| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* SCTP kernel implementation |
| * (C) Copyright IBM Corp. 2001, 2004 |
| * Copyright (c) 1999-2000 Cisco, Inc. |
| * Copyright (c) 1999-2001 Motorola, Inc. |
| * Copyright (c) 2001 Intel Corp. |
| * Copyright (c) 2001 La Monte H.P. Yarroll |
| * |
| * This file is part of the SCTP kernel implementation |
| * |
| * This module provides the abstraction for an SCTP association. |
| * |
| * Please send any bug reports or fixes you make to the |
| * email address(es): |
| * lksctp developers <linux-sctp@vger.kernel.org> |
| * |
| * Written or modified by: |
| * La Monte H.P. Yarroll <piggy@acm.org> |
| * Karl Knutson <karl@athena.chicago.il.us> |
| * Jon Grimm <jgrimm@us.ibm.com> |
| * Xingang Guo <xingang.guo@intel.com> |
| * Hui Huang <hui.huang@nokia.com> |
| * Sridhar Samudrala <sri@us.ibm.com> |
| * Daisy Chang <daisyc@us.ibm.com> |
| * Ryan Layer <rmlayer@us.ibm.com> |
| * Kevin Gao <kevin.gao@intel.com> |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/types.h> |
| #include <linux/fcntl.h> |
| #include <linux/poll.h> |
| #include <linux/init.h> |
| |
| #include <linux/slab.h> |
| #include <linux/in.h> |
| #include <net/ipv6.h> |
| #include <net/sctp/sctp.h> |
| #include <net/sctp/sm.h> |
| |
| /* Forward declarations for internal functions. */ |
| static void sctp_select_active_and_retran_path(struct sctp_association *asoc); |
| static void sctp_assoc_bh_rcv(struct work_struct *work); |
| static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc); |
| static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc); |
| |
| /* 1st Level Abstractions. */ |
| |
| /* Initialize a new association from provided memory. */ |
| static struct sctp_association *sctp_association_init( |
| struct sctp_association *asoc, |
| const struct sctp_endpoint *ep, |
| const struct sock *sk, |
| enum sctp_scope scope, gfp_t gfp) |
| { |
| struct sctp_sock *sp; |
| struct sctp_paramhdr *p; |
| int i; |
| |
| /* Retrieve the SCTP per socket area. */ |
| sp = sctp_sk((struct sock *)sk); |
| |
| /* Discarding const is appropriate here. */ |
| asoc->ep = (struct sctp_endpoint *)ep; |
| asoc->base.sk = (struct sock *)sk; |
| asoc->base.net = sock_net(sk); |
| |
| sctp_endpoint_hold(asoc->ep); |
| sock_hold(asoc->base.sk); |
| |
| /* Initialize the common base substructure. */ |
| asoc->base.type = SCTP_EP_TYPE_ASSOCIATION; |
| |
| /* Initialize the object handling fields. */ |
| refcount_set(&asoc->base.refcnt, 1); |
| |
| /* Initialize the bind addr area. */ |
| sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port); |
| |
| asoc->state = SCTP_STATE_CLOSED; |
| asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life); |
| asoc->user_frag = sp->user_frag; |
| |
| /* Set the association max_retrans and RTO values from the |
| * socket values. |
| */ |
| asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt; |
| asoc->pf_retrans = sp->pf_retrans; |
| asoc->ps_retrans = sp->ps_retrans; |
| asoc->pf_expose = sp->pf_expose; |
| |
| asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial); |
| asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max); |
| asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min); |
| |
| /* Initialize the association's heartbeat interval based on the |
| * sock configured value. |
| */ |
| asoc->hbinterval = msecs_to_jiffies(sp->hbinterval); |
| |
| /* Initialize path max retrans value. */ |
| asoc->pathmaxrxt = sp->pathmaxrxt; |
| |
| asoc->flowlabel = sp->flowlabel; |
| asoc->dscp = sp->dscp; |
| |
| /* Set association default SACK delay */ |
| asoc->sackdelay = msecs_to_jiffies(sp->sackdelay); |
| asoc->sackfreq = sp->sackfreq; |
| |
| /* Set the association default flags controlling |
| * Heartbeat, SACK delay, and Path MTU Discovery. |
| */ |
| asoc->param_flags = sp->param_flags; |
| |
| /* Initialize the maximum number of new data packets that can be sent |
| * in a burst. |
| */ |
| asoc->max_burst = sp->max_burst; |
| |
| asoc->subscribe = sp->subscribe; |
| |
| /* initialize association timers */ |
| asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial; |
| asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial; |
| asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial; |
| |
| /* sctpimpguide Section 2.12.2 |
| * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the |
| * recommended value of 5 times 'RTO.Max'. |
| */ |
| asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD] |
| = 5 * asoc->rto_max; |
| |
| asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay; |
| asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ; |
| |
| /* Initializes the timers */ |
| for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) |
| timer_setup(&asoc->timers[i], sctp_timer_events[i], 0); |
| |
| /* Pull default initialization values from the sock options. |
| * Note: This assumes that the values have already been |
| * validated in the sock. |
| */ |
| asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams; |
| asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams; |
| asoc->max_init_attempts = sp->initmsg.sinit_max_attempts; |
| |
| asoc->max_init_timeo = |
| msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo); |
| |
| /* Set the local window size for receive. |
| * This is also the rcvbuf space per association. |
| * RFC 6 - A SCTP receiver MUST be able to receive a minimum of |
| * 1500 bytes in one SCTP packet. |
| */ |
| if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW) |
| asoc->rwnd = SCTP_DEFAULT_MINWINDOW; |
| else |
| asoc->rwnd = sk->sk_rcvbuf/2; |
| |
| asoc->a_rwnd = asoc->rwnd; |
| |
| /* Use my own max window until I learn something better. */ |
| asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW; |
| |
| /* Initialize the receive memory counter */ |
| atomic_set(&asoc->rmem_alloc, 0); |
| |
| init_waitqueue_head(&asoc->wait); |
| |
| asoc->c.my_vtag = sctp_generate_tag(ep); |
| asoc->c.my_port = ep->base.bind_addr.port; |
| |
| asoc->c.initial_tsn = sctp_generate_tsn(ep); |
| |
| asoc->next_tsn = asoc->c.initial_tsn; |
| |
| asoc->ctsn_ack_point = asoc->next_tsn - 1; |
| asoc->adv_peer_ack_point = asoc->ctsn_ack_point; |
| asoc->highest_sacked = asoc->ctsn_ack_point; |
| asoc->last_cwr_tsn = asoc->ctsn_ack_point; |
| |
| /* ADDIP Section 4.1 Asconf Chunk Procedures |
| * |
| * When an endpoint has an ASCONF signaled change to be sent to the |
| * remote endpoint it should do the following: |
| * ... |
| * A2) a serial number should be assigned to the chunk. The serial |
| * number SHOULD be a monotonically increasing number. The serial |
| * numbers SHOULD be initialized at the start of the |
| * association to the same value as the initial TSN. |
| */ |
| asoc->addip_serial = asoc->c.initial_tsn; |
| asoc->strreset_outseq = asoc->c.initial_tsn; |
| |
| INIT_LIST_HEAD(&asoc->addip_chunk_list); |
| INIT_LIST_HEAD(&asoc->asconf_ack_list); |
| |
| /* Make an empty list of remote transport addresses. */ |
| INIT_LIST_HEAD(&asoc->peer.transport_addr_list); |
| |
| /* RFC 2960 5.1 Normal Establishment of an Association |
| * |
| * After the reception of the first data chunk in an |
| * association the endpoint must immediately respond with a |
| * sack to acknowledge the data chunk. Subsequent |
| * acknowledgements should be done as described in Section |
| * 6.2. |
| * |
| * [We implement this by telling a new association that it |
| * already received one packet.] |
| */ |
| asoc->peer.sack_needed = 1; |
| asoc->peer.sack_generation = 1; |
| |
| /* Create an input queue. */ |
| sctp_inq_init(&asoc->base.inqueue); |
| sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv); |
| |
| /* Create an output queue. */ |
| sctp_outq_init(asoc, &asoc->outqueue); |
| |
| if (!sctp_ulpq_init(&asoc->ulpq, asoc)) |
| goto fail_init; |
| |
| if (sctp_stream_init(&asoc->stream, asoc->c.sinit_num_ostreams, |
| 0, gfp)) |
| goto fail_init; |
| |
| /* Initialize default path MTU. */ |
| asoc->pathmtu = sp->pathmtu; |
| sctp_assoc_update_frag_point(asoc); |
| |
| /* Assume that peer would support both address types unless we are |
| * told otherwise. |
| */ |
| asoc->peer.ipv4_address = 1; |
| if (asoc->base.sk->sk_family == PF_INET6) |
| asoc->peer.ipv6_address = 1; |
| INIT_LIST_HEAD(&asoc->asocs); |
| |
| asoc->default_stream = sp->default_stream; |
| asoc->default_ppid = sp->default_ppid; |
| asoc->default_flags = sp->default_flags; |
| asoc->default_context = sp->default_context; |
| asoc->default_timetolive = sp->default_timetolive; |
| asoc->default_rcv_context = sp->default_rcv_context; |
| |
| /* AUTH related initializations */ |
| INIT_LIST_HEAD(&asoc->endpoint_shared_keys); |
| if (sctp_auth_asoc_copy_shkeys(ep, asoc, gfp)) |
| goto stream_free; |
| |
| asoc->active_key_id = ep->active_key_id; |
| asoc->strreset_enable = ep->strreset_enable; |
| |
| /* Save the hmacs and chunks list into this association */ |
| if (ep->auth_hmacs_list) |
| memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list, |
| ntohs(ep->auth_hmacs_list->param_hdr.length)); |
| if (ep->auth_chunk_list) |
| memcpy(asoc->c.auth_chunks, ep->auth_chunk_list, |
| ntohs(ep->auth_chunk_list->param_hdr.length)); |
| |
| /* Get the AUTH random number for this association */ |
| p = (struct sctp_paramhdr *)asoc->c.auth_random; |
| p->type = SCTP_PARAM_RANDOM; |
| p->length = htons(sizeof(*p) + SCTP_AUTH_RANDOM_LENGTH); |
| get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH); |
| |
| return asoc; |
| |
| stream_free: |
| sctp_stream_free(&asoc->stream); |
| fail_init: |
| sock_put(asoc->base.sk); |
| sctp_endpoint_put(asoc->ep); |
| return NULL; |
| } |
| |
| /* Allocate and initialize a new association */ |
| struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep, |
| const struct sock *sk, |
| enum sctp_scope scope, gfp_t gfp) |
| { |
| struct sctp_association *asoc; |
| |
| asoc = kzalloc(sizeof(*asoc), gfp); |
| if (!asoc) |
| goto fail; |
| |
| if (!sctp_association_init(asoc, ep, sk, scope, gfp)) |
| goto fail_init; |
| |
| SCTP_DBG_OBJCNT_INC(assoc); |
| |
| pr_debug("Created asoc %p\n", asoc); |
| |
| return asoc; |
| |
| fail_init: |
| kfree(asoc); |
| fail: |
| return NULL; |
| } |
| |
| /* Free this association if possible. There may still be users, so |
| * the actual deallocation may be delayed. |
| */ |
| void sctp_association_free(struct sctp_association *asoc) |
| { |
| struct sock *sk = asoc->base.sk; |
| struct sctp_transport *transport; |
| struct list_head *pos, *temp; |
| int i; |
| |
| /* Only real associations count against the endpoint, so |
| * don't bother for if this is a temporary association. |
| */ |
| if (!list_empty(&asoc->asocs)) { |
| list_del(&asoc->asocs); |
| |
| /* Decrement the backlog value for a TCP-style listening |
| * socket. |
| */ |
| if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) |
| sk_acceptq_removed(sk); |
| } |
| |
| /* Mark as dead, so other users can know this structure is |
| * going away. |
| */ |
| asoc->base.dead = true; |
| |
| /* Dispose of any data lying around in the outqueue. */ |
| sctp_outq_free(&asoc->outqueue); |
| |
| /* Dispose of any pending messages for the upper layer. */ |
| sctp_ulpq_free(&asoc->ulpq); |
| |
| /* Dispose of any pending chunks on the inqueue. */ |
| sctp_inq_free(&asoc->base.inqueue); |
| |
| sctp_tsnmap_free(&asoc->peer.tsn_map); |
| |
| /* Free stream information. */ |
| sctp_stream_free(&asoc->stream); |
| |
| if (asoc->strreset_chunk) |
| sctp_chunk_free(asoc->strreset_chunk); |
| |
| /* Clean up the bound address list. */ |
| sctp_bind_addr_free(&asoc->base.bind_addr); |
| |
| /* Do we need to go through all of our timers and |
| * delete them? To be safe we will try to delete all, but we |
| * should be able to go through and make a guess based |
| * on our state. |
| */ |
| for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { |
| if (del_timer(&asoc->timers[i])) |
| sctp_association_put(asoc); |
| } |
| |
| /* Free peer's cached cookie. */ |
| kfree(asoc->peer.cookie); |
| kfree(asoc->peer.peer_random); |
| kfree(asoc->peer.peer_chunks); |
| kfree(asoc->peer.peer_hmacs); |
| |
| /* Release the transport structures. */ |
| list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { |
| transport = list_entry(pos, struct sctp_transport, transports); |
| list_del_rcu(pos); |
| sctp_unhash_transport(transport); |
| sctp_transport_free(transport); |
| } |
| |
| asoc->peer.transport_count = 0; |
| |
| sctp_asconf_queue_teardown(asoc); |
| |
| /* Free pending address space being deleted */ |
| kfree(asoc->asconf_addr_del_pending); |
| |
| /* AUTH - Free the endpoint shared keys */ |
| sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); |
| |
| /* AUTH - Free the association shared key */ |
| sctp_auth_key_put(asoc->asoc_shared_key); |
| |
| sctp_association_put(asoc); |
| } |
| |
| /* Cleanup and free up an association. */ |
| static void sctp_association_destroy(struct sctp_association *asoc) |
| { |
| if (unlikely(!asoc->base.dead)) { |
| WARN(1, "Attempt to destroy undead association %p!\n", asoc); |
| return; |
| } |
| |
| sctp_endpoint_put(asoc->ep); |
| sock_put(asoc->base.sk); |
| |
| if (asoc->assoc_id != 0) { |
| spin_lock_bh(&sctp_assocs_id_lock); |
| idr_remove(&sctp_assocs_id, asoc->assoc_id); |
| spin_unlock_bh(&sctp_assocs_id_lock); |
| } |
| |
| WARN_ON(atomic_read(&asoc->rmem_alloc)); |
| |
| kfree_rcu(asoc, rcu); |
| SCTP_DBG_OBJCNT_DEC(assoc); |
| } |
| |
| /* Change the primary destination address for the peer. */ |
| void sctp_assoc_set_primary(struct sctp_association *asoc, |
| struct sctp_transport *transport) |
| { |
| int changeover = 0; |
| |
| /* it's a changeover only if we already have a primary path |
| * that we are changing |
| */ |
| if (asoc->peer.primary_path != NULL && |
| asoc->peer.primary_path != transport) |
| changeover = 1 ; |
| |
| asoc->peer.primary_path = transport; |
| sctp_ulpevent_nofity_peer_addr_change(transport, |
| SCTP_ADDR_MADE_PRIM, 0); |
| |
| /* Set a default msg_name for events. */ |
| memcpy(&asoc->peer.primary_addr, &transport->ipaddr, |
| sizeof(union sctp_addr)); |
| |
| /* If the primary path is changing, assume that the |
| * user wants to use this new path. |
| */ |
| if ((transport->state == SCTP_ACTIVE) || |
| (transport->state == SCTP_UNKNOWN)) |
| asoc->peer.active_path = transport; |
| |
| /* |
| * SFR-CACC algorithm: |
| * Upon the receipt of a request to change the primary |
| * destination address, on the data structure for the new |
| * primary destination, the sender MUST do the following: |
| * |
| * 1) If CHANGEOVER_ACTIVE is set, then there was a switch |
| * to this destination address earlier. The sender MUST set |
| * CYCLING_CHANGEOVER to indicate that this switch is a |
| * double switch to the same destination address. |
| * |
| * Really, only bother is we have data queued or outstanding on |
| * the association. |
| */ |
| if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen) |
| return; |
| |
| if (transport->cacc.changeover_active) |
| transport->cacc.cycling_changeover = changeover; |
| |
| /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that |
| * a changeover has occurred. |
| */ |
| transport->cacc.changeover_active = changeover; |
| |
| /* 3) The sender MUST store the next TSN to be sent in |
| * next_tsn_at_change. |
| */ |
| transport->cacc.next_tsn_at_change = asoc->next_tsn; |
| } |
| |
| /* Remove a transport from an association. */ |
| void sctp_assoc_rm_peer(struct sctp_association *asoc, |
| struct sctp_transport *peer) |
| { |
| struct sctp_transport *transport; |
| struct list_head *pos; |
| struct sctp_chunk *ch; |
| |
| pr_debug("%s: association:%p addr:%pISpc\n", |
| __func__, asoc, &peer->ipaddr.sa); |
| |
| /* If we are to remove the current retran_path, update it |
| * to the next peer before removing this peer from the list. |
| */ |
| if (asoc->peer.retran_path == peer) |
| sctp_assoc_update_retran_path(asoc); |
| |
| /* Remove this peer from the list. */ |
| list_del_rcu(&peer->transports); |
| /* Remove this peer from the transport hashtable */ |
| sctp_unhash_transport(peer); |
| |
| /* Get the first transport of asoc. */ |
| pos = asoc->peer.transport_addr_list.next; |
| transport = list_entry(pos, struct sctp_transport, transports); |
| |
| /* Update any entries that match the peer to be deleted. */ |
| if (asoc->peer.primary_path == peer) |
| sctp_assoc_set_primary(asoc, transport); |
| if (asoc->peer.active_path == peer) |
| asoc->peer.active_path = transport; |
| if (asoc->peer.retran_path == peer) |
| asoc->peer.retran_path = transport; |
| if (asoc->peer.last_data_from == peer) |
| asoc->peer.last_data_from = transport; |
| |
| if (asoc->strreset_chunk && |
| asoc->strreset_chunk->transport == peer) { |
| asoc->strreset_chunk->transport = transport; |
| sctp_transport_reset_reconf_timer(transport); |
| } |
| |
| /* If we remove the transport an INIT was last sent to, set it to |
| * NULL. Combined with the update of the retran path above, this |
| * will cause the next INIT to be sent to the next available |
| * transport, maintaining the cycle. |
| */ |
| if (asoc->init_last_sent_to == peer) |
| asoc->init_last_sent_to = NULL; |
| |
| /* If we remove the transport an SHUTDOWN was last sent to, set it |
| * to NULL. Combined with the update of the retran path above, this |
| * will cause the next SHUTDOWN to be sent to the next available |
| * transport, maintaining the cycle. |
| */ |
| if (asoc->shutdown_last_sent_to == peer) |
| asoc->shutdown_last_sent_to = NULL; |
| |
| /* If we remove the transport an ASCONF was last sent to, set it to |
| * NULL. |
| */ |
| if (asoc->addip_last_asconf && |
| asoc->addip_last_asconf->transport == peer) |
| asoc->addip_last_asconf->transport = NULL; |
| |
| /* If we have something on the transmitted list, we have to |
| * save it off. The best place is the active path. |
| */ |
| if (!list_empty(&peer->transmitted)) { |
| struct sctp_transport *active = asoc->peer.active_path; |
| |
| /* Reset the transport of each chunk on this list */ |
| list_for_each_entry(ch, &peer->transmitted, |
| transmitted_list) { |
| ch->transport = NULL; |
| ch->rtt_in_progress = 0; |
| } |
| |
| list_splice_tail_init(&peer->transmitted, |
| &active->transmitted); |
| |
| /* Start a T3 timer here in case it wasn't running so |
| * that these migrated packets have a chance to get |
| * retransmitted. |
| */ |
| if (!timer_pending(&active->T3_rtx_timer)) |
| if (!mod_timer(&active->T3_rtx_timer, |
| jiffies + active->rto)) |
| sctp_transport_hold(active); |
| } |
| |
| list_for_each_entry(ch, &asoc->outqueue.out_chunk_list, list) |
| if (ch->transport == peer) |
| ch->transport = NULL; |
| |
| asoc->peer.transport_count--; |
| |
| sctp_ulpevent_nofity_peer_addr_change(peer, SCTP_ADDR_REMOVED, 0); |
| sctp_transport_free(peer); |
| } |
| |
| /* Add a transport address to an association. */ |
| struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc, |
| const union sctp_addr *addr, |
| const gfp_t gfp, |
| const int peer_state) |
| { |
| struct net *net = sock_net(asoc->base.sk); |
| struct sctp_transport *peer; |
| struct sctp_sock *sp; |
| unsigned short port; |
| |
| sp = sctp_sk(asoc->base.sk); |
| |
| /* AF_INET and AF_INET6 share common port field. */ |
| port = ntohs(addr->v4.sin_port); |
| |
| pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__, |
| asoc, &addr->sa, peer_state); |
| |
| /* Set the port if it has not been set yet. */ |
| if (0 == asoc->peer.port) |
| asoc->peer.port = port; |
| |
| /* Check to see if this is a duplicate. */ |
| peer = sctp_assoc_lookup_paddr(asoc, addr); |
| if (peer) { |
| /* An UNKNOWN state is only set on transports added by |
| * user in sctp_connectx() call. Such transports should be |
| * considered CONFIRMED per RFC 4960, Section 5.4. |
| */ |
| if (peer->state == SCTP_UNKNOWN) { |
| peer->state = SCTP_ACTIVE; |
| } |
| return peer; |
| } |
| |
| peer = sctp_transport_new(net, addr, gfp); |
| if (!peer) |
| return NULL; |
| |
| sctp_transport_set_owner(peer, asoc); |
| |
| /* Initialize the peer's heartbeat interval based on the |
| * association configured value. |
| */ |
| peer->hbinterval = asoc->hbinterval; |
| |
| /* Set the path max_retrans. */ |
| peer->pathmaxrxt = asoc->pathmaxrxt; |
| |
| /* And the partial failure retrans threshold */ |
| peer->pf_retrans = asoc->pf_retrans; |
| /* And the primary path switchover retrans threshold */ |
| peer->ps_retrans = asoc->ps_retrans; |
| |
| /* Initialize the peer's SACK delay timeout based on the |
| * association configured value. |
| */ |
| peer->sackdelay = asoc->sackdelay; |
| peer->sackfreq = asoc->sackfreq; |
| |
| if (addr->sa.sa_family == AF_INET6) { |
| __be32 info = addr->v6.sin6_flowinfo; |
| |
| if (info) { |
| peer->flowlabel = ntohl(info & IPV6_FLOWLABEL_MASK); |
| peer->flowlabel |= SCTP_FLOWLABEL_SET_MASK; |
| } else { |
| peer->flowlabel = asoc->flowlabel; |
| } |
| } |
| peer->dscp = asoc->dscp; |
| |
| /* Enable/disable heartbeat, SACK delay, and path MTU discovery |
| * based on association setting. |
| */ |
| peer->param_flags = asoc->param_flags; |
| |
| /* Initialize the pmtu of the transport. */ |
| sctp_transport_route(peer, NULL, sp); |
| |
| /* If this is the first transport addr on this association, |
| * initialize the association PMTU to the peer's PMTU. |
| * If not and the current association PMTU is higher than the new |
| * peer's PMTU, reset the association PMTU to the new peer's PMTU. |
| */ |
| sctp_assoc_set_pmtu(asoc, asoc->pathmtu ? |
| min_t(int, peer->pathmtu, asoc->pathmtu) : |
| peer->pathmtu); |
| |
| peer->pmtu_pending = 0; |
| |
| /* The asoc->peer.port might not be meaningful yet, but |
| * initialize the packet structure anyway. |
| */ |
| sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port, |
| asoc->peer.port); |
| |
| /* 7.2.1 Slow-Start |
| * |
| * o The initial cwnd before DATA transmission or after a sufficiently |
| * long idle period MUST be set to |
| * min(4*MTU, max(2*MTU, 4380 bytes)) |
| * |
| * o The initial value of ssthresh MAY be arbitrarily high |
| * (for example, implementations MAY use the size of the |
| * receiver advertised window). |
| */ |
| peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); |
| |
| /* At this point, we may not have the receiver's advertised window, |
| * so initialize ssthresh to the default value and it will be set |
| * later when we process the INIT. |
| */ |
| peer->ssthresh = SCTP_DEFAULT_MAXWINDOW; |
| |
| peer->partial_bytes_acked = 0; |
| peer->flight_size = 0; |
| peer->burst_limited = 0; |
| |
| /* Set the transport's RTO.initial value */ |
| peer->rto = asoc->rto_initial; |
| sctp_max_rto(asoc, peer); |
| |
| /* Set the peer's active state. */ |
| peer->state = peer_state; |
| |
| /* Add this peer into the transport hashtable */ |
| if (sctp_hash_transport(peer)) { |
| sctp_transport_free(peer); |
| return NULL; |
| } |
| |
| /* Attach the remote transport to our asoc. */ |
| list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list); |
| asoc->peer.transport_count++; |
| |
| sctp_ulpevent_nofity_peer_addr_change(peer, SCTP_ADDR_ADDED, 0); |
| |
| /* If we do not yet have a primary path, set one. */ |
| if (!asoc->peer.primary_path) { |
| sctp_assoc_set_primary(asoc, peer); |
| asoc->peer.retran_path = peer; |
| } |
| |
| if (asoc->peer.active_path == asoc->peer.retran_path && |
| peer->state != SCTP_UNCONFIRMED) { |
| asoc->peer.retran_path = peer; |
| } |
| |
| return peer; |
| } |
| |
| /* Delete a transport address from an association. */ |
| void sctp_assoc_del_peer(struct sctp_association *asoc, |
| const union sctp_addr *addr) |
| { |
| struct list_head *pos; |
| struct list_head *temp; |
| struct sctp_transport *transport; |
| |
| list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { |
| transport = list_entry(pos, struct sctp_transport, transports); |
| if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) { |
| /* Do book keeping for removing the peer and free it. */ |
| sctp_assoc_rm_peer(asoc, transport); |
| break; |
| } |
| } |
| } |
| |
| /* Lookup a transport by address. */ |
| struct sctp_transport *sctp_assoc_lookup_paddr( |
| const struct sctp_association *asoc, |
| const union sctp_addr *address) |
| { |
| struct sctp_transport *t; |
| |
| /* Cycle through all transports searching for a peer address. */ |
| |
| list_for_each_entry(t, &asoc->peer.transport_addr_list, |
| transports) { |
| if (sctp_cmp_addr_exact(address, &t->ipaddr)) |
| return t; |
| } |
| |
| return NULL; |
| } |
| |
| /* Remove all transports except a give one */ |
| void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc, |
| struct sctp_transport *primary) |
| { |
| struct sctp_transport *temp; |
| struct sctp_transport *t; |
| |
| list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list, |
| transports) { |
| /* if the current transport is not the primary one, delete it */ |
| if (t != primary) |
| sctp_assoc_rm_peer(asoc, t); |
| } |
| } |
| |
| /* Engage in transport control operations. |
| * Mark the transport up or down and send a notification to the user. |
| * Select and update the new active and retran paths. |
| */ |
| void sctp_assoc_control_transport(struct sctp_association *asoc, |
| struct sctp_transport *transport, |
| enum sctp_transport_cmd command, |
| sctp_sn_error_t error) |
| { |
| int spc_state = SCTP_ADDR_AVAILABLE; |
| bool ulp_notify = true; |
| |
| /* Record the transition on the transport. */ |
| switch (command) { |
| case SCTP_TRANSPORT_UP: |
| /* If we are moving from UNCONFIRMED state due |
| * to heartbeat success, report the SCTP_ADDR_CONFIRMED |
| * state to the user, otherwise report SCTP_ADDR_AVAILABLE. |
| */ |
| if (transport->state == SCTP_PF && |
| asoc->pf_expose != SCTP_PF_EXPOSE_ENABLE) |
| ulp_notify = false; |
| else if (transport->state == SCTP_UNCONFIRMED && |
| error == SCTP_HEARTBEAT_SUCCESS) |
| spc_state = SCTP_ADDR_CONFIRMED; |
| |
| transport->state = SCTP_ACTIVE; |
| break; |
| |
| case SCTP_TRANSPORT_DOWN: |
| /* If the transport was never confirmed, do not transition it |
| * to inactive state. Also, release the cached route since |
| * there may be a better route next time. |
| */ |
| if (transport->state != SCTP_UNCONFIRMED) { |
| transport->state = SCTP_INACTIVE; |
| spc_state = SCTP_ADDR_UNREACHABLE; |
| } else { |
| sctp_transport_dst_release(transport); |
| ulp_notify = false; |
| } |
| break; |
| |
| case SCTP_TRANSPORT_PF: |
| transport->state = SCTP_PF; |
| if (asoc->pf_expose != SCTP_PF_EXPOSE_ENABLE) |
| ulp_notify = false; |
| else |
| spc_state = SCTP_ADDR_POTENTIALLY_FAILED; |
| break; |
| |
| default: |
| return; |
| } |
| |
| /* Generate and send a SCTP_PEER_ADDR_CHANGE notification |
| * to the user. |
| */ |
| if (ulp_notify) |
| sctp_ulpevent_nofity_peer_addr_change(transport, |
| spc_state, error); |
| |
| /* Select new active and retran paths. */ |
| sctp_select_active_and_retran_path(asoc); |
| } |
| |
| /* Hold a reference to an association. */ |
| void sctp_association_hold(struct sctp_association *asoc) |
| { |
| refcount_inc(&asoc->base.refcnt); |
| } |
| |
| /* Release a reference to an association and cleanup |
| * if there are no more references. |
| */ |
| void sctp_association_put(struct sctp_association *asoc) |
| { |
| if (refcount_dec_and_test(&asoc->base.refcnt)) |
| sctp_association_destroy(asoc); |
| } |
| |
| /* Allocate the next TSN, Transmission Sequence Number, for the given |
| * association. |
| */ |
| __u32 sctp_association_get_next_tsn(struct sctp_association *asoc) |
| { |
| /* From Section 1.6 Serial Number Arithmetic: |
| * Transmission Sequence Numbers wrap around when they reach |
| * 2**32 - 1. That is, the next TSN a DATA chunk MUST use |
| * after transmitting TSN = 2*32 - 1 is TSN = 0. |
| */ |
| __u32 retval = asoc->next_tsn; |
| asoc->next_tsn++; |
| asoc->unack_data++; |
| |
| return retval; |
| } |
| |
| /* Compare two addresses to see if they match. Wildcard addresses |
| * only match themselves. |
| */ |
| int sctp_cmp_addr_exact(const union sctp_addr *ss1, |
| const union sctp_addr *ss2) |
| { |
| struct sctp_af *af; |
| |
| af = sctp_get_af_specific(ss1->sa.sa_family); |
| if (unlikely(!af)) |
| return 0; |
| |
| return af->cmp_addr(ss1, ss2); |
| } |
| |
| /* Return an ecne chunk to get prepended to a packet. |
| * Note: We are sly and return a shared, prealloced chunk. FIXME: |
| * No we don't, but we could/should. |
| */ |
| struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc) |
| { |
| if (!asoc->need_ecne) |
| return NULL; |
| |
| /* Send ECNE if needed. |
| * Not being able to allocate a chunk here is not deadly. |
| */ |
| return sctp_make_ecne(asoc, asoc->last_ecne_tsn); |
| } |
| |
| /* |
| * Find which transport this TSN was sent on. |
| */ |
| struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc, |
| __u32 tsn) |
| { |
| struct sctp_transport *active; |
| struct sctp_transport *match; |
| struct sctp_transport *transport; |
| struct sctp_chunk *chunk; |
| __be32 key = htonl(tsn); |
| |
| match = NULL; |
| |
| /* |
| * FIXME: In general, find a more efficient data structure for |
| * searching. |
| */ |
| |
| /* |
| * The general strategy is to search each transport's transmitted |
| * list. Return which transport this TSN lives on. |
| * |
| * Let's be hopeful and check the active_path first. |
| * Another optimization would be to know if there is only one |
| * outbound path and not have to look for the TSN at all. |
| * |
| */ |
| |
| active = asoc->peer.active_path; |
| |
| list_for_each_entry(chunk, &active->transmitted, |
| transmitted_list) { |
| |
| if (key == chunk->subh.data_hdr->tsn) { |
| match = active; |
| goto out; |
| } |
| } |
| |
| /* If not found, go search all the other transports. */ |
| list_for_each_entry(transport, &asoc->peer.transport_addr_list, |
| transports) { |
| |
| if (transport == active) |
| continue; |
| list_for_each_entry(chunk, &transport->transmitted, |
| transmitted_list) { |
| if (key == chunk->subh.data_hdr->tsn) { |
| match = transport; |
| goto out; |
| } |
| } |
| } |
| out: |
| return match; |
| } |
| |
| /* Do delayed input processing. This is scheduled by sctp_rcv(). */ |
| static void sctp_assoc_bh_rcv(struct work_struct *work) |
| { |
| struct sctp_association *asoc = |
| container_of(work, struct sctp_association, |
| base.inqueue.immediate); |
| struct net *net = sock_net(asoc->base.sk); |
| union sctp_subtype subtype; |
| struct sctp_endpoint *ep; |
| struct sctp_chunk *chunk; |
| struct sctp_inq *inqueue; |
| int first_time = 1; /* is this the first time through the loop */ |
| int error = 0; |
| int state; |
| |
| /* The association should be held so we should be safe. */ |
| ep = asoc->ep; |
| |
| inqueue = &asoc->base.inqueue; |
| sctp_association_hold(asoc); |
| while (NULL != (chunk = sctp_inq_pop(inqueue))) { |
| state = asoc->state; |
| subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type); |
| |
| /* If the first chunk in the packet is AUTH, do special |
| * processing specified in Section 6.3 of SCTP-AUTH spec |
| */ |
| if (first_time && subtype.chunk == SCTP_CID_AUTH) { |
| struct sctp_chunkhdr *next_hdr; |
| |
| next_hdr = sctp_inq_peek(inqueue); |
| if (!next_hdr) |
| goto normal; |
| |
| /* If the next chunk is COOKIE-ECHO, skip the AUTH |
| * chunk while saving a pointer to it so we can do |
| * Authentication later (during cookie-echo |
| * processing). |
| */ |
| if (next_hdr->type == SCTP_CID_COOKIE_ECHO) { |
| chunk->auth_chunk = skb_clone(chunk->skb, |
| GFP_ATOMIC); |
| chunk->auth = 1; |
| continue; |
| } |
| } |
| |
| normal: |
| /* SCTP-AUTH, Section 6.3: |
| * The receiver has a list of chunk types which it expects |
| * to be received only after an AUTH-chunk. This list has |
| * been sent to the peer during the association setup. It |
| * MUST silently discard these chunks if they are not placed |
| * after an AUTH chunk in the packet. |
| */ |
| if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth) |
| continue; |
| |
| /* Remember where the last DATA chunk came from so we |
| * know where to send the SACK. |
| */ |
| if (sctp_chunk_is_data(chunk)) |
| asoc->peer.last_data_from = chunk->transport; |
| else { |
| SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS); |
| asoc->stats.ictrlchunks++; |
| if (chunk->chunk_hdr->type == SCTP_CID_SACK) |
| asoc->stats.isacks++; |
| } |
| |
| if (chunk->transport) |
| chunk->transport->last_time_heard = ktime_get(); |
| |
| /* Run through the state machine. */ |
| error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype, |
| state, ep, asoc, chunk, GFP_ATOMIC); |
| |
| /* Check to see if the association is freed in response to |
| * the incoming chunk. If so, get out of the while loop. |
| */ |
| if (asoc->base.dead) |
| break; |
| |
| /* If there is an error on chunk, discard this packet. */ |
| if (error && chunk) |
| chunk->pdiscard = 1; |
| |
| if (first_time) |
| first_time = 0; |
| } |
| sctp_association_put(asoc); |
| } |
| |
| /* This routine moves an association from its old sk to a new sk. */ |
| void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk) |
| { |
| struct sctp_sock *newsp = sctp_sk(newsk); |
| struct sock *oldsk = assoc->base.sk; |
| |
| /* Delete the association from the old endpoint's list of |
| * associations. |
| */ |
| list_del_init(&assoc->asocs); |
| |
| /* Decrement the backlog value for a TCP-style socket. */ |
| if (sctp_style(oldsk, TCP)) |
| sk_acceptq_removed(oldsk); |
| |
| /* Release references to the old endpoint and the sock. */ |
| sctp_endpoint_put(assoc->ep); |
| sock_put(assoc->base.sk); |
| |
| /* Get a reference to the new endpoint. */ |
| assoc->ep = newsp->ep; |
| sctp_endpoint_hold(assoc->ep); |
| |
| /* Get a reference to the new sock. */ |
| assoc->base.sk = newsk; |
| sock_hold(assoc->base.sk); |
| |
| /* Add the association to the new endpoint's list of associations. */ |
| sctp_endpoint_add_asoc(newsp->ep, assoc); |
| } |
| |
| /* Update an association (possibly from unexpected COOKIE-ECHO processing). */ |
| int sctp_assoc_update(struct sctp_association *asoc, |
| struct sctp_association *new) |
| { |
| struct sctp_transport *trans; |
| struct list_head *pos, *temp; |
| |
| /* Copy in new parameters of peer. */ |
| asoc->c = new->c; |
| asoc->peer.rwnd = new->peer.rwnd; |
| asoc->peer.sack_needed = new->peer.sack_needed; |
| asoc->peer.auth_capable = new->peer.auth_capable; |
| asoc->peer.i = new->peer.i; |
| |
| if (!sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL, |
| asoc->peer.i.initial_tsn, GFP_ATOMIC)) |
| return -ENOMEM; |
| |
| /* Remove any peer addresses not present in the new association. */ |
| list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { |
| trans = list_entry(pos, struct sctp_transport, transports); |
| if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) { |
| sctp_assoc_rm_peer(asoc, trans); |
| continue; |
| } |
| |
| if (asoc->state >= SCTP_STATE_ESTABLISHED) |
| sctp_transport_reset(trans); |
| } |
| |
| /* If the case is A (association restart), use |
| * initial_tsn as next_tsn. If the case is B, use |
| * current next_tsn in case data sent to peer |
| * has been discarded and needs retransmission. |
| */ |
| if (asoc->state >= SCTP_STATE_ESTABLISHED) { |
| asoc->next_tsn = new->next_tsn; |
| asoc->ctsn_ack_point = new->ctsn_ack_point; |
| asoc->adv_peer_ack_point = new->adv_peer_ack_point; |
| |
| /* Reinitialize SSN for both local streams |
| * and peer's streams. |
| */ |
| sctp_stream_clear(&asoc->stream); |
| |
| /* Flush the ULP reassembly and ordered queue. |
| * Any data there will now be stale and will |
| * cause problems. |
| */ |
| sctp_ulpq_flush(&asoc->ulpq); |
| |
| /* reset the overall association error count so |
| * that the restarted association doesn't get torn |
| * down on the next retransmission timer. |
| */ |
| asoc->overall_error_count = 0; |
| |
| } else { |
| /* Add any peer addresses from the new association. */ |
| list_for_each_entry(trans, &new->peer.transport_addr_list, |
| transports) |
| if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr) && |
| !sctp_assoc_add_peer(asoc, &trans->ipaddr, |
| GFP_ATOMIC, trans->state)) |
| return -ENOMEM; |
| |
| asoc->ctsn_ack_point = asoc->next_tsn - 1; |
| asoc->adv_peer_ack_point = asoc->ctsn_ack_point; |
| |
| if (sctp_state(asoc, COOKIE_WAIT)) |
| sctp_stream_update(&asoc->stream, &new->stream); |
| |
| /* get a new assoc id if we don't have one yet. */ |
| if (sctp_assoc_set_id(asoc, GFP_ATOMIC)) |
| return -ENOMEM; |
| } |
| |
| /* SCTP-AUTH: Save the peer parameters from the new associations |
| * and also move the association shared keys over |
| */ |
| kfree(asoc->peer.peer_random); |
| asoc->peer.peer_random = new->peer.peer_random; |
| new->peer.peer_random = NULL; |
| |
| kfree(asoc->peer.peer_chunks); |
| asoc->peer.peer_chunks = new->peer.peer_chunks; |
| new->peer.peer_chunks = NULL; |
| |
| kfree(asoc->peer.peer_hmacs); |
| asoc->peer.peer_hmacs = new->peer.peer_hmacs; |
| new->peer.peer_hmacs = NULL; |
| |
| return sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC); |
| } |
| |
| /* Update the retran path for sending a retransmitted packet. |
| * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints: |
| * |
| * When there is outbound data to send and the primary path |
| * becomes inactive (e.g., due to failures), or where the |
| * SCTP user explicitly requests to send data to an |
| * inactive destination transport address, before reporting |
| * an error to its ULP, the SCTP endpoint should try to send |
| * the data to an alternate active destination transport |
| * address if one exists. |
| * |
| * When retransmitting data that timed out, if the endpoint |
| * is multihomed, it should consider each source-destination |
| * address pair in its retransmission selection policy. |
| * When retransmitting timed-out data, the endpoint should |
| * attempt to pick the most divergent source-destination |
| * pair from the original source-destination pair to which |
| * the packet was transmitted. |
| * |
| * Note: Rules for picking the most divergent source-destination |
| * pair are an implementation decision and are not specified |
| * within this document. |
| * |
| * Our basic strategy is to round-robin transports in priorities |
| * according to sctp_trans_score() e.g., if no such |
| * transport with state SCTP_ACTIVE exists, round-robin through |
| * SCTP_UNKNOWN, etc. You get the picture. |
| */ |
| static u8 sctp_trans_score(const struct sctp_transport *trans) |
| { |
| switch (trans->state) { |
| case SCTP_ACTIVE: |
| return 3; /* best case */ |
| case SCTP_UNKNOWN: |
| return 2; |
| case SCTP_PF: |
| return 1; |
| default: /* case SCTP_INACTIVE */ |
| return 0; /* worst case */ |
| } |
| } |
| |
| static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1, |
| struct sctp_transport *trans2) |
| { |
| if (trans1->error_count > trans2->error_count) { |
| return trans2; |
| } else if (trans1->error_count == trans2->error_count && |
| ktime_after(trans2->last_time_heard, |
| trans1->last_time_heard)) { |
| return trans2; |
| } else { |
| return trans1; |
| } |
| } |
| |
| static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr, |
| struct sctp_transport *best) |
| { |
| u8 score_curr, score_best; |
| |
| if (best == NULL || curr == best) |
| return curr; |
| |
| score_curr = sctp_trans_score(curr); |
| score_best = sctp_trans_score(best); |
| |
| /* First, try a score-based selection if both transport states |
| * differ. If we're in a tie, lets try to make a more clever |
| * decision here based on error counts and last time heard. |
| */ |
| if (score_curr > score_best) |
| return curr; |
| else if (score_curr == score_best) |
| return sctp_trans_elect_tie(best, curr); |
| else |
| return best; |
| } |
| |
| void sctp_assoc_update_retran_path(struct sctp_association *asoc) |
| { |
| struct sctp_transport *trans = asoc->peer.retran_path; |
| struct sctp_transport *trans_next = NULL; |
| |
| /* We're done as we only have the one and only path. */ |
| if (asoc->peer.transport_count == 1) |
| return; |
| /* If active_path and retran_path are the same and active, |
| * then this is the only active path. Use it. |
| */ |
| if (asoc->peer.active_path == asoc->peer.retran_path && |
| asoc->peer.active_path->state == SCTP_ACTIVE) |
| return; |
| |
| /* Iterate from retran_path's successor back to retran_path. */ |
| for (trans = list_next_entry(trans, transports); 1; |
| trans = list_next_entry(trans, transports)) { |
| /* Manually skip the head element. */ |
| if (&trans->transports == &asoc->peer.transport_addr_list) |
| continue; |
| if (trans->state == SCTP_UNCONFIRMED) |
| continue; |
| trans_next = sctp_trans_elect_best(trans, trans_next); |
| /* Active is good enough for immediate return. */ |
| if (trans_next->state == SCTP_ACTIVE) |
| break; |
| /* We've reached the end, time to update path. */ |
| if (trans == asoc->peer.retran_path) |
| break; |
| } |
| |
| asoc->peer.retran_path = trans_next; |
| |
| pr_debug("%s: association:%p updated new path to addr:%pISpc\n", |
| __func__, asoc, &asoc->peer.retran_path->ipaddr.sa); |
| } |
| |
| static void sctp_select_active_and_retran_path(struct sctp_association *asoc) |
| { |
| struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL; |
| struct sctp_transport *trans_pf = NULL; |
| |
| /* Look for the two most recently used active transports. */ |
| list_for_each_entry(trans, &asoc->peer.transport_addr_list, |
| transports) { |
| /* Skip uninteresting transports. */ |
| if (trans->state == SCTP_INACTIVE || |
| trans->state == SCTP_UNCONFIRMED) |
| continue; |
| /* Keep track of the best PF transport from our |
| * list in case we don't find an active one. |
| */ |
| if (trans->state == SCTP_PF) { |
| trans_pf = sctp_trans_elect_best(trans, trans_pf); |
| continue; |
| } |
| /* For active transports, pick the most recent ones. */ |
| if (trans_pri == NULL || |
| ktime_after(trans->last_time_heard, |
| trans_pri->last_time_heard)) { |
| trans_sec = trans_pri; |
| trans_pri = trans; |
| } else if (trans_sec == NULL || |
| ktime_after(trans->last_time_heard, |
| trans_sec->last_time_heard)) { |
| trans_sec = trans; |
| } |
| } |
| |
| /* RFC 2960 6.4 Multi-Homed SCTP Endpoints |
| * |
| * By default, an endpoint should always transmit to the primary |
| * path, unless the SCTP user explicitly specifies the |
| * destination transport address (and possibly source transport |
| * address) to use. [If the primary is active but not most recent, |
| * bump the most recently used transport.] |
| */ |
| if ((asoc->peer.primary_path->state == SCTP_ACTIVE || |
| asoc->peer.primary_path->state == SCTP_UNKNOWN) && |
| asoc->peer.primary_path != trans_pri) { |
| trans_sec = trans_pri; |
| trans_pri = asoc->peer.primary_path; |
| } |
| |
| /* We did not find anything useful for a possible retransmission |
| * path; either primary path that we found is the the same as |
| * the current one, or we didn't generally find an active one. |
| */ |
| if (trans_sec == NULL) |
| trans_sec = trans_pri; |
| |
| /* If we failed to find a usable transport, just camp on the |
| * active or pick a PF iff it's the better choice. |
| */ |
| if (trans_pri == NULL) { |
| trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf); |
| trans_sec = trans_pri; |
| } |
| |
| /* Set the active and retran transports. */ |
| asoc->peer.active_path = trans_pri; |
| asoc->peer.retran_path = trans_sec; |
| } |
| |
| struct sctp_transport * |
| sctp_assoc_choose_alter_transport(struct sctp_association *asoc, |
| struct sctp_transport *last_sent_to) |
| { |
| /* If this is the first time packet is sent, use the active path, |
| * else use the retran path. If the last packet was sent over the |
| * retran path, update the retran path and use it. |
| */ |
| if (last_sent_to == NULL) { |
| return asoc->peer.active_path; |
| } else { |
| if (last_sent_to == asoc->peer.retran_path) |
| sctp_assoc_update_retran_path(asoc); |
| |
| return asoc->peer.retran_path; |
| } |
| } |
| |
| void sctp_assoc_update_frag_point(struct sctp_association *asoc) |
| { |
| int frag = sctp_mtu_payload(sctp_sk(asoc->base.sk), asoc->pathmtu, |
| sctp_datachk_len(&asoc->stream)); |
| |
| if (asoc->user_frag) |
| frag = min_t(int, frag, asoc->user_frag); |
| |
| frag = min_t(int, frag, SCTP_MAX_CHUNK_LEN - |
| sctp_datachk_len(&asoc->stream)); |
| |
| asoc->frag_point = SCTP_TRUNC4(frag); |
| } |
| |
| void sctp_assoc_set_pmtu(struct sctp_association *asoc, __u32 pmtu) |
| { |
| if (asoc->pathmtu != pmtu) { |
| asoc->pathmtu = pmtu; |
| sctp_assoc_update_frag_point(asoc); |
| } |
| |
| pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc, |
| asoc->pathmtu, asoc->frag_point); |
| } |
| |
| /* Update the association's pmtu and frag_point by going through all the |
| * transports. This routine is called when a transport's PMTU has changed. |
| */ |
| void sctp_assoc_sync_pmtu(struct sctp_association *asoc) |
| { |
| struct sctp_transport *t; |
| __u32 pmtu = 0; |
| |
| if (!asoc) |
| return; |
| |
| /* Get the lowest pmtu of all the transports. */ |
| list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) { |
| if (t->pmtu_pending && t->dst) { |
| sctp_transport_update_pmtu(t, |
| atomic_read(&t->mtu_info)); |
| t->pmtu_pending = 0; |
| } |
| if (!pmtu || (t->pathmtu < pmtu)) |
| pmtu = t->pathmtu; |
| } |
| |
| sctp_assoc_set_pmtu(asoc, pmtu); |
| } |
| |
| /* Should we send a SACK to update our peer? */ |
| static inline bool sctp_peer_needs_update(struct sctp_association *asoc) |
| { |
| struct net *net = sock_net(asoc->base.sk); |
| switch (asoc->state) { |
| case SCTP_STATE_ESTABLISHED: |
| case SCTP_STATE_SHUTDOWN_PENDING: |
| case SCTP_STATE_SHUTDOWN_RECEIVED: |
| case SCTP_STATE_SHUTDOWN_SENT: |
| if ((asoc->rwnd > asoc->a_rwnd) && |
| ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32, |
| (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift), |
| asoc->pathmtu))) |
| return true; |
| break; |
| default: |
| break; |
| } |
| return false; |
| } |
| |
| /* Increase asoc's rwnd by len and send any window update SACK if needed. */ |
| void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len) |
| { |
| struct sctp_chunk *sack; |
| struct timer_list *timer; |
| |
| if (asoc->rwnd_over) { |
| if (asoc->rwnd_over >= len) { |
| asoc->rwnd_over -= len; |
| } else { |
| asoc->rwnd += (len - asoc->rwnd_over); |
| asoc->rwnd_over = 0; |
| } |
| } else { |
| asoc->rwnd += len; |
| } |
| |
| /* If we had window pressure, start recovering it |
| * once our rwnd had reached the accumulated pressure |
| * threshold. The idea is to recover slowly, but up |
| * to the initial advertised window. |
| */ |
| if (asoc->rwnd_press) { |
| int change = min(asoc->pathmtu, asoc->rwnd_press); |
| asoc->rwnd += change; |
| asoc->rwnd_press -= change; |
| } |
| |
| pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n", |
| __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, |
| asoc->a_rwnd); |
| |
| /* Send a window update SACK if the rwnd has increased by at least the |
| * minimum of the association's PMTU and half of the receive buffer. |
| * The algorithm used is similar to the one described in |
| * Section 4.2.3.3 of RFC 1122. |
| */ |
| if (sctp_peer_needs_update(asoc)) { |
| asoc->a_rwnd = asoc->rwnd; |
| |
| pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u " |
| "a_rwnd:%u\n", __func__, asoc, asoc->rwnd, |
| asoc->a_rwnd); |
| |
| sack = sctp_make_sack(asoc); |
| if (!sack) |
| return; |
| |
| asoc->peer.sack_needed = 0; |
| |
| sctp_outq_tail(&asoc->outqueue, sack, GFP_ATOMIC); |
| |
| /* Stop the SACK timer. */ |
| timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK]; |
| if (del_timer(timer)) |
| sctp_association_put(asoc); |
| } |
| } |
| |
| /* Decrease asoc's rwnd by len. */ |
| void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len) |
| { |
| int rx_count; |
| int over = 0; |
| |
| if (unlikely(!asoc->rwnd || asoc->rwnd_over)) |
| pr_debug("%s: association:%p has asoc->rwnd:%u, " |
| "asoc->rwnd_over:%u!\n", __func__, asoc, |
| asoc->rwnd, asoc->rwnd_over); |
| |
| if (asoc->ep->rcvbuf_policy) |
| rx_count = atomic_read(&asoc->rmem_alloc); |
| else |
| rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc); |
| |
| /* If we've reached or overflowed our receive buffer, announce |
| * a 0 rwnd if rwnd would still be positive. Store the |
| * the potential pressure overflow so that the window can be restored |
| * back to original value. |
| */ |
| if (rx_count >= asoc->base.sk->sk_rcvbuf) |
| over = 1; |
| |
| if (asoc->rwnd >= len) { |
| asoc->rwnd -= len; |
| if (over) { |
| asoc->rwnd_press += asoc->rwnd; |
| asoc->rwnd = 0; |
| } |
| } else { |
| asoc->rwnd_over += len - asoc->rwnd; |
| asoc->rwnd = 0; |
| } |
| |
| pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n", |
| __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, |
| asoc->rwnd_press); |
| } |
| |
| /* Build the bind address list for the association based on info from the |
| * local endpoint and the remote peer. |
| */ |
| int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, |
| enum sctp_scope scope, gfp_t gfp) |
| { |
| int flags; |
| |
| /* Use scoping rules to determine the subset of addresses from |
| * the endpoint. |
| */ |
| flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0; |
| if (asoc->peer.ipv4_address) |
| flags |= SCTP_ADDR4_PEERSUPP; |
| if (asoc->peer.ipv6_address) |
| flags |= SCTP_ADDR6_PEERSUPP; |
| |
| return sctp_bind_addr_copy(sock_net(asoc->base.sk), |
| &asoc->base.bind_addr, |
| &asoc->ep->base.bind_addr, |
| scope, gfp, flags); |
| } |
| |
| /* Build the association's bind address list from the cookie. */ |
| int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc, |
| struct sctp_cookie *cookie, |
| gfp_t gfp) |
| { |
| int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length); |
| int var_size3 = cookie->raw_addr_list_len; |
| __u8 *raw = (__u8 *)cookie->peer_init + var_size2; |
| |
| return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3, |
| asoc->ep->base.bind_addr.port, gfp); |
| } |
| |
| /* Lookup laddr in the bind address list of an association. */ |
| int sctp_assoc_lookup_laddr(struct sctp_association *asoc, |
| const union sctp_addr *laddr) |
| { |
| int found = 0; |
| |
| if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) && |
| sctp_bind_addr_match(&asoc->base.bind_addr, laddr, |
| sctp_sk(asoc->base.sk))) |
| found = 1; |
| |
| return found; |
| } |
| |
| /* Set an association id for a given association */ |
| int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp) |
| { |
| bool preload = gfpflags_allow_blocking(gfp); |
| int ret; |
| |
| /* If the id is already assigned, keep it. */ |
| if (asoc->assoc_id) |
| return 0; |
| |
| if (preload) |
| idr_preload(gfp); |
| spin_lock_bh(&sctp_assocs_id_lock); |
| /* 0, 1, 2 are used as SCTP_FUTURE_ASSOC, SCTP_CURRENT_ASSOC and |
| * SCTP_ALL_ASSOC, so an available id must be > SCTP_ALL_ASSOC. |
| */ |
| ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, SCTP_ALL_ASSOC + 1, 0, |
| GFP_NOWAIT); |
| spin_unlock_bh(&sctp_assocs_id_lock); |
| if (preload) |
| idr_preload_end(); |
| if (ret < 0) |
| return ret; |
| |
| asoc->assoc_id = (sctp_assoc_t)ret; |
| return 0; |
| } |
| |
| /* Free the ASCONF queue */ |
| static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc) |
| { |
| struct sctp_chunk *asconf; |
| struct sctp_chunk *tmp; |
| |
| list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) { |
| list_del_init(&asconf->list); |
| sctp_chunk_free(asconf); |
| } |
| } |
| |
| /* Free asconf_ack cache */ |
| static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc) |
| { |
| struct sctp_chunk *ack; |
| struct sctp_chunk *tmp; |
| |
| list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, |
| transmitted_list) { |
| list_del_init(&ack->transmitted_list); |
| sctp_chunk_free(ack); |
| } |
| } |
| |
| /* Clean up the ASCONF_ACK queue */ |
| void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc) |
| { |
| struct sctp_chunk *ack; |
| struct sctp_chunk *tmp; |
| |
| /* We can remove all the entries from the queue up to |
| * the "Peer-Sequence-Number". |
| */ |
| list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, |
| transmitted_list) { |
| if (ack->subh.addip_hdr->serial == |
| htonl(asoc->peer.addip_serial)) |
| break; |
| |
| list_del_init(&ack->transmitted_list); |
| sctp_chunk_free(ack); |
| } |
| } |
| |
| /* Find the ASCONF_ACK whose serial number matches ASCONF */ |
| struct sctp_chunk *sctp_assoc_lookup_asconf_ack( |
| const struct sctp_association *asoc, |
| __be32 serial) |
| { |
| struct sctp_chunk *ack; |
| |
| /* Walk through the list of cached ASCONF-ACKs and find the |
| * ack chunk whose serial number matches that of the request. |
| */ |
| list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) { |
| if (sctp_chunk_pending(ack)) |
| continue; |
| if (ack->subh.addip_hdr->serial == serial) { |
| sctp_chunk_hold(ack); |
| return ack; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| void sctp_asconf_queue_teardown(struct sctp_association *asoc) |
| { |
| /* Free any cached ASCONF_ACK chunk. */ |
| sctp_assoc_free_asconf_acks(asoc); |
| |
| /* Free the ASCONF queue. */ |
| sctp_assoc_free_asconf_queue(asoc); |
| |
| /* Free any cached ASCONF chunk. */ |
| if (asoc->addip_last_asconf) |
| sctp_chunk_free(asoc->addip_last_asconf); |
| } |