| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * kexec.c - kexec_load system call |
| * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/capability.h> |
| #include <linux/mm.h> |
| #include <linux/file.h> |
| #include <linux/security.h> |
| #include <linux/kexec.h> |
| #include <linux/mutex.h> |
| #include <linux/list.h> |
| #include <linux/syscalls.h> |
| #include <linux/vmalloc.h> |
| #include <linux/slab.h> |
| |
| #include "kexec_internal.h" |
| |
| static int kimage_alloc_init(struct kimage **rimage, unsigned long entry, |
| unsigned long nr_segments, |
| struct kexec_segment *segments, |
| unsigned long flags) |
| { |
| int ret; |
| struct kimage *image; |
| bool kexec_on_panic = flags & KEXEC_ON_CRASH; |
| |
| if (kexec_on_panic) { |
| /* Verify we have a valid entry point */ |
| if ((entry < phys_to_boot_phys(crashk_res.start)) || |
| (entry > phys_to_boot_phys(crashk_res.end))) |
| return -EADDRNOTAVAIL; |
| } |
| |
| /* Allocate and initialize a controlling structure */ |
| image = do_kimage_alloc_init(); |
| if (!image) |
| return -ENOMEM; |
| |
| image->start = entry; |
| image->nr_segments = nr_segments; |
| memcpy(image->segment, segments, nr_segments * sizeof(*segments)); |
| |
| if (kexec_on_panic) { |
| /* Enable special crash kernel control page alloc policy. */ |
| image->control_page = crashk_res.start; |
| image->type = KEXEC_TYPE_CRASH; |
| } |
| |
| ret = sanity_check_segment_list(image); |
| if (ret) |
| goto out_free_image; |
| |
| /* |
| * Find a location for the control code buffer, and add it |
| * the vector of segments so that it's pages will also be |
| * counted as destination pages. |
| */ |
| ret = -ENOMEM; |
| image->control_code_page = kimage_alloc_control_pages(image, |
| get_order(KEXEC_CONTROL_PAGE_SIZE)); |
| if (!image->control_code_page) { |
| pr_err("Could not allocate control_code_buffer\n"); |
| goto out_free_image; |
| } |
| |
| if (!kexec_on_panic) { |
| image->swap_page = kimage_alloc_control_pages(image, 0); |
| if (!image->swap_page) { |
| pr_err("Could not allocate swap buffer\n"); |
| goto out_free_control_pages; |
| } |
| } |
| |
| *rimage = image; |
| return 0; |
| out_free_control_pages: |
| kimage_free_page_list(&image->control_pages); |
| out_free_image: |
| kfree(image); |
| return ret; |
| } |
| |
| static int do_kexec_load(unsigned long entry, unsigned long nr_segments, |
| struct kexec_segment *segments, unsigned long flags) |
| { |
| struct kimage **dest_image, *image; |
| unsigned long i; |
| int ret; |
| |
| /* |
| * Because we write directly to the reserved memory region when loading |
| * crash kernels we need a serialization here to prevent multiple crash |
| * kernels from attempting to load simultaneously. |
| */ |
| if (!kexec_trylock()) |
| return -EBUSY; |
| |
| if (flags & KEXEC_ON_CRASH) { |
| dest_image = &kexec_crash_image; |
| if (kexec_crash_image) |
| arch_kexec_unprotect_crashkres(); |
| } else { |
| dest_image = &kexec_image; |
| } |
| |
| if (nr_segments == 0) { |
| /* Uninstall image */ |
| kimage_free(xchg(dest_image, NULL)); |
| ret = 0; |
| goto out_unlock; |
| } |
| if (flags & KEXEC_ON_CRASH) { |
| /* |
| * Loading another kernel to switch to if this one |
| * crashes. Free any current crash dump kernel before |
| * we corrupt it. |
| */ |
| kimage_free(xchg(&kexec_crash_image, NULL)); |
| } |
| |
| ret = kimage_alloc_init(&image, entry, nr_segments, segments, flags); |
| if (ret) |
| goto out_unlock; |
| |
| if (flags & KEXEC_PRESERVE_CONTEXT) |
| image->preserve_context = 1; |
| |
| ret = machine_kexec_prepare(image); |
| if (ret) |
| goto out; |
| |
| /* |
| * Some architecture(like S390) may touch the crash memory before |
| * machine_kexec_prepare(), we must copy vmcoreinfo data after it. |
| */ |
| ret = kimage_crash_copy_vmcoreinfo(image); |
| if (ret) |
| goto out; |
| |
| for (i = 0; i < nr_segments; i++) { |
| ret = kimage_load_segment(image, &image->segment[i]); |
| if (ret) |
| goto out; |
| } |
| |
| kimage_terminate(image); |
| |
| ret = machine_kexec_post_load(image); |
| if (ret) |
| goto out; |
| |
| /* Install the new kernel and uninstall the old */ |
| image = xchg(dest_image, image); |
| |
| out: |
| if ((flags & KEXEC_ON_CRASH) && kexec_crash_image) |
| arch_kexec_protect_crashkres(); |
| |
| kimage_free(image); |
| out_unlock: |
| kexec_unlock(); |
| return ret; |
| } |
| |
| /* |
| * Exec Kernel system call: for obvious reasons only root may call it. |
| * |
| * This call breaks up into three pieces. |
| * - A generic part which loads the new kernel from the current |
| * address space, and very carefully places the data in the |
| * allocated pages. |
| * |
| * - A generic part that interacts with the kernel and tells all of |
| * the devices to shut down. Preventing on-going dmas, and placing |
| * the devices in a consistent state so a later kernel can |
| * reinitialize them. |
| * |
| * - A machine specific part that includes the syscall number |
| * and then copies the image to it's final destination. And |
| * jumps into the image at entry. |
| * |
| * kexec does not sync, or unmount filesystems so if you need |
| * that to happen you need to do that yourself. |
| */ |
| |
| static inline int kexec_load_check(unsigned long nr_segments, |
| unsigned long flags) |
| { |
| int result; |
| |
| /* We only trust the superuser with rebooting the system. */ |
| if (!capable(CAP_SYS_BOOT) || kexec_load_disabled) |
| return -EPERM; |
| |
| /* Permit LSMs and IMA to fail the kexec */ |
| result = security_kernel_load_data(LOADING_KEXEC_IMAGE, false); |
| if (result < 0) |
| return result; |
| |
| /* |
| * kexec can be used to circumvent module loading restrictions, so |
| * prevent loading in that case |
| */ |
| result = security_locked_down(LOCKDOWN_KEXEC); |
| if (result) |
| return result; |
| |
| /* |
| * Verify we have a legal set of flags |
| * This leaves us room for future extensions. |
| */ |
| if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK)) |
| return -EINVAL; |
| |
| /* Put an artificial cap on the number |
| * of segments passed to kexec_load. |
| */ |
| if (nr_segments > KEXEC_SEGMENT_MAX) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments, |
| struct kexec_segment __user *, segments, unsigned long, flags) |
| { |
| struct kexec_segment *ksegments; |
| unsigned long result; |
| |
| result = kexec_load_check(nr_segments, flags); |
| if (result) |
| return result; |
| |
| /* Verify we are on the appropriate architecture */ |
| if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) && |
| ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT)) |
| return -EINVAL; |
| |
| ksegments = memdup_user(segments, nr_segments * sizeof(ksegments[0])); |
| if (IS_ERR(ksegments)) |
| return PTR_ERR(ksegments); |
| |
| result = do_kexec_load(entry, nr_segments, ksegments, flags); |
| kfree(ksegments); |
| |
| return result; |
| } |
| |
| #ifdef CONFIG_COMPAT |
| COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry, |
| compat_ulong_t, nr_segments, |
| struct compat_kexec_segment __user *, segments, |
| compat_ulong_t, flags) |
| { |
| struct compat_kexec_segment in; |
| struct kexec_segment *ksegments; |
| unsigned long i, result; |
| |
| result = kexec_load_check(nr_segments, flags); |
| if (result) |
| return result; |
| |
| /* Don't allow clients that don't understand the native |
| * architecture to do anything. |
| */ |
| if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT) |
| return -EINVAL; |
| |
| ksegments = kmalloc_array(nr_segments, sizeof(ksegments[0]), |
| GFP_KERNEL); |
| if (!ksegments) |
| return -ENOMEM; |
| |
| for (i = 0; i < nr_segments; i++) { |
| result = copy_from_user(&in, &segments[i], sizeof(in)); |
| if (result) |
| goto fail; |
| |
| ksegments[i].buf = compat_ptr(in.buf); |
| ksegments[i].bufsz = in.bufsz; |
| ksegments[i].mem = in.mem; |
| ksegments[i].memsz = in.memsz; |
| } |
| |
| result = do_kexec_load(entry, nr_segments, ksegments, flags); |
| |
| fail: |
| kfree(ksegments); |
| return result; |
| } |
| #endif |