| /* |
| * Calculate the checksum of data that is 16 byte aligned and a multiple of |
| * 16 bytes. |
| * |
| * The first step is to reduce it to 1024 bits. We do this in 8 parallel |
| * chunks in order to mask the latency of the vpmsum instructions. If we |
| * have more than 32 kB of data to checksum we repeat this step multiple |
| * times, passing in the previous 1024 bits. |
| * |
| * The next step is to reduce the 1024 bits to 64 bits. This step adds |
| * 32 bits of 0s to the end - this matches what a CRC does. We just |
| * calculate constants that land the data in this 32 bits. |
| * |
| * We then use fixed point Barrett reduction to compute a mod n over GF(2) |
| * for n = CRC using POWER8 instructions. We use x = 32. |
| * |
| * http://en.wikipedia.org/wiki/Barrett_reduction |
| * |
| * Copyright (C) 2015 Anton Blanchard <anton@au.ibm.com>, IBM |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| #include <asm/ppc_asm.h> |
| #include <asm/ppc-opcode.h> |
| |
| .section .rodata |
| .balign 16 |
| |
| .byteswap_constant: |
| /* byte reverse permute constant */ |
| .octa 0x0F0E0D0C0B0A09080706050403020100 |
| |
| #define MAX_SIZE 32768 |
| .constants: |
| |
| /* Reduce 262144 kbits to 1024 bits */ |
| /* x^261120 mod p(x)` << 1, x^261184 mod p(x)` << 1 */ |
| .octa 0x00000000b6ca9e20000000009c37c408 |
| |
| /* x^260096 mod p(x)` << 1, x^260160 mod p(x)` << 1 */ |
| .octa 0x00000000350249a800000001b51df26c |
| |
| /* x^259072 mod p(x)` << 1, x^259136 mod p(x)` << 1 */ |
| .octa 0x00000001862dac54000000000724b9d0 |
| |
| /* x^258048 mod p(x)` << 1, x^258112 mod p(x)` << 1 */ |
| .octa 0x00000001d87fb48c00000001c00532fe |
| |
| /* x^257024 mod p(x)` << 1, x^257088 mod p(x)` << 1 */ |
| .octa 0x00000001f39b699e00000000f05a9362 |
| |
| /* x^256000 mod p(x)` << 1, x^256064 mod p(x)` << 1 */ |
| .octa 0x0000000101da11b400000001e1007970 |
| |
| /* x^254976 mod p(x)` << 1, x^255040 mod p(x)` << 1 */ |
| .octa 0x00000001cab571e000000000a57366ee |
| |
| /* x^253952 mod p(x)` << 1, x^254016 mod p(x)` << 1 */ |
| .octa 0x00000000c7020cfe0000000192011284 |
| |
| /* x^252928 mod p(x)` << 1, x^252992 mod p(x)` << 1 */ |
| .octa 0x00000000cdaed1ae0000000162716d9a |
| |
| /* x^251904 mod p(x)` << 1, x^251968 mod p(x)` << 1 */ |
| .octa 0x00000001e804effc00000000cd97ecde |
| |
| /* x^250880 mod p(x)` << 1, x^250944 mod p(x)` << 1 */ |
| .octa 0x0000000077c3ea3a0000000058812bc0 |
| |
| /* x^249856 mod p(x)` << 1, x^249920 mod p(x)` << 1 */ |
| .octa 0x0000000068df31b40000000088b8c12e |
| |
| /* x^248832 mod p(x)` << 1, x^248896 mod p(x)` << 1 */ |
| .octa 0x00000000b059b6c200000001230b234c |
| |
| /* x^247808 mod p(x)` << 1, x^247872 mod p(x)` << 1 */ |
| .octa 0x0000000145fb8ed800000001120b416e |
| |
| /* x^246784 mod p(x)` << 1, x^246848 mod p(x)` << 1 */ |
| .octa 0x00000000cbc0916800000001974aecb0 |
| |
| /* x^245760 mod p(x)` << 1, x^245824 mod p(x)` << 1 */ |
| .octa 0x000000005ceeedc2000000008ee3f226 |
| |
| /* x^244736 mod p(x)` << 1, x^244800 mod p(x)` << 1 */ |
| .octa 0x0000000047d74e8600000001089aba9a |
| |
| /* x^243712 mod p(x)` << 1, x^243776 mod p(x)` << 1 */ |
| .octa 0x00000001407e9e220000000065113872 |
| |
| /* x^242688 mod p(x)` << 1, x^242752 mod p(x)` << 1 */ |
| .octa 0x00000001da967bda000000005c07ec10 |
| |
| /* x^241664 mod p(x)` << 1, x^241728 mod p(x)` << 1 */ |
| .octa 0x000000006c8983680000000187590924 |
| |
| /* x^240640 mod p(x)` << 1, x^240704 mod p(x)` << 1 */ |
| .octa 0x00000000f2d14c9800000000e35da7c6 |
| |
| /* x^239616 mod p(x)` << 1, x^239680 mod p(x)` << 1 */ |
| .octa 0x00000001993c6ad4000000000415855a |
| |
| /* x^238592 mod p(x)` << 1, x^238656 mod p(x)` << 1 */ |
| .octa 0x000000014683d1ac0000000073617758 |
| |
| /* x^237568 mod p(x)` << 1, x^237632 mod p(x)` << 1 */ |
| .octa 0x00000001a7c93e6c0000000176021d28 |
| |
| /* x^236544 mod p(x)` << 1, x^236608 mod p(x)` << 1 */ |
| .octa 0x000000010211e90a00000001c358fd0a |
| |
| /* x^235520 mod p(x)` << 1, x^235584 mod p(x)` << 1 */ |
| .octa 0x000000001119403e00000001ff7a2c18 |
| |
| /* x^234496 mod p(x)` << 1, x^234560 mod p(x)` << 1 */ |
| .octa 0x000000001c3261aa00000000f2d9f7e4 |
| |
| /* x^233472 mod p(x)` << 1, x^233536 mod p(x)` << 1 */ |
| .octa 0x000000014e37a634000000016cf1f9c8 |
| |
| /* x^232448 mod p(x)` << 1, x^232512 mod p(x)` << 1 */ |
| .octa 0x0000000073786c0c000000010af9279a |
| |
| /* x^231424 mod p(x)` << 1, x^231488 mod p(x)` << 1 */ |
| .octa 0x000000011dc037f80000000004f101e8 |
| |
| /* x^230400 mod p(x)` << 1, x^230464 mod p(x)` << 1 */ |
| .octa 0x0000000031433dfc0000000070bcf184 |
| |
| /* x^229376 mod p(x)` << 1, x^229440 mod p(x)` << 1 */ |
| .octa 0x000000009cde8348000000000a8de642 |
| |
| /* x^228352 mod p(x)` << 1, x^228416 mod p(x)` << 1 */ |
| .octa 0x0000000038d3c2a60000000062ea130c |
| |
| /* x^227328 mod p(x)` << 1, x^227392 mod p(x)` << 1 */ |
| .octa 0x000000011b25f26000000001eb31cbb2 |
| |
| /* x^226304 mod p(x)` << 1, x^226368 mod p(x)` << 1 */ |
| .octa 0x000000001629e6f00000000170783448 |
| |
| /* x^225280 mod p(x)` << 1, x^225344 mod p(x)` << 1 */ |
| .octa 0x0000000160838b4c00000001a684b4c6 |
| |
| /* x^224256 mod p(x)` << 1, x^224320 mod p(x)` << 1 */ |
| .octa 0x000000007a44011c00000000253ca5b4 |
| |
| /* x^223232 mod p(x)` << 1, x^223296 mod p(x)` << 1 */ |
| .octa 0x00000000226f417a0000000057b4b1e2 |
| |
| /* x^222208 mod p(x)` << 1, x^222272 mod p(x)` << 1 */ |
| .octa 0x0000000045eb2eb400000000b6bd084c |
| |
| /* x^221184 mod p(x)` << 1, x^221248 mod p(x)` << 1 */ |
| .octa 0x000000014459d70c0000000123c2d592 |
| |
| /* x^220160 mod p(x)` << 1, x^220224 mod p(x)` << 1 */ |
| .octa 0x00000001d406ed8200000000159dafce |
| |
| /* x^219136 mod p(x)` << 1, x^219200 mod p(x)` << 1 */ |
| .octa 0x0000000160c8e1a80000000127e1a64e |
| |
| /* x^218112 mod p(x)` << 1, x^218176 mod p(x)` << 1 */ |
| .octa 0x0000000027ba80980000000056860754 |
| |
| /* x^217088 mod p(x)` << 1, x^217152 mod p(x)` << 1 */ |
| .octa 0x000000006d92d01800000001e661aae8 |
| |
| /* x^216064 mod p(x)` << 1, x^216128 mod p(x)` << 1 */ |
| .octa 0x000000012ed7e3f200000000f82c6166 |
| |
| /* x^215040 mod p(x)` << 1, x^215104 mod p(x)` << 1 */ |
| .octa 0x000000002dc8778800000000c4f9c7ae |
| |
| /* x^214016 mod p(x)` << 1, x^214080 mod p(x)` << 1 */ |
| .octa 0x0000000018240bb80000000074203d20 |
| |
| /* x^212992 mod p(x)` << 1, x^213056 mod p(x)` << 1 */ |
| .octa 0x000000001ad381580000000198173052 |
| |
| /* x^211968 mod p(x)` << 1, x^212032 mod p(x)` << 1 */ |
| .octa 0x00000001396b78f200000001ce8aba54 |
| |
| /* x^210944 mod p(x)` << 1, x^211008 mod p(x)` << 1 */ |
| .octa 0x000000011a68133400000001850d5d94 |
| |
| /* x^209920 mod p(x)` << 1, x^209984 mod p(x)` << 1 */ |
| .octa 0x000000012104732e00000001d609239c |
| |
| /* x^208896 mod p(x)` << 1, x^208960 mod p(x)` << 1 */ |
| .octa 0x00000000a140d90c000000001595f048 |
| |
| /* x^207872 mod p(x)` << 1, x^207936 mod p(x)` << 1 */ |
| .octa 0x00000001b7215eda0000000042ccee08 |
| |
| /* x^206848 mod p(x)` << 1, x^206912 mod p(x)` << 1 */ |
| .octa 0x00000001aaf1df3c000000010a389d74 |
| |
| /* x^205824 mod p(x)` << 1, x^205888 mod p(x)` << 1 */ |
| .octa 0x0000000029d15b8a000000012a840da6 |
| |
| /* x^204800 mod p(x)` << 1, x^204864 mod p(x)` << 1 */ |
| .octa 0x00000000f1a96922000000001d181c0c |
| |
| /* x^203776 mod p(x)` << 1, x^203840 mod p(x)` << 1 */ |
| .octa 0x00000001ac80d03c0000000068b7d1f6 |
| |
| /* x^202752 mod p(x)` << 1, x^202816 mod p(x)` << 1 */ |
| .octa 0x000000000f11d56a000000005b0f14fc |
| |
| /* x^201728 mod p(x)` << 1, x^201792 mod p(x)` << 1 */ |
| .octa 0x00000001f1c022a20000000179e9e730 |
| |
| /* x^200704 mod p(x)` << 1, x^200768 mod p(x)` << 1 */ |
| .octa 0x0000000173d00ae200000001ce1368d6 |
| |
| /* x^199680 mod p(x)` << 1, x^199744 mod p(x)` << 1 */ |
| .octa 0x00000001d4ffe4ac0000000112c3a84c |
| |
| /* x^198656 mod p(x)` << 1, x^198720 mod p(x)` << 1 */ |
| .octa 0x000000016edc5ae400000000de940fee |
| |
| /* x^197632 mod p(x)` << 1, x^197696 mod p(x)` << 1 */ |
| .octa 0x00000001f1a0214000000000fe896b7e |
| |
| /* x^196608 mod p(x)` << 1, x^196672 mod p(x)` << 1 */ |
| .octa 0x00000000ca0b28a000000001f797431c |
| |
| /* x^195584 mod p(x)` << 1, x^195648 mod p(x)` << 1 */ |
| .octa 0x00000001928e30a20000000053e989ba |
| |
| /* x^194560 mod p(x)` << 1, x^194624 mod p(x)` << 1 */ |
| .octa 0x0000000097b1b002000000003920cd16 |
| |
| /* x^193536 mod p(x)` << 1, x^193600 mod p(x)` << 1 */ |
| .octa 0x00000000b15bf90600000001e6f579b8 |
| |
| /* x^192512 mod p(x)` << 1, x^192576 mod p(x)` << 1 */ |
| .octa 0x00000000411c5d52000000007493cb0a |
| |
| /* x^191488 mod p(x)` << 1, x^191552 mod p(x)` << 1 */ |
| .octa 0x00000001c36f330000000001bdd376d8 |
| |
| /* x^190464 mod p(x)` << 1, x^190528 mod p(x)` << 1 */ |
| .octa 0x00000001119227e0000000016badfee6 |
| |
| /* x^189440 mod p(x)` << 1, x^189504 mod p(x)` << 1 */ |
| .octa 0x00000000114d47020000000071de5c58 |
| |
| /* x^188416 mod p(x)` << 1, x^188480 mod p(x)` << 1 */ |
| .octa 0x00000000458b5b9800000000453f317c |
| |
| /* x^187392 mod p(x)` << 1, x^187456 mod p(x)` << 1 */ |
| .octa 0x000000012e31fb8e0000000121675cce |
| |
| /* x^186368 mod p(x)` << 1, x^186432 mod p(x)` << 1 */ |
| .octa 0x000000005cf619d800000001f409ee92 |
| |
| /* x^185344 mod p(x)` << 1, x^185408 mod p(x)` << 1 */ |
| .octa 0x0000000063f4d8b200000000f36b9c88 |
| |
| /* x^184320 mod p(x)` << 1, x^184384 mod p(x)` << 1 */ |
| .octa 0x000000004138dc8a0000000036b398f4 |
| |
| /* x^183296 mod p(x)` << 1, x^183360 mod p(x)` << 1 */ |
| .octa 0x00000001d29ee8e000000001748f9adc |
| |
| /* x^182272 mod p(x)` << 1, x^182336 mod p(x)` << 1 */ |
| .octa 0x000000006a08ace800000001be94ec00 |
| |
| /* x^181248 mod p(x)` << 1, x^181312 mod p(x)` << 1 */ |
| .octa 0x0000000127d4201000000000b74370d6 |
| |
| /* x^180224 mod p(x)` << 1, x^180288 mod p(x)` << 1 */ |
| .octa 0x0000000019d76b6200000001174d0b98 |
| |
| /* x^179200 mod p(x)` << 1, x^179264 mod p(x)` << 1 */ |
| .octa 0x00000001b1471f6e00000000befc06a4 |
| |
| /* x^178176 mod p(x)` << 1, x^178240 mod p(x)` << 1 */ |
| .octa 0x00000001f64c19cc00000001ae125288 |
| |
| /* x^177152 mod p(x)` << 1, x^177216 mod p(x)` << 1 */ |
| .octa 0x00000000003c0ea00000000095c19b34 |
| |
| /* x^176128 mod p(x)` << 1, x^176192 mod p(x)` << 1 */ |
| .octa 0x000000014d73abf600000001a78496f2 |
| |
| /* x^175104 mod p(x)` << 1, x^175168 mod p(x)` << 1 */ |
| .octa 0x00000001620eb84400000001ac5390a0 |
| |
| /* x^174080 mod p(x)` << 1, x^174144 mod p(x)` << 1 */ |
| .octa 0x0000000147655048000000002a80ed6e |
| |
| /* x^173056 mod p(x)` << 1, x^173120 mod p(x)` << 1 */ |
| .octa 0x0000000067b5077e00000001fa9b0128 |
| |
| /* x^172032 mod p(x)` << 1, x^172096 mod p(x)` << 1 */ |
| .octa 0x0000000010ffe20600000001ea94929e |
| |
| /* x^171008 mod p(x)` << 1, x^171072 mod p(x)` << 1 */ |
| .octa 0x000000000fee8f1e0000000125f4305c |
| |
| /* x^169984 mod p(x)` << 1, x^170048 mod p(x)` << 1 */ |
| .octa 0x00000001da26fbae00000001471e2002 |
| |
| /* x^168960 mod p(x)` << 1, x^169024 mod p(x)` << 1 */ |
| .octa 0x00000001b3a8bd880000000132d2253a |
| |
| /* x^167936 mod p(x)` << 1, x^168000 mod p(x)` << 1 */ |
| .octa 0x00000000e8f3898e00000000f26b3592 |
| |
| /* x^166912 mod p(x)` << 1, x^166976 mod p(x)` << 1 */ |
| .octa 0x00000000b0d0d28c00000000bc8b67b0 |
| |
| /* x^165888 mod p(x)` << 1, x^165952 mod p(x)` << 1 */ |
| .octa 0x0000000030f2a798000000013a826ef2 |
| |
| /* x^164864 mod p(x)` << 1, x^164928 mod p(x)` << 1 */ |
| .octa 0x000000000fba10020000000081482c84 |
| |
| /* x^163840 mod p(x)` << 1, x^163904 mod p(x)` << 1 */ |
| .octa 0x00000000bdb9bd7200000000e77307c2 |
| |
| /* x^162816 mod p(x)` << 1, x^162880 mod p(x)` << 1 */ |
| .octa 0x0000000075d3bf5a00000000d4a07ec8 |
| |
| /* x^161792 mod p(x)` << 1, x^161856 mod p(x)` << 1 */ |
| .octa 0x00000000ef1f98a00000000017102100 |
| |
| /* x^160768 mod p(x)` << 1, x^160832 mod p(x)` << 1 */ |
| .octa 0x00000000689c760200000000db406486 |
| |
| /* x^159744 mod p(x)` << 1, x^159808 mod p(x)` << 1 */ |
| .octa 0x000000016d5fa5fe0000000192db7f88 |
| |
| /* x^158720 mod p(x)` << 1, x^158784 mod p(x)` << 1 */ |
| .octa 0x00000001d0d2b9ca000000018bf67b1e |
| |
| /* x^157696 mod p(x)` << 1, x^157760 mod p(x)` << 1 */ |
| .octa 0x0000000041e7b470000000007c09163e |
| |
| /* x^156672 mod p(x)` << 1, x^156736 mod p(x)` << 1 */ |
| .octa 0x00000001cbb6495e000000000adac060 |
| |
| /* x^155648 mod p(x)` << 1, x^155712 mod p(x)` << 1 */ |
| .octa 0x000000010052a0b000000000bd8316ae |
| |
| /* x^154624 mod p(x)` << 1, x^154688 mod p(x)` << 1 */ |
| .octa 0x00000001d8effb5c000000019f09ab54 |
| |
| /* x^153600 mod p(x)` << 1, x^153664 mod p(x)` << 1 */ |
| .octa 0x00000001d969853c0000000125155542 |
| |
| /* x^152576 mod p(x)` << 1, x^152640 mod p(x)` << 1 */ |
| .octa 0x00000000523ccce2000000018fdb5882 |
| |
| /* x^151552 mod p(x)` << 1, x^151616 mod p(x)` << 1 */ |
| .octa 0x000000001e2436bc00000000e794b3f4 |
| |
| /* x^150528 mod p(x)` << 1, x^150592 mod p(x)` << 1 */ |
| .octa 0x00000000ddd1c3a2000000016f9bb022 |
| |
| /* x^149504 mod p(x)` << 1, x^149568 mod p(x)` << 1 */ |
| .octa 0x0000000019fcfe3800000000290c9978 |
| |
| /* x^148480 mod p(x)` << 1, x^148544 mod p(x)` << 1 */ |
| .octa 0x00000001ce95db640000000083c0f350 |
| |
| /* x^147456 mod p(x)` << 1, x^147520 mod p(x)` << 1 */ |
| .octa 0x00000000af5828060000000173ea6628 |
| |
| /* x^146432 mod p(x)` << 1, x^146496 mod p(x)` << 1 */ |
| .octa 0x00000001006388f600000001c8b4e00a |
| |
| /* x^145408 mod p(x)` << 1, x^145472 mod p(x)` << 1 */ |
| .octa 0x0000000179eca00a00000000de95d6aa |
| |
| /* x^144384 mod p(x)` << 1, x^144448 mod p(x)` << 1 */ |
| .octa 0x0000000122410a6a000000010b7f7248 |
| |
| /* x^143360 mod p(x)` << 1, x^143424 mod p(x)` << 1 */ |
| .octa 0x000000004288e87c00000001326e3a06 |
| |
| /* x^142336 mod p(x)` << 1, x^142400 mod p(x)` << 1 */ |
| .octa 0x000000016c5490da00000000bb62c2e6 |
| |
| /* x^141312 mod p(x)` << 1, x^141376 mod p(x)` << 1 */ |
| .octa 0x00000000d1c71f6e0000000156a4b2c2 |
| |
| /* x^140288 mod p(x)` << 1, x^140352 mod p(x)` << 1 */ |
| .octa 0x00000001b4ce08a6000000011dfe763a |
| |
| /* x^139264 mod p(x)` << 1, x^139328 mod p(x)` << 1 */ |
| .octa 0x00000001466ba60c000000007bcca8e2 |
| |
| /* x^138240 mod p(x)` << 1, x^138304 mod p(x)` << 1 */ |
| .octa 0x00000001f6c488a40000000186118faa |
| |
| /* x^137216 mod p(x)` << 1, x^137280 mod p(x)` << 1 */ |
| .octa 0x000000013bfb06820000000111a65a88 |
| |
| /* x^136192 mod p(x)` << 1, x^136256 mod p(x)` << 1 */ |
| .octa 0x00000000690e9e54000000003565e1c4 |
| |
| /* x^135168 mod p(x)` << 1, x^135232 mod p(x)` << 1 */ |
| .octa 0x00000000281346b6000000012ed02a82 |
| |
| /* x^134144 mod p(x)` << 1, x^134208 mod p(x)` << 1 */ |
| .octa 0x000000015646402400000000c486ecfc |
| |
| /* x^133120 mod p(x)` << 1, x^133184 mod p(x)` << 1 */ |
| .octa 0x000000016063a8dc0000000001b951b2 |
| |
| /* x^132096 mod p(x)` << 1, x^132160 mod p(x)` << 1 */ |
| .octa 0x0000000116a663620000000048143916 |
| |
| /* x^131072 mod p(x)` << 1, x^131136 mod p(x)` << 1 */ |
| .octa 0x000000017e8aa4d200000001dc2ae124 |
| |
| /* x^130048 mod p(x)` << 1, x^130112 mod p(x)` << 1 */ |
| .octa 0x00000001728eb10c00000001416c58d6 |
| |
| /* x^129024 mod p(x)` << 1, x^129088 mod p(x)` << 1 */ |
| .octa 0x00000001b08fd7fa00000000a479744a |
| |
| /* x^128000 mod p(x)` << 1, x^128064 mod p(x)` << 1 */ |
| .octa 0x00000001092a16e80000000096ca3a26 |
| |
| /* x^126976 mod p(x)` << 1, x^127040 mod p(x)` << 1 */ |
| .octa 0x00000000a505637c00000000ff223d4e |
| |
| /* x^125952 mod p(x)` << 1, x^126016 mod p(x)` << 1 */ |
| .octa 0x00000000d94869b2000000010e84da42 |
| |
| /* x^124928 mod p(x)` << 1, x^124992 mod p(x)` << 1 */ |
| .octa 0x00000001c8b203ae00000001b61ba3d0 |
| |
| /* x^123904 mod p(x)` << 1, x^123968 mod p(x)` << 1 */ |
| .octa 0x000000005704aea000000000680f2de8 |
| |
| /* x^122880 mod p(x)` << 1, x^122944 mod p(x)` << 1 */ |
| .octa 0x000000012e295fa2000000008772a9a8 |
| |
| /* x^121856 mod p(x)` << 1, x^121920 mod p(x)` << 1 */ |
| .octa 0x000000011d0908bc0000000155f295bc |
| |
| /* x^120832 mod p(x)` << 1, x^120896 mod p(x)` << 1 */ |
| .octa 0x0000000193ed97ea00000000595f9282 |
| |
| /* x^119808 mod p(x)` << 1, x^119872 mod p(x)` << 1 */ |
| .octa 0x000000013a0f1c520000000164b1c25a |
| |
| /* x^118784 mod p(x)` << 1, x^118848 mod p(x)` << 1 */ |
| .octa 0x000000010c2c40c000000000fbd67c50 |
| |
| /* x^117760 mod p(x)` << 1, x^117824 mod p(x)` << 1 */ |
| .octa 0x00000000ff6fac3e0000000096076268 |
| |
| /* x^116736 mod p(x)` << 1, x^116800 mod p(x)` << 1 */ |
| .octa 0x000000017b3609c000000001d288e4cc |
| |
| /* x^115712 mod p(x)` << 1, x^115776 mod p(x)` << 1 */ |
| .octa 0x0000000088c8c92200000001eaac1bdc |
| |
| /* x^114688 mod p(x)` << 1, x^114752 mod p(x)` << 1 */ |
| .octa 0x00000001751baae600000001f1ea39e2 |
| |
| /* x^113664 mod p(x)` << 1, x^113728 mod p(x)` << 1 */ |
| .octa 0x000000010795297200000001eb6506fc |
| |
| /* x^112640 mod p(x)` << 1, x^112704 mod p(x)` << 1 */ |
| .octa 0x0000000162b00abe000000010f806ffe |
| |
| /* x^111616 mod p(x)` << 1, x^111680 mod p(x)` << 1 */ |
| .octa 0x000000000d7b404c000000010408481e |
| |
| /* x^110592 mod p(x)` << 1, x^110656 mod p(x)` << 1 */ |
| .octa 0x00000000763b13d40000000188260534 |
| |
| /* x^109568 mod p(x)` << 1, x^109632 mod p(x)` << 1 */ |
| .octa 0x00000000f6dc22d80000000058fc73e0 |
| |
| /* x^108544 mod p(x)` << 1, x^108608 mod p(x)` << 1 */ |
| .octa 0x000000007daae06000000000391c59b8 |
| |
| /* x^107520 mod p(x)` << 1, x^107584 mod p(x)` << 1 */ |
| .octa 0x000000013359ab7c000000018b638400 |
| |
| /* x^106496 mod p(x)` << 1, x^106560 mod p(x)` << 1 */ |
| .octa 0x000000008add438a000000011738f5c4 |
| |
| /* x^105472 mod p(x)` << 1, x^105536 mod p(x)` << 1 */ |
| .octa 0x00000001edbefdea000000008cf7c6da |
| |
| /* x^104448 mod p(x)` << 1, x^104512 mod p(x)` << 1 */ |
| .octa 0x000000004104e0f800000001ef97fb16 |
| |
| /* x^103424 mod p(x)` << 1, x^103488 mod p(x)` << 1 */ |
| .octa 0x00000000b48a82220000000102130e20 |
| |
| /* x^102400 mod p(x)` << 1, x^102464 mod p(x)` << 1 */ |
| .octa 0x00000001bcb4684400000000db968898 |
| |
| /* x^101376 mod p(x)` << 1, x^101440 mod p(x)` << 1 */ |
| .octa 0x000000013293ce0a00000000b5047b5e |
| |
| /* x^100352 mod p(x)` << 1, x^100416 mod p(x)` << 1 */ |
| .octa 0x00000001710d0844000000010b90fdb2 |
| |
| /* x^99328 mod p(x)` << 1, x^99392 mod p(x)` << 1 */ |
| .octa 0x0000000117907f6e000000004834a32e |
| |
| /* x^98304 mod p(x)` << 1, x^98368 mod p(x)` << 1 */ |
| .octa 0x0000000087ddf93e0000000059c8f2b0 |
| |
| /* x^97280 mod p(x)` << 1, x^97344 mod p(x)` << 1 */ |
| .octa 0x000000005970e9b00000000122cec508 |
| |
| /* x^96256 mod p(x)` << 1, x^96320 mod p(x)` << 1 */ |
| .octa 0x0000000185b2b7d0000000000a330cda |
| |
| /* x^95232 mod p(x)` << 1, x^95296 mod p(x)` << 1 */ |
| .octa 0x00000001dcee0efc000000014a47148c |
| |
| /* x^94208 mod p(x)` << 1, x^94272 mod p(x)` << 1 */ |
| .octa 0x0000000030da27220000000042c61cb8 |
| |
| /* x^93184 mod p(x)` << 1, x^93248 mod p(x)` << 1 */ |
| .octa 0x000000012f925a180000000012fe6960 |
| |
| /* x^92160 mod p(x)` << 1, x^92224 mod p(x)` << 1 */ |
| .octa 0x00000000dd2e357c00000000dbda2c20 |
| |
| /* x^91136 mod p(x)` << 1, x^91200 mod p(x)` << 1 */ |
| .octa 0x00000000071c80de000000011122410c |
| |
| /* x^90112 mod p(x)` << 1, x^90176 mod p(x)` << 1 */ |
| .octa 0x000000011513140a00000000977b2070 |
| |
| /* x^89088 mod p(x)` << 1, x^89152 mod p(x)` << 1 */ |
| .octa 0x00000001df876e8e000000014050438e |
| |
| /* x^88064 mod p(x)` << 1, x^88128 mod p(x)` << 1 */ |
| .octa 0x000000015f81d6ce0000000147c840e8 |
| |
| /* x^87040 mod p(x)` << 1, x^87104 mod p(x)` << 1 */ |
| .octa 0x000000019dd94dbe00000001cc7c88ce |
| |
| /* x^86016 mod p(x)` << 1, x^86080 mod p(x)` << 1 */ |
| .octa 0x00000001373d206e00000001476b35a4 |
| |
| /* x^84992 mod p(x)` << 1, x^85056 mod p(x)` << 1 */ |
| .octa 0x00000000668ccade000000013d52d508 |
| |
| /* x^83968 mod p(x)` << 1, x^84032 mod p(x)` << 1 */ |
| .octa 0x00000001b192d268000000008e4be32e |
| |
| /* x^82944 mod p(x)` << 1, x^83008 mod p(x)` << 1 */ |
| .octa 0x00000000e30f3a7800000000024120fe |
| |
| /* x^81920 mod p(x)` << 1, x^81984 mod p(x)` << 1 */ |
| .octa 0x000000010ef1f7bc00000000ddecddb4 |
| |
| /* x^80896 mod p(x)` << 1, x^80960 mod p(x)` << 1 */ |
| .octa 0x00000001f5ac738000000000d4d403bc |
| |
| /* x^79872 mod p(x)` << 1, x^79936 mod p(x)` << 1 */ |
| .octa 0x000000011822ea7000000001734b89aa |
| |
| /* x^78848 mod p(x)` << 1, x^78912 mod p(x)` << 1 */ |
| .octa 0x00000000c3a33848000000010e7a58d6 |
| |
| /* x^77824 mod p(x)` << 1, x^77888 mod p(x)` << 1 */ |
| .octa 0x00000001bd151c2400000001f9f04e9c |
| |
| /* x^76800 mod p(x)` << 1, x^76864 mod p(x)` << 1 */ |
| .octa 0x0000000056002d7600000000b692225e |
| |
| /* x^75776 mod p(x)` << 1, x^75840 mod p(x)` << 1 */ |
| .octa 0x000000014657c4f4000000019b8d3f3e |
| |
| /* x^74752 mod p(x)` << 1, x^74816 mod p(x)` << 1 */ |
| .octa 0x0000000113742d7c00000001a874f11e |
| |
| /* x^73728 mod p(x)` << 1, x^73792 mod p(x)` << 1 */ |
| .octa 0x000000019c5920ba000000010d5a4254 |
| |
| /* x^72704 mod p(x)` << 1, x^72768 mod p(x)` << 1 */ |
| .octa 0x000000005216d2d600000000bbb2f5d6 |
| |
| /* x^71680 mod p(x)` << 1, x^71744 mod p(x)` << 1 */ |
| .octa 0x0000000136f5ad8a0000000179cc0e36 |
| |
| /* x^70656 mod p(x)` << 1, x^70720 mod p(x)` << 1 */ |
| .octa 0x000000018b07beb600000001dca1da4a |
| |
| /* x^69632 mod p(x)` << 1, x^69696 mod p(x)` << 1 */ |
| .octa 0x00000000db1e93b000000000feb1a192 |
| |
| /* x^68608 mod p(x)` << 1, x^68672 mod p(x)` << 1 */ |
| .octa 0x000000000b96fa3a00000000d1eeedd6 |
| |
| /* x^67584 mod p(x)` << 1, x^67648 mod p(x)` << 1 */ |
| .octa 0x00000001d9968af0000000008fad9bb4 |
| |
| /* x^66560 mod p(x)` << 1, x^66624 mod p(x)` << 1 */ |
| .octa 0x000000000e4a77a200000001884938e4 |
| |
| /* x^65536 mod p(x)` << 1, x^65600 mod p(x)` << 1 */ |
| .octa 0x00000000508c2ac800000001bc2e9bc0 |
| |
| /* x^64512 mod p(x)` << 1, x^64576 mod p(x)` << 1 */ |
| .octa 0x0000000021572a8000000001f9658a68 |
| |
| /* x^63488 mod p(x)` << 1, x^63552 mod p(x)` << 1 */ |
| .octa 0x00000001b859daf2000000001b9224fc |
| |
| /* x^62464 mod p(x)` << 1, x^62528 mod p(x)` << 1 */ |
| .octa 0x000000016f7884740000000055b2fb84 |
| |
| /* x^61440 mod p(x)` << 1, x^61504 mod p(x)` << 1 */ |
| .octa 0x00000001b438810e000000018b090348 |
| |
| /* x^60416 mod p(x)` << 1, x^60480 mod p(x)` << 1 */ |
| .octa 0x0000000095ddc6f2000000011ccbd5ea |
| |
| /* x^59392 mod p(x)` << 1, x^59456 mod p(x)` << 1 */ |
| .octa 0x00000001d977c20c0000000007ae47f8 |
| |
| /* x^58368 mod p(x)` << 1, x^58432 mod p(x)` << 1 */ |
| .octa 0x00000000ebedb99a0000000172acbec0 |
| |
| /* x^57344 mod p(x)` << 1, x^57408 mod p(x)` << 1 */ |
| .octa 0x00000001df9e9e9200000001c6e3ff20 |
| |
| /* x^56320 mod p(x)` << 1, x^56384 mod p(x)` << 1 */ |
| .octa 0x00000001a4a3f95200000000e1b38744 |
| |
| /* x^55296 mod p(x)` << 1, x^55360 mod p(x)` << 1 */ |
| .octa 0x00000000e2f5122000000000791585b2 |
| |
| /* x^54272 mod p(x)` << 1, x^54336 mod p(x)` << 1 */ |
| .octa 0x000000004aa01f3e00000000ac53b894 |
| |
| /* x^53248 mod p(x)` << 1, x^53312 mod p(x)` << 1 */ |
| .octa 0x00000000b3e90a5800000001ed5f2cf4 |
| |
| /* x^52224 mod p(x)` << 1, x^52288 mod p(x)` << 1 */ |
| .octa 0x000000000c9ca2aa00000001df48b2e0 |
| |
| /* x^51200 mod p(x)` << 1, x^51264 mod p(x)` << 1 */ |
| .octa 0x000000015168231600000000049c1c62 |
| |
| /* x^50176 mod p(x)` << 1, x^50240 mod p(x)` << 1 */ |
| .octa 0x0000000036fce78c000000017c460c12 |
| |
| /* x^49152 mod p(x)` << 1, x^49216 mod p(x)` << 1 */ |
| .octa 0x000000009037dc10000000015be4da7e |
| |
| /* x^48128 mod p(x)` << 1, x^48192 mod p(x)` << 1 */ |
| .octa 0x00000000d3298582000000010f38f668 |
| |
| /* x^47104 mod p(x)` << 1, x^47168 mod p(x)` << 1 */ |
| .octa 0x00000001b42e8ad60000000039f40a00 |
| |
| /* x^46080 mod p(x)` << 1, x^46144 mod p(x)` << 1 */ |
| .octa 0x00000000142a983800000000bd4c10c4 |
| |
| /* x^45056 mod p(x)` << 1, x^45120 mod p(x)` << 1 */ |
| .octa 0x0000000109c7f1900000000042db1d98 |
| |
| /* x^44032 mod p(x)` << 1, x^44096 mod p(x)` << 1 */ |
| .octa 0x0000000056ff931000000001c905bae6 |
| |
| /* x^43008 mod p(x)` << 1, x^43072 mod p(x)` << 1 */ |
| .octa 0x00000001594513aa00000000069d40ea |
| |
| /* x^41984 mod p(x)` << 1, x^42048 mod p(x)` << 1 */ |
| .octa 0x00000001e3b5b1e8000000008e4fbad0 |
| |
| /* x^40960 mod p(x)` << 1, x^41024 mod p(x)` << 1 */ |
| .octa 0x000000011dd5fc080000000047bedd46 |
| |
| /* x^39936 mod p(x)` << 1, x^40000 mod p(x)` << 1 */ |
| .octa 0x00000001675f0cc20000000026396bf8 |
| |
| /* x^38912 mod p(x)` << 1, x^38976 mod p(x)` << 1 */ |
| .octa 0x00000000d1c8dd4400000000379beb92 |
| |
| /* x^37888 mod p(x)` << 1, x^37952 mod p(x)` << 1 */ |
| .octa 0x0000000115ebd3d8000000000abae54a |
| |
| /* x^36864 mod p(x)` << 1, x^36928 mod p(x)` << 1 */ |
| .octa 0x00000001ecbd0dac0000000007e6a128 |
| |
| /* x^35840 mod p(x)` << 1, x^35904 mod p(x)` << 1 */ |
| .octa 0x00000000cdf67af2000000000ade29d2 |
| |
| /* x^34816 mod p(x)` << 1, x^34880 mod p(x)` << 1 */ |
| .octa 0x000000004c01ff4c00000000f974c45c |
| |
| /* x^33792 mod p(x)` << 1, x^33856 mod p(x)` << 1 */ |
| .octa 0x00000000f2d8657e00000000e77ac60a |
| |
| /* x^32768 mod p(x)` << 1, x^32832 mod p(x)` << 1 */ |
| .octa 0x000000006bae74c40000000145895816 |
| |
| /* x^31744 mod p(x)` << 1, x^31808 mod p(x)` << 1 */ |
| .octa 0x0000000152af8aa00000000038e362be |
| |
| /* x^30720 mod p(x)` << 1, x^30784 mod p(x)` << 1 */ |
| .octa 0x0000000004663802000000007f991a64 |
| |
| /* x^29696 mod p(x)` << 1, x^29760 mod p(x)` << 1 */ |
| .octa 0x00000001ab2f5afc00000000fa366d3a |
| |
| /* x^28672 mod p(x)` << 1, x^28736 mod p(x)` << 1 */ |
| .octa 0x0000000074a4ebd400000001a2bb34f0 |
| |
| /* x^27648 mod p(x)` << 1, x^27712 mod p(x)` << 1 */ |
| .octa 0x00000001d7ab3a4c0000000028a9981e |
| |
| /* x^26624 mod p(x)` << 1, x^26688 mod p(x)` << 1 */ |
| .octa 0x00000001a8da60c600000001dbc672be |
| |
| /* x^25600 mod p(x)` << 1, x^25664 mod p(x)` << 1 */ |
| .octa 0x000000013cf6382000000000b04d77f6 |
| |
| /* x^24576 mod p(x)` << 1, x^24640 mod p(x)` << 1 */ |
| .octa 0x00000000bec12e1e0000000124400d96 |
| |
| /* x^23552 mod p(x)` << 1, x^23616 mod p(x)` << 1 */ |
| .octa 0x00000001c6368010000000014ca4b414 |
| |
| /* x^22528 mod p(x)` << 1, x^22592 mod p(x)` << 1 */ |
| .octa 0x00000001e6e78758000000012fe2c938 |
| |
| /* x^21504 mod p(x)` << 1, x^21568 mod p(x)` << 1 */ |
| .octa 0x000000008d7f2b3c00000001faed01e6 |
| |
| /* x^20480 mod p(x)` << 1, x^20544 mod p(x)` << 1 */ |
| .octa 0x000000016b4a156e000000007e80ecfe |
| |
| /* x^19456 mod p(x)` << 1, x^19520 mod p(x)` << 1 */ |
| .octa 0x00000001c63cfeb60000000098daee94 |
| |
| /* x^18432 mod p(x)` << 1, x^18496 mod p(x)` << 1 */ |
| .octa 0x000000015f902670000000010a04edea |
| |
| /* x^17408 mod p(x)` << 1, x^17472 mod p(x)` << 1 */ |
| .octa 0x00000001cd5de11e00000001c00b4524 |
| |
| /* x^16384 mod p(x)` << 1, x^16448 mod p(x)` << 1 */ |
| .octa 0x000000001acaec540000000170296550 |
| |
| /* x^15360 mod p(x)` << 1, x^15424 mod p(x)` << 1 */ |
| .octa 0x000000002bd0ca780000000181afaa48 |
| |
| /* x^14336 mod p(x)` << 1, x^14400 mod p(x)` << 1 */ |
| .octa 0x0000000032d63d5c0000000185a31ffa |
| |
| /* x^13312 mod p(x)` << 1, x^13376 mod p(x)` << 1 */ |
| .octa 0x000000001c6d4e4c000000002469f608 |
| |
| /* x^12288 mod p(x)` << 1, x^12352 mod p(x)` << 1 */ |
| .octa 0x0000000106a60b92000000006980102a |
| |
| /* x^11264 mod p(x)` << 1, x^11328 mod p(x)` << 1 */ |
| .octa 0x00000000d3855e120000000111ea9ca8 |
| |
| /* x^10240 mod p(x)` << 1, x^10304 mod p(x)` << 1 */ |
| .octa 0x00000000e312563600000001bd1d29ce |
| |
| /* x^9216 mod p(x)` << 1, x^9280 mod p(x)` << 1 */ |
| .octa 0x000000009e8f7ea400000001b34b9580 |
| |
| /* x^8192 mod p(x)` << 1, x^8256 mod p(x)` << 1 */ |
| .octa 0x00000001c82e562c000000003076054e |
| |
| /* x^7168 mod p(x)` << 1, x^7232 mod p(x)` << 1 */ |
| .octa 0x00000000ca9f09ce000000012a608ea4 |
| |
| /* x^6144 mod p(x)` << 1, x^6208 mod p(x)` << 1 */ |
| .octa 0x00000000c63764e600000000784d05fe |
| |
| /* x^5120 mod p(x)` << 1, x^5184 mod p(x)` << 1 */ |
| .octa 0x0000000168d2e49e000000016ef0d82a |
| |
| /* x^4096 mod p(x)` << 1, x^4160 mod p(x)` << 1 */ |
| .octa 0x00000000e986c1480000000075bda454 |
| |
| /* x^3072 mod p(x)` << 1, x^3136 mod p(x)` << 1 */ |
| .octa 0x00000000cfb65894000000003dc0a1c4 |
| |
| /* x^2048 mod p(x)` << 1, x^2112 mod p(x)` << 1 */ |
| .octa 0x0000000111cadee400000000e9a5d8be |
| |
| /* x^1024 mod p(x)` << 1, x^1088 mod p(x)` << 1 */ |
| .octa 0x0000000171fb63ce00000001609bc4b4 |
| |
| .short_constants: |
| |
| /* Reduce final 1024-2048 bits to 64 bits, shifting 32 bits to include the trailing 32 bits of zeros */ |
| /* x^1952 mod p(x)`, x^1984 mod p(x)`, x^2016 mod p(x)`, x^2048 mod p(x)` */ |
| .octa 0x7fec2963e5bf80485cf015c388e56f72 |
| |
| /* x^1824 mod p(x)`, x^1856 mod p(x)`, x^1888 mod p(x)`, x^1920 mod p(x)` */ |
| .octa 0x38e888d4844752a9963a18920246e2e6 |
| |
| /* x^1696 mod p(x)`, x^1728 mod p(x)`, x^1760 mod p(x)`, x^1792 mod p(x)` */ |
| .octa 0x42316c00730206ad419a441956993a31 |
| |
| /* x^1568 mod p(x)`, x^1600 mod p(x)`, x^1632 mod p(x)`, x^1664 mod p(x)` */ |
| .octa 0x543d5c543e65ddf9924752ba2b830011 |
| |
| /* x^1440 mod p(x)`, x^1472 mod p(x)`, x^1504 mod p(x)`, x^1536 mod p(x)` */ |
| .octa 0x78e87aaf56767c9255bd7f9518e4a304 |
| |
| /* x^1312 mod p(x)`, x^1344 mod p(x)`, x^1376 mod p(x)`, x^1408 mod p(x)` */ |
| .octa 0x8f68fcec1903da7f6d76739fe0553f1e |
| |
| /* x^1184 mod p(x)`, x^1216 mod p(x)`, x^1248 mod p(x)`, x^1280 mod p(x)` */ |
| .octa 0x3f4840246791d588c133722b1fe0b5c3 |
| |
| /* x^1056 mod p(x)`, x^1088 mod p(x)`, x^1120 mod p(x)`, x^1152 mod p(x)` */ |
| .octa 0x34c96751b04de25a64b67ee0e55ef1f3 |
| |
| /* x^928 mod p(x)`, x^960 mod p(x)`, x^992 mod p(x)`, x^1024 mod p(x)` */ |
| .octa 0x156c8e180b4a395b069db049b8fdb1e7 |
| |
| /* x^800 mod p(x)`, x^832 mod p(x)`, x^864 mod p(x)`, x^896 mod p(x)` */ |
| .octa 0xe0b99ccbe661f7bea11bfaf3c9e90b9e |
| |
| /* x^672 mod p(x)`, x^704 mod p(x)`, x^736 mod p(x)`, x^768 mod p(x)` */ |
| .octa 0x041d37768cd75659817cdc5119b29a35 |
| |
| /* x^544 mod p(x)`, x^576 mod p(x)`, x^608 mod p(x)`, x^640 mod p(x)` */ |
| .octa 0x3a0777818cfaa9651ce9d94b36c41f1c |
| |
| /* x^416 mod p(x)`, x^448 mod p(x)`, x^480 mod p(x)`, x^512 mod p(x)` */ |
| .octa 0x0e148e8252377a554f256efcb82be955 |
| |
| /* x^288 mod p(x)`, x^320 mod p(x)`, x^352 mod p(x)`, x^384 mod p(x)` */ |
| .octa 0x9c25531d19e65ddeec1631edb2dea967 |
| |
| /* x^160 mod p(x)`, x^192 mod p(x)`, x^224 mod p(x)`, x^256 mod p(x)` */ |
| .octa 0x790606ff9957c0a65d27e147510ac59a |
| |
| /* x^32 mod p(x)`, x^64 mod p(x)`, x^96 mod p(x)`, x^128 mod p(x)` */ |
| .octa 0x82f63b786ea2d55ca66805eb18b8ea18 |
| |
| |
| .barrett_constants: |
| /* 33 bit reflected Barrett constant m - (4^32)/n */ |
| .octa 0x000000000000000000000000dea713f1 /* x^64 div p(x)` */ |
| /* 33 bit reflected Barrett constant n */ |
| .octa 0x00000000000000000000000105ec76f1 |
| |
| .text |
| |
| #if defined(__BIG_ENDIAN__) |
| #define BYTESWAP_DATA |
| #else |
| #undef BYTESWAP_DATA |
| #endif |
| |
| #define off16 r25 |
| #define off32 r26 |
| #define off48 r27 |
| #define off64 r28 |
| #define off80 r29 |
| #define off96 r30 |
| #define off112 r31 |
| |
| #define const1 v24 |
| #define const2 v25 |
| |
| #define byteswap v26 |
| #define mask_32bit v27 |
| #define mask_64bit v28 |
| #define zeroes v29 |
| |
| #ifdef BYTESWAP_DATA |
| #define VPERM(A, B, C, D) vperm A, B, C, D |
| #else |
| #define VPERM(A, B, C, D) |
| #endif |
| |
| /* unsigned int __crc32c_vpmsum(unsigned int crc, void *p, unsigned long len) */ |
| FUNC_START(__crc32c_vpmsum) |
| std r31,-8(r1) |
| std r30,-16(r1) |
| std r29,-24(r1) |
| std r28,-32(r1) |
| std r27,-40(r1) |
| std r26,-48(r1) |
| std r25,-56(r1) |
| |
| li off16,16 |
| li off32,32 |
| li off48,48 |
| li off64,64 |
| li off80,80 |
| li off96,96 |
| li off112,112 |
| li r0,0 |
| |
| /* Enough room for saving 10 non volatile VMX registers */ |
| subi r6,r1,56+10*16 |
| subi r7,r1,56+2*16 |
| |
| stvx v20,0,r6 |
| stvx v21,off16,r6 |
| stvx v22,off32,r6 |
| stvx v23,off48,r6 |
| stvx v24,off64,r6 |
| stvx v25,off80,r6 |
| stvx v26,off96,r6 |
| stvx v27,off112,r6 |
| stvx v28,0,r7 |
| stvx v29,off16,r7 |
| |
| mr r10,r3 |
| |
| vxor zeroes,zeroes,zeroes |
| vspltisw v0,-1 |
| |
| vsldoi mask_32bit,zeroes,v0,4 |
| vsldoi mask_64bit,zeroes,v0,8 |
| |
| /* Get the initial value into v8 */ |
| vxor v8,v8,v8 |
| MTVRD(v8, R3) |
| vsldoi v8,zeroes,v8,8 /* shift into bottom 32 bits */ |
| |
| #ifdef BYTESWAP_DATA |
| addis r3,r2,.byteswap_constant@toc@ha |
| addi r3,r3,.byteswap_constant@toc@l |
| |
| lvx byteswap,0,r3 |
| addi r3,r3,16 |
| #endif |
| |
| cmpdi r5,256 |
| blt .Lshort |
| |
| rldicr r6,r5,0,56 |
| |
| /* Checksum in blocks of MAX_SIZE */ |
| 1: lis r7,MAX_SIZE@h |
| ori r7,r7,MAX_SIZE@l |
| mr r9,r7 |
| cmpd r6,r7 |
| bgt 2f |
| mr r7,r6 |
| 2: subf r6,r7,r6 |
| |
| /* our main loop does 128 bytes at a time */ |
| srdi r7,r7,7 |
| |
| /* |
| * Work out the offset into the constants table to start at. Each |
| * constant is 16 bytes, and it is used against 128 bytes of input |
| * data - 128 / 16 = 8 |
| */ |
| sldi r8,r7,4 |
| srdi r9,r9,3 |
| subf r8,r8,r9 |
| |
| /* We reduce our final 128 bytes in a separate step */ |
| addi r7,r7,-1 |
| mtctr r7 |
| |
| addis r3,r2,.constants@toc@ha |
| addi r3,r3,.constants@toc@l |
| |
| /* Find the start of our constants */ |
| add r3,r3,r8 |
| |
| /* zero v0-v7 which will contain our checksums */ |
| vxor v0,v0,v0 |
| vxor v1,v1,v1 |
| vxor v2,v2,v2 |
| vxor v3,v3,v3 |
| vxor v4,v4,v4 |
| vxor v5,v5,v5 |
| vxor v6,v6,v6 |
| vxor v7,v7,v7 |
| |
| lvx const1,0,r3 |
| |
| /* |
| * If we are looping back to consume more data we use the values |
| * already in v16-v23. |
| */ |
| cmpdi r0,1 |
| beq 2f |
| |
| /* First warm up pass */ |
| lvx v16,0,r4 |
| lvx v17,off16,r4 |
| VPERM(v16,v16,v16,byteswap) |
| VPERM(v17,v17,v17,byteswap) |
| lvx v18,off32,r4 |
| lvx v19,off48,r4 |
| VPERM(v18,v18,v18,byteswap) |
| VPERM(v19,v19,v19,byteswap) |
| lvx v20,off64,r4 |
| lvx v21,off80,r4 |
| VPERM(v20,v20,v20,byteswap) |
| VPERM(v21,v21,v21,byteswap) |
| lvx v22,off96,r4 |
| lvx v23,off112,r4 |
| VPERM(v22,v22,v22,byteswap) |
| VPERM(v23,v23,v23,byteswap) |
| addi r4,r4,8*16 |
| |
| /* xor in initial value */ |
| vxor v16,v16,v8 |
| |
| 2: bdz .Lfirst_warm_up_done |
| |
| addi r3,r3,16 |
| lvx const2,0,r3 |
| |
| /* Second warm up pass */ |
| VPMSUMD(v8,v16,const1) |
| lvx v16,0,r4 |
| VPERM(v16,v16,v16,byteswap) |
| ori r2,r2,0 |
| |
| VPMSUMD(v9,v17,const1) |
| lvx v17,off16,r4 |
| VPERM(v17,v17,v17,byteswap) |
| ori r2,r2,0 |
| |
| VPMSUMD(v10,v18,const1) |
| lvx v18,off32,r4 |
| VPERM(v18,v18,v18,byteswap) |
| ori r2,r2,0 |
| |
| VPMSUMD(v11,v19,const1) |
| lvx v19,off48,r4 |
| VPERM(v19,v19,v19,byteswap) |
| ori r2,r2,0 |
| |
| VPMSUMD(v12,v20,const1) |
| lvx v20,off64,r4 |
| VPERM(v20,v20,v20,byteswap) |
| ori r2,r2,0 |
| |
| VPMSUMD(v13,v21,const1) |
| lvx v21,off80,r4 |
| VPERM(v21,v21,v21,byteswap) |
| ori r2,r2,0 |
| |
| VPMSUMD(v14,v22,const1) |
| lvx v22,off96,r4 |
| VPERM(v22,v22,v22,byteswap) |
| ori r2,r2,0 |
| |
| VPMSUMD(v15,v23,const1) |
| lvx v23,off112,r4 |
| VPERM(v23,v23,v23,byteswap) |
| |
| addi r4,r4,8*16 |
| |
| bdz .Lfirst_cool_down |
| |
| /* |
| * main loop. We modulo schedule it such that it takes three iterations |
| * to complete - first iteration load, second iteration vpmsum, third |
| * iteration xor. |
| */ |
| .balign 16 |
| 4: lvx const1,0,r3 |
| addi r3,r3,16 |
| ori r2,r2,0 |
| |
| vxor v0,v0,v8 |
| VPMSUMD(v8,v16,const2) |
| lvx v16,0,r4 |
| VPERM(v16,v16,v16,byteswap) |
| ori r2,r2,0 |
| |
| vxor v1,v1,v9 |
| VPMSUMD(v9,v17,const2) |
| lvx v17,off16,r4 |
| VPERM(v17,v17,v17,byteswap) |
| ori r2,r2,0 |
| |
| vxor v2,v2,v10 |
| VPMSUMD(v10,v18,const2) |
| lvx v18,off32,r4 |
| VPERM(v18,v18,v18,byteswap) |
| ori r2,r2,0 |
| |
| vxor v3,v3,v11 |
| VPMSUMD(v11,v19,const2) |
| lvx v19,off48,r4 |
| VPERM(v19,v19,v19,byteswap) |
| lvx const2,0,r3 |
| ori r2,r2,0 |
| |
| vxor v4,v4,v12 |
| VPMSUMD(v12,v20,const1) |
| lvx v20,off64,r4 |
| VPERM(v20,v20,v20,byteswap) |
| ori r2,r2,0 |
| |
| vxor v5,v5,v13 |
| VPMSUMD(v13,v21,const1) |
| lvx v21,off80,r4 |
| VPERM(v21,v21,v21,byteswap) |
| ori r2,r2,0 |
| |
| vxor v6,v6,v14 |
| VPMSUMD(v14,v22,const1) |
| lvx v22,off96,r4 |
| VPERM(v22,v22,v22,byteswap) |
| ori r2,r2,0 |
| |
| vxor v7,v7,v15 |
| VPMSUMD(v15,v23,const1) |
| lvx v23,off112,r4 |
| VPERM(v23,v23,v23,byteswap) |
| |
| addi r4,r4,8*16 |
| |
| bdnz 4b |
| |
| .Lfirst_cool_down: |
| /* First cool down pass */ |
| lvx const1,0,r3 |
| addi r3,r3,16 |
| |
| vxor v0,v0,v8 |
| VPMSUMD(v8,v16,const1) |
| ori r2,r2,0 |
| |
| vxor v1,v1,v9 |
| VPMSUMD(v9,v17,const1) |
| ori r2,r2,0 |
| |
| vxor v2,v2,v10 |
| VPMSUMD(v10,v18,const1) |
| ori r2,r2,0 |
| |
| vxor v3,v3,v11 |
| VPMSUMD(v11,v19,const1) |
| ori r2,r2,0 |
| |
| vxor v4,v4,v12 |
| VPMSUMD(v12,v20,const1) |
| ori r2,r2,0 |
| |
| vxor v5,v5,v13 |
| VPMSUMD(v13,v21,const1) |
| ori r2,r2,0 |
| |
| vxor v6,v6,v14 |
| VPMSUMD(v14,v22,const1) |
| ori r2,r2,0 |
| |
| vxor v7,v7,v15 |
| VPMSUMD(v15,v23,const1) |
| ori r2,r2,0 |
| |
| .Lsecond_cool_down: |
| /* Second cool down pass */ |
| vxor v0,v0,v8 |
| vxor v1,v1,v9 |
| vxor v2,v2,v10 |
| vxor v3,v3,v11 |
| vxor v4,v4,v12 |
| vxor v5,v5,v13 |
| vxor v6,v6,v14 |
| vxor v7,v7,v15 |
| |
| /* |
| * vpmsumd produces a 96 bit result in the least significant bits |
| * of the register. Since we are bit reflected we have to shift it |
| * left 32 bits so it occupies the least significant bits in the |
| * bit reflected domain. |
| */ |
| vsldoi v0,v0,zeroes,4 |
| vsldoi v1,v1,zeroes,4 |
| vsldoi v2,v2,zeroes,4 |
| vsldoi v3,v3,zeroes,4 |
| vsldoi v4,v4,zeroes,4 |
| vsldoi v5,v5,zeroes,4 |
| vsldoi v6,v6,zeroes,4 |
| vsldoi v7,v7,zeroes,4 |
| |
| /* xor with last 1024 bits */ |
| lvx v8,0,r4 |
| lvx v9,off16,r4 |
| VPERM(v8,v8,v8,byteswap) |
| VPERM(v9,v9,v9,byteswap) |
| lvx v10,off32,r4 |
| lvx v11,off48,r4 |
| VPERM(v10,v10,v10,byteswap) |
| VPERM(v11,v11,v11,byteswap) |
| lvx v12,off64,r4 |
| lvx v13,off80,r4 |
| VPERM(v12,v12,v12,byteswap) |
| VPERM(v13,v13,v13,byteswap) |
| lvx v14,off96,r4 |
| lvx v15,off112,r4 |
| VPERM(v14,v14,v14,byteswap) |
| VPERM(v15,v15,v15,byteswap) |
| |
| addi r4,r4,8*16 |
| |
| vxor v16,v0,v8 |
| vxor v17,v1,v9 |
| vxor v18,v2,v10 |
| vxor v19,v3,v11 |
| vxor v20,v4,v12 |
| vxor v21,v5,v13 |
| vxor v22,v6,v14 |
| vxor v23,v7,v15 |
| |
| li r0,1 |
| cmpdi r6,0 |
| addi r6,r6,128 |
| bne 1b |
| |
| /* Work out how many bytes we have left */ |
| andi. r5,r5,127 |
| |
| /* Calculate where in the constant table we need to start */ |
| subfic r6,r5,128 |
| add r3,r3,r6 |
| |
| /* How many 16 byte chunks are in the tail */ |
| srdi r7,r5,4 |
| mtctr r7 |
| |
| /* |
| * Reduce the previously calculated 1024 bits to 64 bits, shifting |
| * 32 bits to include the trailing 32 bits of zeros |
| */ |
| lvx v0,0,r3 |
| lvx v1,off16,r3 |
| lvx v2,off32,r3 |
| lvx v3,off48,r3 |
| lvx v4,off64,r3 |
| lvx v5,off80,r3 |
| lvx v6,off96,r3 |
| lvx v7,off112,r3 |
| addi r3,r3,8*16 |
| |
| VPMSUMW(v0,v16,v0) |
| VPMSUMW(v1,v17,v1) |
| VPMSUMW(v2,v18,v2) |
| VPMSUMW(v3,v19,v3) |
| VPMSUMW(v4,v20,v4) |
| VPMSUMW(v5,v21,v5) |
| VPMSUMW(v6,v22,v6) |
| VPMSUMW(v7,v23,v7) |
| |
| /* Now reduce the tail (0 - 112 bytes) */ |
| cmpdi r7,0 |
| beq 1f |
| |
| lvx v16,0,r4 |
| lvx v17,0,r3 |
| VPERM(v16,v16,v16,byteswap) |
| VPMSUMW(v16,v16,v17) |
| vxor v0,v0,v16 |
| bdz 1f |
| |
| lvx v16,off16,r4 |
| lvx v17,off16,r3 |
| VPERM(v16,v16,v16,byteswap) |
| VPMSUMW(v16,v16,v17) |
| vxor v0,v0,v16 |
| bdz 1f |
| |
| lvx v16,off32,r4 |
| lvx v17,off32,r3 |
| VPERM(v16,v16,v16,byteswap) |
| VPMSUMW(v16,v16,v17) |
| vxor v0,v0,v16 |
| bdz 1f |
| |
| lvx v16,off48,r4 |
| lvx v17,off48,r3 |
| VPERM(v16,v16,v16,byteswap) |
| VPMSUMW(v16,v16,v17) |
| vxor v0,v0,v16 |
| bdz 1f |
| |
| lvx v16,off64,r4 |
| lvx v17,off64,r3 |
| VPERM(v16,v16,v16,byteswap) |
| VPMSUMW(v16,v16,v17) |
| vxor v0,v0,v16 |
| bdz 1f |
| |
| lvx v16,off80,r4 |
| lvx v17,off80,r3 |
| VPERM(v16,v16,v16,byteswap) |
| VPMSUMW(v16,v16,v17) |
| vxor v0,v0,v16 |
| bdz 1f |
| |
| lvx v16,off96,r4 |
| lvx v17,off96,r3 |
| VPERM(v16,v16,v16,byteswap) |
| VPMSUMW(v16,v16,v17) |
| vxor v0,v0,v16 |
| |
| /* Now xor all the parallel chunks together */ |
| 1: vxor v0,v0,v1 |
| vxor v2,v2,v3 |
| vxor v4,v4,v5 |
| vxor v6,v6,v7 |
| |
| vxor v0,v0,v2 |
| vxor v4,v4,v6 |
| |
| vxor v0,v0,v4 |
| |
| .Lbarrett_reduction: |
| /* Barrett constants */ |
| addis r3,r2,.barrett_constants@toc@ha |
| addi r3,r3,.barrett_constants@toc@l |
| |
| lvx const1,0,r3 |
| lvx const2,off16,r3 |
| |
| vsldoi v1,v0,v0,8 |
| vxor v0,v0,v1 /* xor two 64 bit results together */ |
| |
| /* shift left one bit */ |
| vspltisb v1,1 |
| vsl v0,v0,v1 |
| |
| vand v0,v0,mask_64bit |
| |
| /* |
| * The reflected version of Barrett reduction. Instead of bit |
| * reflecting our data (which is expensive to do), we bit reflect our |
| * constants and our algorithm, which means the intermediate data in |
| * our vector registers goes from 0-63 instead of 63-0. We can reflect |
| * the algorithm because we don't carry in mod 2 arithmetic. |
| */ |
| vand v1,v0,mask_32bit /* bottom 32 bits of a */ |
| VPMSUMD(v1,v1,const1) /* ma */ |
| vand v1,v1,mask_32bit /* bottom 32bits of ma */ |
| VPMSUMD(v1,v1,const2) /* qn */ |
| vxor v0,v0,v1 /* a - qn, subtraction is xor in GF(2) */ |
| |
| /* |
| * Since we are bit reflected, the result (ie the low 32 bits) is in |
| * the high 32 bits. We just need to shift it left 4 bytes |
| * V0 [ 0 1 X 3 ] |
| * V0 [ 0 X 2 3 ] |
| */ |
| vsldoi v0,v0,zeroes,4 /* shift result into top 64 bits of */ |
| |
| /* Get it into r3 */ |
| MFVRD(R3, v0) |
| |
| .Lout: |
| subi r6,r1,56+10*16 |
| subi r7,r1,56+2*16 |
| |
| lvx v20,0,r6 |
| lvx v21,off16,r6 |
| lvx v22,off32,r6 |
| lvx v23,off48,r6 |
| lvx v24,off64,r6 |
| lvx v25,off80,r6 |
| lvx v26,off96,r6 |
| lvx v27,off112,r6 |
| lvx v28,0,r7 |
| lvx v29,off16,r7 |
| |
| ld r31,-8(r1) |
| ld r30,-16(r1) |
| ld r29,-24(r1) |
| ld r28,-32(r1) |
| ld r27,-40(r1) |
| ld r26,-48(r1) |
| ld r25,-56(r1) |
| |
| blr |
| |
| .Lfirst_warm_up_done: |
| lvx const1,0,r3 |
| addi r3,r3,16 |
| |
| VPMSUMD(v8,v16,const1) |
| VPMSUMD(v9,v17,const1) |
| VPMSUMD(v10,v18,const1) |
| VPMSUMD(v11,v19,const1) |
| VPMSUMD(v12,v20,const1) |
| VPMSUMD(v13,v21,const1) |
| VPMSUMD(v14,v22,const1) |
| VPMSUMD(v15,v23,const1) |
| |
| b .Lsecond_cool_down |
| |
| .Lshort: |
| cmpdi r5,0 |
| beq .Lzero |
| |
| addis r3,r2,.short_constants@toc@ha |
| addi r3,r3,.short_constants@toc@l |
| |
| /* Calculate where in the constant table we need to start */ |
| subfic r6,r5,256 |
| add r3,r3,r6 |
| |
| /* How many 16 byte chunks? */ |
| srdi r7,r5,4 |
| mtctr r7 |
| |
| vxor v19,v19,v19 |
| vxor v20,v20,v20 |
| |
| lvx v0,0,r4 |
| lvx v16,0,r3 |
| VPERM(v0,v0,v16,byteswap) |
| vxor v0,v0,v8 /* xor in initial value */ |
| VPMSUMW(v0,v0,v16) |
| bdz .Lv0 |
| |
| lvx v1,off16,r4 |
| lvx v17,off16,r3 |
| VPERM(v1,v1,v17,byteswap) |
| VPMSUMW(v1,v1,v17) |
| bdz .Lv1 |
| |
| lvx v2,off32,r4 |
| lvx v16,off32,r3 |
| VPERM(v2,v2,v16,byteswap) |
| VPMSUMW(v2,v2,v16) |
| bdz .Lv2 |
| |
| lvx v3,off48,r4 |
| lvx v17,off48,r3 |
| VPERM(v3,v3,v17,byteswap) |
| VPMSUMW(v3,v3,v17) |
| bdz .Lv3 |
| |
| lvx v4,off64,r4 |
| lvx v16,off64,r3 |
| VPERM(v4,v4,v16,byteswap) |
| VPMSUMW(v4,v4,v16) |
| bdz .Lv4 |
| |
| lvx v5,off80,r4 |
| lvx v17,off80,r3 |
| VPERM(v5,v5,v17,byteswap) |
| VPMSUMW(v5,v5,v17) |
| bdz .Lv5 |
| |
| lvx v6,off96,r4 |
| lvx v16,off96,r3 |
| VPERM(v6,v6,v16,byteswap) |
| VPMSUMW(v6,v6,v16) |
| bdz .Lv6 |
| |
| lvx v7,off112,r4 |
| lvx v17,off112,r3 |
| VPERM(v7,v7,v17,byteswap) |
| VPMSUMW(v7,v7,v17) |
| bdz .Lv7 |
| |
| addi r3,r3,128 |
| addi r4,r4,128 |
| |
| lvx v8,0,r4 |
| lvx v16,0,r3 |
| VPERM(v8,v8,v16,byteswap) |
| VPMSUMW(v8,v8,v16) |
| bdz .Lv8 |
| |
| lvx v9,off16,r4 |
| lvx v17,off16,r3 |
| VPERM(v9,v9,v17,byteswap) |
| VPMSUMW(v9,v9,v17) |
| bdz .Lv9 |
| |
| lvx v10,off32,r4 |
| lvx v16,off32,r3 |
| VPERM(v10,v10,v16,byteswap) |
| VPMSUMW(v10,v10,v16) |
| bdz .Lv10 |
| |
| lvx v11,off48,r4 |
| lvx v17,off48,r3 |
| VPERM(v11,v11,v17,byteswap) |
| VPMSUMW(v11,v11,v17) |
| bdz .Lv11 |
| |
| lvx v12,off64,r4 |
| lvx v16,off64,r3 |
| VPERM(v12,v12,v16,byteswap) |
| VPMSUMW(v12,v12,v16) |
| bdz .Lv12 |
| |
| lvx v13,off80,r4 |
| lvx v17,off80,r3 |
| VPERM(v13,v13,v17,byteswap) |
| VPMSUMW(v13,v13,v17) |
| bdz .Lv13 |
| |
| lvx v14,off96,r4 |
| lvx v16,off96,r3 |
| VPERM(v14,v14,v16,byteswap) |
| VPMSUMW(v14,v14,v16) |
| bdz .Lv14 |
| |
| lvx v15,off112,r4 |
| lvx v17,off112,r3 |
| VPERM(v15,v15,v17,byteswap) |
| VPMSUMW(v15,v15,v17) |
| |
| .Lv15: vxor v19,v19,v15 |
| .Lv14: vxor v20,v20,v14 |
| .Lv13: vxor v19,v19,v13 |
| .Lv12: vxor v20,v20,v12 |
| .Lv11: vxor v19,v19,v11 |
| .Lv10: vxor v20,v20,v10 |
| .Lv9: vxor v19,v19,v9 |
| .Lv8: vxor v20,v20,v8 |
| .Lv7: vxor v19,v19,v7 |
| .Lv6: vxor v20,v20,v6 |
| .Lv5: vxor v19,v19,v5 |
| .Lv4: vxor v20,v20,v4 |
| .Lv3: vxor v19,v19,v3 |
| .Lv2: vxor v20,v20,v2 |
| .Lv1: vxor v19,v19,v1 |
| .Lv0: vxor v20,v20,v0 |
| |
| vxor v0,v19,v20 |
| |
| b .Lbarrett_reduction |
| |
| .Lzero: |
| mr r3,r10 |
| b .Lout |
| |
| FUNC_END(__crc32_vpmsum) |