 0)
btrfs_item_key(buf, &disk_key, 0);
else
btrfs_node_key(buf, &disk_key, 0);
cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
&disk_key, level, buf->start, 0,
BTRFS_NESTING_NEW_ROOT);
if (IS_ERR(cow))
return PTR_ERR(cow);
copy_extent_buffer_full(cow, buf);
btrfs_set_header_bytenr(cow, cow->start);
btrfs_set_header_generation(cow, trans->transid);
btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
BTRFS_HEADER_FLAG_RELOC);
if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
else
btrfs_set_header_owner(cow, new_root_objectid);
write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
WARN_ON(btrfs_header_generation(buf) > trans->transid);
if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
ret = btrfs_inc_ref(trans, root, cow, 1);
else
ret = btrfs_inc_ref(trans, root, cow, 0);
if (ret) {
btrfs_tree_unlock(cow);
free_extent_buffer(cow);
btrfs_abort_transaction(trans, ret);
return ret;
}
btrfs_mark_buffer_dirty(cow);
*cow_ret = cow;
return 0;
}
/*
* check if the tree block can be shared by multiple trees
*/
int btrfs_block_can_be_shared(struct btrfs_root *root,
struct extent_buffer *buf)
{
/*
* Tree blocks not in shareable trees and tree roots are never shared.
* If a block was allocated after the last snapshot and the block was
* not allocated by tree relocation, we know the block is not shared.
*/
if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
buf != root->node && buf != root->commit_root &&
(btrfs_header_generation(buf) <=
btrfs_root_last_snapshot(&root->root_item) ||
btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
return 1;
return 0;
}
static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct extent_buffer *buf,
struct extent_buffer *cow,
int *last_ref)
{
struct btrfs_fs_info *fs_info = root->fs_info;
u64 refs;
u64 owner;
u64 flags;
u64 new_flags = 0;
int ret;
/*
* Backrefs update rules:
*
* Always use full backrefs for extent pointers in tree block
* allocated by tree relocation.
*
* If a shared tree block is no longer referenced by its owner
* tree (btrfs_header_owner(buf) == root->root_key.objectid),
* use full backrefs for extent pointers in tree block.
*
* If a tree block is been relocating
* (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
* use full backrefs for extent pointers in tree block.
* The reason for this is some operations (such as drop tree)
* are only allowed for blocks use full backrefs.
*/
if (btrfs_block_can_be_shared(root, buf)) {
ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
btrfs_header_level(buf), 1,
&refs, &flags);
if (ret)
return ret;
if (refs == 0) {
ret = -EROFS;
btrfs_handle_fs_error(fs_info, ret, NULL);
return ret;
}
} else {
refs = 1;
if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
else
flags = 0;
}
owner = btrfs_header_owner(buf);
BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
if (refs > 1) {
if ((owner == root->root_key.objectid ||
root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
ret = btrfs_inc_ref(trans, root, buf, 1);
if (ret)
return ret;
if (root->root_key.objectid ==
BTRFS_TREE_RELOC_OBJECTID) {
ret = btrfs_dec_ref(trans, root, buf, 0);
if (ret)
return ret;
ret = btrfs_inc_ref(trans, root, cow, 1);
if (ret)
return ret;
}
new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
} else {
if (root->root_key.objectid ==
BTRFS_TREE_RELOC_OBJECTID)
ret = btrfs_inc_ref(trans, root, cow, 1);
else
ret = btrfs_inc_ref(trans, root, cow, 0);
if (ret)
return ret;
}
if (new_flags != 0) {
int level = btrfs_header_level(buf);
ret = btrfs_set_disk_extent_flags(trans, buf,
new_flags, level);
if (ret)
return ret;
}
} else {
if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
if (root->root_key.objectid ==
BTRFS_TREE_RELOC_OBJECTID)
ret = btrfs_inc_ref(trans, root, cow, 1);
else
ret = btrfs_inc_ref(trans, root, cow, 0);
if (ret)
return ret;
ret = btrfs_dec_ref(trans, root, buf, 1);
if (ret)
return ret;
}
btrfs_clean_tree_block(buf);
*last_ref = 1;
}
return 0;
}
/*
* does the dirty work in cow of a single block. The parent block (if
* supplied) is updated to point to the new cow copy. The new buffer is marked
* dirty and returned locked. If you modify the block it needs to be marked
* dirty again.
*
* search_start -- an allocation hint for the new block
*
* empty_size -- a hint that you plan on doing more cow. This is the size in
* bytes the allocator should try to find free next to the block it returns.
* This is just a hint and may be ignored by the allocator.
*/
static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct extent_buffer *buf,
struct extent_buffer *parent, int parent_slot,
struct extent_buffer **cow_ret,
u64 search_start, u64 empty_size,
enum btrfs_lock_nesting nest)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_disk_key disk_key;
struct extent_buffer *cow;
int level, ret;
int last_ref = 0;
int unlock_orig = 0;
u64 parent_start = 0;
if (*cow_ret == buf)
unlock_orig = 1;
btrfs_assert_tree_write_locked(buf);
WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
trans->transid != fs_info->running_transaction->transid);
WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
trans->transid != root->last_trans);
level = btrfs_header_level(buf);
if (level == 0)
btrfs_item_key(buf, &disk_key, 0);
else
btrfs_node_key(buf, &disk_key, 0);
if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
parent_start = parent->start;
cow = btrfs_alloc_tree_block(trans, root, parent_start,
root->root_key.objectid, &disk_key, level,
search_start, empty_size, nest);
if (IS_ERR(cow))
return PTR_ERR(cow);
/* cow is set to blocking by btrfs_init_new_buffer */
copy_extent_buffer_full(cow, buf);
btrfs_set_header_bytenr(cow, cow->start);
btrfs_set_header_generation(cow, trans->transid);
btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
BTRFS_HEADER_FLAG_RELOC);
if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
else
btrfs_set_header_owner(cow, root->root_key.objectid);
write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
if (ret) {
btrfs_tree_unlock(cow);
free_extent_buffer(cow);
btrfs_abort_transaction(trans, ret);
return ret;
}
if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
ret = btrfs_reloc_cow_block(trans, root, buf, cow);
if (ret) {
btrfs_tree_unlock(cow);
free_extent_buffer(cow);
btrfs_abort_transaction(trans, ret);
return ret;
}
}
if (buf == root->node) {
WARN_ON(parent && parent != buf);
if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
parent_start = buf->start;
atomic_inc(&cow->refs);
ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
BUG_ON(ret < 0);
rcu_assign_pointer(root->node, cow);
btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
parent_start, last_ref);
free_extent_buffer(buf);
add_root_to_dirty_list(root);
} else {
WARN_ON(trans->transid != btrfs_header_generation(parent));
btrfs_tree_mod_log_insert_key(parent, parent_slot,
BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
btrfs_set_node_blockptr(parent, parent_slot,
cow->start);
btrfs_set_node_ptr_generation(parent, parent_slot,
trans->transid);
btrfs_mark_buffer_dirty(parent);
if (last_ref) {
ret = btrfs_tree_mod_log_free_eb(buf);
if (ret) {
btrfs_tree_unlock(cow);
free_extent_buffer(cow);
btrfs_abort_transaction(trans, ret);
return ret;
}
}
btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
parent_start, last_ref);
}
if (unlock_orig)
btrfs_tree_unlock(buf);
free_extent_buffer_stale(buf);
btrfs_mark_buffer_dirty(cow);
*cow_ret = cow;
return 0;
}
static inline int should_cow_block(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct extent_buffer *buf)
{
if (btrfs_is_testing(root->fs_info))
return 0;
/* Ensure we can see the FORCE_COW bit */
smp_mb__before_atomic();
/*
* We do not need to cow a block if
* 1) this block is not created or changed in this transaction;
* 2) this block does not belong to TREE_RELOC tree;
* 3) the root is not forced COW.
*
* What is forced COW:
* when we create snapshot during committing the transaction,
* after we've finished copying src root, we must COW the shared
* block to ensure the metadata consistency.
*/
if (btrfs_header_generation(buf) == trans->transid &&
!btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
!(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
!test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
return 0;
return 1;
}
/*
* cows a single block, see __btrfs_cow_block for the real work.
* This version of it has extra checks so that a block isn't COWed more than
* once per transaction, as long as it hasn't been written yet
*/
noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct extent_buffer *buf,
struct extent_buffer *parent, int parent_slot,
struct extent_buffer **cow_ret,
enum btrfs_lock_nesting nest)
{
struct btrfs_fs_info *fs_info = root->fs_info;
u64 search_start;
int ret;
if (test_bit(BTRFS_ROOT_DELETING, &root->state))
btrfs_err(fs_info,
"COW'ing blocks on a fs root that's being dropped");
if (trans->transaction != fs_info->running_transaction)
WARN(1, KERN_CRIT "trans %llu running %llu\n",
trans->transid,
fs_info->running_transaction->transid);
if (trans->transid != fs_info->generation)
WARN(1, KERN_CRIT "trans %llu running %llu\n",
trans->transid, fs_info->generation);
if (!should_cow_block(trans, root, buf)) {
*cow_ret = buf;
return 0;
}
search_start = buf->start & ~((u64)SZ_1G - 1);
/*
* Before CoWing this block for later modification, check if it's
* the subtree root and do the delayed subtree trace if needed.
*
* Also We don't care about the error, as it's handled internally.
*/
btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
ret = __btrfs_cow_block(trans, root, buf, parent,
parent_slot, cow_ret, search_start, 0, nest);
trace_btrfs_cow_block(root, buf, *cow_ret);
return ret;
}
ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
/*
* helper function for defrag to decide if two blocks pointed to by a
* node are actually close by
*/
static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
{
if (blocknr < other && other - (blocknr + blocksize) < 32768)
return 1;
if (blocknr > other && blocknr - (other + blocksize) < 32768)
return 1;
return 0;
}
#ifdef __LITTLE_ENDIAN
/*
* Compare two keys, on little-endian the disk order is same as CPU order and
* we can avoid the conversion.
*/
static int comp_keys(const struct btrfs_disk_key *disk_key,
const struct btrfs_key *k2)
{
const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
return btrfs_comp_cpu_keys(k1, k2);
}
#else
/*
* compare two keys in a memcmp fashion
*/
static int comp_keys(const struct btrfs_disk_key *disk,
const struct btrfs_key *k2)
{
struct btrfs_key k1;
btrfs_disk_key_to_cpu(&k1, disk);
return btrfs_comp_cpu_keys(&k1, k2);
}
#endif
/*
* same as comp_keys only with two btrfs_key's
*/
int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
{
if (k1->objectid > k2->objectid)
return 1;
if (k1->objectid < k2->objectid)
return -1;
if (k1->type > k2->type)
return 1;
if (k1->type < k2->type)
return -1;
if (k1->offset > k2->offset)
return 1;
if (k1->offset < k2->offset)
return -1;
return 0;
}
/*
* this is used by the defrag code to go through all the
* leaves pointed to by a node and reallocate them so that
* disk order is close to key order
*/
int btrfs_realloc_node(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct extent_buffer *parent,
int start_slot, u64 *last_ret,
struct btrfs_key *progress)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct extent_buffer *cur;
u64 blocknr;
u64 search_start = *last_ret;
u64 last_block = 0;
u64 other;
u32 parent_nritems;
int end_slot;
int i;
int err = 0;
u32 blocksize;
int progress_passed = 0;
struct btrfs_disk_key disk_key;
WARN_ON(trans->transaction != fs_info->running_transaction);
WARN_ON(trans->transid != fs_info->generation);
parent_nritems = btrfs_header_nritems(parent);
blocksize = fs_info->nodesize;
end_slot = parent_nritems - 1;
if (parent_nritems <= 1)
return 0;
for (i = start_slot; i <= end_slot; i++) {
int close = 1;
btrfs_node_key(parent, &disk_key, i);
if (!progress_passed && comp_keys(&disk_key, progress) < 0)
continue;
progress_passed = 1;
blocknr = btrfs_node_blockptr(parent, i);
if (last_block == 0)
last_block = blocknr;
if (i > 0) {
other = btrfs_node_blockptr(parent, i - 1);
close = close_blocks(blocknr, other, blocksize);
}
if (!close && i < end_slot) {
other = btrfs_node_blockptr(parent, i + 1);
close = close_blocks(blocknr, other, blocksize);
}
if (close) {
last_block = blocknr;
continue;
}
cur = btrfs_read_node_slot(parent, i);
if (IS_ERR(cur))
return PTR_ERR(cur);
if (search_start == 0)
search_start = last_block;
btrfs_tree_lock(cur);
err = __btrfs_cow_block(trans, root, cur, parent, i,
&cur, search_start,
min(16 * blocksize,
(end_slot - i) * blocksize),
BTRFS_NESTING_COW);
if (err) {
btrfs_tree_unlock(cur);
free_extent_buffer(cur);
break;
}
search_start = cur->start;
last_block = cur->start;
*last_ret = search_start;
btrfs_tree_unlock(cur);
free_extent_buffer(cur);
}
return err;
}
/*
* Search for a key in the given extent_buffer.
*
* The lower boundary for the search is specified by the slot number @low. Use a
* value of 0 to search over the whole extent buffer.
*
* The slot in the extent buffer is returned via @slot. If the key exists in the
* extent buffer, then @slot will point to the slot where the key is, otherwise
* it points to the slot where you would insert the key.
*
* Slot may point to the total number of items (i.e. one position beyond the last
* key) if the key is bigger than the last key in the extent buffer.
*/
static noinline int generic_bin_search(struct extent_buffer *eb, int low,
const struct btrfs_key *key, int *slot)
{
unsigned long p;
int item_size;
int high = btrfs_header_nritems(eb);
int ret;
const int key_size = sizeof(struct btrfs_disk_key);
if (low > high) {
btrfs_err(eb->fs_info,
"%s: low (%d) > high (%d) eb %llu owner %llu level %d",
__func__, low, high, eb->start,
btrfs_header_owner(eb), btrfs_header_level(eb));
return -EINVAL;
}
if (btrfs_header_level(eb) == 0) {
p = offsetof(struct btrfs_leaf, items);
item_size = sizeof(struct btrfs_item);
} else {
p = offsetof(struct btrfs_node, ptrs);
item_size = sizeof(struct btrfs_key_ptr);
}
while (low < high) {
unsigned long oip;
unsigned long offset;
struct btrfs_disk_key *tmp;
struct btrfs_disk_key unaligned;
int mid;
mid = (low + high) / 2;
offset = p + mid * item_size;
oip = offset_in_page(offset);
if (oip + key_size <= PAGE_SIZE) {
const unsigned long idx = get_eb_page_index(offset);
char *kaddr = page_address(eb->pages[idx]);
oip = get_eb_offset_in_page(eb, offset);
tmp = (struct btrfs_disk_key *)(kaddr + oip);
} else {
read_extent_buffer(eb, &unaligned, offset, key_size);
tmp = &unaligned;
}
ret = comp_keys(tmp, key);
if (ret < 0)
low = mid + 1;
else if (ret > 0)
high = mid;
else {
*slot = mid;
return 0;
}
}
*slot = low;
return 1;
}
/*
* Simple binary search on an extent buffer. Works for both leaves and nodes, and
* always searches over the whole range of keys (slot 0 to slot 'nritems - 1').
*/
int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
int *slot)
{
return generic_bin_search(eb, 0, key, slot);
}
static void root_add_used(struct btrfs_root *root, u32 size)
{
spin_lock(&root->accounting_lock);
btrfs_set_root_used(&root->root_item,
btrfs_root_used(&root->root_item) + size);
spin_unlock(&root->accounting_lock);
}
static void root_sub_used(struct btrfs_root *root, u32 size)
{
spin_lock(&root->accounting_lock);
btrfs_set_root_used(&root->root_item,
btrfs_root_used(&root->root_item) - size);
spin_unlock(&root->accounting_lock);
}
/* given a node and slot number, this reads the blocks it points to. The
* extent buffer is returned with a reference taken (but unlocked).
*/
struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
int slot)
{
int level = btrfs_header_level(parent);
struct extent_buffer *eb;
struct btrfs_key first_key;
if (slot < 0 || slot >= btrfs_header_nritems(parent))
return ERR_PTR(-ENOENT);
BUG_ON(level == 0);
btrfs_node_key_to_cpu(parent, &first_key, slot);
eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
btrfs_header_owner(parent),
btrfs_node_ptr_generation(parent, slot),
level - 1, &first_key);
if (IS_ERR(eb))
return eb;
if (!extent_buffer_uptodate(eb)) {
free_extent_buffer(eb);
return ERR_PTR(-EIO);
}
return eb;
}
/*
* node level balancing, used to make sure nodes are in proper order for
* item deletion. We balance from the top down, so we have to make sure
* that a deletion won't leave an node completely empty later on.
*/
static noinline int balance_level(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path, int level)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct extent_buffer *right = NULL;
struct extent_buffer *mid;
struct extent_buffer *left = NULL;
struct extent_buffer *parent = NULL;
int ret = 0;
int wret;
int pslot;
int orig_slot = path->slots[level];
u64 orig_ptr;
ASSERT(level > 0);
mid = path->nodes[level];
WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
WARN_ON(btrfs_header_generation(mid) != trans->transid);
orig_ptr = btrfs_node_blockptr(mid, orig_slot);
if (level < BTRFS_MAX_LEVEL - 1) {
parent = path->nodes[level + 1];
pslot = path->slots[level + 1];
}
/*
* deal with the case where there is only one pointer in the root
* by promoting the node below to a root
*/
if (!parent) {
struct extent_buffer *child;
if (btrfs_header_nritems(mid) != 1)
return 0;
/* promote the child to a root */
child = btrfs_read_node_slot(mid, 0);
if (IS_ERR(child)) {
ret = PTR_ERR(child);
btrfs_handle_fs_error(fs_info, ret, NULL);
goto enospc;
}
btrfs_tree_lock(child);
ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
BTRFS_NESTING_COW);
if (ret) {
btrfs_tree_unlock(child);
free_extent_buffer(child);
goto enospc;
}
ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
BUG_ON(ret < 0);
rcu_assign_pointer(root->node, child);
add_root_to_dirty_list(root);
btrfs_tree_unlock(child);
path->locks[level] = 0;
path->nodes[level] = NULL;
btrfs_clean_tree_block(mid);
btrfs_tree_unlock(mid);
/* once for the path */
free_extent_buffer(mid);
root_sub_used(root, mid->len);
btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
/* once for the root ptr */
free_extent_buffer_stale(mid);
return 0;
}
if (btrfs_header_nritems(mid) >
BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
return 0;
left = btrfs_read_node_slot(parent, pslot - 1);
if (IS_ERR(left))
left = NULL;
if (left) {
__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
wret = btrfs_cow_block(trans, root, left,
parent, pslot - 1, &left,
BTRFS_NESTING_LEFT_COW);
if (wret) {
ret = wret;
goto enospc;
}
}
right = btrfs_read_node_slot(parent, pslot + 1);
if (IS_ERR(right))
right = NULL;
if (right) {
__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
wret = btrfs_cow_block(trans, root, right,
parent, pslot + 1, &right,
BTRFS_NESTING_RIGHT_COW);
if (wret) {
ret = wret;
goto enospc;
}
}
/* first, try to make some room in the middle buffer */
if (left) {
orig_slot += btrfs_header_nritems(left);
wret = push_node_left(trans, left, mid, 1);
if (wret < 0)
ret = wret;
}
/*
* then try to empty the right most buffer into the middle
*/
if (right) {
wret = push_node_left(trans, mid, right, 1);
if (wret < 0 && wret != -ENOSPC)
ret = wret;
if (btrfs_header_nritems(right) == 0) {
btrfs_clean_tree_block(right);
btrfs_tree_unlock(right);
del_ptr(root, path, level + 1, pslot + 1);
root_sub_used(root, right->len);
btrfs_free_tree_block(trans, btrfs_root_id(root), right,
0, 1);
free_extent_buffer_stale(right);
right = NULL;
} else {
struct btrfs_disk_key right_key;
btrfs_node_key(right, &right_key, 0);
ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
BUG_ON(ret < 0);
btrfs_set_node_key(parent, &right_key, pslot + 1);
btrfs_mark_buffer_dirty(parent);
}
}
if (btrfs_header_nritems(mid) == 1) {
/*
* we're not allowed to leave a node with one item in the
* tree during a delete. A deletion from lower in the tree
* could try to delete the only pointer in this node.
* So, pull some keys from the left.
* There has to be a left pointer at this point because
* otherwise we would have pulled some pointers from the
* right
*/
if (!left) {
ret = -EROFS;
btrfs_handle_fs_error(fs_info, ret, NULL);
goto enospc;
}
wret = balance_node_right(trans, mid, left);
if (wret < 0) {
ret = wret;
goto enospc;
}
if (wret == 1) {
wret = push_node_left(trans, left, mid, 1);
if (wret < 0)
ret = wret;
}
BUG_ON(wret == 1);
}
if (btrfs_header_nritems(mid) == 0) {
btrfs_clean_tree_block(mid);
btrfs_tree_unlock(mid);
del_ptr(root, path, level + 1, pslot);
root_sub_used(root, mid->len);
btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
free_extent_buffer_stale(mid);
mid = NULL;
} else {
/* update the parent key to reflect our changes */
struct btrfs_disk_key mid_key;
btrfs_node_key(mid, &mid_key, 0);
ret = btrfs_tree_mod_log_insert_key(parent, pslot,
BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
BUG_ON(ret < 0);
btrfs_set_node_key(parent, &mid_key, pslot);
btrfs_mark_buffer_dirty(parent);
}
/* update the path */
if (left) {
if (btrfs_header_nritems(left) > orig_slot) {
atomic_inc(&left->refs);
/* left was locked after cow */
path->nodes[level] = left;
path->slots[level + 1] -= 1;
path->slots[level] = orig_slot;
if (mid) {
btrfs_tree_unlock(mid);
free_extent_buffer(mid);
}
} else {
orig_slot -= btrfs_header_nritems(left);
path->slots[level] = orig_slot;
}
}
/* double check we haven't messed things up */
if (orig_ptr !=
btrfs_node_blockptr(path->nodes[level], path->slots[level]))
BUG();
enospc:
if (right) {
btrfs_tree_unlock(right);
free_extent_buffer(right);
}
if (left) {
if (path->nodes[level] != left)
btrfs_tree_unlock(left);
free_extent_buffer(left);
}
return ret;
}
/* Node balancing for insertion. Here we only split or push nodes around
* when they are completely full. This is also done top down, so we
* have to be pessimistic.
*/
static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path, int level)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct extent_buffer *right = NULL;
struct extent_buffer *mid;
struct extent_buffer *left = NULL;
struct extent_buffer *parent = NULL;
int ret = 0;
int wret;
int pslot;
int orig_slot = path->slots[level];
if (level == 0)
return 1;
mid = path->nodes[level];
WARN_ON(btrfs_header_generation(mid) != trans->transid);
if (level < BTRFS_MAX_LEVEL - 1) {
parent = path->nodes[level + 1];
pslot = path->slots[level + 1];
}
if (!parent)
return 1;
left = btrfs_read_node_slot(parent, pslot - 1);
if (IS_ERR(left))
left = NULL;
/* first, try to make some room in the middle buffer */
if (left) {
u32 left_nr;
__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
left_nr = btrfs_header_nritems(left);
if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
wret = 1;
} else {
ret = btrfs_cow_block(trans, root, left, parent,
pslot - 1, &left,
BTRFS_NESTING_LEFT_COW);
if (ret)
wret = 1;
else {
wret = push_node_left(trans, left, mid, 0);
}
}
if (wret < 0)
ret = wret;
if (wret == 0) {
struct btrfs_disk_key disk_key;
orig_slot += left_nr;
btrfs_node_key(mid, &disk_key, 0);
ret = btrfs_tree_mod_log_insert_key(parent, pslot,
BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
BUG_ON(ret < 0);
btrfs_set_node_key(parent, &disk_key, pslot);
btrfs_mark_buffer_dirty(parent);
if (btrfs_header_nritems(left) > orig_slot) {
path->nodes[level] = left;
path->slots[level + 1] -= 1;
path->slots[level] = orig_slot;
btrfs_tree_unlock(mid);
free_extent_buffer(mid);
} else {
orig_slot -=
btrfs_header_nritems(left);
path->slots[level] = orig_slot;
btrfs_tree_unlock(left);
free_extent_buffer(left);
}
return 0;
}
btrfs_tree_unlock(left);
free_extent_buffer(left);
}
right = btrfs_read_node_slot(parent, pslot + 1);
if (IS_ERR(right))
right = NULL;
/*
* then try to empty the right most buffer into the middle
*/
if (right) {
u32 right_nr;
__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
right_nr = btrfs_header_nritems(right);
if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
wret = 1;
} else {
ret = btrfs_cow_block(trans, root, right,
parent, pslot + 1,
&right, BTRFS_NESTING_RIGHT_COW);
if (ret)
wret = 1;
else {
wret = balance_node_right(trans, right, mid);
}
}
if (wret < 0)
ret = wret;
if (wret == 0) {
struct btrfs_disk_key disk_key;
btrfs_node_key(right, &disk_key, 0);
ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
BUG_ON(ret < 0);
btrfs_set_node_key(parent, &disk_key, pslot + 1);
btrfs_mark_buffer_dirty(parent);
if (btrfs_header_nritems(mid) <= orig_slot) {
path->nodes[level] = right;
path->slots[level + 1] += 1;
path->slots[level] = orig_slot -
btrfs_header_nritems(mid);
btrfs_tree_unlock(mid);
free_extent_buffer(mid);
} else {
btrfs_tree_unlock(right);
free_extent_buffer(right);
}
return 0;
}
btrfs_tree_unlock(right);
free_extent_buffer(right);
}
return 1;
}
/*
* readahead one full node of leaves, finding things that are close
* to the block in 'slot', and triggering ra on them.
*/
static void reada_for_search(struct btrfs_fs_info *fs_info,
struct btrfs_path *path,
int level, int slot, u64 objectid)
{
struct extent_buffer *node;
struct btrfs_disk_key disk_key;
u32 nritems;
u64 search;
u64 target;
u64 nread = 0;
u64 nread_max;
u32 nr;
u32 blocksize;
u32 nscan = 0;
if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
return;
if (!path->nodes[level])
return;
node = path->nodes[level];
/*
* Since the time between visiting leaves is much shorter than the time
* between visiting nodes, limit read ahead of nodes to 1, to avoid too
* much IO at once (possibly random).
*/
if (path->reada == READA_FORWARD_ALWAYS) {
if (level > 1)
nread_max = node->fs_info->nodesize;
else
nread_max = SZ_128K;
} else {
nread_max = SZ_64K;
}
search = btrfs_node_blockptr(node, slot);
blocksize = fs_info->nodesize;
if (path->reada != READA_FORWARD_ALWAYS) {
struct extent_buffer *eb;
eb = find_extent_buffer(fs_info, search);
if (eb) {
free_extent_buffer(eb);
return;
}
}
target = search;
nritems = btrfs_header_nritems(node);
nr = slot;
while (1) {
if (path->reada == READA_BACK) {
if (nr == 0)
break;
nr--;
} else if (path->reada == READA_FORWARD ||
path->reada == READA_FORWARD_ALWAYS) {
nr++;
if (nr >= nritems)
break;
}
if (path->reada == READA_BACK && objectid) {
btrfs_node_key(node, &disk_key, nr);
if (btrfs_disk_key_objectid(&disk_key) != objectid)
break;
}
search = btrfs_node_blockptr(node, nr);
if (path->reada == READA_FORWARD_ALWAYS ||
(search <= target && target - search <= 65536) ||
(search > target && search - target <= 65536)) {
btrfs_readahead_node_child(node, nr);
nread += blocksize;
}
nscan++;
if (nread > nread_max || nscan > 32)
break;
}
}
static noinline void reada_for_balance(struct btrfs_path *path, int level)
{
struct extent_buffer *parent;
int slot;
int nritems;
parent = path->nodes[level + 1];
if (!parent)
return;
nritems = btrfs_header_nritems(parent);
slot = path->slots[level + 1];
if (slot > 0)
btrfs_readahead_node_child(parent, slot - 1);
if (slot + 1 < nritems)
btrfs_readahead_node_child(parent, slot + 1);
}
/*
* when we walk down the tree, it is usually safe to unlock the higher layers
* in the tree. The exceptions are when our path goes through slot 0, because
* operations on the tree might require changing key pointers higher up in the
* tree.
*
* callers might also have set path->keep_locks, which tells this code to keep
* the lock if the path points to the last slot in the block. This is part of
* walking through the tree, and selecting the next slot in the higher block.
*
* lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
* if lowest_unlock is 1, level 0 won't be unlocked
*/
static noinline void unlock_up(struct btrfs_path *path, int level,
int lowest_unlock, int min_write_lock_level,
int *write_lock_level)
{
int i;
int skip_level = level;
bool check_skip = true;
for (i = level; i < BTRFS_MAX_LEVEL; i++) {
if (!path->nodes[i])
break;
if (!path->locks[i])
break;
if (check_skip) {
if (path->slots[i] == 0) {
skip_level = i + 1;
continue;
}
if (path->keep_locks) {
u32 nritems;
nritems = btrfs_header_nritems(path->nodes[i]);
if (nritems < 1 || path->slots[i] >= nritems - 1) {
skip_level = i + 1;
continue;
}
}
}
if (i >= lowest_unlock && i > skip_level) {
check_skip = false;
btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
path->locks[i] = 0;
if (write_lock_level &&
i > min_write_lock_level &&
i <= *write_lock_level) {
*write_lock_level = i - 1;
}
}
}
}
/*
* Helper function for btrfs_search_slot() and other functions that do a search
* on a btree. The goal is to find a tree block in the cache (the radix tree at
* fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
* its pages from disk.
*
* Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
* whole btree search, starting again from the current root node.
*/
static int
read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
struct extent_buffer **eb_ret, int level, int slot,
const struct btrfs_key *key)
{
struct btrfs_fs_info *fs_info = root->fs_info;
u64 blocknr;
u64 gen;
struct extent_buffer *tmp;
struct btrfs_key first_key;
int ret;
int parent_level;
bool unlock_up;
unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]);
blocknr = btrfs_node_blockptr(*eb_ret, slot);
gen = btrfs_node_ptr_generation(*eb_ret, slot);
parent_level = btrfs_header_level(*eb_ret);
btrfs_node_key_to_cpu(*eb_ret, &first_key, slot);
/*
* If we need to read an extent buffer from disk and we are holding locks
* on upper level nodes, we unlock all the upper nodes before reading the
* extent buffer, and then return -EAGAIN to the caller as it needs to
* restart the search. We don't release the lock on the current level
* because we need to walk this node to figure out which blocks to read.
*/
tmp = find_extent_buffer(fs_info, blocknr);
if (tmp) {
if (p->reada == READA_FORWARD_ALWAYS)
reada_for_search(fs_info, p, level, slot, key->objectid);
/* first we do an atomic uptodate check */
if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
/*
* Do extra check for first_key, eb can be stale due to
* being cached, read from scrub, or have multiple
* parents (shared tree blocks).
*/
if (btrfs_verify_level_key(tmp,
parent_level - 1, &first_key, gen)) {
free_extent_buffer(tmp);
return -EUCLEAN;
}
*eb_ret = tmp;
return 0;
}
if (p->nowait) {
free_extent_buffer(tmp);
return -EAGAIN;
}
if (unlock_up)
btrfs_unlock_up_safe(p, level + 1);
/* now we're allowed to do a blocking uptodate check */
ret = btrfs_read_extent_buffer(tmp, gen, parent_level - 1, &first_key);
if (ret) {
free_extent_buffer(tmp);
btrfs_release_path(p);
return -EIO;
}
if (btrfs_check_eb_owner(tmp, root->root_key.objectid)) {
free_extent_buffer(tmp);
btrfs_release_path(p);
return -EUCLEAN;
}
if (unlock_up)
ret = -EAGAIN;
goto out;
} else if (p->nowait) {
return -EAGAIN;
}
if (unlock_up) {
btrfs_unlock_up_safe(p, level + 1);
ret = -EAGAIN;
} else {
ret = 0;
}
if (p->reada != READA_NONE)
reada_for_search(fs_info, p, level, slot, key->objectid);
tmp = read_tree_block(fs_info, blocknr, root->root_key.objectid,
gen, parent_level - 1, &first_key);
if (IS_ERR(tmp)) {
btrfs_release_path(p);
return PTR_ERR(tmp);
}
/*
* If the read above didn't mark this buffer up to date,
* it will never end up being up to date. Set ret to EIO now
* and give up so that our caller doesn't loop forever
* on our EAGAINs.
*/
if (!extent_buffer_uptodate(tmp))
ret = -EIO;
out:
if (ret == 0) {
*eb_ret = tmp;
} else {
free_extent_buffer(tmp);
btrfs_release_path(p);
}
return ret;
}
/*
* helper function for btrfs_search_slot. This does all of the checks
* for node-level blocks and does any balancing required based on
* the ins_len.
*
* If no extra work was required, zero is returned. If we had to
* drop the path, -EAGAIN is returned and btrfs_search_slot must
* start over
*/
static int
setup_nodes_for_search(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct btrfs_path *p,
struct extent_buffer *b, int level, int ins_len,
int *write_lock_level)
{
struct btrfs_fs_info *fs_info = root->fs_info;
int ret = 0;
if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
if (*write_lock_level < level + 1) {
*write_lock_level = level + 1;
btrfs_release_path(p);
return -EAGAIN;
}
reada_for_balance(p, level);
ret = split_node(trans, root, p, level);
b = p->nodes[level];
} else if (ins_len < 0 && btrfs_header_nritems(b) <
BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
if (*write_lock_level < level + 1) {
*write_lock_level = level + 1;
btrfs_release_path(p);
return -EAGAIN;
}
reada_for_balance(p, level);
ret = balance_level(trans, root, p, level);
if (ret)
return ret;
b = p->nodes[level];
if (!b) {
btrfs_release_path(p);
return -EAGAIN;
}
BUG_ON(btrfs_header_nritems(b) == 1);
}
return ret;
}
int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
u64 iobjectid, u64 ioff, u8 key_type,
struct btrfs_key *found_key)
{
int ret;
struct btrfs_key key;
struct extent_buffer *eb;
ASSERT(path);
ASSERT(found_key);
key.type = key_type;
key.objectid = iobjectid;
key.offset = ioff;
ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
if (ret < 0)
return ret;
eb = path->nodes[0];
if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
ret = btrfs_next_leaf(fs_root, path);
if (ret)
return ret;
eb = path->nodes[0];
}
btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
if (found_key->type != key.type ||
found_key->objectid != key.objectid)
return 1;
return 0;
}
static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
struct btrfs_path *p,
int write_lock_level)
{
struct extent_buffer *b;
int root_lock = 0;
int level = 0;
if (p->search_commit_root) {
b = root->commit_root;
atomic_inc(&b->refs);
level = btrfs_header_level(b);
/*
* Ensure that all callers have set skip_locking when
* p->search_commit_root = 1.
*/
ASSERT(p->skip_locking == 1);
goto out;
}
if (p->skip_locking) {
b = btrfs_root_node(root);
level = btrfs_header_level(b);
goto out;
}
/* We try very hard to do read locks on the root */
root_lock = BTRFS_READ_LOCK;
/*
* If the level is set to maximum, we can skip trying to get the read
* lock.
*/
if (write_lock_level < BTRFS_MAX_LEVEL) {
/*
* We don't know the level of the root node until we actually
* have it read locked
*/
if (p->nowait) {
b = btrfs_try_read_lock_root_node(root);
if (IS_ERR(b))
return b;
} else {
b = btrfs_read_lock_root_node(root);
}
level = btrfs_header_level(b);
if (level > write_lock_level)
goto out;
/* Whoops, must trade for write lock */
btrfs_tree_read_unlock(b);
free_extent_buffer(b);
}
b = btrfs_lock_root_node(root);
root_lock = BTRFS_WRITE_LOCK;
/* The level might have changed, check again */
level = btrfs_header_level(b);
out:
/*
* The root may have failed to write out at some point, and thus is no
* longer valid, return an error in this case.
*/
if (!extent_buffer_uptodate(b)) {
if (root_lock)
btrfs_tree_unlock_rw(b, root_lock);
free_extent_buffer(b);
return ERR_PTR(-EIO);
}
p->nodes[level] = b;
if (!p->skip_locking)
p->locks[level] = root_lock;
/*
* Callers are responsible for dropping b's references.
*/
return b;
}
/*
* Replace the extent buffer at the lowest level of the path with a cloned
* version. The purpose is to be able to use it safely, after releasing the
* commit root semaphore, even if relocation is happening in parallel, the
* transaction used for relocation is committed and the extent buffer is
* reallocated in the next transaction.
*
* This is used in a context where the caller does not prevent transaction
* commits from happening, either by holding a transaction handle or holding
* some lock, while it's doing searches through a commit root.
* At the moment it's only used for send operations.
*/
static int finish_need_commit_sem_search(struct btrfs_path *path)
{
const int i = path->lowest_level;
const int slot = path->slots[i];
struct extent_buffer *lowest = path->nodes[i];
struct extent_buffer *clone;
ASSERT(path->need_commit_sem);
if (!lowest)
return 0;
lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
clone = btrfs_clone_extent_buffer(lowest);
if (!clone)
return -ENOMEM;
btrfs_release_path(path);
path->nodes[i] = clone;
path->slots[i] = slot;
return 0;
}
static inline int search_for_key_slot(struct extent_buffer *eb,
int search_low_slot,
const struct btrfs_key *key,
int prev_cmp,
int *slot)
{
/*
* If a previous call to btrfs_bin_search() on a parent node returned an
* exact match (prev_cmp == 0), we can safely assume the target key will
* always be at slot 0 on lower levels, since each key pointer
* (struct btrfs_key_ptr) refers to the lowest key accessible from the
* subtree it points to. Thus we can skip searching lower levels.
*/
if (prev_cmp == 0) {
*slot = 0;
return 0;
}
return generic_bin_search(eb, search_low_slot, key, slot);
}
static int search_leaf(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
const struct btrfs_key *key,
struct btrfs_path *path,
int ins_len,
int prev_cmp)
{
struct extent_buffer *leaf = path->nodes[0];
int leaf_free_space = -1;
int search_low_slot = 0;
int ret;
bool do_bin_search = true;
/*
* If we are doing an insertion, the leaf has enough free space and the
* destination slot for the key is not slot 0, then we can unlock our
* write lock on the parent, and any other upper nodes, before doing the
* binary search on the leaf (with search_for_key_slot()), allowing other
* tasks to lock the parent and any other upper nodes.
*/
if (ins_len > 0) {
/*
* Cache the leaf free space, since we will need it later and it
* will not change until then.
*/
leaf_free_space = btrfs_leaf_free_space(leaf);
/*
* !path->locks[1] means we have a single node tree, the leaf is
* the root of the tree.
*/
if (path->locks[1] && leaf_free_space >= ins_len) {
struct btrfs_disk_key first_key;
ASSERT(btrfs_header_nritems(leaf) > 0);
btrfs_item_key(leaf, &first_key, 0);
/*
* Doing the extra comparison with the first key is cheap,
* taking into account that the first key is very likely
* already in a cache line because it immediately follows
* the extent buffer's header and we have recently accessed
* the header's level field.
*/
ret = comp_keys(&first_key, key);
if (ret < 0) {
/*
* The first key is smaller than the key we want
* to insert, so we are safe to unlock all upper
* nodes and we have to do the binary search.
*
* We do use btrfs_unlock_up_safe() and not
* unlock_up() because the later does not unlock
* nodes with a slot of 0 - we can safely unlock
* any node even if its slot is 0 since in this
* case the key does not end up at slot 0 of the
* leaf and there's no need to split the leaf.
*/
btrfs_unlock_up_safe(path, 1);
search_low_slot = 1;
} else {
/*
* The first key is >= then the key we want to
* insert, so we can skip the binary search as
* the target key will be at slot 0.
*
* We can not unlock upper nodes when the key is
* less than the first key, because we will need
* to update the key at slot 0 of the parent node
* and possibly of other upper nodes too.
* If the key matches the first key, then we can
* unlock all the upper nodes, using
* btrfs_unlock_up_safe() instead of unlock_up()
* as stated above.
*/
if (ret == 0)
btrfs_unlock_up_safe(path, 1);
/*
* ret is already 0 or 1, matching the result of
* a btrfs_bin_search() call, so there is no need
* to adjust it.
*/
do_bin_search = false;
path->slots[0] = 0;
}
}
}
if (do_bin_search) {
ret = search_for_key_slot(leaf, search_low_slot, key,
prev_cmp, &path->slots[0]);
if (ret < 0)
return ret;
}
if (ins_len > 0) {
/*
* Item key already exists. In this case, if we are allowed to
* insert the item (for example, in dir_item case, item key
* collision is allowed), it will be merged with the original
* item. Only the item size grows, no new btrfs item will be
* added. If search_for_extension is not set, ins_len already
* accounts the size btrfs_item, deduct it here so leaf space
* check will be correct.
*/
if (ret == 0 && !path->search_for_extension) {
ASSERT(ins_len >= sizeof(struct btrfs_item));
ins_len -= sizeof(struct btrfs_item);
}
ASSERT(leaf_free_space >= 0);
if (leaf_free_space < ins_len) {
int err;
err = split_leaf(trans, root, key, path, ins_len,
(ret == 0));
ASSERT(err <= 0);
if (WARN_ON(err > 0))
err = -EUCLEAN;
if (err)
ret = err;
}
}
return ret;
}
/*
* btrfs_search_slot - look for a key in a tree and perform necessary
* modifications to preserve tree invariants.
*
* @trans: Handle of transaction, used when modifying the tree
* @p: Holds all btree nodes along the search path
* @root: The root node of the tree
* @key: The key we are looking for
* @ins_len: Indicates purpose of search:
* >0 for inserts it's size of item inserted (*)
* <0 for deletions
* 0 for plain searches, not modifying the tree
*
* (*) If size of item inserted doesn't include
* sizeof(struct btrfs_item), then p->search_for_extension must
* be set.
* @cow: boolean should CoW operations be performed. Must always be 1
* when modifying the tree.
*
* If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
* If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
*
* If @key is found, 0 is returned and you can find the item in the leaf level
* of the path (level 0)
*
* If @key isn't found, 1 is returned and the leaf level of the path (level 0)
* points to the slot where it should be inserted
*
* If an error is encountered while searching the tree a negative error number
* is returned
*/
int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
const struct btrfs_key *key, struct btrfs_path *p,
int ins_len, int cow)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct extent_buffer *b;
int slot;
int ret;
int err;
int level;
int lowest_unlock = 1;
/* everything at write_lock_level or lower must be write locked */
int write_lock_level = 0;
u8 lowest_level = 0;
int min_write_lock_level;
int prev_cmp;
lowest_level = p->lowest_level;
WARN_ON(lowest_level && ins_len > 0);
WARN_ON(p->nodes[0] != NULL);
BUG_ON(!cow && ins_len);
/*
* For now only allow nowait for read only operations. There's no
* strict reason why we can't, we just only need it for reads so it's
* only implemented for reads.
*/
ASSERT(!p->nowait || !cow);
if (ins_len < 0) {
lowest_unlock = 2;
/* when we are removing items, we might have to go up to level
* two as we update tree pointers Make sure we keep write
* for those levels as well
*/
write_lock_level = 2;
} else if (ins_len > 0) {
/*
* for inserting items, make sure we have a write lock on
* level 1 so we can update keys
*/
write_lock_level = 1;
}
if (!cow)
write_lock_level = -1;
if (cow && (p->keep_locks || p->lowest_level))
write_lock_level = BTRFS_MAX_LEVEL;
min_write_lock_level = write_lock_level;
if (p->need_commit_sem) {
ASSERT(p->search_commit_root);
if (p->nowait) {
if (!down_read_trylock(&fs_info->commit_root_sem))
return -EAGAIN;
} else {
down_read(&fs_info->commit_root_sem);
}
}
again:
prev_cmp = -1;
b = btrfs_search_slot_get_root(root, p, write_lock_level);
if (IS_ERR(b)) {
ret = PTR_ERR(b);
goto done;
}
while (b) {
int dec = 0;
level = btrfs_header_level(b);
if (cow) {
bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
/*
* if we don't really need to cow this block
* then we don't want to set the path blocking,
* so we test it here
*/
if (!should_cow_block(trans, root, b))
goto cow_done;
/*
* must have write locks on this node and the
* parent
*/
if (level > write_lock_level ||
(level + 1 > write_lock_level &&
level + 1 < BTRFS_MAX_LEVEL &&
p->nodes[level + 1])) {
write_lock_level = level + 1;
btrfs_release_path(p);
goto again;
}
if (last_level)
err = btrfs_cow_block(trans, root, b, NULL, 0,
&b,
BTRFS_NESTING_COW);
else
err = btrfs_cow_block(trans, root, b,
p->nodes[level + 1],
p->slots[level + 1], &b,
BTRFS_NESTING_COW);
if (err) {
ret = err;
goto done;
}
}
cow_done:
p->nodes[level] = b;
/*
* we have a lock on b and as long as we aren't changing
* the tree, there is no way to for the items in b to change.
* It is safe to drop the lock on our parent before we
* go through the expensive btree search on b.
*
* If we're inserting or deleting (ins_len != 0), then we might
* be changing slot zero, which may require changing the parent.
* So, we can't drop the lock until after we know which slot
* we're operating on.
*/
if (!ins_len && !p->keep_locks) {
int u = level + 1;
if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
p->locks[u] = 0;
}
}
if (level == 0) {
if (ins_len > 0)
ASSERT(write_lock_level >= 1);
ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
if (!p->search_for_split)
unlock_up(p, level, lowest_unlock,
min_write_lock_level, NULL);
goto done;
}
ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
if (ret < 0)
goto done;
prev_cmp = ret;
if (ret && slot > 0) {
dec = 1;
slot--;
}
p->slots[level] = slot;
err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
&write_lock_level);
if (err == -EAGAIN)
goto again;
if (err) {
ret = err;
goto done;
}
b = p->nodes[level];
slot = p->slots[level];
/*
* Slot 0 is special, if we change the key we have to update
* the parent pointer which means we must have a write lock on
* the parent
*/
if (slot == 0 && ins_len && write_lock_level < level + 1) {
write_lock_level = level + 1;
btrfs_release_path(p);
goto again;
}
unlock_up(p, level, lowest_unlock, min_write_lock_level,
&write_lock_level);
if (level == lowest_level) {
if (dec)
p->slots[level]++;
goto done;
}
err = read_block_for_search(root, p, &b, level, slot, key);
if (err == -EAGAIN)
goto again;
if (err) {
ret = err;
goto done;
}
if (!p->skip_locking) {
level = btrfs_header_level(b);
btrfs_maybe_reset_lockdep_class(root, b);
if (level <= write_lock_level) {
btrfs_tree_lock(b);
p->locks[level] = BTRFS_WRITE_LOCK;
} else {
if (p->nowait) {
if (!btrfs_try_tree_read_lock(b)) {
free_extent_buffer(b);
ret = -EAGAIN;
goto done;
}
} else {
btrfs_tree_read_lock(b);
}
p->locks[level] = BTRFS_READ_LOCK;
}
p->nodes[level] = b;
}
}
ret = 1;
done:
if (ret < 0 && !p->skip_release_on_error)
btrfs_release_path(p);
if (p->need_commit_sem) {
int ret2;
ret2 = finish_need_commit_sem_search(p);
up_read(&fs_info->commit_root_sem);
if (ret2)
ret = ret2;
}
return ret;
}
ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
/*
* Like btrfs_search_slot, this looks for a key in the given tree. It uses the
* current state of the tree together with the operations recorded in the tree
* modification log to search for the key in a previous version of this tree, as
* denoted by the time_seq parameter.
*
* Naturally, there is no support for insert, delete or cow operations.
*
* The resulting path and return value will be set up as if we called
* btrfs_search_slot at that point in time with ins_len and cow both set to 0.
*/
int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
struct btrfs_path *p, u64 time_seq)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct extent_buffer *b;
int slot;
int ret;
int err;
int level;
int lowest_unlock = 1;
u8 lowest_level = 0;
lowest_level = p->lowest_level;
WARN_ON(p->nodes[0] != NULL);
ASSERT(!p->nowait);
if (p->search_commit_root) {
BUG_ON(time_seq);
return btrfs_search_slot(NULL, root, key, p, 0, 0);
}
again:
b = btrfs_get_old_root(root, time_seq);
if (!b) {
ret = -EIO;
goto done;
}
level = btrfs_header_level(b);
p->locks[level] = BTRFS_READ_LOCK;
while (b) {
int dec = 0;
level = btrfs_header_level(b);
p->nodes[level] = b;
/*
* we have a lock on b and as long as we aren't changing
* the tree, there is no way to for the items in b to change.
* It is safe to drop the lock on our parent before we
* go through the expensive btree search on b.
*/
btrfs_unlock_up_safe(p, level + 1);
ret = btrfs_bin_search(b, key, &slot);
if (ret < 0)
goto done;
if (level == 0) {
p->slots[level] = slot;
unlock_up(p, level, lowest_unlock, 0, NULL);
goto done;
}
if (ret && slot > 0) {
dec = 1;
slot--;
}
p->slots[level] = slot;
unlock_up(p, level, lowest_unlock, 0, NULL);
if (level == lowest_level) {
if (dec)
p->slots[level]++;
goto done;
}
err = read_block_for_search(root, p, &b, level, slot, key);
if (err == -EAGAIN)
goto again;
if (err) {
ret = err;
goto done;
}
level = btrfs_header_level(b);
btrfs_tree_read_lock(b);
b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
if (!b) {
ret = -ENOMEM;
goto done;
}
p->locks[level] = BTRFS_READ_LOCK;
p->nodes[level] = b;
}
ret = 1;
done:
if (ret < 0)
btrfs_release_path(p);
return ret;
}
/*
* helper to use instead of search slot if no exact match is needed but
* instead the next or previous item should be returned.
* When find_higher is true, the next higher item is returned, the next lower
* otherwise.
* When return_any and find_higher are both true, and no higher item is found,
* return the next lower instead.
* When return_any is true and find_higher is false, and no lower item is found,
* return the next higher instead.
* It returns 0 if any item is found, 1 if none is found (tree empty), and
* < 0 on error
*/
int btrfs_search_slot_for_read(struct btrfs_root *root,
const struct btrfs_key *key,
struct btrfs_path *p, int find_higher,
int return_any)
{
int ret;
struct extent_buffer *leaf;
again:
ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
if (ret <= 0)
return ret;
/*
* a return value of 1 means the path is at the position where the
* item should be inserted. Normally this is the next bigger item,
* but in case the previous item is the last in a leaf, path points
* to the first free slot in the previous leaf, i.e. at an invalid
* item.
*/
leaf = p->nodes[0];
if (find_higher) {
if (p->slots[0] >= btrfs_header_nritems(leaf)) {
ret = btrfs_next_leaf(root, p);
if (ret <= 0)
return ret;
if (!return_any)
return 1;
/*
* no higher item found, return the next
* lower instead
*/
return_any = 0;
find_higher = 0;
btrfs_release_path(p);
goto again;
}
} else {
if (p->slots[0] == 0) {
ret = btrfs_prev_leaf(root, p);
if (ret < 0)
return ret;
if (!ret) {
leaf = p->nodes[0];
if (p->slots[0] == btrfs_header_nritems(leaf))
p->slots[0]--;
return 0;
}
if (!return_any)
return 1;
/*
* no lower item found, return the next
* higher instead
*/
return_any = 0;
find_higher = 1;
btrfs_release_path(p);
goto again;
} else {
--p->slots[0];
}
}
return 0;
}
/*
* Execute search and call btrfs_previous_item to traverse backwards if the item
* was not found.
*
* Return 0 if found, 1 if not found and < 0 if error.
*/
int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
struct btrfs_path *path)
{
int ret;
ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
if (ret > 0)
ret = btrfs_previous_item(root, path, key->objectid, key->type);
if (ret == 0)
btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
return ret;
}
/**
* Search for a valid slot for the given path.
*
* @root: The root node of the tree.
* @key: Will contain a valid item if found.
* @path: The starting point to validate the slot.
*
* Return: 0 if the item is valid
* 1 if not found
* <0 if error.
*/
int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
struct btrfs_path *path)
{
while (1) {
int ret;
const int slot = path->slots[0];
const struct extent_buffer *leaf = path->nodes[0];
/* This is where we start walking the path. */
if (slot >= btrfs_header_nritems(leaf)) {
/*
* If we've reached the last slot in this leaf we need
* to go to the next leaf and reset the path.
*/
ret = btrfs_next_leaf(root, path);
if (ret)
return ret;
continue;
}
/* Store the found, valid item in @key. */
btrfs_item_key_to_cpu(leaf, key, slot);
break;
}
return 0;
}
/*
* adjust the pointers going up the tree, starting at level
* making sure the right key of each node is points to 'key'.
* This is used after shifting pointers to the left, so it stops
* fixing up pointers when a given leaf/node is not in slot 0 of the
* higher levels
*
*/
static void fixup_low_keys(struct btrfs_path *path,
struct btrfs_disk_key *key, int level)
{
int i;
struct extent_buffer *t;
int ret;
for (i = level; i < BTRFS_MAX_LEVEL; i++) {
int tslot = path->slots[i];
if (!path->nodes[i])
break;
t = path->nodes[i];
ret = btrfs_tree_mod_log_insert_key(t, tslot,
BTRFS_MOD_LOG_KEY_REPLACE, GFP_ATOMIC);
BUG_ON(ret < 0);
btrfs_set_node_key(t, key, tslot);
btrfs_mark_buffer_dirty(path->nodes[i]);
if (tslot != 0)
break;
}
}
/*
* update item key.
*
* This function isn't completely safe. It's the caller's responsibility
* that the new key won't break the order
*/
void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
struct btrfs_path *path,
const struct btrfs_key *new_key)
{
struct btrfs_disk_key disk_key;
struct extent_buffer *eb;
int slot;
eb = path->nodes[0];
slot = path->slots[0];
if (slot > 0) {
btrfs_item_key(eb, &disk_key, slot - 1);
if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
btrfs_crit(fs_info,
"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
slot, btrfs_disk_key_objectid(&disk_key),
btrfs_disk_key_type(&disk_key),
btrfs_disk_key_offset(&disk_key),
new_key->objectid, new_key->type,
new_key->offset);
btrfs_print_leaf(eb);
BUG();
}
}
if (slot < btrfs_header_nritems(eb) - 1) {
btrfs_item_key(eb, &disk_key, slot + 1);
if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
btrfs_crit(fs_info,
"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
slot, btrfs_disk_key_objectid(&disk_key),
btrfs_disk_key_type(&disk_key),
btrfs_disk_key_offset(&disk_key),
new_key->objectid, new_key->type,
new_key->offset);
btrfs_print_leaf(eb);
BUG();
}
}
btrfs_cpu_key_to_disk(&disk_key, new_key);
btrfs_set_item_key(eb, &disk_key, slot);
btrfs_mark_buffer_dirty(eb);
if (slot == 0)
fixup_low_keys(path, &disk_key, 1);
}
/*
* Check key order of two sibling extent buffers.
*
* Return true if something is wrong.
* Return false if everything is fine.
*
* Tree-checker only works inside one tree block, thus the following
* corruption can not be detected by tree-checker:
*
* Leaf @left | Leaf @right
* --------------------------------------------------------------
* | 1 | 2 | 3 | 4 | 5 | f6 | | 7 | 8 |
*
* Key f6 in leaf @left itself is valid, but not valid when the next
* key in leaf @right is 7.
* This can only be checked at tree block merge time.
* And since tree checker has ensured all key order in each tree block
* is correct, we only need to bother the last key of @left and the first
* key of @right.
*/
static bool check_sibling_keys(struct extent_buffer *left,
struct extent_buffer *right)
{
struct btrfs_key left_last;
struct btrfs_key right_first;
int level = btrfs_header_level(left);
int nr_left = btrfs_header_nritems(left);
int nr_right = btrfs_header_nritems(right);
/* No key to check in one of the tree blocks */
if (!nr_left || !nr_right)
return false;
if (level) {
btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
btrfs_node_key_to_cpu(right, &right_first, 0);
} else {
btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
btrfs_item_key_to_cpu(right, &right_first, 0);
}
if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
btrfs_crit(left->fs_info,
"bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
left_last.objectid, left_last.type,
left_last.offset, right_first.objectid,
right_first.type, right_first.offset);
return true;
}
return false;
}
/*
* try to push data from one node into the next node left in the
* tree.
*
* returns 0 if some ptrs were pushed left, < 0 if there was some horrible
* error, and > 0 if there was no room in the left hand block.
*/
static int push_node_left(struct btrfs_trans_handle *trans,
struct extent_buffer *dst,
struct extent_buffer *src, int empty)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
int push_items = 0;
int src_nritems;
int dst_nritems;
int ret = 0;
src_nritems = btrfs_header_nritems(src);
dst_nritems = btrfs_header_nritems(dst);
push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
WARN_ON(btrfs_header_generation(src) != trans->transid);
WARN_ON(btrfs_header_generation(dst) != trans->transid);
if (!empty && src_nritems <= 8)
return 1;
if (push_items <= 0)
return 1;
if (empty) {
push_items = min(src_nritems, push_items);
if (push_items < src_nritems) {
/* leave at least 8 pointers in the node if
* we aren't going to empty it
*/
if (src_nritems - push_items < 8) {
if (push_items <= 8)
return 1;
push_items -= 8;
}
}
} else
push_items = min(src_nritems - 8, push_items);
/* dst is the left eb, src is the middle eb */
if (check_sibling_keys(dst, src)) {
ret = -EUCLEAN;
btrfs_abort_transaction(trans, ret);
return ret;
}
ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
if (ret) {
btrfs_abort_transaction(trans, ret);
return ret;
}
copy_extent_buffer(dst, src,
btrfs_node_key_ptr_offset(dst_nritems),
btrfs_node_key_ptr_offset(0),
push_items * sizeof(struct btrfs_key_ptr));
if (push_items < src_nritems) {
/*
* Don't call btrfs_tree_mod_log_insert_move() here, key removal
* was already fully logged by btrfs_tree_mod_log_eb_copy() above.
*/
memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
btrfs_node_key_ptr_offset(push_items),
(src_nritems - push_items) *
sizeof(struct btrfs_key_ptr));
}
btrfs_set_header_nritems(src, src_nritems - push_items);
btrfs_set_header_nritems(dst, dst_nritems + push_items);
btrfs_mark_buffer_dirty(src);
btrfs_mark_buffer_dirty(dst);
return ret;
}
/*
* try to push data from one node into the next node right in the
* tree.
*
* returns 0 if some ptrs were pushed, < 0 if there was some horrible
* error, and > 0 if there was no room in the right hand block.
*
* this will only push up to 1/2 the contents of the left node over
*/
static int balance_node_right(struct btrfs_trans_handle *trans,
struct extent_buffer *dst,
struct extent_buffer *src)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
int push_items = 0;
int max_push;
int src_nritems;
int dst_nritems;
int ret = 0;
WARN_ON(btrfs_header_generation(src) != trans->transid);
WARN_ON(btrfs_header_generation(dst) != trans->transid);
src_nritems = btrfs_header_nritems(src);
dst_nritems = btrfs_header_nritems(dst);
push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
if (push_items <= 0)
return 1;
if (src_nritems < 4)
return 1;
max_push = src_nritems / 2 + 1;
/* don't try to empty the node */
if (max_push >= src_nritems)
return 1;
if (max_push < push_items)
push_items = max_push;
/* dst is the right eb, src is the middle eb */
if (check_sibling_keys(src, dst)) {
ret = -EUCLEAN;
btrfs_abort_transaction(trans, ret);
return ret;
}
ret = btrfs_tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
BUG_ON(ret < 0);
memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
btrfs_node_key_ptr_offset(0),
(dst_nritems) *
sizeof(struct btrfs_key_ptr));
ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
push_items);
if (ret) {
btrfs_abort_transaction(trans, ret);
return ret;
}
copy_extent_buffer(dst, src,
btrfs_node_key_ptr_offset(0),
btrfs_node_key_ptr_offset(src_nritems - push_items),
push_items * sizeof(struct btrfs_key_ptr));
btrfs_set_header_nritems(src, src_nritems - push_items);
btrfs_set_header_nritems(dst, dst_nritems + push_items);
btrfs_mark_buffer_dirty(src);
btrfs_mark_buffer_dirty(dst);
return ret;
}
/*
* helper function to insert a new root level in the tree.
* A new node is allocated, and a single item is inserted to
* point to the existing root
*
* returns zero on success or < 0 on failure.
*/
static noinline int insert_new_root(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path, int level)
{
struct btrfs_fs_info *fs_info = root->fs_info;
u64 lower_gen;
struct extent_buffer *lower;
struct extent_buffer *c;
struct extent_buffer *old;
struct btrfs_disk_key lower_key;
int ret;
BUG_ON(path->nodes[level]);
BUG_ON(path->nodes[level-1] != root->node);
lower = path->nodes[level-1];
if (level == 1)
btrfs_item_key(lower, &lower_key, 0);
else
btrfs_node_key(lower, &lower_key, 0);
c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
&lower_key, level, root->node->start, 0,
BTRFS_NESTING_NEW_ROOT);
if (IS_ERR(c))
return PTR_ERR(c);
root_add_used(root, fs_info->nodesize);
btrfs_set_header_nritems(c, 1);
btrfs_set_node_key(c, &lower_key, 0);
btrfs_set_node_blockptr(c, 0, lower->start);
lower_gen = btrfs_header_generation(lower);
WARN_ON(lower_gen != trans->transid);
btrfs_set_node_ptr_generation(c, 0, lower_gen);
btrfs_mark_buffer_dirty(c);
old = root->node;
ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
BUG_ON(ret < 0);
rcu_assign_pointer(root->node, c);
/* the super has an extra ref to root->node */
free_extent_buffer(old);
add_root_to_dirty_list(root);
atomic_inc(&c->refs);
path->nodes[level] = c;
path->locks[level] = BTRFS_WRITE_LOCK;
path->slots[level] = 0;
return 0;
}
/*
* worker function to insert a single pointer in a node.
* the node should have enough room for the pointer already
*
* slot and level indicate where you want the key to go, and
* blocknr is the block the key points to.
*/
static void insert_ptr(struct btrfs_trans_handle *trans,
struct btrfs_path *path,
struct btrfs_disk_key *key, u64 bytenr,
int slot, int level)
{
struct extent_buffer *lower;
int nritems;
int ret;
BUG_ON(!path->nodes[level]);
btrfs_assert_tree_write_locked(path->nodes[level]);
lower = path->nodes[level];
nritems = btrfs_header_nritems(lower);
BUG_ON(slot > nritems);
BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
if (slot != nritems) {
if (level) {
ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
slot, nritems - slot);
BUG_ON(ret < 0);
}
memmove_extent_buffer(lower,
btrfs_node_key_ptr_offset(slot + 1),
btrfs_node_key_ptr_offset(slot),
(nritems - slot) * sizeof(struct btrfs_key_ptr));
}
if (level) {
ret = btrfs_tree_mod_log_insert_key(lower, slot,
BTRFS_MOD_LOG_KEY_ADD, GFP_NOFS);
BUG_ON(ret < 0);
}
btrfs_set_node_key(lower, key, slot);
btrfs_set_node_blockptr(lower, slot, bytenr);
WARN_ON(trans->transid == 0);
btrfs_set_node_ptr_generation(lower, slot, trans->transid);
btrfs_set_header_nritems(lower, nritems + 1);
btrfs_mark_buffer_dirty(lower);
}
/*
* split the node at the specified level in path in two.
* The path is corrected to point to the appropriate node after the split
*
* Before splitting this tries to make some room in the node by pushing
* left and right, if either one works, it returns right away.
*
* returns 0 on success and < 0 on failure
*/
static noinline int split_node(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path, int level)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct extent_buffer *c;
struct extent_buffer *split;
struct btrfs_disk_key disk_key;
int mid;
int ret;
u32 c_nritems;
c = path->nodes[level];
WARN_ON(btrfs_header_generation(c) != trans->transid);
if (c == root->node) {
/*
* trying to split the root, lets make a new one
*
* tree mod log: We don't log_removal old root in
* insert_new_root, because that root buffer will be kept as a
* normal node. We are going to log removal of half of the
* elements below with btrfs_tree_mod_log_eb_copy(). We're
* holding a tree lock on the buffer, which is why we cannot
* race with other tree_mod_log users.
*/
ret = insert_new_root(trans, root, path, level + 1);
if (ret)
return ret;
} else {
ret = push_nodes_for_insert(trans, root, path, level);
c = path->nodes[level];
if (!ret && btrfs_header_nritems(c) <
BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
return 0;
if (ret < 0)
return ret;
}
c_nritems = btrfs_header_nritems(c);
mid = (c_nritems + 1) / 2;
btrfs_node_key(c, &disk_key, mid);
split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
&disk_key, level, c->start, 0,
BTRFS_NESTING_SPLIT);
if (IS_ERR(split))
return PTR_ERR(split);
root_add_used(root, fs_info->nodesize);
ASSERT(btrfs_header_level(c) == level);
ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
if (ret) {
btrfs_abort_transaction(trans, ret);
return ret;
}
copy_extent_buffer(split, c,
btrfs_node_key_ptr_offset(0),
btrfs_node_key_ptr_offset(mid),
(c_nritems - mid) * sizeof(struct btrfs_key_ptr));
btrfs_set_header_nritems(split, c_nritems - mid);
btrfs_set_header_nritems(c, mid);
btrfs_mark_buffer_dirty(c);
btrfs_mark_buffer_dirty(split);
insert_ptr(trans, path, &disk_key, split->start,
path->slots[level + 1] + 1, level + 1);
if (path->slots[level] >= mid) {
path->slots[level] -= mid;
btrfs_tree_unlock(c);
free_extent_buffer(c);
path->nodes[level] = split;
path->slots[level + 1] += 1;
} else {
btrfs_tree_unlock(split);
free_extent_buffer(split);
}
return 0;
}
/*
* how many bytes are required to store the items in a leaf. start
* and nr indicate which items in the leaf to check. This totals up the
* space used both by the item structs and the item data
*/
static int leaf_space_used(struct extent_buffer *l, int start, int nr)
{
int data_len;
int nritems = btrfs_header_nritems(l);
int end = min(nritems, start + nr) - 1;
if (!nr)
return 0;
data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
data_len = data_len - btrfs_item_offset(l, end);
data_len += sizeof(struct btrfs_item) * nr;
WARN_ON(data_len < 0);
return data_len;
}
/*
* The space between the end of the leaf items and
* the start of the leaf data. IOW, how much room
* the leaf has left for both items and data
*/
noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
{
struct btrfs_fs_info *fs_info = leaf->fs_info;
int nritems = btrfs_header_nritems(leaf);
int ret;
ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
if (ret < 0) {
btrfs_crit(fs_info,
"leaf free space ret %d, leaf data size %lu, used %d nritems %d",
ret,
(unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
leaf_space_used(leaf, 0, nritems), nritems);
}
return ret;
}
/*
* min slot controls the lowest index we're willing to push to the
* right. We'll push up to and including min_slot, but no lower
*/
static noinline int __push_leaf_right(struct btrfs_path *path,
int data_size, int empty,
struct extent_buffer *right,
int free_space, u32 left_nritems,
u32 min_slot)
{
struct btrfs_fs_info *fs_info = right->fs_info;
struct extent_buffer *left = path->nodes[0];
struct extent_buffer *upper = path->nodes[1];
struct btrfs_map_token token;
struct btrfs_disk_key disk_key;
int slot;
u32 i;
int push_space = 0;
int push_items = 0;
u32 nr;
u32 right_nritems;
u32 data_end;
u32 this_item_size;
if (empty)
nr = 0;
else
nr = max_t(u32, 1, min_slot);
if (path->slots[0] >= left_nritems)
push_space += data_size;
slot = path->slots[1];
i = left_nritems - 1;
while (i >= nr) {
if (!empty && push_items > 0) {
if (path->slots[0] > i)
break;
if (path->slots[0] == i) {
int space = btrfs_leaf_free_space(left);
if (space + push_space * 2 > free_space)
break;
}
}
if (path->slots[0] == i)
push_space += data_size;
this_item_size = btrfs_item_size(left, i);
if (this_item_size + sizeof(struct btrfs_item) +
push_space > free_space)
break;
push_items++;
push_space += this_item_size + sizeof(struct btrfs_item);
if (i == 0)
break;
i--;
}
if (push_items == 0)
goto out_unlock;
WARN_ON(!empty && push_items == left_nritems);
/* push left to right */
right_nritems = btrfs_header_nritems(right);
push_space = btrfs_item_data_end(left, left_nritems - push_items);
push_space -= leaf_data_end(left);
/* make room in the right data area */
data_end = leaf_data_end(right);
memmove_extent_buffer(right,
BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
BTRFS_LEAF_DATA_OFFSET + data_end,
BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
/* copy from the left data area */
copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
push_space);
memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
btrfs_item_nr_offset(0),
right_nritems * sizeof(struct btrfs_item));
/* copy the items from left to right */
copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
btrfs_item_nr_offset(left_nritems - push_items),
push_items * sizeof(struct btrfs_item));
/* update the item pointers */
btrfs_init_map_token(&token, right);
right_nritems += push_items;
btrfs_set_header_nritems(right, right_nritems);
push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
for (i = 0; i < right_nritems; i++) {
push_space -= btrfs_token_item_size(&token, i);
btrfs_set_token_item_offset(&token, i, push_space);
}
left_nritems -= push_items;
btrfs_set_header_nritems(left, left_nritems);
if (left_nritems)
btrfs_mark_buffer_dirty(left);
else
btrfs_clean_tree_block(left);
btrfs_mark_buffer_dirty(right);
btrfs_item_key(right, &disk_key, 0);
btrfs_set_node_key(upper, &disk_key, slot + 1);
btrfs_mark_buffer_dirty(upper);
/* then fixup the leaf pointer in the path */
if (path->slots[0] >= left_nritems) {
path->slots[0] -= left_nritems;
if (btrfs_header_nritems(path->nodes[0]) == 0)
btrfs_clean_tree_block(path->nodes[0]);
btrfs_tree_unlock(path->nodes[0]);
free_extent_buffer(path->nodes[0]);
path->nodes[0] = right;
path->slots[1] += 1;
} else {
btrfs_tree_unlock(right);
free_extent_buffer(right);
}
return 0;
out_unlock:
btrfs_tree_unlock(right);
free_extent_buffer(right);
return 1;
}
/*
* push some data in the path leaf to the right, trying to free up at
* least data_size bytes. returns zero if the push worked, nonzero otherwise
*
* returns 1 if the push failed because the other node didn't have enough
* room, 0 if everything worked out and < 0 if there were major errors.
*
* this will push starting from min_slot to the end of the leaf. It won't
* push any slot lower than min_slot
*/
static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
*root, struct btrfs_path *path,
int min_data_size, int data_size,
int empty, u32 min_slot)
{
struct extent_buffer *left = path->nodes[0];
struct extent_buffer *right;
struct extent_buffer *upper;
int slot;
int free_space;
u32 left_nritems;
int ret;
if (!path->nodes[1])
return 1;
slot = path->slots[1];
upper = path->nodes[1];
if (slot >= btrfs_header_nritems(upper) - 1)
return 1;
btrfs_assert_tree_write_locked(path->nodes[1]);
right = btrfs_read_node_slot(upper, slot + 1);
/*
* slot + 1 is not valid or we fail to read the right node,
* no big deal, just return.
*/
if (IS_ERR(right))
return 1;
__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
free_space = btrfs_leaf_free_space(right);
if (free_space < data_size)
goto out_unlock;
ret = btrfs_cow_block(trans, root, right, upper,
slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
if (ret)
goto out_unlock;
left_nritems = btrfs_header_nritems(left);
if (left_nritems == 0)
goto out_unlock;
if (check_sibling_keys(left, right)) {
ret = -EUCLEAN;
btrfs_tree_unlock(right);
free_extent_buffer(right);
return ret;
}
if (path->slots[0] == left_nritems && !empty) {
/* Key greater than all keys in the leaf, right neighbor has
* enough room for it and we're not emptying our leaf to delete
* it, therefore use right neighbor to insert the new item and
* no need to touch/dirty our left leaf. */
btrfs_tree_unlock(left);
free_extent_buffer(left);
path->nodes[0] = right;
path->slots[0] = 0;
path->slots[1]++;
return 0;
}
return __push_leaf_right(path, min_data_size, empty,
right, free_space, left_nritems, min_slot);
out_unlock:
btrfs_tree_unlock(right);
free_extent_buffer(right);
return 1;
}
/*
* push some data in the path leaf to the left, trying to free up at
* least data_size bytes. returns zero if the push worked, nonzero otherwise
*
* max_slot can put a limit on how far into the leaf we'll push items. The
* item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
* items
*/
static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
int empty, struct extent_buffer *left,
int free_space, u32 right_nritems,
u32 max_slot)
{
struct btrfs_fs_info *fs_info = left->fs_info;
struct btrfs_disk_key disk_key;
struct extent_buffer *right = path->nodes[0];
int i;
int push_space = 0;
int push_items = 0;
u32 old_left_nritems;
u32 nr;
int ret = 0;
u32 this_item_size;
u32 old_left_item_size;
struct btrfs_map_token token;
if (empty)
nr = min(right_nritems, max_slot);
else
nr = min(right_nritems - 1, max_slot);
for (i = 0; i < nr; i++) {
if (!empty && push_items > 0) {
if (path->slots[0] < i)
break;
if (path->slots[0] == i) {
int space = btrfs_leaf_free_space(right);
if (space + push_space * 2 > free_space)
break;
}
}
if (path->slots[0] == i)
push_space += data_size;
this_item_size = btrfs_item_size(right, i);
if (this_item_size + sizeof(struct btrfs_item) + push_space >
free_space)
break;
push_items++;
push_space += this_item_size + sizeof(struct btrfs_item);
}
if (push_items == 0) {
ret = 1;
goto out;
}
WARN_ON(!empty && push_items == btrfs_header_nritems(right));
/* push data from right to left */
copy_extent_buffer(left, right,
btrfs_item_nr_offset(btrfs_header_nritems(left)),
btrfs_item_nr_offset(0),
push_items * sizeof(struct btrfs_item));
push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
btrfs_item_offset(right, push_items - 1);
copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
leaf_data_end(left) - push_space,
BTRFS_LEAF_DATA_OFFSET +
btrfs_item_offset(right, push_items - 1),
push_space);
old_left_nritems = btrfs_header_nritems(left);
BUG_ON(old_left_nritems <= 0);
btrfs_init_map_token(&token, left);
old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
u32 ioff;
ioff = btrfs_token_item_offset(&token, i);
btrfs_set_token_item_offset(&token, i,
ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
}
btrfs_set_header_nritems(left, old_left_nritems + push_items);
/* fixup right node */
if (push_items > right_nritems)
WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
right_nritems);
if (push_items < right_nritems) {
push_space = btrfs_item_offset(right, push_items - 1) -
leaf_data_end(right);
memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
BTRFS_LEAF_DATA_OFFSET +
leaf_data_end(right), push_space);
memmove_extent_buffer(right, btrfs_item_nr_offset(0),
btrfs_item_nr_offset(push_items),
(btrfs_header_nritems(right) - push_items) *
sizeof(struct btrfs_item));
}
btrfs_init_map_token(&token, right);
right_nritems -= push_items;
btrfs_set_header_nritems(right, right_nritems);
push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
for (i = 0; i < right_nritems; i++) {
push_space = push_space - btrfs_token_item_size(&token, i);
btrfs_set_token_item_offset(&token, i, push_space);
}
btrfs_mark_buffer_dirty(left);
if (right_nritems)
btrfs_mark_buffer_dirty(right);
else
btrfs_clean_tree_block(right);
btrfs_item_key(right, &disk_key, 0);
fixup_low_keys(path, &disk_key, 1);
/* then fixup the leaf pointer in the path */
if (path->slots[0] < push_items) {
path->slots[0] += old_left_nritems;
btrfs_tree_unlock(path->nodes[0]);
free_extent_buffer(path->nodes[0]);
path->nodes[0] = left;
path->slots[1] -= 1;
} else {
btrfs_tree_unlock(left);
free_extent_buffer(left);
path->slots[0] -= push_items;
}
BUG_ON(path->slots[0] < 0);
return ret;
out:
btrfs_tree_unlock(left);
free_extent_buffer(left);
return ret;
}
/*
* push some data in the path leaf to the left, trying to free up at
* least data_size bytes. returns zero if the push worked, nonzero otherwise
*
* max_slot can put a limit on how far into the leaf we'll push items. The
* item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
* items
*/
static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
*root, struct btrfs_path *path, int min_data_size,
int data_size, int empty, u32 max_slot)
{
struct extent_buffer *right = path->nodes[0];
struct extent_buffer *left;
int slot;
int free_space;
u32 right_nritems;
int ret = 0;
slot = path->slots[1];
if (slot == 0)
return 1;
if (!path->nodes[1])
return 1;
right_nritems = btrfs_header_nritems(right);
if (right_nritems == 0)
return 1;
btrfs_assert_tree_write_locked(path->nodes[1]);
left = btrfs_read_node_slot(path->nodes[1], slot - 1);
/*
* slot - 1 is not valid or we fail to read the left node,
* no big deal, just return.
*/
if (IS_ERR(left))
return 1;
__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
free_space = btrfs_leaf_free_space(left);
if (free_space < data_size) {
ret = 1;
goto out;
}
ret = btrfs_cow_block(trans, root, left,
path->nodes[1], slot - 1, &left,
BTRFS_NESTING_LEFT_COW);
if (ret) {
/* we hit -ENOSPC, but it isn't fatal here */
if (ret == -ENOSPC)
ret = 1;
goto out;
}
if (check_sibling_keys(left, right)) {
ret = -EUCLEAN;
goto out;
}
return __push_leaf_left(path, min_data_size,
empty, left, free_space, right_nritems,
max_slot);
out:
btrfs_tree_unlock(left);
free_extent_buffer(left);
return ret;
}
/*
* split the path's leaf in two, making sure there is at least data_size
* available for the resulting leaf level of the path.
*/
static noinline void copy_for_split(struct btrfs_trans_handle *trans,
struct btrfs_path *path,
struct extent_buffer *l,
struct extent_buffer *right,
int slot, int mid, int nritems)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
int data_copy_size;
int rt_data_off;
int i;
struct btrfs_disk_key disk_key;
struct btrfs_map_token token;
nritems = nritems - mid;
btrfs_set_header_nritems(right, nritems);
data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
btrfs_item_nr_offset(mid),
nritems * sizeof(struct btrfs_item));
copy_extent_buffer(right, l,
BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
data_copy_size, BTRFS_LEAF_DATA_OFFSET +
leaf_data_end(l), data_copy_size);
rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
btrfs_init_map_token(&token, right);
for (i = 0; i < nritems; i++) {
u32 ioff;
ioff = btrfs_token_item_offset(&token, i);
btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
}
btrfs_set_header_nritems(l, mid);
btrfs_item_key(right, &disk_key, 0);
insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
btrfs_mark_buffer_dirty(right);
btrfs_mark_buffer_dirty(l);
BUG_ON(path->slots[0] != slot);
if (mid <= slot) {
btrfs_tree_unlock(path->nodes[0]);
free_extent_buffer(path->nodes[0]);
path->nodes[0] = right;
path->slots[0] -= mid;
path->slots[1] += 1;
} else {
btrfs_tree_unlock(right);
free_extent_buffer(right);
}
BUG_ON(path->slots[0] < 0);
}
/*
* double splits happen when we need to insert a big item in the middle
* of a leaf. A double split can leave us with 3 mostly empty leaves:
* leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
* A B C
*
* We avoid this by trying to push the items on either side of our target
* into the adjacent leaves. If all goes well we can avoid the double split
* completely.
*/
static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
int data_size)
{
int ret;
int progress = 0;
int slot;
u32 nritems;
int space_needed = data_size;
slot = path->slots[0];
if (slot < btrfs_header_nritems(path->nodes[0]))
space_needed -= btrfs_leaf_free_space(path->nodes[0]);
/*
* try to push all the items after our slot into the
* right leaf
*/
ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
if (ret < 0)
return ret;
if (ret == 0)
progress++;
nritems = btrfs_header_nritems(path->nodes[0]);
/*
* our goal is to get our slot at the start or end of a leaf. If
* we've done so we're done
*/
if (path->slots[0] == 0 || path->slots[0] == nritems)
return 0;
if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
return 0;
/* try to push all the items before our slot into the next leaf */
slot = path->slots[0];
space_needed = data_size;
if (slot > 0)
space_needed -= btrfs_leaf_free_space(path->nodes[0]);
ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
if (ret < 0)
return ret;
if (ret == 0)
progress++;
if (progress)
return 0;
return 1;
}
/*
* split the path's leaf in two, making sure there is at least data_size
* available for the resulting leaf level of the path.
*
* returns 0 if all went well and < 0 on failure.
*/
static noinline int split_leaf(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
const struct btrfs_key *ins_key,
struct btrfs_path *path, int data_size,
int extend)
{
struct btrfs_disk_key disk_key;
struct extent_buffer *l;
u32 nritems;
int mid;
int slot;
struct extent_buffer *right;
struct btrfs_fs_info *fs_info = root->fs_info;
int ret = 0;
int wret;
int split;
int num_doubles = 0;
int tried_avoid_double = 0;
l = path->nodes[0];
slot = path->slots[0];
if (extend && data_size + btrfs_item_size(l, slot) +
sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
return -EOVERFLOW;
/* first try to make some room by pushing left and right */
if (data_size && path->nodes[1]) {
int space_needed = data_size;
if (slot < btrfs_header_nritems(l))
space_needed -= btrfs_leaf_free_space(l);
wret = push_leaf_right(trans, root, path, space_needed,
space_needed, 0, 0);
if (wret < 0)
return wret;
if (wret) {
space_needed = data_size;
if (slot > 0)
space_needed -= btrfs_leaf_free_space(l);
wret = push_leaf_left(trans, root, path, space_needed,
space_needed, 0, (u32)-1);
if (wret < 0)
return wret;
}
l = path->nodes[0];
/* did the pushes work? */
if (btrfs_leaf_free_space(l) >= data_size)
return 0;
}
if (!path->nodes[1]) {
ret = insert_new_root(trans, root, path, 1);
if (ret)
return ret;
}
again:
split = 1;
l = path->nodes[0];
slot = path->slots[0];
nritems = btrfs_header_nritems(l);
mid = (nritems + 1) / 2;
if (mid <= slot) {
if (nritems == 1 ||
leaf_space_used(l, mid, nritems - mid) + data_size >
BTRFS_LEAF_DATA_SIZE(fs_info)) {
if (slot >= nritems) {
split = 0;
} else {
mid = slot;
if (mid != nritems &&
leaf_space_used(l, mid, nritems - mid) +
data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
if (data_size && !tried_avoid_double)
goto push_for_double;
split = 2;
}
}
}
} else {
if (leaf_space_used(l, 0, mid) + data_size >
BTRFS_LEAF_DATA_SIZE(fs_info)) {
if (!extend && data_size && slot == 0) {
split = 0;
} else if ((extend || !data_size) && slot == 0) {
mid = 1;
} else {
mid = slot;
if (mid != nritems &&
leaf_space_used(l, mid, nritems - mid) +
data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
if (data_size && !tried_avoid_double)
goto push_for_double;
split = 2;
}
}
}
}
if (split == 0)
btrfs_cpu_key_to_disk(&disk_key, ins_key);
else
btrfs_item_key(l, &disk_key, mid);
/*
* We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
* split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
* subclasses, which is 8 at the time of this patch, and we've maxed it
* out. In the future we could add a
* BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
* use BTRFS_NESTING_NEW_ROOT.
*/
right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
&disk_key, 0, l->start, 0,
num_doubles ? BTRFS_NESTING_NEW_ROOT :
BTRFS_NESTING_SPLIT);
if (IS_ERR(right))
return PTR_ERR(right);
root_add_used(root, fs_info->nodesize);
if (split == 0) {
if (mid <= slot) {
btrfs_set_header_nritems(right, 0);
insert_ptr(trans, path, &disk_key,
right->start, path->slots[1] + 1, 1);
btrfs_tree_unlock(path->nodes[0]);
free_extent_buffer(path->nodes[0]);
path->nodes[0] = right;
path->slots[0] = 0;
path->slots[1] += 1;
} else {
btrfs_set_header_nritems(right, 0);
insert_ptr(trans, path, &disk_key,
right->start, path->slots[1], 1);
btrfs_tree_unlock(path->nodes[0]);
free_extent_buffer(path->nodes[0]);
path->nodes[0] = right;
path->slots[0] = 0;
if (path->slots[1] == 0)
fixup_low_keys(path, &disk_key, 1);
}
/*
* We create a new leaf 'right' for the required ins_len and
* we'll do btrfs_mark_buffer_dirty() on this leaf after copying
* the content of ins_len to 'right'.
*/
return ret;
}
copy_for_split(trans, path, l, right, slot, mid, nritems);
if (split == 2) {
BUG_ON(num_doubles != 0);
num_doubles++;
goto again;
}
return 0;
push_for_double:
push_for_double_split(trans, root, path, data_size);
tried_avoid_double = 1;
if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
return 0;
goto again;
}
static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path, int ins_len)
{
struct btrfs_key key;
struct extent_buffer *leaf;
struct btrfs_file_extent_item *fi;
u64 extent_len = 0;
u32 item_size;
int ret;
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
key.type != BTRFS_EXTENT_CSUM_KEY);
if (btrfs_leaf_free_space(leaf) >= ins_len)
return 0;
item_size = btrfs_item_size(leaf, path->slots[0]);
if (key.type == BTRFS_EXTENT_DATA_KEY) {
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
extent_len = btrfs_file_extent_num_bytes(leaf, fi);
}
btrfs_release_path(path);
path->keep_locks = 1;
path->search_for_split = 1;
ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
path->search_for_split = 0;
if (ret > 0)
ret = -EAGAIN;
if (ret < 0)
goto err;
ret = -EAGAIN;
leaf = path->nodes[0];
/* if our item isn't there, return now */
if (item_size != btrfs_item_size(leaf, path->slots[0]))
goto err;
/* the leaf has changed, it now has room. return now */
if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
goto err;
if (key.type == BTRFS_EXTENT_DATA_KEY) {
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
goto err;
}
ret = split_leaf(trans, root, &key, path, ins_len, 1);
if (ret)
goto err;
path->keep_locks = 0;
btrfs_unlock_up_safe(path, 1);
return 0;
err:
path->keep_locks = 0;
return ret;
}
static noinline int split_item(struct btrfs_path *path,
const struct btrfs_key *new_key,
unsigned long split_offset)
{
struct extent_buffer *leaf;
int orig_slot, slot;
char *buf;
u32 nritems;
u32 item_size;
u32 orig_offset;
struct btrfs_disk_key disk_key;
leaf = path->nodes[0];
BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
orig_slot = path->slots[0];
orig_offset = btrfs_item_offset(leaf, path->slots[0]);
item_size = btrfs_item_size(leaf, path->slots[0]);
buf = kmalloc(item_size, GFP_NOFS);
if (!buf)
return -ENOMEM;
read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
path->slots[0]), item_size);
slot = path->slots[0] + 1;
nritems = btrfs_header_nritems(leaf);
if (slot != nritems) {
/* shift the items */
memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
btrfs_item_nr_offset(slot),
(nritems - slot) * sizeof(struct btrfs_item));
}
btrfs_cpu_key_to_disk(&disk_key, new_key);
btrfs_set_item_key(leaf, &disk_key, slot);
btrfs_set_item_offset(leaf, slot, orig_offset);
btrfs_set_item_size(leaf, slot, item_size - split_offset);
btrfs_set_item_offset(leaf, orig_slot,
orig_offset + item_size - split_offset);
btrfs_set_item_size(leaf, orig_slot, split_offset);
btrfs_set_header_nritems(leaf, nritems + 1);
/* write the data for the start of the original item */
write_extent_buffer(leaf, buf,
btrfs_item_ptr_offset(leaf, path->slots[0]),
split_offset);
/* write the data for the new item */
write_extent_buffer(leaf, buf + split_offset,
btrfs_item_ptr_offset(leaf, slot),
item_size - split_offset);
btrfs_mark_buffer_dirty(leaf);
BUG_ON(btrfs_leaf_free_space(leaf) < 0);
kfree(buf);
return 0;
}
/*
* This function splits a single item into two items,
* giving 'new_key' to the new item and splitting the
* old one at split_offset (from the start of the item).
*
* The path may be released by this operation. After
* the split, the path is pointing to the old item. The
* new item is going to be in the same node as the old one.
*
* Note, the item being split must be smaller enough to live alone on
* a tree block with room for one extra struct btrfs_item
*
* This allows us to split the item in place, keeping a lock on the
* leaf the entire time.
*/
int btrfs_split_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
const struct btrfs_key *new_key,
unsigned long split_offset)
{
int ret;
ret = setup_leaf_for_split(trans, root, path,
sizeof(struct btrfs_item));
if (ret)
return ret;
ret = split_item(path, new_key, split_offset);
return ret;
}
/*
* make the item pointed to by the path smaller. new_size indicates
* how small to make it, and from_end tells us if we just chop bytes
* off the end of the item or if we shift the item to chop bytes off
* the front.
*/
void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
{
int slot;
struct extent_buffer *leaf;
u32 nritems;
unsigned int data_end;
unsigned int old_data_start;
unsigned int old_size;
unsigned int size_diff;
int i;
struct btrfs_map_token token;
leaf = path->nodes[0];
slot = path->slots[0];
old_size = btrfs_item_size(leaf, slot);
if (old_size == new_size)
return;
nritems = btrfs_header_nritems(leaf);
data_end = leaf_data_end(leaf);
old_data_start = btrfs_item_offset(leaf, slot);
size_diff = old_size - new_size;
BUG_ON(slot < 0);
BUG_ON(slot >= nritems);
/*
* item0..itemN ... dataN.offset..dataN.size .. data0.size
*/
/* first correct the data pointers */
btrfs_init_map_token(&token, leaf);
for (i = slot; i < nritems; i++) {
u32 ioff;
ioff = btrfs_token_item_offset(&token, i);
btrfs_set_token_item_offset(&token, i, ioff + size_diff);
}
/* shift the data */
if (from_end) {
memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
data_end, old_data_start + new_size - data_end);
} else {
struct btrfs_disk_key disk_key;
u64 offset;
btrfs_item_key(leaf, &disk_key, slot);
if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
unsigned long ptr;
struct btrfs_file_extent_item *fi;
fi = btrfs_item_ptr(leaf, slot,
struct btrfs_file_extent_item);
fi = (struct btrfs_file_extent_item *)(
(unsigned long)fi - size_diff);
if (btrfs_file_extent_type(leaf, fi) ==
BTRFS_FILE_EXTENT_INLINE) {
ptr = btrfs_item_ptr_offset(leaf, slot);
memmove_extent_buffer(leaf, ptr,
(unsigned long)fi,
BTRFS_FILE_EXTENT_INLINE_DATA_START);
}
}
memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
data_end, old_data_start - data_end);
offset = btrfs_disk_key_offset(&disk_key);
btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
btrfs_set_item_key(leaf, &disk_key, slot);
if (slot == 0)
fixup_low_keys(path, &disk_key, 1);
}
btrfs_set_item_size(leaf, slot, new_size);
btrfs_mark_buffer_dirty(leaf);
if (btrfs_leaf_free_space(leaf) < 0) {
btrfs_print_leaf(leaf);
BUG();
}
}
/*
* make the item pointed to by the path bigger, data_size is the added size.
*/
void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
{
int slot;
struct extent_buffer *leaf;
u32 nritems;
unsigned int data_end;
unsigned int old_data;
unsigned int old_size;
int i;
struct btrfs_map_token token;
leaf = path->nodes[0];
nritems = btrfs_header_nritems(leaf);
data_end = leaf_data_end(leaf);
if (btrfs_leaf_free_space(leaf) < data_size) {
btrfs_print_leaf(leaf);
BUG();
}
slot = path->slots[0];
old_data = btrfs_item_data_end(leaf, slot);
BUG_ON(slot < 0);
if (slot >= nritems) {
btrfs_print_leaf(leaf);
btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
slot, nritems);
BUG();
}
/*
* item0..itemN ... dataN.offset..dataN.size .. data0.size
*/
/* first correct the data pointers */
btrfs_init_map_token(&token, leaf);
for (i = slot; i < nritems; i++) {
u32 ioff;
ioff = btrfs_token_item_offset(&token, i);
btrfs_set_token_item_offset(&token, i, ioff - data_size);
}
/* shift the data */
memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
data_end, old_data - data_end);
data_end = old_data;
old_size = btrfs_item_size(leaf, slot);
btrfs_set_item_size(leaf, slot, old_size + data_size);
btrfs_mark_buffer_dirty(leaf);
if (btrfs_leaf_free_space(leaf) < 0) {
btrfs_print_leaf(leaf);
BUG();
}
}
/**
* setup_items_for_insert - Helper called before inserting one or more items
* to a leaf. Main purpose is to save stack depth by doing the bulk of the work
* in a function that doesn't call btrfs_search_slot
*
* @root: root we are inserting items to
* @path: points to the leaf/slot where we are going to insert new items
* @batch: information about the batch of items to insert
*/
static void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
const struct btrfs_item_batch *batch)
{
struct btrfs_fs_info *fs_info = root->fs_info;
int i;
u32 nritems;
unsigned int data_end;
struct btrfs_disk_key disk_key;
struct extent_buffer *leaf;
int slot;
struct btrfs_map_token token;
u32 total_size;
/*
* Before anything else, update keys in the parent and other ancestors
* if needed, then release the write locks on them, so that other tasks
* can use them while we modify the leaf.
*/
if (path->slots[0] == 0) {
btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
fixup_low_keys(path, &disk_key, 1);
}
btrfs_unlock_up_safe(path, 1);
leaf = path->nodes[0];
slot = path->slots[0];
nritems = btrfs_header_nritems(leaf);
data_end = leaf_data_end(leaf);
total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
if (btrfs_leaf_free_space(leaf) < total_size) {
btrfs_print_leaf(leaf);
btrfs_crit(fs_info, "not enough freespace need %u have %d",
total_size, btrfs_leaf_free_space(leaf));
BUG();
}
btrfs_init_map_token(&token, leaf);
if (slot != nritems) {
unsigned int old_data = btrfs_item_data_end(leaf, slot);
if (old_data < data_end) {
btrfs_print_leaf(leaf);
btrfs_crit(fs_info,
"item at slot %d with data offset %u beyond data end of leaf %u",
slot, old_data, data_end);
BUG();
}
/*
* item0..itemN ... dataN.offset..dataN.size .. data0.size
*/
/* first correct the data pointers */
for (i = slot; i < nritems; i++) {
u32 ioff;
ioff = btrfs_token_item_offset(&token, i);
btrfs_set_token_item_offset(&token, i,
ioff - batch->total_data_size);
}
/* shift the items */
memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + batch->nr),
btrfs_item_nr_offset(slot),
(nritems - slot) * sizeof(struct btrfs_item));
/* shift the data */
memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
data_end - batch->total_data_size,
BTRFS_LEAF_DATA_OFFSET + data_end,
old_data - data_end);
data_end = old_data;
}
/* setup the item for the new data */
for (i = 0; i < batch->nr; i++) {
btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
btrfs_set_item_key(leaf, &disk_key, slot + i);
data_end -= batch->data_sizes[i];
btrfs_set_token_item_offset(&token, slot + i, data_end);
btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
}
btrfs_set_header_nritems(leaf, nritems + batch->nr);
btrfs_mark_buffer_dirty(leaf);
if (btrfs_leaf_free_space(leaf) < 0) {
btrfs_print_leaf(leaf);
BUG();
}
}
/*
* Insert a new item into a leaf.
*
* @root: The root of the btree.
* @path: A path pointing to the target leaf and slot.
* @key: The key of the new item.
* @data_size: The size of the data associated with the new key.
*/
void btrfs_setup_item_for_insert(struct btrfs_root *root,
struct btrfs_path *path,
const struct btrfs_key *key,
u32 data_size)
{
struct btrfs_item_batch batch;
batch.keys = key;
batch.data_sizes = &data_size;
batch.total_data_size = data_size;
batch.nr = 1;
setup_items_for_insert(root, path, &batch);
}
/*
* Given a key and some data, insert items into the tree.
* This does all the path init required, making room in the tree if needed.
*/
int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
const struct btrfs_item_batch *batch)
{
int ret = 0;
int slot;
u32 total_size;
total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
if (ret == 0)
return -EEXIST;
if (ret < 0)
return ret;
slot = path->slots[0];
BUG_ON(slot < 0);
setup_items_for_insert(root, path, batch);
return 0;
}
/*
* Given a key and some data, insert an item into the tree.
* This does all the path init required, making room in the tree if needed.
*/
int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
const struct btrfs_key *cpu_key, void *data,
u32 data_size)
{
int ret = 0;
struct btrfs_path *path;
struct extent_buffer *leaf;
unsigned long ptr;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
if (!ret) {
leaf = path->nodes[0];
ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
write_extent_buffer(leaf, data, ptr, data_size);
btrfs_mark_buffer_dirty(leaf);
}
btrfs_free_path(path);
return ret;
}
/*
* This function duplicates an item, giving 'new_key' to the new item.
* It guarantees both items live in the same tree leaf and the new item is
* contiguous with the original item.
*
* This allows us to split a file extent in place, keeping a lock on the leaf
* the entire time.
*/
int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
const struct btrfs_key *new_key)
{
struct extent_buffer *leaf;
int ret;
u32 item_size;
leaf = path->nodes[0];
item_size = btrfs_item_size(leaf, path->slots[0]);
ret = setup_leaf_for_split(trans, root, path,
item_size + sizeof(struct btrfs_item));
if (ret)
return ret;
path->slots[0]++;
btrfs_setup_item_for_insert(root, path, new_key, item_size);
leaf = path->nodes[0];
memcpy_extent_buffer(leaf,
btrfs_item_ptr_offset(leaf, path->slots[0]),
btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
item_size);
return 0;
}
/*
* delete the pointer from a given node.
*
* the tree should have been previously balanced so the deletion does not
* empty a node.
*/
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
int level, int slot)
{
struct extent_buffer *parent = path->nodes[level];
u32 nritems;
int ret;
nritems = btrfs_header_nritems(parent);
if (slot != nritems - 1) {
if (level) {
ret = btrfs_tree_mod_log_insert_move(parent, slot,
slot + 1, nritems - slot - 1);
BUG_ON(ret < 0);
}
memmove_extent_buffer(parent,
btrfs_node_key_ptr_offset(slot),
btrfs_node_key_ptr_offset(slot + 1),
sizeof(struct btrfs_key_ptr) *
(nritems - slot - 1));
} else if (level) {
ret = btrfs_tree_mod_log_insert_key(parent, slot,
BTRFS_MOD_LOG_KEY_REMOVE, GFP_NOFS);
BUG_ON(ret < 0);
}
nritems--;
btrfs_set_header_nritems(parent, nritems);
if (nritems == 0 && parent == root->node) {
BUG_ON(btrfs_header_level(root->node) != 1);
/* just turn the root into a leaf and break */
btrfs_set_header_level(root->node, 0);
} else if (slot == 0) {
struct btrfs_disk_key disk_key;
btrfs_node_key(parent, &disk_key, 0);
fixup_low_keys(path, &disk_key, level + 1);
}
btrfs_mark_buffer_dirty(parent);
}
/*
* a helper function to delete the leaf pointed to by path->slots[1] and
* path->nodes[1].
*
* This deletes the pointer in path->nodes[1] and frees the leaf
* block extent. zero is returned if it all worked out, < 0 otherwise.
*
* The path must have already been setup for deleting the leaf, including
* all the proper balancing. path->nodes[1] must be locked.
*/
static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct extent_buffer *leaf)
{
WARN_ON(btrfs_header_generation(leaf) != trans->transid);
del_ptr(root, path, 1, path->slots[1]);
/*
* btrfs_free_extent is expensive, we want to make sure we
* aren't holding any locks when we call it
*/
btrfs_unlock_up_safe(path, 0);
root_sub_used(root, leaf->len);
atomic_inc(&leaf->refs);
btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
free_extent_buffer_stale(leaf);
}
/*
* delete the item at the leaf level in path. If that empties
* the leaf, remove it from the tree
*/
int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
struct btrfs_path *path, int slot, int nr)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct extent_buffer *leaf;
int ret = 0;
int wret;
u32 nritems;
leaf = path->nodes[0];
nritems = btrfs_header_nritems(leaf);
if (slot + nr != nritems) {
const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
const int data_end = leaf_data_end(leaf);
struct btrfs_map_token token;
u32 dsize = 0;
int i;
for (i = 0; i < nr; i++)
dsize += btrfs_item_size(leaf, slot + i);
memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
data_end + dsize,
BTRFS_LEAF_DATA_OFFSET + data_end,
last_off - data_end);
btrfs_init_map_token(&token, leaf);
for (i = slot + nr; i < nritems; i++) {
u32 ioff;
ioff = btrfs_token_item_offset(&token, i);
btrfs_set_token_item_offset(&token, i, ioff + dsize);
}
memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
btrfs_item_nr_offset(slot + nr),
sizeof(struct btrfs_item) *
(nritems - slot - nr));
}
btrfs_set_header_nritems(leaf, nritems - nr);
nritems -= nr;
/* delete the leaf if we've emptied it */
if (nritems == 0) {
if (leaf == root->node) {
btrfs_set_header_level(leaf, 0);
} else {
btrfs_clean_tree_block(leaf);
btrfs_del_leaf(trans, root, path, leaf);
}
} else {
int used = leaf_space_used(leaf, 0, nritems);
if (slot == 0) {
struct btrfs_disk_key disk_key;
btrfs_item_key(leaf, &disk_key, 0);
fixup_low_keys(path, &disk_key, 1);
}
/*
* Try to delete the leaf if it is mostly empty. We do this by
* trying to move all its items into its left and right neighbours.
* If we can't move all the items, then we don't delete it - it's
* not ideal, but future insertions might fill the leaf with more
* items, or items from other leaves might be moved later into our
* leaf due to deletions on those leaves.
*/
if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
u32 min_push_space;
/* push_leaf_left fixes the path.
* make sure the path still points to our leaf
* for possible call to del_ptr below
*/
slot = path->slots[1];
atomic_inc(&leaf->refs);
/*
* We want to be able to at least push one item to the
* left neighbour leaf, and that's the first item.
*/
min_push_space = sizeof(struct btrfs_item) +
btrfs_item_size(leaf, 0);
wret = push_leaf_left(trans, root, path, 0,
min_push_space, 1, (u32)-1);
if (wret < 0 && wret != -ENOSPC)
ret = wret;
if (path->nodes[0] == leaf &&
btrfs_header_nritems(leaf)) {
/*
* If we were not able to push all items from our
* leaf to its left neighbour, then attempt to
* either push all the remaining items to the
* right neighbour or none. There's no advantage
* in pushing only some items, instead of all, as
* it's pointless to end up with a leaf having
* too few items while the neighbours can be full
* or nearly full.
*/
nritems = btrfs_header_nritems(leaf);
min_push_space = leaf_space_used(leaf, 0, nritems);
wret = push_leaf_right(trans, root, path, 0,
min_push_space, 1, 0);
if (wret < 0 && wret != -ENOSPC)
ret = wret;
}
if (btrfs_header_nritems(leaf) == 0) {
path->slots[1] = slot;
btrfs_del_leaf(trans, root, path, leaf);
free_extent_buffer(leaf);
ret = 0;
} else {
/* if we're still in the path, make sure
* we're dirty. Otherwise, one of the
* push_leaf functions must have already
* dirtied this buffer
*/
if (path->nodes[0] == leaf)
btrfs_mark_buffer_dirty(leaf);
free_extent_buffer(leaf);
}
} else {
btrfs_mark_buffer_dirty(leaf);
}
}
return ret;
}
/*
* search the tree again to find a leaf with lesser keys
* returns 0 if it found something or 1 if there are no lesser leaves.
* returns < 0 on io errors.
*
* This may release the path, and so you may lose any locks held at the
* time you call it.
*/
int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
{
struct btrfs_key key;
struct btrfs_disk_key found_key;
int ret;
btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
if (key.offset > 0) {
key.offset--;
} else if (key.type > 0) {
key.type--;
key.offset = (u64)-1;
} else if (key.objectid > 0) {
key.objectid--;
key.type = (u8)-1;
key.offset = (u64)-1;
} else {
return 1;
}
btrfs_release_path(path);
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0)
return ret;
btrfs_item_key(path->nodes[0], &found_key, 0);
ret = comp_keys(&found_key, &key);
/*
* We might have had an item with the previous key in the tree right
* before we released our path. And after we released our path, that
* item might have been pushed to the first slot (0) of the leaf we
* were holding due to a tree balance. Alternatively, an item with the
* previous key can exist as the only element of a leaf (big fat item).
* Therefore account for these 2 cases, so that our callers (like
* btrfs_previous_item) don't miss an existing item with a key matching
* the previous key we computed above.
*/
if (ret <= 0)
return 0;
return 1;
}
/*
* A helper function to walk down the tree starting at min_key, and looking
* for nodes or leaves that are have a minimum transaction id.
* This is used by the btree defrag code, and tree logging
*
* This does not cow, but it does stuff the starting key it finds back
* into min_key, so you can call btrfs_search_slot with cow=1 on the
* key and get a writable path.
*
* This honors path->lowest_level to prevent descent past a given level
* of the tree.
*
* min_trans indicates the oldest transaction that you are interested
* in walking through. Any nodes or leaves older than min_trans are
* skipped over (without reading them).
*
* returns zero if something useful was found, < 0 on error and 1 if there
* was nothing in the tree that matched the search criteria.
*/
int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
struct btrfs_path *path,
u64 min_trans)
{
struct extent_buffer *cur;
struct btrfs_key found_key;
int slot;
int sret;
u32 nritems;
int level;
int ret = 1;
int keep_locks = path->keep_locks;
ASSERT(!path->nowait);
path->keep_locks = 1;
again:
cur = btrfs_read_lock_root_node(root);
level = btrfs_header_level(cur);
WARN_ON(path->nodes[level]);
path->nodes[level] = cur;
path->locks[level] = BTRFS_READ_LOCK;
if (btrfs_header_generation(cur) < min_trans) {
ret = 1;
goto out;
}
while (1) {
nritems = btrfs_header_nritems(cur);
level = btrfs_header_level(cur);
sret = btrfs_bin_search(cur, min_key, &slot);
if (sret < 0) {
ret = sret;
goto out;
}
/* at the lowest level, we're done, setup the path and exit */
if (level == path->lowest_level) {
if (slot >= nritems)
goto find_next_key;
ret = 0;
path->slots[level] = slot;
btrfs_item_key_to_cpu(cur, &found_key, slot);
goto out;
}
if (sret && slot > 0)
slot--;
/*
* check this node pointer against the min_trans parameters.
* If it is too old, skip to the next one.
*/
while (slot < nritems) {
u64 gen;
gen = btrfs_node_ptr_generation(cur, slot);
if (gen < min_trans) {
slot++;
continue;
}
break;
}
find_next_key:
/*
* we didn't find a candidate key in this node, walk forward
* and find another one
*/
if (slot >= nritems) {
path->slots[level] = slot;
sret = btrfs_find_next_key(root, path, min_key, level,
min_trans);
if (sret == 0) {
btrfs_release_path(path);
goto again;
} else {
goto out;
}
}
/* save our key for returning back */
btrfs_node_key_to_cpu(cur, &found_key, slot);
path->slots[level] = slot;
if (level == path->lowest_level) {
ret = 0;
goto out;
}
cur = btrfs_read_node_slot(cur, slot);
if (IS_ERR(cur)) {
ret = PTR_ERR(cur);
goto out;
}
btrfs_tree_read_lock(cur);
path->locks[level - 1] = BTRFS_READ_LOCK;
path->nodes[level - 1] = cur;
unlock_up(path, level, 1, 0, NULL);
}
out:
path->keep_locks = keep_locks;
if (ret == 0) {
btrfs_unlock_up_safe(path, path->lowest_level + 1);
memcpy(min_key, &found_key, sizeof(found_key));
}
return ret;
}
/*
* this is similar to btrfs_next_leaf, but does not try to preserve
* and fixup the path. It looks for and returns the next key in the
* tree based on the current path and the min_trans parameters.
*
* 0 is returned if another key is found, < 0 if there are any errors
* and 1 is returned if there are no higher keys in the tree
*
* path->keep_locks should be set to 1 on the search made before
* calling this function.
*/
int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
struct btrfs_key *key, int level, u64 min_trans)
{
int slot;
struct extent_buffer *c;
WARN_ON(!path->keep_locks && !path->skip_locking);
while (level < BTRFS_MAX_LEVEL) {
if (!path->nodes[level])
return 1;
slot = path->slots[level] + 1;
c = path->nodes[level];
next:
if (slot >= btrfs_header_nritems(c)) {
int ret;
int orig_lowest;
struct btrfs_key cur_key;
if (level + 1 >= BTRFS_MAX_LEVEL ||
!path->nodes[level + 1])
return 1;
if (path->locks[level + 1] || path->skip_locking) {
level++;
continue;
}
slot = btrfs_header_nritems(c) - 1;
if (level == 0)
btrfs_item_key_to_cpu(c, &cur_key, slot);
else
btrfs_node_key_to_cpu(c, &cur_key, slot);
orig_lowest = path->lowest_level;
btrfs_release_path(path);
path->lowest_level = level;
ret = btrfs_search_slot(NULL, root, &cur_key, path,
0, 0);
path->lowest_level = orig_lowest;
if (ret < 0)
return ret;
c = path->nodes[level];
slot = path->slots[level];
if (ret == 0)
slot++;
goto next;
}
if (level == 0)
btrfs_item_key_to_cpu(c, key, slot);
else {
u64 gen = btrfs_node_ptr_generation(c, slot);
if (gen < min_trans) {
slot++;
goto next;
}
btrfs_node_key_to_cpu(c, key, slot);
}
return 0;
}
return 1;
}
int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
u64 time_seq)
{
int slot;
int level;
struct extent_buffer *c;
struct extent_buffer *next;
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_key key;
bool need_commit_sem = false;
u32 nritems;
int ret;
int i;
ASSERT(!path->nowait);
nritems = btrfs_header_nritems(path->nodes[0]);
if (nritems == 0)
return 1;
btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
again:
level = 1;
next = NULL;
btrfs_release_path(path);
path->keep_locks = 1;
if (time_seq) {
ret = btrfs_search_old_slot(root, &key, path, time_seq);
} else {
if (path->need_commit_sem) {
path->need_commit_sem = 0;
need_commit_sem = true;
down_read(&fs_info->commit_root_sem);
}
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
}
path->keep_locks = 0;
if (ret < 0)
goto done;
nritems = btrfs_header_nritems(path->nodes[0]);
/*
* by releasing the path above we dropped all our locks. A balance
* could have added more items next to the key that used to be
* at the very end of the block. So, check again here and
* advance the path if there are now more items available.
*/
if (nritems > 0 && path->slots[0] < nritems - 1) {
if (ret == 0)
path->slots[0]++;
ret = 0;
goto done;
}
/*
* So the above check misses one case:
* - after releasing the path above, someone has removed the item that
* used to be at the very end of the block, and balance between leafs
* gets another one with bigger key.offset to replace it.
*
* This one should be returned as well, or we can get leaf corruption
* later(esp. in __btrfs_drop_extents()).
*
* And a bit more explanation about this check,
* with ret > 0, the key isn't found, the path points to the slot
* where it should be inserted, so the path->slots[0] item must be the
* bigger one.
*/
if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
ret = 0;
goto done;
}
while (level < BTRFS_MAX_LEVEL) {
if (!path->nodes[level]) {
ret = 1;
goto done;
}
slot = path->slots[level] + 1;
c = path->nodes[level];
if (slot >= btrfs_header_nritems(c)) {
level++;
if (level == BTRFS_MAX_LEVEL) {
ret = 1;
goto done;
}
continue;
}
/*
* Our current level is where we're going to start from, and to
* make sure lockdep doesn't complain we need to drop our locks
* and nodes from 0 to our current level.
*/
for (i = 0; i < level; i++) {
if (path->locks[level]) {
btrfs_tree_read_unlock(path->nodes[i]);
path->locks[i] = 0;
}
free_extent_buffer(path->nodes[i]);
path->nodes[i] = NULL;
}
next = c;
ret = read_block_for_search(root, path, &next, level,
slot, &key);
if (ret == -EAGAIN)
goto again;
if (ret < 0) {
btrfs_release_path(path);
goto done;
}
if (!path->skip_locking) {
ret = btrfs_try_tree_read_lock(next);
if (!ret && time_seq) {
/*
* If we don't get the lock, we may be racing
* with push_leaf_left, holding that lock while
* itself waiting for the leaf we've currently
* locked. To solve this situation, we give up
* on our lock and cycle.
*/
free_extent_buffer(next);
btrfs_release_path(path);
cond_resched();
goto again;
}
if (!ret)
btrfs_tree_read_lock(next);
}
break;
}
path->slots[level] = slot;
while (1) {
level--;
path->nodes[level] = next;
path->slots[level] = 0;
if (!path->skip_locking)
path->locks[level] = BTRFS_READ_LOCK;
if (!level)
break;
ret = read_block_for_search(root, path, &next, level,
0, &key);
if (ret == -EAGAIN)
goto again;
if (ret < 0) {
btrfs_release_path(path);
goto done;
}
if (!path->skip_locking)
btrfs_tree_read_lock(next);
}
ret = 0;
done:
unlock_up(path, 0, 1, 0, NULL);
if (need_commit_sem) {
int ret2;
path->need_commit_sem = 1;
ret2 = finish_need_commit_sem_search(path);
up_read(&fs_info->commit_root_sem);
if (ret2)
ret = ret2;
}
return ret;
}
/*
* this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
* searching until it gets past min_objectid or finds an item of 'type'
*
* returns 0 if something is found, 1 if nothing was found and < 0 on error
*/
int btrfs_previous_item(struct btrfs_root *root,
struct btrfs_path *path, u64 min_objectid,
int type)
{
struct btrfs_key found_key;
struct extent_buffer *leaf;
u32 nritems;
int ret;
while (1) {
if (path->slots[0] == 0) {
ret = btrfs_prev_leaf(root, path);
if (ret != 0)
return ret;
} else {
path->slots[0]--;
}
leaf = path->nodes[0];
nritems = btrfs_header_nritems(leaf);
if (nritems == 0)
return 1;
if (path->slots[0] == nritems)
path->slots[0]--;
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
if (found_key.objectid < min_objectid)
break;
if (found_key.type == type)
return 0;
if (found_key.objectid == min_objectid &&
found_key.type < type)
break;
}
return 1;
}
/*
* search in extent tree to find a previous Metadata/Data extent item with
* min objecitd.
*
* returns 0 if something is found, 1 if nothing was found and < 0 on error
*/
int btrfs_previous_extent_item(struct btrfs_root *root,
struct btrfs_path *path, u64 min_objectid)
{
struct btrfs_key found_key;
struct extent_buffer *leaf;
u32 nritems;
int ret;
while (1) {
if (path->slots[0] == 0) {
ret = btrfs_prev_leaf(root, path);
if (ret != 0)
return ret;
} else {
path->slots[0]--;
}
leaf = path->nodes[0];
nritems = btrfs_header_nritems(leaf);
if (nritems == 0)
return 1;
if (path->slots[0] == nritems)
path->slots[0]--;
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
if (found_key.objectid < min_objectid)
break;
if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
found_key.type == BTRFS_METADATA_ITEM_KEY)
return 0;
if (found_key.objectid == min_objectid &&
found_key.type < BTRFS_EXTENT_ITEM_KEY)
break;
}
return 1;
}