| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) 2000-2005 Silicon Graphics, Inc. |
| * All Rights Reserved. |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_shared.h" |
| #include "xfs_format.h" |
| #include "xfs_log_format.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_mount.h" |
| #include "xfs_inode.h" |
| #include "xfs_trans.h" |
| #include "xfs_inode_item.h" |
| #include "xfs_bmap.h" |
| #include "xfs_bmap_util.h" |
| #include "xfs_dir2.h" |
| #include "xfs_dir2_priv.h" |
| #include "xfs_ioctl.h" |
| #include "xfs_trace.h" |
| #include "xfs_log.h" |
| #include "xfs_icache.h" |
| #include "xfs_pnfs.h" |
| #include "xfs_iomap.h" |
| #include "xfs_reflink.h" |
| |
| #include <linux/dax.h> |
| #include <linux/falloc.h> |
| #include <linux/backing-dev.h> |
| #include <linux/mman.h> |
| #include <linux/fadvise.h> |
| #include <linux/mount.h> |
| |
| static const struct vm_operations_struct xfs_file_vm_ops; |
| |
| /* |
| * Decide if the given file range is aligned to the size of the fundamental |
| * allocation unit for the file. |
| */ |
| static bool |
| xfs_is_falloc_aligned( |
| struct xfs_inode *ip, |
| loff_t pos, |
| long long int len) |
| { |
| struct xfs_mount *mp = ip->i_mount; |
| uint64_t mask; |
| |
| if (XFS_IS_REALTIME_INODE(ip)) { |
| if (!is_power_of_2(mp->m_sb.sb_rextsize)) { |
| u64 rextbytes; |
| u32 mod; |
| |
| rextbytes = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize); |
| div_u64_rem(pos, rextbytes, &mod); |
| if (mod) |
| return false; |
| div_u64_rem(len, rextbytes, &mod); |
| return mod == 0; |
| } |
| mask = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize) - 1; |
| } else { |
| mask = mp->m_sb.sb_blocksize - 1; |
| } |
| |
| return !((pos | len) & mask); |
| } |
| |
| /* |
| * Fsync operations on directories are much simpler than on regular files, |
| * as there is no file data to flush, and thus also no need for explicit |
| * cache flush operations, and there are no non-transaction metadata updates |
| * on directories either. |
| */ |
| STATIC int |
| xfs_dir_fsync( |
| struct file *file, |
| loff_t start, |
| loff_t end, |
| int datasync) |
| { |
| struct xfs_inode *ip = XFS_I(file->f_mapping->host); |
| |
| trace_xfs_dir_fsync(ip); |
| return xfs_log_force_inode(ip); |
| } |
| |
| static xfs_csn_t |
| xfs_fsync_seq( |
| struct xfs_inode *ip, |
| bool datasync) |
| { |
| if (!xfs_ipincount(ip)) |
| return 0; |
| if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) |
| return 0; |
| return ip->i_itemp->ili_commit_seq; |
| } |
| |
| /* |
| * All metadata updates are logged, which means that we just have to flush the |
| * log up to the latest LSN that touched the inode. |
| * |
| * If we have concurrent fsync/fdatasync() calls, we need them to all block on |
| * the log force before we clear the ili_fsync_fields field. This ensures that |
| * we don't get a racing sync operation that does not wait for the metadata to |
| * hit the journal before returning. If we race with clearing ili_fsync_fields, |
| * then all that will happen is the log force will do nothing as the lsn will |
| * already be on disk. We can't race with setting ili_fsync_fields because that |
| * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock |
| * shared until after the ili_fsync_fields is cleared. |
| */ |
| static int |
| xfs_fsync_flush_log( |
| struct xfs_inode *ip, |
| bool datasync, |
| int *log_flushed) |
| { |
| int error = 0; |
| xfs_csn_t seq; |
| |
| xfs_ilock(ip, XFS_ILOCK_SHARED); |
| seq = xfs_fsync_seq(ip, datasync); |
| if (seq) { |
| error = xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, |
| log_flushed); |
| |
| spin_lock(&ip->i_itemp->ili_lock); |
| ip->i_itemp->ili_fsync_fields = 0; |
| spin_unlock(&ip->i_itemp->ili_lock); |
| } |
| xfs_iunlock(ip, XFS_ILOCK_SHARED); |
| return error; |
| } |
| |
| STATIC int |
| xfs_file_fsync( |
| struct file *file, |
| loff_t start, |
| loff_t end, |
| int datasync) |
| { |
| struct xfs_inode *ip = XFS_I(file->f_mapping->host); |
| struct xfs_mount *mp = ip->i_mount; |
| int error, err2; |
| int log_flushed = 0; |
| |
| trace_xfs_file_fsync(ip); |
| |
| error = file_write_and_wait_range(file, start, end); |
| if (error) |
| return error; |
| |
| if (xfs_is_shutdown(mp)) |
| return -EIO; |
| |
| xfs_iflags_clear(ip, XFS_ITRUNCATED); |
| |
| /* |
| * If we have an RT and/or log subvolume we need to make sure to flush |
| * the write cache the device used for file data first. This is to |
| * ensure newly written file data make it to disk before logging the new |
| * inode size in case of an extending write. |
| */ |
| if (XFS_IS_REALTIME_INODE(ip)) |
| error = blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev); |
| else if (mp->m_logdev_targp != mp->m_ddev_targp) |
| error = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev); |
| |
| /* |
| * Any inode that has dirty modifications in the log is pinned. The |
| * racy check here for a pinned inode will not catch modifications |
| * that happen concurrently to the fsync call, but fsync semantics |
| * only require to sync previously completed I/O. |
| */ |
| if (xfs_ipincount(ip)) { |
| err2 = xfs_fsync_flush_log(ip, datasync, &log_flushed); |
| if (err2 && !error) |
| error = err2; |
| } |
| |
| /* |
| * If we only have a single device, and the log force about was |
| * a no-op we might have to flush the data device cache here. |
| * This can only happen for fdatasync/O_DSYNC if we were overwriting |
| * an already allocated file and thus do not have any metadata to |
| * commit. |
| */ |
| if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) && |
| mp->m_logdev_targp == mp->m_ddev_targp) { |
| err2 = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev); |
| if (err2 && !error) |
| error = err2; |
| } |
| |
| return error; |
| } |
| |
| static int |
| xfs_ilock_iocb( |
| struct kiocb *iocb, |
| unsigned int lock_mode) |
| { |
| struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); |
| |
| if (iocb->ki_flags & IOCB_NOWAIT) { |
| if (!xfs_ilock_nowait(ip, lock_mode)) |
| return -EAGAIN; |
| } else { |
| xfs_ilock(ip, lock_mode); |
| } |
| |
| return 0; |
| } |
| |
| STATIC ssize_t |
| xfs_file_dio_read( |
| struct kiocb *iocb, |
| struct iov_iter *to) |
| { |
| struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); |
| ssize_t ret; |
| |
| trace_xfs_file_direct_read(iocb, to); |
| |
| if (!iov_iter_count(to)) |
| return 0; /* skip atime */ |
| |
| file_accessed(iocb->ki_filp); |
| |
| ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED); |
| if (ret) |
| return ret; |
| ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 0, NULL, 0); |
| xfs_iunlock(ip, XFS_IOLOCK_SHARED); |
| |
| return ret; |
| } |
| |
| static noinline ssize_t |
| xfs_file_dax_read( |
| struct kiocb *iocb, |
| struct iov_iter *to) |
| { |
| struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host); |
| ssize_t ret = 0; |
| |
| trace_xfs_file_dax_read(iocb, to); |
| |
| if (!iov_iter_count(to)) |
| return 0; /* skip atime */ |
| |
| ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED); |
| if (ret) |
| return ret; |
| ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops); |
| xfs_iunlock(ip, XFS_IOLOCK_SHARED); |
| |
| file_accessed(iocb->ki_filp); |
| return ret; |
| } |
| |
| STATIC ssize_t |
| xfs_file_buffered_read( |
| struct kiocb *iocb, |
| struct iov_iter *to) |
| { |
| struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); |
| ssize_t ret; |
| |
| trace_xfs_file_buffered_read(iocb, to); |
| |
| ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED); |
| if (ret) |
| return ret; |
| ret = generic_file_read_iter(iocb, to); |
| xfs_iunlock(ip, XFS_IOLOCK_SHARED); |
| |
| return ret; |
| } |
| |
| STATIC ssize_t |
| xfs_file_read_iter( |
| struct kiocb *iocb, |
| struct iov_iter *to) |
| { |
| struct inode *inode = file_inode(iocb->ki_filp); |
| struct xfs_mount *mp = XFS_I(inode)->i_mount; |
| ssize_t ret = 0; |
| |
| XFS_STATS_INC(mp, xs_read_calls); |
| |
| if (xfs_is_shutdown(mp)) |
| return -EIO; |
| |
| if (IS_DAX(inode)) |
| ret = xfs_file_dax_read(iocb, to); |
| else if (iocb->ki_flags & IOCB_DIRECT) |
| ret = xfs_file_dio_read(iocb, to); |
| else |
| ret = xfs_file_buffered_read(iocb, to); |
| |
| if (ret > 0) |
| XFS_STATS_ADD(mp, xs_read_bytes, ret); |
| return ret; |
| } |
| |
| /* |
| * Common pre-write limit and setup checks. |
| * |
| * Called with the iolocked held either shared and exclusive according to |
| * @iolock, and returns with it held. Might upgrade the iolock to exclusive |
| * if called for a direct write beyond i_size. |
| */ |
| STATIC ssize_t |
| xfs_file_write_checks( |
| struct kiocb *iocb, |
| struct iov_iter *from, |
| unsigned int *iolock) |
| { |
| struct file *file = iocb->ki_filp; |
| struct inode *inode = file->f_mapping->host; |
| struct xfs_inode *ip = XFS_I(inode); |
| ssize_t error = 0; |
| size_t count = iov_iter_count(from); |
| bool drained_dio = false; |
| loff_t isize; |
| |
| restart: |
| error = generic_write_checks(iocb, from); |
| if (error <= 0) |
| return error; |
| |
| if (iocb->ki_flags & IOCB_NOWAIT) { |
| error = break_layout(inode, false); |
| if (error == -EWOULDBLOCK) |
| error = -EAGAIN; |
| } else { |
| error = xfs_break_layouts(inode, iolock, BREAK_WRITE); |
| } |
| |
| if (error) |
| return error; |
| |
| /* |
| * For changing security info in file_remove_privs() we need i_rwsem |
| * exclusively. |
| */ |
| if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { |
| xfs_iunlock(ip, *iolock); |
| *iolock = XFS_IOLOCK_EXCL; |
| error = xfs_ilock_iocb(iocb, *iolock); |
| if (error) { |
| *iolock = 0; |
| return error; |
| } |
| goto restart; |
| } |
| |
| /* |
| * If the offset is beyond the size of the file, we need to zero any |
| * blocks that fall between the existing EOF and the start of this |
| * write. If zeroing is needed and we are currently holding the iolock |
| * shared, we need to update it to exclusive which implies having to |
| * redo all checks before. |
| * |
| * We need to serialise against EOF updates that occur in IO completions |
| * here. We want to make sure that nobody is changing the size while we |
| * do this check until we have placed an IO barrier (i.e. hold the |
| * XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. The |
| * spinlock effectively forms a memory barrier once we have the |
| * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value and |
| * hence be able to correctly determine if we need to run zeroing. |
| * |
| * We can do an unlocked check here safely as IO completion can only |
| * extend EOF. Truncate is locked out at this point, so the EOF can |
| * not move backwards, only forwards. Hence we only need to take the |
| * slow path and spin locks when we are at or beyond the current EOF. |
| */ |
| if (iocb->ki_pos <= i_size_read(inode)) |
| goto out; |
| |
| spin_lock(&ip->i_flags_lock); |
| isize = i_size_read(inode); |
| if (iocb->ki_pos > isize) { |
| spin_unlock(&ip->i_flags_lock); |
| |
| if (iocb->ki_flags & IOCB_NOWAIT) |
| return -EAGAIN; |
| |
| if (!drained_dio) { |
| if (*iolock == XFS_IOLOCK_SHARED) { |
| xfs_iunlock(ip, *iolock); |
| *iolock = XFS_IOLOCK_EXCL; |
| xfs_ilock(ip, *iolock); |
| iov_iter_reexpand(from, count); |
| } |
| /* |
| * We now have an IO submission barrier in place, but |
| * AIO can do EOF updates during IO completion and hence |
| * we now need to wait for all of them to drain. Non-AIO |
| * DIO will have drained before we are given the |
| * XFS_IOLOCK_EXCL, and so for most cases this wait is a |
| * no-op. |
| */ |
| inode_dio_wait(inode); |
| drained_dio = true; |
| goto restart; |
| } |
| |
| trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize); |
| error = xfs_zero_range(ip, isize, iocb->ki_pos - isize, NULL); |
| if (error) |
| return error; |
| } else |
| spin_unlock(&ip->i_flags_lock); |
| |
| out: |
| return kiocb_modified(iocb); |
| } |
| |
| static int |
| xfs_dio_write_end_io( |
| struct kiocb *iocb, |
| ssize_t size, |
| int error, |
| unsigned flags) |
| { |
| struct inode *inode = file_inode(iocb->ki_filp); |
| struct xfs_inode *ip = XFS_I(inode); |
| loff_t offset = iocb->ki_pos; |
| unsigned int nofs_flag; |
| |
| trace_xfs_end_io_direct_write(ip, offset, size); |
| |
| if (xfs_is_shutdown(ip->i_mount)) |
| return -EIO; |
| |
| if (error) |
| return error; |
| if (!size) |
| return 0; |
| |
| /* |
| * Capture amount written on completion as we can't reliably account |
| * for it on submission. |
| */ |
| XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size); |
| |
| /* |
| * We can allocate memory here while doing writeback on behalf of |
| * memory reclaim. To avoid memory allocation deadlocks set the |
| * task-wide nofs context for the following operations. |
| */ |
| nofs_flag = memalloc_nofs_save(); |
| |
| if (flags & IOMAP_DIO_COW) { |
| error = xfs_reflink_end_cow(ip, offset, size); |
| if (error) |
| goto out; |
| } |
| |
| /* |
| * Unwritten conversion updates the in-core isize after extent |
| * conversion but before updating the on-disk size. Updating isize any |
| * earlier allows a racing dio read to find unwritten extents before |
| * they are converted. |
| */ |
| if (flags & IOMAP_DIO_UNWRITTEN) { |
| error = xfs_iomap_write_unwritten(ip, offset, size, true); |
| goto out; |
| } |
| |
| /* |
| * We need to update the in-core inode size here so that we don't end up |
| * with the on-disk inode size being outside the in-core inode size. We |
| * have no other method of updating EOF for AIO, so always do it here |
| * if necessary. |
| * |
| * We need to lock the test/set EOF update as we can be racing with |
| * other IO completions here to update the EOF. Failing to serialise |
| * here can result in EOF moving backwards and Bad Things Happen when |
| * that occurs. |
| * |
| * As IO completion only ever extends EOF, we can do an unlocked check |
| * here to avoid taking the spinlock. If we land within the current EOF, |
| * then we do not need to do an extending update at all, and we don't |
| * need to take the lock to check this. If we race with an update moving |
| * EOF, then we'll either still be beyond EOF and need to take the lock, |
| * or we'll be within EOF and we don't need to take it at all. |
| */ |
| if (offset + size <= i_size_read(inode)) |
| goto out; |
| |
| spin_lock(&ip->i_flags_lock); |
| if (offset + size > i_size_read(inode)) { |
| i_size_write(inode, offset + size); |
| spin_unlock(&ip->i_flags_lock); |
| error = xfs_setfilesize(ip, offset, size); |
| } else { |
| spin_unlock(&ip->i_flags_lock); |
| } |
| |
| out: |
| memalloc_nofs_restore(nofs_flag); |
| return error; |
| } |
| |
| static const struct iomap_dio_ops xfs_dio_write_ops = { |
| .end_io = xfs_dio_write_end_io, |
| }; |
| |
| /* |
| * Handle block aligned direct I/O writes |
| */ |
| static noinline ssize_t |
| xfs_file_dio_write_aligned( |
| struct xfs_inode *ip, |
| struct kiocb *iocb, |
| struct iov_iter *from) |
| { |
| unsigned int iolock = XFS_IOLOCK_SHARED; |
| ssize_t ret; |
| |
| ret = xfs_ilock_iocb(iocb, iolock); |
| if (ret) |
| return ret; |
| ret = xfs_file_write_checks(iocb, from, &iolock); |
| if (ret) |
| goto out_unlock; |
| |
| /* |
| * We don't need to hold the IOLOCK exclusively across the IO, so demote |
| * the iolock back to shared if we had to take the exclusive lock in |
| * xfs_file_write_checks() for other reasons. |
| */ |
| if (iolock == XFS_IOLOCK_EXCL) { |
| xfs_ilock_demote(ip, XFS_IOLOCK_EXCL); |
| iolock = XFS_IOLOCK_SHARED; |
| } |
| trace_xfs_file_direct_write(iocb, from); |
| ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops, |
| &xfs_dio_write_ops, 0, NULL, 0); |
| out_unlock: |
| if (iolock) |
| xfs_iunlock(ip, iolock); |
| return ret; |
| } |
| |
| /* |
| * Handle block unaligned direct I/O writes |
| * |
| * In most cases direct I/O writes will be done holding IOLOCK_SHARED, allowing |
| * them to be done in parallel with reads and other direct I/O writes. However, |
| * if the I/O is not aligned to filesystem blocks, the direct I/O layer may need |
| * to do sub-block zeroing and that requires serialisation against other direct |
| * I/O to the same block. In this case we need to serialise the submission of |
| * the unaligned I/O so that we don't get racing block zeroing in the dio layer. |
| * In the case where sub-block zeroing is not required, we can do concurrent |
| * sub-block dios to the same block successfully. |
| * |
| * Optimistically submit the I/O using the shared lock first, but use the |
| * IOMAP_DIO_OVERWRITE_ONLY flag to tell the lower layers to return -EAGAIN |
| * if block allocation or partial block zeroing would be required. In that case |
| * we try again with the exclusive lock. |
| */ |
| static noinline ssize_t |
| xfs_file_dio_write_unaligned( |
| struct xfs_inode *ip, |
| struct kiocb *iocb, |
| struct iov_iter *from) |
| { |
| size_t isize = i_size_read(VFS_I(ip)); |
| size_t count = iov_iter_count(from); |
| unsigned int iolock = XFS_IOLOCK_SHARED; |
| unsigned int flags = IOMAP_DIO_OVERWRITE_ONLY; |
| ssize_t ret; |
| |
| /* |
| * Extending writes need exclusivity because of the sub-block zeroing |
| * that the DIO code always does for partial tail blocks beyond EOF, so |
| * don't even bother trying the fast path in this case. |
| */ |
| if (iocb->ki_pos > isize || iocb->ki_pos + count >= isize) { |
| if (iocb->ki_flags & IOCB_NOWAIT) |
| return -EAGAIN; |
| retry_exclusive: |
| iolock = XFS_IOLOCK_EXCL; |
| flags = IOMAP_DIO_FORCE_WAIT; |
| } |
| |
| ret = xfs_ilock_iocb(iocb, iolock); |
| if (ret) |
| return ret; |
| |
| /* |
| * We can't properly handle unaligned direct I/O to reflink files yet, |
| * as we can't unshare a partial block. |
| */ |
| if (xfs_is_cow_inode(ip)) { |
| trace_xfs_reflink_bounce_dio_write(iocb, from); |
| ret = -ENOTBLK; |
| goto out_unlock; |
| } |
| |
| ret = xfs_file_write_checks(iocb, from, &iolock); |
| if (ret) |
| goto out_unlock; |
| |
| /* |
| * If we are doing exclusive unaligned I/O, this must be the only I/O |
| * in-flight. Otherwise we risk data corruption due to unwritten extent |
| * conversions from the AIO end_io handler. Wait for all other I/O to |
| * drain first. |
| */ |
| if (flags & IOMAP_DIO_FORCE_WAIT) |
| inode_dio_wait(VFS_I(ip)); |
| |
| trace_xfs_file_direct_write(iocb, from); |
| ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops, |
| &xfs_dio_write_ops, flags, NULL, 0); |
| |
| /* |
| * Retry unaligned I/O with exclusive blocking semantics if the DIO |
| * layer rejected it for mapping or locking reasons. If we are doing |
| * nonblocking user I/O, propagate the error. |
| */ |
| if (ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT)) { |
| ASSERT(flags & IOMAP_DIO_OVERWRITE_ONLY); |
| xfs_iunlock(ip, iolock); |
| goto retry_exclusive; |
| } |
| |
| out_unlock: |
| if (iolock) |
| xfs_iunlock(ip, iolock); |
| return ret; |
| } |
| |
| static ssize_t |
| xfs_file_dio_write( |
| struct kiocb *iocb, |
| struct iov_iter *from) |
| { |
| struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); |
| struct xfs_buftarg *target = xfs_inode_buftarg(ip); |
| size_t count = iov_iter_count(from); |
| |
| /* direct I/O must be aligned to device logical sector size */ |
| if ((iocb->ki_pos | count) & target->bt_logical_sectormask) |
| return -EINVAL; |
| if ((iocb->ki_pos | count) & ip->i_mount->m_blockmask) |
| return xfs_file_dio_write_unaligned(ip, iocb, from); |
| return xfs_file_dio_write_aligned(ip, iocb, from); |
| } |
| |
| static noinline ssize_t |
| xfs_file_dax_write( |
| struct kiocb *iocb, |
| struct iov_iter *from) |
| { |
| struct inode *inode = iocb->ki_filp->f_mapping->host; |
| struct xfs_inode *ip = XFS_I(inode); |
| unsigned int iolock = XFS_IOLOCK_EXCL; |
| ssize_t ret, error = 0; |
| loff_t pos; |
| |
| ret = xfs_ilock_iocb(iocb, iolock); |
| if (ret) |
| return ret; |
| ret = xfs_file_write_checks(iocb, from, &iolock); |
| if (ret) |
| goto out; |
| |
| pos = iocb->ki_pos; |
| |
| trace_xfs_file_dax_write(iocb, from); |
| ret = dax_iomap_rw(iocb, from, &xfs_dax_write_iomap_ops); |
| if (ret > 0 && iocb->ki_pos > i_size_read(inode)) { |
| i_size_write(inode, iocb->ki_pos); |
| error = xfs_setfilesize(ip, pos, ret); |
| } |
| out: |
| if (iolock) |
| xfs_iunlock(ip, iolock); |
| if (error) |
| return error; |
| |
| if (ret > 0) { |
| XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); |
| |
| /* Handle various SYNC-type writes */ |
| ret = generic_write_sync(iocb, ret); |
| } |
| return ret; |
| } |
| |
| STATIC ssize_t |
| xfs_file_buffered_write( |
| struct kiocb *iocb, |
| struct iov_iter *from) |
| { |
| struct inode *inode = iocb->ki_filp->f_mapping->host; |
| struct xfs_inode *ip = XFS_I(inode); |
| ssize_t ret; |
| bool cleared_space = false; |
| unsigned int iolock; |
| |
| write_retry: |
| iolock = XFS_IOLOCK_EXCL; |
| ret = xfs_ilock_iocb(iocb, iolock); |
| if (ret) |
| return ret; |
| |
| ret = xfs_file_write_checks(iocb, from, &iolock); |
| if (ret) |
| goto out; |
| |
| /* We can write back this queue in page reclaim */ |
| current->backing_dev_info = inode_to_bdi(inode); |
| |
| trace_xfs_file_buffered_write(iocb, from); |
| ret = iomap_file_buffered_write(iocb, from, |
| &xfs_buffered_write_iomap_ops); |
| if (likely(ret >= 0)) |
| iocb->ki_pos += ret; |
| |
| /* |
| * If we hit a space limit, try to free up some lingering preallocated |
| * space before returning an error. In the case of ENOSPC, first try to |
| * write back all dirty inodes to free up some of the excess reserved |
| * metadata space. This reduces the chances that the eofblocks scan |
| * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this |
| * also behaves as a filter to prevent too many eofblocks scans from |
| * running at the same time. Use a synchronous scan to increase the |
| * effectiveness of the scan. |
| */ |
| if (ret == -EDQUOT && !cleared_space) { |
| xfs_iunlock(ip, iolock); |
| xfs_blockgc_free_quota(ip, XFS_ICWALK_FLAG_SYNC); |
| cleared_space = true; |
| goto write_retry; |
| } else if (ret == -ENOSPC && !cleared_space) { |
| struct xfs_icwalk icw = {0}; |
| |
| cleared_space = true; |
| xfs_flush_inodes(ip->i_mount); |
| |
| xfs_iunlock(ip, iolock); |
| icw.icw_flags = XFS_ICWALK_FLAG_SYNC; |
| xfs_blockgc_free_space(ip->i_mount, &icw); |
| goto write_retry; |
| } |
| |
| current->backing_dev_info = NULL; |
| out: |
| if (iolock) |
| xfs_iunlock(ip, iolock); |
| |
| if (ret > 0) { |
| XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); |
| /* Handle various SYNC-type writes */ |
| ret = generic_write_sync(iocb, ret); |
| } |
| return ret; |
| } |
| |
| STATIC ssize_t |
| xfs_file_write_iter( |
| struct kiocb *iocb, |
| struct iov_iter *from) |
| { |
| struct inode *inode = iocb->ki_filp->f_mapping->host; |
| struct xfs_inode *ip = XFS_I(inode); |
| ssize_t ret; |
| size_t ocount = iov_iter_count(from); |
| |
| XFS_STATS_INC(ip->i_mount, xs_write_calls); |
| |
| if (ocount == 0) |
| return 0; |
| |
| if (xfs_is_shutdown(ip->i_mount)) |
| return -EIO; |
| |
| if (IS_DAX(inode)) |
| return xfs_file_dax_write(iocb, from); |
| |
| if (iocb->ki_flags & IOCB_DIRECT) { |
| /* |
| * Allow a directio write to fall back to a buffered |
| * write *only* in the case that we're doing a reflink |
| * CoW. In all other directio scenarios we do not |
| * allow an operation to fall back to buffered mode. |
| */ |
| ret = xfs_file_dio_write(iocb, from); |
| if (ret != -ENOTBLK) |
| return ret; |
| } |
| |
| return xfs_file_buffered_write(iocb, from); |
| } |
| |
| static void |
| xfs_wait_dax_page( |
| struct inode *inode) |
| { |
| struct xfs_inode *ip = XFS_I(inode); |
| |
| xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); |
| schedule(); |
| xfs_ilock(ip, XFS_MMAPLOCK_EXCL); |
| } |
| |
| int |
| xfs_break_dax_layouts( |
| struct inode *inode, |
| bool *retry) |
| { |
| struct page *page; |
| |
| ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL)); |
| |
| page = dax_layout_busy_page(inode->i_mapping); |
| if (!page) |
| return 0; |
| |
| *retry = true; |
| return ___wait_var_event(&page->_refcount, |
| atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE, |
| 0, 0, xfs_wait_dax_page(inode)); |
| } |
| |
| int |
| xfs_break_layouts( |
| struct inode *inode, |
| uint *iolock, |
| enum layout_break_reason reason) |
| { |
| bool retry; |
| int error; |
| |
| ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)); |
| |
| do { |
| retry = false; |
| switch (reason) { |
| case BREAK_UNMAP: |
| error = xfs_break_dax_layouts(inode, &retry); |
| if (error || retry) |
| break; |
| fallthrough; |
| case BREAK_WRITE: |
| error = xfs_break_leased_layouts(inode, iolock, &retry); |
| break; |
| default: |
| WARN_ON_ONCE(1); |
| error = -EINVAL; |
| } |
| } while (error == 0 && retry); |
| |
| return error; |
| } |
| |
| /* Does this file, inode, or mount want synchronous writes? */ |
| static inline bool xfs_file_sync_writes(struct file *filp) |
| { |
| struct xfs_inode *ip = XFS_I(file_inode(filp)); |
| |
| if (xfs_has_wsync(ip->i_mount)) |
| return true; |
| if (filp->f_flags & (__O_SYNC | O_DSYNC)) |
| return true; |
| if (IS_SYNC(file_inode(filp))) |
| return true; |
| |
| return false; |
| } |
| |
| #define XFS_FALLOC_FL_SUPPORTED \ |
| (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ |
| FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ |
| FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE) |
| |
| STATIC long |
| xfs_file_fallocate( |
| struct file *file, |
| int mode, |
| loff_t offset, |
| loff_t len) |
| { |
| struct inode *inode = file_inode(file); |
| struct xfs_inode *ip = XFS_I(inode); |
| long error; |
| uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; |
| loff_t new_size = 0; |
| bool do_file_insert = false; |
| |
| if (!S_ISREG(inode->i_mode)) |
| return -EINVAL; |
| if (mode & ~XFS_FALLOC_FL_SUPPORTED) |
| return -EOPNOTSUPP; |
| |
| xfs_ilock(ip, iolock); |
| error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP); |
| if (error) |
| goto out_unlock; |
| |
| /* |
| * Must wait for all AIO to complete before we continue as AIO can |
| * change the file size on completion without holding any locks we |
| * currently hold. We must do this first because AIO can update both |
| * the on disk and in memory inode sizes, and the operations that follow |
| * require the in-memory size to be fully up-to-date. |
| */ |
| inode_dio_wait(inode); |
| |
| /* |
| * Now AIO and DIO has drained we flush and (if necessary) invalidate |
| * the cached range over the first operation we are about to run. |
| * |
| * We care about zero and collapse here because they both run a hole |
| * punch over the range first. Because that can zero data, and the range |
| * of invalidation for the shift operations is much larger, we still do |
| * the required flush for collapse in xfs_prepare_shift(). |
| * |
| * Insert has the same range requirements as collapse, and we extend the |
| * file first which can zero data. Hence insert has the same |
| * flush/invalidate requirements as collapse and so they are both |
| * handled at the right time by xfs_prepare_shift(). |
| */ |
| if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE | |
| FALLOC_FL_COLLAPSE_RANGE)) { |
| error = xfs_flush_unmap_range(ip, offset, len); |
| if (error) |
| goto out_unlock; |
| } |
| |
| error = file_modified(file); |
| if (error) |
| goto out_unlock; |
| |
| if (mode & FALLOC_FL_PUNCH_HOLE) { |
| error = xfs_free_file_space(ip, offset, len); |
| if (error) |
| goto out_unlock; |
| } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { |
| if (!xfs_is_falloc_aligned(ip, offset, len)) { |
| error = -EINVAL; |
| goto out_unlock; |
| } |
| |
| /* |
| * There is no need to overlap collapse range with EOF, |
| * in which case it is effectively a truncate operation |
| */ |
| if (offset + len >= i_size_read(inode)) { |
| error = -EINVAL; |
| goto out_unlock; |
| } |
| |
| new_size = i_size_read(inode) - len; |
| |
| error = xfs_collapse_file_space(ip, offset, len); |
| if (error) |
| goto out_unlock; |
| } else if (mode & FALLOC_FL_INSERT_RANGE) { |
| loff_t isize = i_size_read(inode); |
| |
| if (!xfs_is_falloc_aligned(ip, offset, len)) { |
| error = -EINVAL; |
| goto out_unlock; |
| } |
| |
| /* |
| * New inode size must not exceed ->s_maxbytes, accounting for |
| * possible signed overflow. |
| */ |
| if (inode->i_sb->s_maxbytes - isize < len) { |
| error = -EFBIG; |
| goto out_unlock; |
| } |
| new_size = isize + len; |
| |
| /* Offset should be less than i_size */ |
| if (offset >= isize) { |
| error = -EINVAL; |
| goto out_unlock; |
| } |
| do_file_insert = true; |
| } else { |
| if (!(mode & FALLOC_FL_KEEP_SIZE) && |
| offset + len > i_size_read(inode)) { |
| new_size = offset + len; |
| error = inode_newsize_ok(inode, new_size); |
| if (error) |
| goto out_unlock; |
| } |
| |
| if (mode & FALLOC_FL_ZERO_RANGE) { |
| /* |
| * Punch a hole and prealloc the range. We use a hole |
| * punch rather than unwritten extent conversion for two |
| * reasons: |
| * |
| * 1.) Hole punch handles partial block zeroing for us. |
| * 2.) If prealloc returns ENOSPC, the file range is |
| * still zero-valued by virtue of the hole punch. |
| */ |
| unsigned int blksize = i_blocksize(inode); |
| |
| trace_xfs_zero_file_space(ip); |
| |
| error = xfs_free_file_space(ip, offset, len); |
| if (error) |
| goto out_unlock; |
| |
| len = round_up(offset + len, blksize) - |
| round_down(offset, blksize); |
| offset = round_down(offset, blksize); |
| } else if (mode & FALLOC_FL_UNSHARE_RANGE) { |
| error = xfs_reflink_unshare(ip, offset, len); |
| if (error) |
| goto out_unlock; |
| } else { |
| /* |
| * If always_cow mode we can't use preallocations and |
| * thus should not create them. |
| */ |
| if (xfs_is_always_cow_inode(ip)) { |
| error = -EOPNOTSUPP; |
| goto out_unlock; |
| } |
| } |
| |
| if (!xfs_is_always_cow_inode(ip)) { |
| error = xfs_alloc_file_space(ip, offset, len); |
| if (error) |
| goto out_unlock; |
| } |
| } |
| |
| /* Change file size if needed */ |
| if (new_size) { |
| struct iattr iattr; |
| |
| iattr.ia_valid = ATTR_SIZE; |
| iattr.ia_size = new_size; |
| error = xfs_vn_setattr_size(file_mnt_user_ns(file), |
| file_dentry(file), &iattr); |
| if (error) |
| goto out_unlock; |
| } |
| |
| /* |
| * Perform hole insertion now that the file size has been |
| * updated so that if we crash during the operation we don't |
| * leave shifted extents past EOF and hence losing access to |
| * the data that is contained within them. |
| */ |
| if (do_file_insert) { |
| error = xfs_insert_file_space(ip, offset, len); |
| if (error) |
| goto out_unlock; |
| } |
| |
| if (xfs_file_sync_writes(file)) |
| error = xfs_log_force_inode(ip); |
| |
| out_unlock: |
| xfs_iunlock(ip, iolock); |
| return error; |
| } |
| |
| STATIC int |
| xfs_file_fadvise( |
| struct file *file, |
| loff_t start, |
| loff_t end, |
| int advice) |
| { |
| struct xfs_inode *ip = XFS_I(file_inode(file)); |
| int ret; |
| int lockflags = 0; |
| |
| /* |
| * Operations creating pages in page cache need protection from hole |
| * punching and similar ops |
| */ |
| if (advice == POSIX_FADV_WILLNEED) { |
| lockflags = XFS_IOLOCK_SHARED; |
| xfs_ilock(ip, lockflags); |
| } |
| ret = generic_fadvise(file, start, end, advice); |
| if (lockflags) |
| xfs_iunlock(ip, lockflags); |
| return ret; |
| } |
| |
| STATIC loff_t |
| xfs_file_remap_range( |
| struct file *file_in, |
| loff_t pos_in, |
| struct file *file_out, |
| loff_t pos_out, |
| loff_t len, |
| unsigned int remap_flags) |
| { |
| struct inode *inode_in = file_inode(file_in); |
| struct xfs_inode *src = XFS_I(inode_in); |
| struct inode *inode_out = file_inode(file_out); |
| struct xfs_inode *dest = XFS_I(inode_out); |
| struct xfs_mount *mp = src->i_mount; |
| loff_t remapped = 0; |
| xfs_extlen_t cowextsize; |
| int ret; |
| |
| if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) |
| return -EINVAL; |
| |
| if (!xfs_has_reflink(mp)) |
| return -EOPNOTSUPP; |
| |
| if (xfs_is_shutdown(mp)) |
| return -EIO; |
| |
| /* Prepare and then clone file data. */ |
| ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out, |
| &len, remap_flags); |
| if (ret || len == 0) |
| return ret; |
| |
| trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out); |
| |
| ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len, |
| &remapped); |
| if (ret) |
| goto out_unlock; |
| |
| /* |
| * Carry the cowextsize hint from src to dest if we're sharing the |
| * entire source file to the entire destination file, the source file |
| * has a cowextsize hint, and the destination file does not. |
| */ |
| cowextsize = 0; |
| if (pos_in == 0 && len == i_size_read(inode_in) && |
| (src->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) && |
| pos_out == 0 && len >= i_size_read(inode_out) && |
| !(dest->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)) |
| cowextsize = src->i_cowextsize; |
| |
| ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize, |
| remap_flags); |
| if (ret) |
| goto out_unlock; |
| |
| if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out)) |
| xfs_log_force_inode(dest); |
| out_unlock: |
| xfs_iunlock2_io_mmap(src, dest); |
| if (ret) |
| trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_); |
| return remapped > 0 ? remapped : ret; |
| } |
| |
| STATIC int |
| xfs_file_open( |
| struct inode *inode, |
| struct file *file) |
| { |
| if (xfs_is_shutdown(XFS_M(inode->i_sb))) |
| return -EIO; |
| file->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC; |
| return generic_file_open(inode, file); |
| } |
| |
| STATIC int |
| xfs_dir_open( |
| struct inode *inode, |
| struct file *file) |
| { |
| struct xfs_inode *ip = XFS_I(inode); |
| unsigned int mode; |
| int error; |
| |
| error = xfs_file_open(inode, file); |
| if (error) |
| return error; |
| |
| /* |
| * If there are any blocks, read-ahead block 0 as we're almost |
| * certain to have the next operation be a read there. |
| */ |
| mode = xfs_ilock_data_map_shared(ip); |
| if (ip->i_df.if_nextents > 0) |
| error = xfs_dir3_data_readahead(ip, 0, 0); |
| xfs_iunlock(ip, mode); |
| return error; |
| } |
| |
| STATIC int |
| xfs_file_release( |
| struct inode *inode, |
| struct file *filp) |
| { |
| return xfs_release(XFS_I(inode)); |
| } |
| |
| STATIC int |
| xfs_file_readdir( |
| struct file *file, |
| struct dir_context *ctx) |
| { |
| struct inode *inode = file_inode(file); |
| xfs_inode_t *ip = XFS_I(inode); |
| size_t bufsize; |
| |
| /* |
| * The Linux API doesn't pass down the total size of the buffer |
| * we read into down to the filesystem. With the filldir concept |
| * it's not needed for correct information, but the XFS dir2 leaf |
| * code wants an estimate of the buffer size to calculate it's |
| * readahead window and size the buffers used for mapping to |
| * physical blocks. |
| * |
| * Try to give it an estimate that's good enough, maybe at some |
| * point we can change the ->readdir prototype to include the |
| * buffer size. For now we use the current glibc buffer size. |
| */ |
| bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_disk_size); |
| |
| return xfs_readdir(NULL, ip, ctx, bufsize); |
| } |
| |
| STATIC loff_t |
| xfs_file_llseek( |
| struct file *file, |
| loff_t offset, |
| int whence) |
| { |
| struct inode *inode = file->f_mapping->host; |
| |
| if (xfs_is_shutdown(XFS_I(inode)->i_mount)) |
| return -EIO; |
| |
| switch (whence) { |
| default: |
| return generic_file_llseek(file, offset, whence); |
| case SEEK_HOLE: |
| offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops); |
| break; |
| case SEEK_DATA: |
| offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops); |
| break; |
| } |
| |
| if (offset < 0) |
| return offset; |
| return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); |
| } |
| |
| #ifdef CONFIG_FS_DAX |
| static int |
| xfs_dax_fault( |
| struct vm_fault *vmf, |
| enum page_entry_size pe_size, |
| bool write_fault, |
| pfn_t *pfn) |
| { |
| return dax_iomap_fault(vmf, pe_size, pfn, NULL, |
| (write_fault && !vmf->cow_page) ? |
| &xfs_dax_write_iomap_ops : |
| &xfs_read_iomap_ops); |
| } |
| #else |
| static int |
| xfs_dax_fault( |
| struct vm_fault *vmf, |
| enum page_entry_size pe_size, |
| bool write_fault, |
| pfn_t *pfn) |
| { |
| return 0; |
| } |
| #endif |
| |
| /* |
| * Locking for serialisation of IO during page faults. This results in a lock |
| * ordering of: |
| * |
| * mmap_lock (MM) |
| * sb_start_pagefault(vfs, freeze) |
| * invalidate_lock (vfs/XFS_MMAPLOCK - truncate serialisation) |
| * page_lock (MM) |
| * i_lock (XFS - extent map serialisation) |
| */ |
| static vm_fault_t |
| __xfs_filemap_fault( |
| struct vm_fault *vmf, |
| enum page_entry_size pe_size, |
| bool write_fault) |
| { |
| struct inode *inode = file_inode(vmf->vma->vm_file); |
| struct xfs_inode *ip = XFS_I(inode); |
| vm_fault_t ret; |
| |
| trace_xfs_filemap_fault(ip, pe_size, write_fault); |
| |
| if (write_fault) { |
| sb_start_pagefault(inode->i_sb); |
| file_update_time(vmf->vma->vm_file); |
| } |
| |
| if (IS_DAX(inode)) { |
| pfn_t pfn; |
| |
| xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); |
| ret = xfs_dax_fault(vmf, pe_size, write_fault, &pfn); |
| if (ret & VM_FAULT_NEEDDSYNC) |
| ret = dax_finish_sync_fault(vmf, pe_size, pfn); |
| xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); |
| } else { |
| if (write_fault) { |
| xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); |
| ret = iomap_page_mkwrite(vmf, |
| &xfs_buffered_write_iomap_ops); |
| xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); |
| } else { |
| ret = filemap_fault(vmf); |
| } |
| } |
| |
| if (write_fault) |
| sb_end_pagefault(inode->i_sb); |
| return ret; |
| } |
| |
| static inline bool |
| xfs_is_write_fault( |
| struct vm_fault *vmf) |
| { |
| return (vmf->flags & FAULT_FLAG_WRITE) && |
| (vmf->vma->vm_flags & VM_SHARED); |
| } |
| |
| static vm_fault_t |
| xfs_filemap_fault( |
| struct vm_fault *vmf) |
| { |
| /* DAX can shortcut the normal fault path on write faults! */ |
| return __xfs_filemap_fault(vmf, PE_SIZE_PTE, |
| IS_DAX(file_inode(vmf->vma->vm_file)) && |
| xfs_is_write_fault(vmf)); |
| } |
| |
| static vm_fault_t |
| xfs_filemap_huge_fault( |
| struct vm_fault *vmf, |
| enum page_entry_size pe_size) |
| { |
| if (!IS_DAX(file_inode(vmf->vma->vm_file))) |
| return VM_FAULT_FALLBACK; |
| |
| /* DAX can shortcut the normal fault path on write faults! */ |
| return __xfs_filemap_fault(vmf, pe_size, |
| xfs_is_write_fault(vmf)); |
| } |
| |
| static vm_fault_t |
| xfs_filemap_page_mkwrite( |
| struct vm_fault *vmf) |
| { |
| return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); |
| } |
| |
| /* |
| * pfn_mkwrite was originally intended to ensure we capture time stamp updates |
| * on write faults. In reality, it needs to serialise against truncate and |
| * prepare memory for writing so handle is as standard write fault. |
| */ |
| static vm_fault_t |
| xfs_filemap_pfn_mkwrite( |
| struct vm_fault *vmf) |
| { |
| |
| return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); |
| } |
| |
| static vm_fault_t |
| xfs_filemap_map_pages( |
| struct vm_fault *vmf, |
| pgoff_t start_pgoff, |
| pgoff_t end_pgoff) |
| { |
| struct inode *inode = file_inode(vmf->vma->vm_file); |
| vm_fault_t ret; |
| |
| xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); |
| ret = filemap_map_pages(vmf, start_pgoff, end_pgoff); |
| xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); |
| return ret; |
| } |
| |
| static const struct vm_operations_struct xfs_file_vm_ops = { |
| .fault = xfs_filemap_fault, |
| .huge_fault = xfs_filemap_huge_fault, |
| .map_pages = xfs_filemap_map_pages, |
| .page_mkwrite = xfs_filemap_page_mkwrite, |
| .pfn_mkwrite = xfs_filemap_pfn_mkwrite, |
| }; |
| |
| STATIC int |
| xfs_file_mmap( |
| struct file *file, |
| struct vm_area_struct *vma) |
| { |
| struct inode *inode = file_inode(file); |
| struct xfs_buftarg *target = xfs_inode_buftarg(XFS_I(inode)); |
| |
| /* |
| * We don't support synchronous mappings for non-DAX files and |
| * for DAX files if underneath dax_device is not synchronous. |
| */ |
| if (!daxdev_mapping_supported(vma, target->bt_daxdev)) |
| return -EOPNOTSUPP; |
| |
| file_accessed(file); |
| vma->vm_ops = &xfs_file_vm_ops; |
| if (IS_DAX(inode)) |
| vma->vm_flags |= VM_HUGEPAGE; |
| return 0; |
| } |
| |
| const struct file_operations xfs_file_operations = { |
| .llseek = xfs_file_llseek, |
| .read_iter = xfs_file_read_iter, |
| .write_iter = xfs_file_write_iter, |
| .splice_read = generic_file_splice_read, |
| .splice_write = iter_file_splice_write, |
| .iopoll = iocb_bio_iopoll, |
| .unlocked_ioctl = xfs_file_ioctl, |
| #ifdef CONFIG_COMPAT |
| .compat_ioctl = xfs_file_compat_ioctl, |
| #endif |
| .mmap = xfs_file_mmap, |
| .mmap_supported_flags = MAP_SYNC, |
| .open = xfs_file_open, |
| .release = xfs_file_release, |
| .fsync = xfs_file_fsync, |
| .get_unmapped_area = thp_get_unmapped_area, |
| .fallocate = xfs_file_fallocate, |
| .fadvise = xfs_file_fadvise, |
| .remap_file_range = xfs_file_remap_range, |
| }; |
| |
| const struct file_operations xfs_dir_file_operations = { |
| .open = xfs_dir_open, |
| .read = generic_read_dir, |
| .iterate_shared = xfs_file_readdir, |
| .llseek = generic_file_llseek, |
| .unlocked_ioctl = xfs_file_ioctl, |
| #ifdef CONFIG_COMPAT |
| .compat_ioctl = xfs_file_compat_ioctl, |
| #endif |
| .fsync = xfs_dir_fsync, |
| }; |