| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Synthesize TLB refill handlers at runtime. |
| * |
| * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer |
| * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki |
| * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org) |
| * Copyright (C) 2008, 2009 Cavium Networks, Inc. |
| * Copyright (C) 2011 MIPS Technologies, Inc. |
| * |
| * ... and the days got worse and worse and now you see |
| * I've gone completely out of my mind. |
| * |
| * They're coming to take me a away haha |
| * they're coming to take me a away hoho hihi haha |
| * to the funny farm where code is beautiful all the time ... |
| * |
| * (Condolences to Napoleon XIV) |
| */ |
| |
| #include <linux/bug.h> |
| #include <linux/export.h> |
| #include <linux/kernel.h> |
| #include <linux/types.h> |
| #include <linux/smp.h> |
| #include <linux/string.h> |
| #include <linux/cache.h> |
| |
| #include <asm/cacheflush.h> |
| #include <asm/cpu-type.h> |
| #include <asm/mmu_context.h> |
| #include <asm/pgtable.h> |
| #include <asm/war.h> |
| #include <asm/uasm.h> |
| #include <asm/setup.h> |
| #include <asm/tlbex.h> |
| |
| static int mips_xpa_disabled; |
| |
| static int __init xpa_disable(char *s) |
| { |
| mips_xpa_disabled = 1; |
| |
| return 1; |
| } |
| |
| __setup("noxpa", xpa_disable); |
| |
| /* |
| * TLB load/store/modify handlers. |
| * |
| * Only the fastpath gets synthesized at runtime, the slowpath for |
| * do_page_fault remains normal asm. |
| */ |
| extern void tlb_do_page_fault_0(void); |
| extern void tlb_do_page_fault_1(void); |
| |
| struct work_registers { |
| int r1; |
| int r2; |
| int r3; |
| }; |
| |
| struct tlb_reg_save { |
| unsigned long a; |
| unsigned long b; |
| } ____cacheline_aligned_in_smp; |
| |
| static struct tlb_reg_save handler_reg_save[NR_CPUS]; |
| |
| static inline int r45k_bvahwbug(void) |
| { |
| /* XXX: We should probe for the presence of this bug, but we don't. */ |
| return 0; |
| } |
| |
| static inline int r4k_250MHZhwbug(void) |
| { |
| /* XXX: We should probe for the presence of this bug, but we don't. */ |
| return 0; |
| } |
| |
| static inline int __maybe_unused bcm1250_m3_war(void) |
| { |
| return BCM1250_M3_WAR; |
| } |
| |
| static inline int __maybe_unused r10000_llsc_war(void) |
| { |
| return R10000_LLSC_WAR; |
| } |
| |
| static int use_bbit_insns(void) |
| { |
| switch (current_cpu_type()) { |
| case CPU_CAVIUM_OCTEON: |
| case CPU_CAVIUM_OCTEON_PLUS: |
| case CPU_CAVIUM_OCTEON2: |
| case CPU_CAVIUM_OCTEON3: |
| return 1; |
| default: |
| return 0; |
| } |
| } |
| |
| static int use_lwx_insns(void) |
| { |
| switch (current_cpu_type()) { |
| case CPU_CAVIUM_OCTEON2: |
| case CPU_CAVIUM_OCTEON3: |
| return 1; |
| default: |
| return 0; |
| } |
| } |
| #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \ |
| CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0 |
| static bool scratchpad_available(void) |
| { |
| return true; |
| } |
| static int scratchpad_offset(int i) |
| { |
| /* |
| * CVMSEG starts at address -32768 and extends for |
| * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines. |
| */ |
| i += 1; /* Kernel use starts at the top and works down. */ |
| return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768; |
| } |
| #else |
| static bool scratchpad_available(void) |
| { |
| return false; |
| } |
| static int scratchpad_offset(int i) |
| { |
| BUG(); |
| /* Really unreachable, but evidently some GCC want this. */ |
| return 0; |
| } |
| #endif |
| /* |
| * Found by experiment: At least some revisions of the 4kc throw under |
| * some circumstances a machine check exception, triggered by invalid |
| * values in the index register. Delaying the tlbp instruction until |
| * after the next branch, plus adding an additional nop in front of |
| * tlbwi/tlbwr avoids the invalid index register values. Nobody knows |
| * why; it's not an issue caused by the core RTL. |
| * |
| */ |
| static int m4kc_tlbp_war(void) |
| { |
| return current_cpu_type() == CPU_4KC; |
| } |
| |
| /* Handle labels (which must be positive integers). */ |
| enum label_id { |
| label_second_part = 1, |
| label_leave, |
| label_vmalloc, |
| label_vmalloc_done, |
| label_tlbw_hazard_0, |
| label_split = label_tlbw_hazard_0 + 8, |
| label_tlbl_goaround1, |
| label_tlbl_goaround2, |
| label_nopage_tlbl, |
| label_nopage_tlbs, |
| label_nopage_tlbm, |
| label_smp_pgtable_change, |
| label_r3000_write_probe_fail, |
| label_large_segbits_fault, |
| #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT |
| label_tlb_huge_update, |
| #endif |
| }; |
| |
| UASM_L_LA(_second_part) |
| UASM_L_LA(_leave) |
| UASM_L_LA(_vmalloc) |
| UASM_L_LA(_vmalloc_done) |
| /* _tlbw_hazard_x is handled differently. */ |
| UASM_L_LA(_split) |
| UASM_L_LA(_tlbl_goaround1) |
| UASM_L_LA(_tlbl_goaround2) |
| UASM_L_LA(_nopage_tlbl) |
| UASM_L_LA(_nopage_tlbs) |
| UASM_L_LA(_nopage_tlbm) |
| UASM_L_LA(_smp_pgtable_change) |
| UASM_L_LA(_r3000_write_probe_fail) |
| UASM_L_LA(_large_segbits_fault) |
| #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT |
| UASM_L_LA(_tlb_huge_update) |
| #endif |
| |
| static int hazard_instance; |
| |
| static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance) |
| { |
| switch (instance) { |
| case 0 ... 7: |
| uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance); |
| return; |
| default: |
| BUG(); |
| } |
| } |
| |
| static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance) |
| { |
| switch (instance) { |
| case 0 ... 7: |
| uasm_build_label(l, *p, label_tlbw_hazard_0 + instance); |
| break; |
| default: |
| BUG(); |
| } |
| } |
| |
| /* |
| * pgtable bits are assigned dynamically depending on processor feature |
| * and statically based on kernel configuration. This spits out the actual |
| * values the kernel is using. Required to make sense from disassembled |
| * TLB exception handlers. |
| */ |
| static void output_pgtable_bits_defines(void) |
| { |
| #define pr_define(fmt, ...) \ |
| pr_debug("#define " fmt, ##__VA_ARGS__) |
| |
| pr_debug("#include <asm/asm.h>\n"); |
| pr_debug("#include <asm/regdef.h>\n"); |
| pr_debug("\n"); |
| |
| pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT); |
| pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT); |
| pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT); |
| pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT); |
| pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT); |
| #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT |
| pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT); |
| #endif |
| #ifdef _PAGE_NO_EXEC_SHIFT |
| if (cpu_has_rixi) |
| pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT); |
| #endif |
| pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT); |
| pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT); |
| pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT); |
| pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT); |
| pr_debug("\n"); |
| } |
| |
| static inline void dump_handler(const char *symbol, const void *start, const void *end) |
| { |
| unsigned int count = (end - start) / sizeof(u32); |
| const u32 *handler = start; |
| int i; |
| |
| pr_debug("LEAF(%s)\n", symbol); |
| |
| pr_debug("\t.set push\n"); |
| pr_debug("\t.set noreorder\n"); |
| |
| for (i = 0; i < count; i++) |
| pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]); |
| |
| pr_debug("\t.set\tpop\n"); |
| |
| pr_debug("\tEND(%s)\n", symbol); |
| } |
| |
| /* The only general purpose registers allowed in TLB handlers. */ |
| #define K0 26 |
| #define K1 27 |
| |
| /* Some CP0 registers */ |
| #define C0_INDEX 0, 0 |
| #define C0_ENTRYLO0 2, 0 |
| #define C0_TCBIND 2, 2 |
| #define C0_ENTRYLO1 3, 0 |
| #define C0_CONTEXT 4, 0 |
| #define C0_PAGEMASK 5, 0 |
| #define C0_PWBASE 5, 5 |
| #define C0_PWFIELD 5, 6 |
| #define C0_PWSIZE 5, 7 |
| #define C0_PWCTL 6, 6 |
| #define C0_BADVADDR 8, 0 |
| #define C0_PGD 9, 7 |
| #define C0_ENTRYHI 10, 0 |
| #define C0_EPC 14, 0 |
| #define C0_XCONTEXT 20, 0 |
| |
| #ifdef CONFIG_64BIT |
| # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT) |
| #else |
| # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT) |
| #endif |
| |
| /* The worst case length of the handler is around 18 instructions for |
| * R3000-style TLBs and up to 63 instructions for R4000-style TLBs. |
| * Maximum space available is 32 instructions for R3000 and 64 |
| * instructions for R4000. |
| * |
| * We deliberately chose a buffer size of 128, so we won't scribble |
| * over anything important on overflow before we panic. |
| */ |
| static u32 tlb_handler[128]; |
| |
| /* simply assume worst case size for labels and relocs */ |
| static struct uasm_label labels[128]; |
| static struct uasm_reloc relocs[128]; |
| |
| static int check_for_high_segbits; |
| static bool fill_includes_sw_bits; |
| |
| static unsigned int kscratch_used_mask; |
| |
| static inline int __maybe_unused c0_kscratch(void) |
| { |
| switch (current_cpu_type()) { |
| case CPU_XLP: |
| case CPU_XLR: |
| return 22; |
| default: |
| return 31; |
| } |
| } |
| |
| static int allocate_kscratch(void) |
| { |
| int r; |
| unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask; |
| |
| r = ffs(a); |
| |
| if (r == 0) |
| return -1; |
| |
| r--; /* make it zero based */ |
| |
| kscratch_used_mask |= (1 << r); |
| |
| return r; |
| } |
| |
| static int scratch_reg; |
| int pgd_reg; |
| EXPORT_SYMBOL_GPL(pgd_reg); |
| enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch}; |
| |
| static struct work_registers build_get_work_registers(u32 **p) |
| { |
| struct work_registers r; |
| |
| if (scratch_reg >= 0) { |
| /* Save in CPU local C0_KScratch? */ |
| UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg); |
| r.r1 = K0; |
| r.r2 = K1; |
| r.r3 = 1; |
| return r; |
| } |
| |
| if (num_possible_cpus() > 1) { |
| /* Get smp_processor_id */ |
| UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG); |
| UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT); |
| |
| /* handler_reg_save index in K0 */ |
| UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save))); |
| |
| UASM_i_LA(p, K1, (long)&handler_reg_save); |
| UASM_i_ADDU(p, K0, K0, K1); |
| } else { |
| UASM_i_LA(p, K0, (long)&handler_reg_save); |
| } |
| /* K0 now points to save area, save $1 and $2 */ |
| UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0); |
| UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0); |
| |
| r.r1 = K1; |
| r.r2 = 1; |
| r.r3 = 2; |
| return r; |
| } |
| |
| static void build_restore_work_registers(u32 **p) |
| { |
| if (scratch_reg >= 0) { |
| uasm_i_ehb(p); |
| UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg); |
| return; |
| } |
| /* K0 already points to save area, restore $1 and $2 */ |
| UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0); |
| UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0); |
| } |
| |
| #ifndef CONFIG_MIPS_PGD_C0_CONTEXT |
| |
| /* |
| * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current, |
| * we cannot do r3000 under these circumstances. |
| * |
| * The R3000 TLB handler is simple. |
| */ |
| static void build_r3000_tlb_refill_handler(void) |
| { |
| long pgdc = (long)pgd_current; |
| u32 *p; |
| |
| memset(tlb_handler, 0, sizeof(tlb_handler)); |
| p = tlb_handler; |
| |
| uasm_i_mfc0(&p, K0, C0_BADVADDR); |
| uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */ |
| uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1); |
| uasm_i_srl(&p, K0, K0, 22); /* load delay */ |
| uasm_i_sll(&p, K0, K0, 2); |
| uasm_i_addu(&p, K1, K1, K0); |
| uasm_i_mfc0(&p, K0, C0_CONTEXT); |
| uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */ |
| uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */ |
| uasm_i_addu(&p, K1, K1, K0); |
| uasm_i_lw(&p, K0, 0, K1); |
| uasm_i_nop(&p); /* load delay */ |
| uasm_i_mtc0(&p, K0, C0_ENTRYLO0); |
| uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */ |
| uasm_i_tlbwr(&p); /* cp0 delay */ |
| uasm_i_jr(&p, K1); |
| uasm_i_rfe(&p); /* branch delay */ |
| |
| if (p > tlb_handler + 32) |
| panic("TLB refill handler space exceeded"); |
| |
| pr_debug("Wrote TLB refill handler (%u instructions).\n", |
| (unsigned int)(p - tlb_handler)); |
| |
| memcpy((void *)ebase, tlb_handler, 0x80); |
| local_flush_icache_range(ebase, ebase + 0x80); |
| dump_handler("r3000_tlb_refill", (u32 *)ebase, (u32 *)(ebase + 0x80)); |
| } |
| #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */ |
| |
| /* |
| * The R4000 TLB handler is much more complicated. We have two |
| * consecutive handler areas with 32 instructions space each. |
| * Since they aren't used at the same time, we can overflow in the |
| * other one.To keep things simple, we first assume linear space, |
| * then we relocate it to the final handler layout as needed. |
| */ |
| static u32 final_handler[64]; |
| |
| /* |
| * Hazards |
| * |
| * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0: |
| * 2. A timing hazard exists for the TLBP instruction. |
| * |
| * stalling_instruction |
| * TLBP |
| * |
| * The JTLB is being read for the TLBP throughout the stall generated by the |
| * previous instruction. This is not really correct as the stalling instruction |
| * can modify the address used to access the JTLB. The failure symptom is that |
| * the TLBP instruction will use an address created for the stalling instruction |
| * and not the address held in C0_ENHI and thus report the wrong results. |
| * |
| * The software work-around is to not allow the instruction preceding the TLBP |
| * to stall - make it an NOP or some other instruction guaranteed not to stall. |
| * |
| * Errata 2 will not be fixed. This errata is also on the R5000. |
| * |
| * As if we MIPS hackers wouldn't know how to nop pipelines happy ... |
| */ |
| static void __maybe_unused build_tlb_probe_entry(u32 **p) |
| { |
| switch (current_cpu_type()) { |
| /* Found by experiment: R4600 v2.0/R4700 needs this, too. */ |
| case CPU_R4600: |
| case CPU_R4700: |
| case CPU_R5000: |
| case CPU_NEVADA: |
| uasm_i_nop(p); |
| uasm_i_tlbp(p); |
| break; |
| |
| default: |
| uasm_i_tlbp(p); |
| break; |
| } |
| } |
| |
| void build_tlb_write_entry(u32 **p, struct uasm_label **l, |
| struct uasm_reloc **r, |
| enum tlb_write_entry wmode) |
| { |
| void(*tlbw)(u32 **) = NULL; |
| |
| switch (wmode) { |
| case tlb_random: tlbw = uasm_i_tlbwr; break; |
| case tlb_indexed: tlbw = uasm_i_tlbwi; break; |
| } |
| |
| if (cpu_has_mips_r2_r6) { |
| if (cpu_has_mips_r2_exec_hazard) |
| uasm_i_ehb(p); |
| tlbw(p); |
| return; |
| } |
| |
| switch (current_cpu_type()) { |
| case CPU_R4000PC: |
| case CPU_R4000SC: |
| case CPU_R4000MC: |
| case CPU_R4400PC: |
| case CPU_R4400SC: |
| case CPU_R4400MC: |
| /* |
| * This branch uses up a mtc0 hazard nop slot and saves |
| * two nops after the tlbw instruction. |
| */ |
| uasm_bgezl_hazard(p, r, hazard_instance); |
| tlbw(p); |
| uasm_bgezl_label(l, p, hazard_instance); |
| hazard_instance++; |
| uasm_i_nop(p); |
| break; |
| |
| case CPU_R4600: |
| case CPU_R4700: |
| uasm_i_nop(p); |
| tlbw(p); |
| uasm_i_nop(p); |
| break; |
| |
| case CPU_R5000: |
| case CPU_NEVADA: |
| uasm_i_nop(p); /* QED specifies 2 nops hazard */ |
| uasm_i_nop(p); /* QED specifies 2 nops hazard */ |
| tlbw(p); |
| break; |
| |
| case CPU_5KC: |
| case CPU_TX49XX: |
| case CPU_PR4450: |
| case CPU_XLR: |
| uasm_i_nop(p); |
| tlbw(p); |
| break; |
| |
| case CPU_R10000: |
| case CPU_R12000: |
| case CPU_R14000: |
| case CPU_R16000: |
| case CPU_4KC: |
| case CPU_4KEC: |
| case CPU_M14KC: |
| case CPU_M14KEC: |
| case CPU_SB1: |
| case CPU_SB1A: |
| case CPU_4KSC: |
| case CPU_20KC: |
| case CPU_25KF: |
| case CPU_BMIPS32: |
| case CPU_BMIPS3300: |
| case CPU_BMIPS4350: |
| case CPU_BMIPS4380: |
| case CPU_BMIPS5000: |
| case CPU_LOONGSON2: |
| case CPU_LOONGSON3: |
| case CPU_R5500: |
| if (m4kc_tlbp_war()) |
| uasm_i_nop(p); |
| /* fall through */ |
| case CPU_ALCHEMY: |
| tlbw(p); |
| break; |
| |
| case CPU_RM7000: |
| uasm_i_nop(p); |
| uasm_i_nop(p); |
| uasm_i_nop(p); |
| uasm_i_nop(p); |
| tlbw(p); |
| break; |
| |
| case CPU_VR4111: |
| case CPU_VR4121: |
| case CPU_VR4122: |
| case CPU_VR4181: |
| case CPU_VR4181A: |
| uasm_i_nop(p); |
| uasm_i_nop(p); |
| tlbw(p); |
| uasm_i_nop(p); |
| uasm_i_nop(p); |
| break; |
| |
| case CPU_VR4131: |
| case CPU_VR4133: |
| uasm_i_nop(p); |
| uasm_i_nop(p); |
| tlbw(p); |
| break; |
| |
| case CPU_XBURST: |
| tlbw(p); |
| uasm_i_nop(p); |
| break; |
| |
| default: |
| panic("No TLB refill handler yet (CPU type: %d)", |
| current_cpu_type()); |
| break; |
| } |
| } |
| EXPORT_SYMBOL_GPL(build_tlb_write_entry); |
| |
| static __maybe_unused void build_convert_pte_to_entrylo(u32 **p, |
| unsigned int reg) |
| { |
| if (_PAGE_GLOBAL_SHIFT == 0) { |
| /* pte_t is already in EntryLo format */ |
| return; |
| } |
| |
| if (cpu_has_rixi && !!_PAGE_NO_EXEC) { |
| if (fill_includes_sw_bits) { |
| UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL)); |
| } else { |
| UASM_i_SRL(p, reg, reg, ilog2(_PAGE_NO_EXEC)); |
| UASM_i_ROTR(p, reg, reg, |
| ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC)); |
| } |
| } else { |
| #ifdef CONFIG_PHYS_ADDR_T_64BIT |
| uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL)); |
| #else |
| UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL)); |
| #endif |
| } |
| } |
| |
| #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT |
| |
| static void build_restore_pagemask(u32 **p, struct uasm_reloc **r, |
| unsigned int tmp, enum label_id lid, |
| int restore_scratch) |
| { |
| if (restore_scratch) { |
| /* |
| * Ensure the MFC0 below observes the value written to the |
| * KScratch register by the prior MTC0. |
| */ |
| if (scratch_reg >= 0) |
| uasm_i_ehb(p); |
| |
| /* Reset default page size */ |
| if (PM_DEFAULT_MASK >> 16) { |
| uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16); |
| uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff); |
| uasm_i_mtc0(p, tmp, C0_PAGEMASK); |
| uasm_il_b(p, r, lid); |
| } else if (PM_DEFAULT_MASK) { |
| uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK); |
| uasm_i_mtc0(p, tmp, C0_PAGEMASK); |
| uasm_il_b(p, r, lid); |
| } else { |
| uasm_i_mtc0(p, 0, C0_PAGEMASK); |
| uasm_il_b(p, r, lid); |
| } |
| if (scratch_reg >= 0) |
| UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg); |
| else |
| UASM_i_LW(p, 1, scratchpad_offset(0), 0); |
| } else { |
| /* Reset default page size */ |
| if (PM_DEFAULT_MASK >> 16) { |
| uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16); |
| uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff); |
| uasm_il_b(p, r, lid); |
| uasm_i_mtc0(p, tmp, C0_PAGEMASK); |
| } else if (PM_DEFAULT_MASK) { |
| uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK); |
| uasm_il_b(p, r, lid); |
| uasm_i_mtc0(p, tmp, C0_PAGEMASK); |
| } else { |
| uasm_il_b(p, r, lid); |
| uasm_i_mtc0(p, 0, C0_PAGEMASK); |
| } |
| } |
| } |
| |
| static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l, |
| struct uasm_reloc **r, |
| unsigned int tmp, |
| enum tlb_write_entry wmode, |
| int restore_scratch) |
| { |
| /* Set huge page tlb entry size */ |
| uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16); |
| uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff); |
| uasm_i_mtc0(p, tmp, C0_PAGEMASK); |
| |
| build_tlb_write_entry(p, l, r, wmode); |
| |
| build_restore_pagemask(p, r, tmp, label_leave, restore_scratch); |
| } |
| |
| /* |
| * Check if Huge PTE is present, if so then jump to LABEL. |
| */ |
| static void |
| build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp, |
| unsigned int pmd, int lid) |
| { |
| UASM_i_LW(p, tmp, 0, pmd); |
| if (use_bbit_insns()) { |
| uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid); |
| } else { |
| uasm_i_andi(p, tmp, tmp, _PAGE_HUGE); |
| uasm_il_bnez(p, r, tmp, lid); |
| } |
| } |
| |
| static void build_huge_update_entries(u32 **p, unsigned int pte, |
| unsigned int tmp) |
| { |
| int small_sequence; |
| |
| /* |
| * A huge PTE describes an area the size of the |
| * configured huge page size. This is twice the |
| * of the large TLB entry size we intend to use. |
| * A TLB entry half the size of the configured |
| * huge page size is configured into entrylo0 |
| * and entrylo1 to cover the contiguous huge PTE |
| * address space. |
| */ |
| small_sequence = (HPAGE_SIZE >> 7) < 0x10000; |
| |
| /* We can clobber tmp. It isn't used after this.*/ |
| if (!small_sequence) |
| uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16)); |
| |
| build_convert_pte_to_entrylo(p, pte); |
| UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */ |
| /* convert to entrylo1 */ |
| if (small_sequence) |
| UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7); |
| else |
| UASM_i_ADDU(p, pte, pte, tmp); |
| |
| UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */ |
| } |
| |
| static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r, |
| struct uasm_label **l, |
| unsigned int pte, |
| unsigned int ptr, |
| unsigned int flush) |
| { |
| #ifdef CONFIG_SMP |
| UASM_i_SC(p, pte, 0, ptr); |
| uasm_il_beqz(p, r, pte, label_tlb_huge_update); |
| UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */ |
| #else |
| UASM_i_SW(p, pte, 0, ptr); |
| #endif |
| if (cpu_has_ftlb && flush) { |
| BUG_ON(!cpu_has_tlbinv); |
| |
| UASM_i_MFC0(p, ptr, C0_ENTRYHI); |
| uasm_i_ori(p, ptr, ptr, MIPS_ENTRYHI_EHINV); |
| UASM_i_MTC0(p, ptr, C0_ENTRYHI); |
| build_tlb_write_entry(p, l, r, tlb_indexed); |
| |
| uasm_i_xori(p, ptr, ptr, MIPS_ENTRYHI_EHINV); |
| UASM_i_MTC0(p, ptr, C0_ENTRYHI); |
| build_huge_update_entries(p, pte, ptr); |
| build_huge_tlb_write_entry(p, l, r, pte, tlb_random, 0); |
| |
| return; |
| } |
| |
| build_huge_update_entries(p, pte, ptr); |
| build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0); |
| } |
| #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */ |
| |
| #ifdef CONFIG_64BIT |
| /* |
| * TMP and PTR are scratch. |
| * TMP will be clobbered, PTR will hold the pmd entry. |
| */ |
| void build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r, |
| unsigned int tmp, unsigned int ptr) |
| { |
| #ifndef CONFIG_MIPS_PGD_C0_CONTEXT |
| long pgdc = (long)pgd_current; |
| #endif |
| /* |
| * The vmalloc handling is not in the hotpath. |
| */ |
| uasm_i_dmfc0(p, tmp, C0_BADVADDR); |
| |
| if (check_for_high_segbits) { |
| /* |
| * The kernel currently implicitely assumes that the |
| * MIPS SEGBITS parameter for the processor is |
| * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never |
| * allocate virtual addresses outside the maximum |
| * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But |
| * that doesn't prevent user code from accessing the |
| * higher xuseg addresses. Here, we make sure that |
| * everything but the lower xuseg addresses goes down |
| * the module_alloc/vmalloc path. |
| */ |
| uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3); |
| uasm_il_bnez(p, r, ptr, label_vmalloc); |
| } else { |
| uasm_il_bltz(p, r, tmp, label_vmalloc); |
| } |
| /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */ |
| |
| if (pgd_reg != -1) { |
| /* pgd is in pgd_reg */ |
| if (cpu_has_ldpte) |
| UASM_i_MFC0(p, ptr, C0_PWBASE); |
| else |
| UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg); |
| } else { |
| #if defined(CONFIG_MIPS_PGD_C0_CONTEXT) |
| /* |
| * &pgd << 11 stored in CONTEXT [23..63]. |
| */ |
| UASM_i_MFC0(p, ptr, C0_CONTEXT); |
| |
| /* Clear lower 23 bits of context. */ |
| uasm_i_dins(p, ptr, 0, 0, 23); |
| |
| /* 1 0 1 0 1 << 6 xkphys cached */ |
| uasm_i_ori(p, ptr, ptr, 0x540); |
| uasm_i_drotr(p, ptr, ptr, 11); |
| #elif defined(CONFIG_SMP) |
| UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG); |
| uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT); |
| UASM_i_LA_mostly(p, tmp, pgdc); |
| uasm_i_daddu(p, ptr, ptr, tmp); |
| uasm_i_dmfc0(p, tmp, C0_BADVADDR); |
| uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr); |
| #else |
| UASM_i_LA_mostly(p, ptr, pgdc); |
| uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr); |
| #endif |
| } |
| |
| uasm_l_vmalloc_done(l, *p); |
| |
| /* get pgd offset in bytes */ |
| uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3); |
| |
| uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3); |
| uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */ |
| #ifndef __PAGETABLE_PUD_FOLDED |
| uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */ |
| uasm_i_ld(p, ptr, 0, ptr); /* get pud pointer */ |
| uasm_i_dsrl_safe(p, tmp, tmp, PUD_SHIFT - 3); /* get pud offset in bytes */ |
| uasm_i_andi(p, tmp, tmp, (PTRS_PER_PUD - 1) << 3); |
| uasm_i_daddu(p, ptr, ptr, tmp); /* add in pud offset */ |
| #endif |
| #ifndef __PAGETABLE_PMD_FOLDED |
| uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */ |
| uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */ |
| uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */ |
| uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3); |
| uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */ |
| #endif |
| } |
| EXPORT_SYMBOL_GPL(build_get_pmde64); |
| |
| /* |
| * BVADDR is the faulting address, PTR is scratch. |
| * PTR will hold the pgd for vmalloc. |
| */ |
| static void |
| build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r, |
| unsigned int bvaddr, unsigned int ptr, |
| enum vmalloc64_mode mode) |
| { |
| long swpd = (long)swapper_pg_dir; |
| int single_insn_swpd; |
| int did_vmalloc_branch = 0; |
| |
| single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd); |
| |
| uasm_l_vmalloc(l, *p); |
| |
| if (mode != not_refill && check_for_high_segbits) { |
| if (single_insn_swpd) { |
| uasm_il_bltz(p, r, bvaddr, label_vmalloc_done); |
| uasm_i_lui(p, ptr, uasm_rel_hi(swpd)); |
| did_vmalloc_branch = 1; |
| /* fall through */ |
| } else { |
| uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault); |
| } |
| } |
| if (!did_vmalloc_branch) { |
| if (single_insn_swpd) { |
| uasm_il_b(p, r, label_vmalloc_done); |
| uasm_i_lui(p, ptr, uasm_rel_hi(swpd)); |
| } else { |
| UASM_i_LA_mostly(p, ptr, swpd); |
| uasm_il_b(p, r, label_vmalloc_done); |
| if (uasm_in_compat_space_p(swpd)) |
| uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd)); |
| else |
| uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd)); |
| } |
| } |
| if (mode != not_refill && check_for_high_segbits) { |
| uasm_l_large_segbits_fault(l, *p); |
| |
| if (mode == refill_scratch && scratch_reg >= 0) |
| uasm_i_ehb(p); |
| |
| /* |
| * We get here if we are an xsseg address, or if we are |
| * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary. |
| * |
| * Ignoring xsseg (assume disabled so would generate |
| * (address errors?), the only remaining possibility |
| * is the upper xuseg addresses. On processors with |
| * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these |
| * addresses would have taken an address error. We try |
| * to mimic that here by taking a load/istream page |
| * fault. |
| */ |
| if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS)) |
| uasm_i_sync(p, 0); |
| UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0); |
| uasm_i_jr(p, ptr); |
| |
| if (mode == refill_scratch) { |
| if (scratch_reg >= 0) |
| UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg); |
| else |
| UASM_i_LW(p, 1, scratchpad_offset(0), 0); |
| } else { |
| uasm_i_nop(p); |
| } |
| } |
| } |
| |
| #else /* !CONFIG_64BIT */ |
| |
| /* |
| * TMP and PTR are scratch. |
| * TMP will be clobbered, PTR will hold the pgd entry. |
| */ |
| void build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr) |
| { |
| if (pgd_reg != -1) { |
| /* pgd is in pgd_reg */ |
| uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg); |
| uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */ |
| } else { |
| long pgdc = (long)pgd_current; |
| |
| /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */ |
| #ifdef CONFIG_SMP |
| uasm_i_mfc0(p, ptr, SMP_CPUID_REG); |
| UASM_i_LA_mostly(p, tmp, pgdc); |
| uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT); |
| uasm_i_addu(p, ptr, tmp, ptr); |
| #else |
| UASM_i_LA_mostly(p, ptr, pgdc); |
| #endif |
| uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */ |
| uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr); |
| } |
| uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */ |
| uasm_i_sll(p, tmp, tmp, PGD_T_LOG2); |
| uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */ |
| } |
| EXPORT_SYMBOL_GPL(build_get_pgde32); |
| |
| #endif /* !CONFIG_64BIT */ |
| |
| static void build_adjust_context(u32 **p, unsigned int ctx) |
| { |
| unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12; |
| unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1); |
| |
| switch (current_cpu_type()) { |
| case CPU_VR41XX: |
| case CPU_VR4111: |
| case CPU_VR4121: |
| case CPU_VR4122: |
| case CPU_VR4131: |
| case CPU_VR4181: |
| case CPU_VR4181A: |
| case CPU_VR4133: |
| shift += 2; |
| break; |
| |
| default: |
| break; |
| } |
| |
| if (shift) |
| UASM_i_SRL(p, ctx, ctx, shift); |
| uasm_i_andi(p, ctx, ctx, mask); |
| } |
| |
| void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr) |
| { |
| /* |
| * Bug workaround for the Nevada. It seems as if under certain |
| * circumstances the move from cp0_context might produce a |
| * bogus result when the mfc0 instruction and its consumer are |
| * in a different cacheline or a load instruction, probably any |
| * memory reference, is between them. |
| */ |
| switch (current_cpu_type()) { |
| case CPU_NEVADA: |
| UASM_i_LW(p, ptr, 0, ptr); |
| GET_CONTEXT(p, tmp); /* get context reg */ |
| break; |
| |
| default: |
| GET_CONTEXT(p, tmp); /* get context reg */ |
| UASM_i_LW(p, ptr, 0, ptr); |
| break; |
| } |
| |
| build_adjust_context(p, tmp); |
| UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */ |
| } |
| EXPORT_SYMBOL_GPL(build_get_ptep); |
| |
| void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep) |
| { |
| int pte_off_even = 0; |
| int pte_off_odd = sizeof(pte_t); |
| |
| #if defined(CONFIG_CPU_MIPS32) && defined(CONFIG_PHYS_ADDR_T_64BIT) |
| /* The low 32 bits of EntryLo is stored in pte_high */ |
| pte_off_even += offsetof(pte_t, pte_high); |
| pte_off_odd += offsetof(pte_t, pte_high); |
| #endif |
| |
| if (IS_ENABLED(CONFIG_XPA)) { |
| uasm_i_lw(p, tmp, pte_off_even, ptep); /* even pte */ |
| UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); |
| UASM_i_MTC0(p, tmp, C0_ENTRYLO0); |
| |
| if (cpu_has_xpa && !mips_xpa_disabled) { |
| uasm_i_lw(p, tmp, 0, ptep); |
| uasm_i_ext(p, tmp, tmp, 0, 24); |
| uasm_i_mthc0(p, tmp, C0_ENTRYLO0); |
| } |
| |
| uasm_i_lw(p, tmp, pte_off_odd, ptep); /* odd pte */ |
| UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); |
| UASM_i_MTC0(p, tmp, C0_ENTRYLO1); |
| |
| if (cpu_has_xpa && !mips_xpa_disabled) { |
| uasm_i_lw(p, tmp, sizeof(pte_t), ptep); |
| uasm_i_ext(p, tmp, tmp, 0, 24); |
| uasm_i_mthc0(p, tmp, C0_ENTRYLO1); |
| } |
| return; |
| } |
| |
| UASM_i_LW(p, tmp, pte_off_even, ptep); /* get even pte */ |
| UASM_i_LW(p, ptep, pte_off_odd, ptep); /* get odd pte */ |
| if (r45k_bvahwbug()) |
| build_tlb_probe_entry(p); |
| build_convert_pte_to_entrylo(p, tmp); |
| if (r4k_250MHZhwbug()) |
| UASM_i_MTC0(p, 0, C0_ENTRYLO0); |
| UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */ |
| build_convert_pte_to_entrylo(p, ptep); |
| if (r45k_bvahwbug()) |
| uasm_i_mfc0(p, tmp, C0_INDEX); |
| if (r4k_250MHZhwbug()) |
| UASM_i_MTC0(p, 0, C0_ENTRYLO1); |
| UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */ |
| } |
| EXPORT_SYMBOL_GPL(build_update_entries); |
| |
| struct mips_huge_tlb_info { |
| int huge_pte; |
| int restore_scratch; |
| bool need_reload_pte; |
| }; |
| |
| static struct mips_huge_tlb_info |
| build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l, |
| struct uasm_reloc **r, unsigned int tmp, |
| unsigned int ptr, int c0_scratch_reg) |
| { |
| struct mips_huge_tlb_info rv; |
| unsigned int even, odd; |
| int vmalloc_branch_delay_filled = 0; |
| const int scratch = 1; /* Our extra working register */ |
| |
| rv.huge_pte = scratch; |
| rv.restore_scratch = 0; |
| rv.need_reload_pte = false; |
| |
| if (check_for_high_segbits) { |
| UASM_i_MFC0(p, tmp, C0_BADVADDR); |
| |
| if (pgd_reg != -1) |
| UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg); |
| else |
| UASM_i_MFC0(p, ptr, C0_CONTEXT); |
| |
| if (c0_scratch_reg >= 0) |
| UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg); |
| else |
| UASM_i_SW(p, scratch, scratchpad_offset(0), 0); |
| |
| uasm_i_dsrl_safe(p, scratch, tmp, |
| PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3); |
| uasm_il_bnez(p, r, scratch, label_vmalloc); |
| |
| if (pgd_reg == -1) { |
| vmalloc_branch_delay_filled = 1; |
| /* Clear lower 23 bits of context. */ |
| uasm_i_dins(p, ptr, 0, 0, 23); |
| } |
| } else { |
| if (pgd_reg != -1) |
| UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg); |
| else |
| UASM_i_MFC0(p, ptr, C0_CONTEXT); |
| |
| UASM_i_MFC0(p, tmp, C0_BADVADDR); |
| |
| if (c0_scratch_reg >= 0) |
| UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg); |
| else |
| UASM_i_SW(p, scratch, scratchpad_offset(0), 0); |
| |
| if (pgd_reg == -1) |
| /* Clear lower 23 bits of context. */ |
| uasm_i_dins(p, ptr, 0, 0, 23); |
| |
| uasm_il_bltz(p, r, tmp, label_vmalloc); |
| } |
| |
| if (pgd_reg == -1) { |
| vmalloc_branch_delay_filled = 1; |
| /* 1 0 1 0 1 << 6 xkphys cached */ |
| uasm_i_ori(p, ptr, ptr, 0x540); |
| uasm_i_drotr(p, ptr, ptr, 11); |
| } |
| |
| #ifdef __PAGETABLE_PMD_FOLDED |
| #define LOC_PTEP scratch |
| #else |
| #define LOC_PTEP ptr |
| #endif |
| |
| if (!vmalloc_branch_delay_filled) |
| /* get pgd offset in bytes */ |
| uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3); |
| |
| uasm_l_vmalloc_done(l, *p); |
| |
| /* |
| * tmp ptr |
| * fall-through case = badvaddr *pgd_current |
| * vmalloc case = badvaddr swapper_pg_dir |
| */ |
| |
| if (vmalloc_branch_delay_filled) |
| /* get pgd offset in bytes */ |
| uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3); |
| |
| #ifdef __PAGETABLE_PMD_FOLDED |
| GET_CONTEXT(p, tmp); /* get context reg */ |
| #endif |
| uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3); |
| |
| if (use_lwx_insns()) { |
| UASM_i_LWX(p, LOC_PTEP, scratch, ptr); |
| } else { |
| uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */ |
| uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */ |
| } |
| |
| #ifndef __PAGETABLE_PUD_FOLDED |
| /* get pud offset in bytes */ |
| uasm_i_dsrl_safe(p, scratch, tmp, PUD_SHIFT - 3); |
| uasm_i_andi(p, scratch, scratch, (PTRS_PER_PUD - 1) << 3); |
| |
| if (use_lwx_insns()) { |
| UASM_i_LWX(p, ptr, scratch, ptr); |
| } else { |
| uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */ |
| UASM_i_LW(p, ptr, 0, ptr); |
| } |
| /* ptr contains a pointer to PMD entry */ |
| /* tmp contains the address */ |
| #endif |
| |
| #ifndef __PAGETABLE_PMD_FOLDED |
| /* get pmd offset in bytes */ |
| uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3); |
| uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3); |
| GET_CONTEXT(p, tmp); /* get context reg */ |
| |
| if (use_lwx_insns()) { |
| UASM_i_LWX(p, scratch, scratch, ptr); |
| } else { |
| uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */ |
| UASM_i_LW(p, scratch, 0, ptr); |
| } |
| #endif |
| /* Adjust the context during the load latency. */ |
| build_adjust_context(p, tmp); |
| |
| #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT |
| uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update); |
| /* |
| * The in the LWX case we don't want to do the load in the |
| * delay slot. It cannot issue in the same cycle and may be |
| * speculative and unneeded. |
| */ |
| if (use_lwx_insns()) |
| uasm_i_nop(p); |
| #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */ |
| |
| |
| /* build_update_entries */ |
| if (use_lwx_insns()) { |
| even = ptr; |
| odd = tmp; |
| UASM_i_LWX(p, even, scratch, tmp); |
| UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t)); |
| UASM_i_LWX(p, odd, scratch, tmp); |
| } else { |
| UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */ |
| even = tmp; |
| odd = ptr; |
| UASM_i_LW(p, even, 0, ptr); /* get even pte */ |
| UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */ |
| } |
| if (cpu_has_rixi) { |
| uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL)); |
| UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */ |
| uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL)); |
| } else { |
| uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL)); |
| UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */ |
| uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL)); |
| } |
| UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */ |
| |
| if (c0_scratch_reg >= 0) { |
| uasm_i_ehb(p); |
| UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg); |
| build_tlb_write_entry(p, l, r, tlb_random); |
| uasm_l_leave(l, *p); |
| rv.restore_scratch = 1; |
| } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) { |
| build_tlb_write_entry(p, l, r, tlb_random); |
| uasm_l_leave(l, *p); |
| UASM_i_LW(p, scratch, scratchpad_offset(0), 0); |
| } else { |
| UASM_i_LW(p, scratch, scratchpad_offset(0), 0); |
| build_tlb_write_entry(p, l, r, tlb_random); |
| uasm_l_leave(l, *p); |
| rv.restore_scratch = 1; |
| } |
| |
| uasm_i_eret(p); /* return from trap */ |
| |
| return rv; |
| } |
| |
| /* |
| * For a 64-bit kernel, we are using the 64-bit XTLB refill exception |
| * because EXL == 0. If we wrap, we can also use the 32 instruction |
| * slots before the XTLB refill exception handler which belong to the |
| * unused TLB refill exception. |
| */ |
| #define MIPS64_REFILL_INSNS 32 |
| |
| static void build_r4000_tlb_refill_handler(void) |
| { |
| u32 *p = tlb_handler; |
| struct uasm_label *l = labels; |
| struct uasm_reloc *r = relocs; |
| u32 *f; |
| unsigned int final_len; |
| struct mips_huge_tlb_info htlb_info __maybe_unused; |
| enum vmalloc64_mode vmalloc_mode __maybe_unused; |
| |
| memset(tlb_handler, 0, sizeof(tlb_handler)); |
| memset(labels, 0, sizeof(labels)); |
| memset(relocs, 0, sizeof(relocs)); |
| memset(final_handler, 0, sizeof(final_handler)); |
| |
| if (IS_ENABLED(CONFIG_64BIT) && (scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) { |
| htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1, |
| scratch_reg); |
| vmalloc_mode = refill_scratch; |
| } else { |
| htlb_info.huge_pte = K0; |
| htlb_info.restore_scratch = 0; |
| htlb_info.need_reload_pte = true; |
| vmalloc_mode = refill_noscratch; |
| /* |
| * create the plain linear handler |
| */ |
| if (bcm1250_m3_war()) { |
| unsigned int segbits = 44; |
| |
| uasm_i_dmfc0(&p, K0, C0_BADVADDR); |
| uasm_i_dmfc0(&p, K1, C0_ENTRYHI); |
| uasm_i_xor(&p, K0, K0, K1); |
| uasm_i_dsrl_safe(&p, K1, K0, 62); |
| uasm_i_dsrl_safe(&p, K0, K0, 12 + 1); |
| uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits); |
| uasm_i_or(&p, K0, K0, K1); |
| uasm_il_bnez(&p, &r, K0, label_leave); |
| /* No need for uasm_i_nop */ |
| } |
| |
| #ifdef CONFIG_64BIT |
| build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */ |
| #else |
| build_get_pgde32(&p, K0, K1); /* get pgd in K1 */ |
| #endif |
| |
| #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT |
| build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update); |
| #endif |
| |
| build_get_ptep(&p, K0, K1); |
| build_update_entries(&p, K0, K1); |
| build_tlb_write_entry(&p, &l, &r, tlb_random); |
| uasm_l_leave(&l, p); |
| uasm_i_eret(&p); /* return from trap */ |
| } |
| #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT |
| uasm_l_tlb_huge_update(&l, p); |
| if (htlb_info.need_reload_pte) |
| UASM_i_LW(&p, htlb_info.huge_pte, 0, K1); |
| build_huge_update_entries(&p, htlb_info.huge_pte, K1); |
| build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random, |
| htlb_info.restore_scratch); |
| #endif |
| |
| #ifdef CONFIG_64BIT |
| build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode); |
| #endif |
| |
| /* |
| * Overflow check: For the 64bit handler, we need at least one |
| * free instruction slot for the wrap-around branch. In worst |
| * case, if the intended insertion point is a delay slot, we |
| * need three, with the second nop'ed and the third being |
| * unused. |
| */ |
| switch (boot_cpu_type()) { |
| default: |
| if (sizeof(long) == 4) { |
| case CPU_LOONGSON2: |
| /* Loongson2 ebase is different than r4k, we have more space */ |
| if ((p - tlb_handler) > 64) |
| panic("TLB refill handler space exceeded"); |
| /* |
| * Now fold the handler in the TLB refill handler space. |
| */ |
| f = final_handler; |
| /* Simplest case, just copy the handler. */ |
| uasm_copy_handler(relocs, labels, tlb_handler, p, f); |
| final_len = p - tlb_handler; |
| break; |
| } else { |
| if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1) |
| || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3) |
| && uasm_insn_has_bdelay(relocs, |
| tlb_handler + MIPS64_REFILL_INSNS - 3))) |
| panic("TLB refill handler space exceeded"); |
| /* |
| * Now fold the handler in the TLB refill handler space. |
| */ |
| f = final_handler + MIPS64_REFILL_INSNS; |
| if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) { |
| /* Just copy the handler. */ |
| uasm_copy_handler(relocs, labels, tlb_handler, p, f); |
| final_len = p - tlb_handler; |
| } else { |
| #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT |
| const enum label_id ls = label_tlb_huge_update; |
| #else |
| const enum label_id ls = label_vmalloc; |
| #endif |
| u32 *split; |
| int ov = 0; |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++) |
| ; |
| BUG_ON(i == ARRAY_SIZE(labels)); |
| split = labels[i].addr; |
| |
| /* |
| * See if we have overflown one way or the other. |
| */ |
| if (split > tlb_handler + MIPS64_REFILL_INSNS || |
| split < p - MIPS64_REFILL_INSNS) |
| ov = 1; |
| |
| if (ov) { |
| /* |
| * Split two instructions before the end. One |
| * for the branch and one for the instruction |
| * in the delay slot. |
| */ |
| split = tlb_handler + MIPS64_REFILL_INSNS - 2; |
| |
| /* |
| * If the branch would fall in a delay slot, |
| * we must back up an additional instruction |
| * so that it is no longer in a delay slot. |
| */ |
| if (uasm_insn_has_bdelay(relocs, split - 1)) |
| split--; |
| } |
| /* Copy first part of the handler. */ |
| uasm_copy_handler(relocs, labels, tlb_handler, split, f); |
| f += split - tlb_handler; |
| |
| if (ov) { |
| /* Insert branch. */ |
| uasm_l_split(&l, final_handler); |
| uasm_il_b(&f, &r, label_split); |
| if (uasm_insn_has_bdelay(relocs, split)) |
| uasm_i_nop(&f); |
| else { |
| uasm_copy_handler(relocs, labels, |
| split, split + 1, f); |
| uasm_move_labels(labels, f, f + 1, -1); |
| f++; |
| split++; |
| } |
| } |
| |
| /* Copy the rest of the handler. */ |
| uasm_copy_handler(relocs, labels, split, p, final_handler); |
| final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) + |
| (p - split); |
| } |
| } |
| break; |
| } |
| |
| uasm_resolve_relocs(relocs, labels); |
| pr_debug("Wrote TLB refill handler (%u instructions).\n", |
| final_len); |
| |
| memcpy((void *)ebase, final_handler, 0x100); |
| local_flush_icache_range(ebase, ebase + 0x100); |
| dump_handler("r4000_tlb_refill", (u32 *)ebase, (u32 *)(ebase + 0x100)); |
| } |
| |
| static void setup_pw(void) |
| { |
| unsigned long pgd_i, pgd_w; |
| #ifndef __PAGETABLE_PMD_FOLDED |
| unsigned long pmd_i, pmd_w; |
| #endif |
| unsigned long pt_i, pt_w; |
| unsigned long pte_i, pte_w; |
| #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT |
| unsigned long psn; |
| |
| psn = ilog2(_PAGE_HUGE); /* bit used to indicate huge page */ |
| #endif |
| pgd_i = PGDIR_SHIFT; /* 1st level PGD */ |
| #ifndef __PAGETABLE_PMD_FOLDED |
| pgd_w = PGDIR_SHIFT - PMD_SHIFT + PGD_ORDER; |
| |
| pmd_i = PMD_SHIFT; /* 2nd level PMD */ |
| pmd_w = PMD_SHIFT - PAGE_SHIFT; |
| #else |
| pgd_w = PGDIR_SHIFT - PAGE_SHIFT + PGD_ORDER; |
| #endif |
| |
| pt_i = PAGE_SHIFT; /* 3rd level PTE */ |
| pt_w = PAGE_SHIFT - 3; |
| |
| pte_i = ilog2(_PAGE_GLOBAL); |
| pte_w = 0; |
| |
| #ifndef __PAGETABLE_PMD_FOLDED |
| write_c0_pwfield(pgd_i << 24 | pmd_i << 12 | pt_i << 6 | pte_i); |
| write_c0_pwsize(1 << 30 | pgd_w << 24 | pmd_w << 12 | pt_w << 6 | pte_w); |
| #else |
| write_c0_pwfield(pgd_i << 24 | pt_i << 6 | pte_i); |
| write_c0_pwsize(1 << 30 | pgd_w << 24 | pt_w << 6 | pte_w); |
| #endif |
| |
| #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT |
| write_c0_pwctl(1 << 6 | psn); |
| #endif |
| write_c0_kpgd((long)swapper_pg_dir); |
| kscratch_used_mask |= (1 << 7); /* KScratch6 is used for KPGD */ |
| } |
| |
| static void build_loongson3_tlb_refill_handler(void) |
| { |
| u32 *p = tlb_handler; |
| struct uasm_label *l = labels; |
| struct uasm_reloc *r = relocs; |
| |
| memset(labels, 0, sizeof(labels)); |
| memset(relocs, 0, sizeof(relocs)); |
| memset(tlb_handler, 0, sizeof(tlb_handler)); |
| |
| if (check_for_high_segbits) { |
| uasm_i_dmfc0(&p, K0, C0_BADVADDR); |
| uasm_i_dsrl_safe(&p, K1, K0, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3); |
| uasm_il_beqz(&p, &r, K1, label_vmalloc); |
| uasm_i_nop(&p); |
| |
| uasm_il_bgez(&p, &r, K0, label_large_segbits_fault); |
| uasm_i_nop(&p); |
| uasm_l_vmalloc(&l, p); |
| } |
| |
| uasm_i_dmfc0(&p, K1, C0_PGD); |
| |
| uasm_i_lddir(&p, K0, K1, 3); /* global page dir */ |
| #ifndef __PAGETABLE_PMD_FOLDED |
| uasm_i_lddir(&p, K1, K0, 1); /* middle page dir */ |
| #endif |
| uasm_i_ldpte(&p, K1, 0); /* even */ |
| uasm_i_ldpte(&p, K1, 1); /* odd */ |
| uasm_i_tlbwr(&p); |
| |
| /* restore page mask */ |
| if (PM_DEFAULT_MASK >> 16) { |
| uasm_i_lui(&p, K0, PM_DEFAULT_MASK >> 16); |
| uasm_i_ori(&p, K0, K0, PM_DEFAULT_MASK & 0xffff); |
| uasm_i_mtc0(&p, K0, C0_PAGEMASK); |
| } else if (PM_DEFAULT_MASK) { |
| uasm_i_ori(&p, K0, 0, PM_DEFAULT_MASK); |
| uasm_i_mtc0(&p, K0, C0_PAGEMASK); |
| } else { |
| uasm_i_mtc0(&p, 0, C0_PAGEMASK); |
| } |
| |
| uasm_i_eret(&p); |
| |
| if (check_for_high_segbits) { |
| uasm_l_large_segbits_fault(&l, p); |
| UASM_i_LA(&p, K1, (unsigned long)tlb_do_page_fault_0); |
| uasm_i_jr(&p, K1); |
| uasm_i_nop(&p); |
| } |
| |
| uasm_resolve_relocs(relocs, labels); |
| memcpy((void *)(ebase + 0x80), tlb_handler, 0x80); |
| local_flush_icache_range(ebase + 0x80, ebase + 0x100); |
| dump_handler("loongson3_tlb_refill", |
| (u32 *)(ebase + 0x80), (u32 *)(ebase + 0x100)); |
| } |
| |
| static void build_setup_pgd(void) |
| { |
| const int a0 = 4; |
| const int __maybe_unused a1 = 5; |
| const int __maybe_unused a2 = 6; |
| u32 *p = (u32 *)msk_isa16_mode((ulong)tlbmiss_handler_setup_pgd); |
| #ifndef CONFIG_MIPS_PGD_C0_CONTEXT |
| long pgdc = (long)pgd_current; |
| #endif |
| |
| memset(p, 0, tlbmiss_handler_setup_pgd_end - (char *)p); |
| memset(labels, 0, sizeof(labels)); |
| memset(relocs, 0, sizeof(relocs)); |
| pgd_reg = allocate_kscratch(); |
| #ifdef CONFIG_MIPS_PGD_C0_CONTEXT |
| if (pgd_reg == -1) { |
| struct uasm_label *l = labels; |
| struct uasm_reloc *r = relocs; |
| |
| /* PGD << 11 in c0_Context */ |
| /* |
| * If it is a ckseg0 address, convert to a physical |
| * address. Shifting right by 29 and adding 4 will |
| * result in zero for these addresses. |
| * |
| */ |
| UASM_i_SRA(&p, a1, a0, 29); |
| UASM_i_ADDIU(&p, a1, a1, 4); |
| uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1); |
| uasm_i_nop(&p); |
| uasm_i_dinsm(&p, a0, 0, 29, 64 - 29); |
| uasm_l_tlbl_goaround1(&l, p); |
| UASM_i_SLL(&p, a0, a0, 11); |
| UASM_i_MTC0(&p, a0, C0_CONTEXT); |
| uasm_i_jr(&p, 31); |
| uasm_i_ehb(&p); |
| } else { |
| /* PGD in c0_KScratch */ |
| if (cpu_has_ldpte) |
| UASM_i_MTC0(&p, a0, C0_PWBASE); |
| else |
| UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg); |
| uasm_i_jr(&p, 31); |
| uasm_i_ehb(&p); |
| } |
| #else |
| #ifdef CONFIG_SMP |
| /* Save PGD to pgd_current[smp_processor_id()] */ |
| UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG); |
| UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT); |
| UASM_i_LA_mostly(&p, a2, pgdc); |
| UASM_i_ADDU(&p, a2, a2, a1); |
| UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2); |
| #else |
| UASM_i_LA_mostly(&p, a2, pgdc); |
| UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2); |
| #endif /* SMP */ |
| |
| /* if pgd_reg is allocated, save PGD also to scratch register */ |
| if (pgd_reg != -1) { |
| UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg); |
| uasm_i_jr(&p, 31); |
| uasm_i_ehb(&p); |
| } else { |
| uasm_i_jr(&p, 31); |
| uasm_i_nop(&p); |
| } |
| #endif |
| if (p >= (u32 *)tlbmiss_handler_setup_pgd_end) |
| panic("tlbmiss_handler_setup_pgd space exceeded"); |
| |
| uasm_resolve_relocs(relocs, labels); |
| pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n", |
| (unsigned int)(p - (u32 *)tlbmiss_handler_setup_pgd)); |
| |
| dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd, |
| tlbmiss_handler_setup_pgd_end); |
| } |
| |
| static void |
| iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr) |
| { |
| #ifdef CONFIG_SMP |
| if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS)) |
| uasm_i_sync(p, 0); |
| # ifdef CONFIG_PHYS_ADDR_T_64BIT |
| if (cpu_has_64bits) |
| uasm_i_lld(p, pte, 0, ptr); |
| else |
| # endif |
| UASM_i_LL(p, pte, 0, ptr); |
| #else |
| # ifdef CONFIG_PHYS_ADDR_T_64BIT |
| if (cpu_has_64bits) |
| uasm_i_ld(p, pte, 0, ptr); |
| else |
| # endif |
| UASM_i_LW(p, pte, 0, ptr); |
| #endif |
| } |
| |
| static void |
| iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr, |
| unsigned int mode, unsigned int scratch) |
| { |
| unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY); |
| unsigned int swmode = mode & ~hwmode; |
| |
| if (IS_ENABLED(CONFIG_XPA) && !cpu_has_64bits) { |
| uasm_i_lui(p, scratch, swmode >> 16); |
| uasm_i_or(p, pte, pte, scratch); |
| BUG_ON(swmode & 0xffff); |
| } else { |
| uasm_i_ori(p, pte, pte, mode); |
| } |
| |
| #ifdef CONFIG_SMP |
| # ifdef CONFIG_PHYS_ADDR_T_64BIT |
| if (cpu_has_64bits) |
| uasm_i_scd(p, pte, 0, ptr); |
| else |
| # endif |
| UASM_i_SC(p, pte, 0, ptr); |
| |
| if (r10000_llsc_war()) |
| uasm_il_beqzl(p, r, pte, label_smp_pgtable_change); |
| else |
| uasm_il_beqz(p, r, pte, label_smp_pgtable_change); |
| |
| # ifdef CONFIG_PHYS_ADDR_T_64BIT |
| if (!cpu_has_64bits) { |
| /* no uasm_i_nop needed */ |
| uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr); |
| uasm_i_ori(p, pte, pte, hwmode); |
| BUG_ON(hwmode & ~0xffff); |
| uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr); |
| uasm_il_beqz(p, r, pte, label_smp_pgtable_change); |
| /* no uasm_i_nop needed */ |
| uasm_i_lw(p, pte, 0, ptr); |
| } else |
| uasm_i_nop(p); |
| # else |
| uasm_i_nop(p); |
| # endif |
| #else |
| # ifdef CONFIG_PHYS_ADDR_T_64BIT |
| if (cpu_has_64bits) |
| uasm_i_sd(p, pte, 0, ptr); |
| else |
| # endif |
| UASM_i_SW(p, pte, 0, ptr); |
| |
| # ifdef CONFIG_PHYS_ADDR_T_64BIT |
| if (!cpu_has_64bits) { |
| uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr); |
| uasm_i_ori(p, pte, pte, hwmode); |
| BUG_ON(hwmode & ~0xffff); |
| uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr); |
| uasm_i_lw(p, pte, 0, ptr); |
| } |
| # endif |
| #endif |
| } |
| |
| /* |
| * Check if PTE is present, if not then jump to LABEL. PTR points to |
| * the page table where this PTE is located, PTE will be re-loaded |
| * with it's original value. |
| */ |
| static void |
| build_pte_present(u32 **p, struct uasm_reloc **r, |
| int pte, int ptr, int scratch, enum label_id lid) |
| { |
| int t = scratch >= 0 ? scratch : pte; |
| int cur = pte; |
| |
| if (cpu_has_rixi) { |
| if (use_bbit_insns()) { |
| uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid); |
| uasm_i_nop(p); |
| } else { |
| if (_PAGE_PRESENT_SHIFT) { |
| uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT); |
| cur = t; |
| } |
| uasm_i_andi(p, t, cur, 1); |
| uasm_il_beqz(p, r, t, lid); |
| if (pte == t) |
| /* You lose the SMP race :-(*/ |
| iPTE_LW(p, pte, ptr); |
| } |
| } else { |
| if (_PAGE_PRESENT_SHIFT) { |
| uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT); |
| cur = t; |
| } |
| uasm_i_andi(p, t, cur, |
| (_PAGE_PRESENT | _PAGE_NO_READ) >> _PAGE_PRESENT_SHIFT); |
| uasm_i_xori(p, t, t, _PAGE_PRESENT >> _PAGE_PRESENT_SHIFT); |
| uasm_il_bnez(p, r, t, lid); |
| if (pte == t) |
| /* You lose the SMP race :-(*/ |
| iPTE_LW(p, pte, ptr); |
| } |
| } |
| |
| /* Make PTE valid, store result in PTR. */ |
| static void |
| build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte, |
| unsigned int ptr, unsigned int scratch) |
| { |
| unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED; |
| |
| iPTE_SW(p, r, pte, ptr, mode, scratch); |
| } |
| |
| /* |
| * Check if PTE can be written to, if not branch to LABEL. Regardless |
| * restore PTE with value from PTR when done. |
| */ |
| static void |
| build_pte_writable(u32 **p, struct uasm_reloc **r, |
| unsigned int pte, unsigned int ptr, int scratch, |
| enum label_id lid) |
| { |
| int t = scratch >= 0 ? scratch : pte; |
| int cur = pte; |
| |
| if (_PAGE_PRESENT_SHIFT) { |
| uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT); |
| cur = t; |
| } |
| uasm_i_andi(p, t, cur, |
| (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT); |
| uasm_i_xori(p, t, t, |
| (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT); |
| uasm_il_bnez(p, r, t, lid); |
| if (pte == t) |
| /* You lose the SMP race :-(*/ |
| iPTE_LW(p, pte, ptr); |
| else |
| uasm_i_nop(p); |
| } |
| |
| /* Make PTE writable, update software status bits as well, then store |
| * at PTR. |
| */ |
| static void |
| build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte, |
| unsigned int ptr, unsigned int scratch) |
| { |
| unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID |
| | _PAGE_DIRTY); |
| |
| iPTE_SW(p, r, pte, ptr, mode, scratch); |
| } |
| |
| /* |
| * Check if PTE can be modified, if not branch to LABEL. Regardless |
| * restore PTE with value from PTR when done. |
| */ |
| static void |
| build_pte_modifiable(u32 **p, struct uasm_reloc **r, |
| unsigned int pte, unsigned int ptr, int scratch, |
| enum label_id lid) |
| { |
| if (use_bbit_insns()) { |
| uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid); |
| uasm_i_nop(p); |
| } else { |
| int t = scratch >= 0 ? scratch : pte; |
| uasm_i_srl(p, t, pte, _PAGE_WRITE_SHIFT); |
| uasm_i_andi(p, t, t, 1); |
| uasm_il_beqz(p, r, t, lid); |
| if (pte == t) |
| /* You lose the SMP race :-(*/ |
| iPTE_LW(p, pte, ptr); |
| } |
| } |
| |
| #ifndef CONFIG_MIPS_PGD_C0_CONTEXT |
| |
| |
| /* |
| * R3000 style TLB load/store/modify handlers. |
| */ |
| |
| /* |
| * This places the pte into ENTRYLO0 and writes it with tlbwi. |
| * Then it returns. |
| */ |
| static void |
| build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp) |
| { |
| uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */ |
| uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */ |
| uasm_i_tlbwi(p); |
| uasm_i_jr(p, tmp); |
| uasm_i_rfe(p); /* branch delay */ |
| } |
| |
| /* |
| * This places the pte into ENTRYLO0 and writes it with tlbwi |
| * or tlbwr as appropriate. This is because the index register |
| * may have the probe fail bit set as a result of a trap on a |
| * kseg2 access, i.e. without refill. Then it returns. |
| */ |
| static void |
| build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l, |
| struct uasm_reloc **r, unsigned int pte, |
| unsigned int tmp) |
| { |
| uasm_i_mfc0(p, tmp, C0_INDEX); |
| uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */ |
| uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */ |
| uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */ |
| uasm_i_tlbwi(p); /* cp0 delay */ |
| uasm_i_jr(p, tmp); |
| uasm_i_rfe(p); /* branch delay */ |
| uasm_l_r3000_write_probe_fail(l, *p); |
| uasm_i_tlbwr(p); /* cp0 delay */ |
| uasm_i_jr(p, tmp); |
| uasm_i_rfe(p); /* branch delay */ |
| } |
| |
| static void |
| build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte, |
| unsigned int ptr) |
| { |
| long pgdc = (long)pgd_current; |
| |
| uasm_i_mfc0(p, pte, C0_BADVADDR); |
| uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */ |
| uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr); |
| uasm_i_srl(p, pte, pte, 22); /* load delay */ |
| uasm_i_sll(p, pte, pte, 2); |
| uasm_i_addu(p, ptr, ptr, pte); |
| uasm_i_mfc0(p, pte, C0_CONTEXT); |
| uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */ |
| uasm_i_andi(p, pte, pte, 0xffc); /* load delay */ |
| uasm_i_addu(p, ptr, ptr, pte); |
| uasm_i_lw(p, pte, 0, ptr); |
| uasm_i_tlbp(p); /* load delay */ |
| } |
| |
| static void build_r3000_tlb_load_handler(void) |
| { |
| u32 *p = (u32 *)handle_tlbl; |
| struct uasm_label *l = labels; |
| struct uasm_reloc *r = relocs; |
| |
| memset(p, 0, handle_tlbl_end - (char *)p); |
| memset(labels, 0, sizeof(labels)); |
| memset(relocs, 0, sizeof(relocs)); |
| |
| build_r3000_tlbchange_handler_head(&p, K0, K1); |
| build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl); |
| uasm_i_nop(&p); /* load delay */ |
| build_make_valid(&p, &r, K0, K1, -1); |
| build_r3000_tlb_reload_write(&p, &l, &r, K0, K1); |
| |
| uasm_l_nopage_tlbl(&l, p); |
| uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff); |
| uasm_i_nop(&p); |
| |
| if (p >= (u32 *)handle_tlbl_end) |
| panic("TLB load handler fastpath space exceeded"); |
| |
| uasm_resolve_relocs(relocs, labels); |
| pr_debug("Wrote TLB load handler fastpath (%u instructions).\n", |
| (unsigned int)(p - (u32 *)handle_tlbl)); |
| |
| dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_end); |
| } |
| |
| static void build_r3000_tlb_store_handler(void) |
| { |
| u32 *p = (u32 *)handle_tlbs; |
| struct uasm_label *l = labels; |
| struct uasm_reloc *r = relocs; |
| |
| memset(p, 0, handle_tlbs_end - (char *)p); |
| memset(labels, 0, sizeof(labels)); |
| memset(relocs, 0, sizeof(relocs)); |
| |
| build_r3000_tlbchange_handler_head(&p, K0, K1); |
| build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs); |
| uasm_i_nop(&p); /* load delay */ |
| build_make_write(&p, &r, K0, K1, -1); |
| build_r3000_tlb_reload_write(&p, &l, &r, K0, K1); |
| |
| uasm_l_nopage_tlbs(&l, p); |
| uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); |
| uasm_i_nop(&p); |
| |
| if (p >= (u32 *)handle_tlbs_end) |
| panic("TLB store handler fastpath space exceeded"); |
| |
| uasm_resolve_relocs(relocs, labels); |
| pr_debug("Wrote TLB store handler fastpath (%u instructions).\n", |
| (unsigned int)(p - (u32 *)handle_tlbs)); |
| |
| dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_end); |
| } |
| |
| static void build_r3000_tlb_modify_handler(void) |
| { |
| u32 *p = (u32 *)handle_tlbm; |
| struct uasm_label *l = labels; |
| struct uasm_reloc *r = relocs; |
| |
| memset(p, 0, handle_tlbm_end - (char *)p); |
| memset(labels, 0, sizeof(labels)); |
| memset(relocs, 0, sizeof(relocs)); |
| |
| build_r3000_tlbchange_handler_head(&p, K0, K1); |
| build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm); |
| uasm_i_nop(&p); /* load delay */ |
| build_make_write(&p, &r, K0, K1, -1); |
| build_r3000_pte_reload_tlbwi(&p, K0, K1); |
| |
| uasm_l_nopage_tlbm(&l, p); |
| uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); |
| uasm_i_nop(&p); |
| |
| if (p >= (u32 *)handle_tlbm_end) |
| panic("TLB modify handler fastpath space exceeded"); |
| |
| uasm_resolve_relocs(relocs, labels); |
| pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n", |
| (unsigned int)(p - (u32 *)handle_tlbm)); |
| |
| dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_end); |
| } |
| #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */ |
| |
| static bool cpu_has_tlbex_tlbp_race(void) |
| { |
| /* |
| * When a Hardware Table Walker is running it can replace TLB entries |
| * at any time, leading to a race between it & the CPU. |
| */ |
| if (cpu_has_htw) |
| return true; |
| |
| /* |
| * If the CPU shares FTLB RAM with its siblings then our entry may be |
| * replaced at any time by a sibling performing a write to the FTLB. |
| */ |
| if (cpu_has_shared_ftlb_ram) |
| return true; |
| |
| /* In all other cases there ought to be no race condition to handle */ |
| return false; |
| } |
| |
| /* |
| * R4000 style TLB load/store/modify handlers. |
| */ |
| static struct work_registers |
| build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l, |
| struct uasm_reloc **r) |
| { |
| struct work_registers wr = build_get_work_registers(p); |
| |
| #ifdef CONFIG_64BIT |
| build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */ |
| #else |
| build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */ |
| #endif |
| |
| #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT |
| /* |
| * For huge tlb entries, pmd doesn't contain an address but |
| * instead contains the tlb pte. Check the PAGE_HUGE bit and |
| * see if we need to jump to huge tlb processing. |
| */ |
| build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update); |
| #endif |
| |
| UASM_i_MFC0(p, wr.r1, C0_BADVADDR); |
| UASM_i_LW(p, wr.r2, 0, wr.r2); |
| UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2); |
| uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2); |
| UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1); |
| |
| #ifdef CONFIG_SMP |
| uasm_l_smp_pgtable_change(l, *p); |
| #endif |
| iPTE_LW(p, wr.r1, wr.r2); /* get even pte */ |
| if (!m4kc_tlbp_war()) { |
| build_tlb_probe_entry(p); |
| if (cpu_has_tlbex_tlbp_race()) { |
| /* race condition happens, leaving */ |
| uasm_i_ehb(p); |
| uasm_i_mfc0(p, wr.r3, C0_INDEX); |
| uasm_il_bltz(p, r, wr.r3, label_leave); |
| uasm_i_nop(p); |
| } |
| } |
| return wr; |
| } |
| |
| static void |
| build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l, |
| struct uasm_reloc **r, unsigned int tmp, |
| unsigned int ptr) |
| { |
| uasm_i_ori(p, ptr, ptr, sizeof(pte_t)); |
| uasm_i_xori(p, ptr, ptr, sizeof(pte_t)); |
| build_update_entries(p, tmp, ptr); |
| build_tlb_write_entry(p, l, r, tlb_indexed); |
| uasm_l_leave(l, *p); |
| build_restore_work_registers(p); |
| uasm_i_eret(p); /* return from trap */ |
| |
| #ifdef CONFIG_64BIT |
| build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill); |
| #endif |
| } |
| |
| static void build_r4000_tlb_load_handler(void) |
| { |
| u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbl); |
| struct uasm_label *l = labels; |
| struct uasm_reloc *r = relocs; |
| struct work_registers wr; |
| |
| memset(p, 0, handle_tlbl_end - (char *)p); |
| memset(labels, 0, sizeof(labels)); |
| memset(relocs, 0, sizeof(relocs)); |
| |
| if (bcm1250_m3_war()) { |
| unsigned int segbits = 44; |
| |
| uasm_i_dmfc0(&p, K0, C0_BADVADDR); |
| uasm_i_dmfc0(&p, K1, C0_ENTRYHI); |
| uasm_i_xor(&p, K0, K0, K1); |
| uasm_i_dsrl_safe(&p, K1, K0, 62); |
| uasm_i_dsrl_safe(&p, K0, K0, 12 + 1); |
| uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits); |
| uasm_i_or(&p, K0, K0, K1); |
| uasm_il_bnez(&p, &r, K0, label_leave); |
| /* No need for uasm_i_nop */ |
| } |
| |
| wr = build_r4000_tlbchange_handler_head(&p, &l, &r); |
| build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl); |
| if (m4kc_tlbp_war()) |
| build_tlb_probe_entry(&p); |
| |
| if (cpu_has_rixi && !cpu_has_rixiex) { |
| /* |
| * If the page is not _PAGE_VALID, RI or XI could not |
| * have triggered it. Skip the expensive test.. |
| */ |
| if (use_bbit_insns()) { |
| uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID), |
| label_tlbl_goaround1); |
| } else { |
| uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID); |
| uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1); |
| } |
| uasm_i_nop(&p); |
| |
| /* |
| * Warn if something may race with us & replace the TLB entry |
| * before we read it here. Everything with such races should |
| * also have dedicated RiXi exception handlers, so this |
| * shouldn't be hit. |
| */ |
| WARN(cpu_has_tlbex_tlbp_race(), "Unhandled race in RiXi path"); |
| |
| uasm_i_tlbr(&p); |
| |
| switch (current_cpu_type()) { |
| default: |
| if (cpu_has_mips_r2_exec_hazard) { |
| uasm_i_ehb(&p); |
| |
| case CPU_CAVIUM_OCTEON: |
| case CPU_CAVIUM_OCTEON_PLUS: |
| case CPU_CAVIUM_OCTEON2: |
| break; |
| } |
| } |
| |
| /* Examine entrylo 0 or 1 based on ptr. */ |
| if (use_bbit_insns()) { |
| uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8); |
| } else { |
| uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t)); |
| uasm_i_beqz(&p, wr.r3, 8); |
| } |
| /* load it in the delay slot*/ |
| UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0); |
| /* load it if ptr is odd */ |
| UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1); |
| /* |
| * If the entryLo (now in wr.r3) is valid (bit 1), RI or |
| * XI must have triggered it. |
| */ |
| if (use_bbit_insns()) { |
| uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl); |
| uasm_i_nop(&p); |
| uasm_l_tlbl_goaround1(&l, p); |
| } else { |
| uasm_i_andi(&p, wr.r3, wr.r3, 2); |
| uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl); |
| uasm_i_nop(&p); |
| } |
| uasm_l_tlbl_goaround1(&l, p); |
| } |
| build_make_valid(&p, &r, wr.r1, wr.r2, wr.r3); |
| build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2); |
| |
| #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT |
| /* |
| * This is the entry point when build_r4000_tlbchange_handler_head |
| * spots a huge page. |
| */ |
| uasm_l_tlb_huge_update(&l, p); |
| iPTE_LW(&p, wr.r1, wr.r2); |
| build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl); |
| build_tlb_probe_entry(&p); |
| |
| if (cpu_has_rixi && !cpu_has_rixiex) { |
| /* |
| * If the page is not _PAGE_VALID, RI or XI could not |
| * have triggered it. Skip the expensive test.. |
| */ |
| if (use_bbit_insns()) { |
| uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID), |
| label_tlbl_goaround2); |
| } else { |
| uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID); |
| uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2); |
| } |
| uasm_i_nop(&p); |
| |
| /* |
| * Warn if something may race with us & replace the TLB entry |
| * before we read it here. Everything with such races should |
| * also have dedicated RiXi exception handlers, so this |
| * shouldn't be hit. |
| */ |
| WARN(cpu_has_tlbex_tlbp_race(), "Unhandled race in RiXi path"); |
| |
| uasm_i_tlbr(&p); |
| |
| switch (current_cpu_type()) { |
| default: |
| if (cpu_has_mips_r2_exec_hazard) { |
| uasm_i_ehb(&p); |
| |
| case CPU_CAVIUM_OCTEON: |
| case CPU_CAVIUM_OCTEON_PLUS: |
| case CPU_CAVIUM_OCTEON2: |
| break; |
| } |
| } |
| |
| /* Examine entrylo 0 or 1 based on ptr. */ |
| if (use_bbit_insns()) { |
| uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8); |
| } else { |
| uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t)); |
| uasm_i_beqz(&p, wr.r3, 8); |
| } |
| /* load it in the delay slot*/ |
| UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0); |
| /* load it if ptr is odd */ |
| UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1); |
| /* |
| * If the entryLo (now in wr.r3) is valid (bit 1), RI or |
| * XI must have triggered it. |
| */ |
| if (use_bbit_insns()) { |
| uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2); |
| } else { |
| uasm_i_andi(&p, wr.r3, wr.r3, 2); |
| uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2); |
| } |
| if (PM_DEFAULT_MASK == 0) |
| uasm_i_nop(&p); |
| /* |
| * We clobbered C0_PAGEMASK, restore it. On the other branch |
| * it is restored in build_huge_tlb_write_entry. |
| */ |
| build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0); |
| |
| uasm_l_tlbl_goaround2(&l, p); |
| } |
| uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID)); |
| build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 1); |
| #endif |
| |
| uasm_l_nopage_tlbl(&l, p); |
| if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS)) |
| uasm_i_sync(&p, 0); |
| build_restore_work_registers(&p); |
| #ifdef CONFIG_CPU_MICROMIPS |
| if ((unsigned long)tlb_do_page_fault_0 & 1) { |
| uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0)); |
| uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0)); |
| uasm_i_jr(&p, K0); |
| } else |
| #endif |
| uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff); |
| uasm_i_nop(&p); |
| |
| if (p >= (u32 *)handle_tlbl_end) |
| panic("TLB load handler fastpath space exceeded"); |
| |
| uasm_resolve_relocs(relocs, labels); |
| pr_debug("Wrote TLB load handler fastpath (%u instructions).\n", |
| (unsigned int)(p - (u32 *)handle_tlbl)); |
| |
| dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_end); |
| } |
| |
| static void build_r4000_tlb_store_handler(void) |
| { |
| u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbs); |
| struct uasm_label *l = labels; |
| struct uasm_reloc *r = relocs; |
| struct work_registers wr; |
| |
| memset(p, 0, handle_tlbs_end - (char *)p); |
| memset(labels, 0, sizeof(labels)); |
| memset(relocs, 0, sizeof(relocs)); |
| |
| wr = build_r4000_tlbchange_handler_head(&p, &l, &r); |
| build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs); |
| if (m4kc_tlbp_war()) |
| build_tlb_probe_entry(&p); |
| build_make_write(&p, &r, wr.r1, wr.r2, wr.r3); |
| build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2); |
| |
| #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT |
| /* |
| * This is the entry point when |
| * build_r4000_tlbchange_handler_head spots a huge page. |
| */ |
| uasm_l_tlb_huge_update(&l, p); |
| iPTE_LW(&p, wr.r1, wr.r2); |
| build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs); |
| build_tlb_probe_entry(&p); |
| uasm_i_ori(&p, wr.r1, wr.r1, |
| _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY); |
| build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 1); |
| #endif |
| |
| uasm_l_nopage_tlbs(&l, p); |
| if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS)) |
| uasm_i_sync(&p, 0); |
| build_restore_work_registers(&p); |
| #ifdef CONFIG_CPU_MICROMIPS |
| if ((unsigned long)tlb_do_page_fault_1 & 1) { |
| uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1)); |
| uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1)); |
| uasm_i_jr(&p, K0); |
| } else |
| #endif |
| uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); |
| uasm_i_nop(&p); |
| |
| if (p >= (u32 *)handle_tlbs_end) |
| panic("TLB store handler fastpath space exceeded"); |
| |
| uasm_resolve_relocs(relocs, labels); |
| pr_debug("Wrote TLB store handler fastpath (%u instructions).\n", |
| (unsigned int)(p - (u32 *)handle_tlbs)); |
| |
| dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_end); |
| } |
| |
| static void build_r4000_tlb_modify_handler(void) |
| { |
| u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbm); |
| struct uasm_label *l = labels; |
| struct uasm_reloc *r = relocs; |
| struct work_registers wr; |
| |
| memset(p, 0, handle_tlbm_end - (char *)p); |
| memset(labels, 0, sizeof(labels)); |
| memset(relocs, 0, sizeof(relocs)); |
| |
| wr = build_r4000_tlbchange_handler_head(&p, &l, &r); |
| build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm); |
| if (m4kc_tlbp_war()) |
| build_tlb_probe_entry(&p); |
| /* Present and writable bits set, set accessed and dirty bits. */ |
| build_make_write(&p, &r, wr.r1, wr.r2, wr.r3); |
| build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2); |
| |
| #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT |
| /* |
| * This is the entry point when |
| * build_r4000_tlbchange_handler_head spots a huge page. |
| */ |
| uasm_l_tlb_huge_update(&l, p); |
| iPTE_LW(&p, wr.r1, wr.r2); |
| build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm); |
| build_tlb_probe_entry(&p); |
| uasm_i_ori(&p, wr.r1, wr.r1, |
| _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY); |
| build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 0); |
| #endif |
| |
| uasm_l_nopage_tlbm(&l, p); |
| if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS)) |
| uasm_i_sync(&p, 0); |
| build_restore_work_registers(&p); |
| #ifdef CONFIG_CPU_MICROMIPS |
| if ((unsigned long)tlb_do_page_fault_1 & 1) { |
| uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1)); |
| uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1)); |
| uasm_i_jr(&p, K0); |
| } else |
| #endif |
| uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); |
| uasm_i_nop(&p); |
| |
| if (p >= (u32 *)handle_tlbm_end) |
| panic("TLB modify handler fastpath space exceeded"); |
| |
| uasm_resolve_relocs(relocs, labels); |
| pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n", |
| (unsigned int)(p - (u32 *)handle_tlbm)); |
| |
| dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_end); |
| } |
| |
| static void flush_tlb_handlers(void) |
| { |
| local_flush_icache_range((unsigned long)handle_tlbl, |
| (unsigned long)handle_tlbl_end); |
| local_flush_icache_range((unsigned long)handle_tlbs, |
| (unsigned long)handle_tlbs_end); |
| local_flush_icache_range((unsigned long)handle_tlbm, |
| (unsigned long)handle_tlbm_end); |
| local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd, |
| (unsigned long)tlbmiss_handler_setup_pgd_end); |
| } |
| |
| static void print_htw_config(void) |
| { |
| unsigned long config; |
| unsigned int pwctl; |
| const int field = 2 * sizeof(unsigned long); |
| |
| config = read_c0_pwfield(); |
| pr_debug("PWField (0x%0*lx): GDI: 0x%02lx UDI: 0x%02lx MDI: 0x%02lx PTI: 0x%02lx PTEI: 0x%02lx\n", |
| field, config, |
| (config & MIPS_PWFIELD_GDI_MASK) >> MIPS_PWFIELD_GDI_SHIFT, |
| (config & MIPS_PWFIELD_UDI_MASK) >> MIPS_PWFIELD_UDI_SHIFT, |
| (config & MIPS_PWFIELD_MDI_MASK) >> MIPS_PWFIELD_MDI_SHIFT, |
| (config & MIPS_PWFIELD_PTI_MASK) >> MIPS_PWFIELD_PTI_SHIFT, |
| (config & MIPS_PWFIELD_PTEI_MASK) >> MIPS_PWFIELD_PTEI_SHIFT); |
| |
| config = read_c0_pwsize(); |
| pr_debug("PWSize (0x%0*lx): PS: 0x%lx GDW: 0x%02lx UDW: 0x%02lx MDW: 0x%02lx PTW: 0x%02lx PTEW: 0x%02lx\n", |
| field, config, |
| (config & MIPS_PWSIZE_PS_MASK) >> MIPS_PWSIZE_PS_SHIFT, |
| (config & MIPS_PWSIZE_GDW_MASK) >> MIPS_PWSIZE_GDW_SHIFT, |
| (config & MIPS_PWSIZE_UDW_MASK) >> MIPS_PWSIZE_UDW_SHIFT, |
| (config & MIPS_PWSIZE_MDW_MASK) >> MIPS_PWSIZE_MDW_SHIFT, |
| (config & MIPS_PWSIZE_PTW_MASK) >> MIPS_PWSIZE_PTW_SHIFT, |
| (config & MIPS_PWSIZE_PTEW_MASK) >> MIPS_PWSIZE_PTEW_SHIFT); |
| |
| pwctl = read_c0_pwctl(); |
| pr_debug("PWCtl (0x%x): PWEn: 0x%x XK: 0x%x XS: 0x%x XU: 0x%x DPH: 0x%x HugePg: 0x%x Psn: 0x%x\n", |
| pwctl, |
| (pwctl & MIPS_PWCTL_PWEN_MASK) >> MIPS_PWCTL_PWEN_SHIFT, |
| (pwctl & MIPS_PWCTL_XK_MASK) >> MIPS_PWCTL_XK_SHIFT, |
| (pwctl & MIPS_PWCTL_XS_MASK) >> MIPS_PWCTL_XS_SHIFT, |
| (pwctl & MIPS_PWCTL_XU_MASK) >> MIPS_PWCTL_XU_SHIFT, |
| (pwctl & MIPS_PWCTL_DPH_MASK) >> MIPS_PWCTL_DPH_SHIFT, |
| (pwctl & MIPS_PWCTL_HUGEPG_MASK) >> MIPS_PWCTL_HUGEPG_SHIFT, |
| (pwctl & MIPS_PWCTL_PSN_MASK) >> MIPS_PWCTL_PSN_SHIFT); |
| } |
| |
| static void config_htw_params(void) |
| { |
| unsigned long pwfield, pwsize, ptei; |
| unsigned int config; |
| |
| /* |
| * We are using 2-level page tables, so we only need to |
| * setup GDW and PTW appropriately. UDW and MDW will remain 0. |
| * The default value of GDI/UDI/MDI/PTI is 0xc. It is illegal to |
| * write values less than 0xc in these fields because the entire |
| * write will be dropped. As a result of which, we must preserve |
| * the original reset values and overwrite only what we really want. |
| */ |
| |
| pwfield = read_c0_pwfield(); |
| /* re-initialize the GDI field */ |
| pwfield &= ~MIPS_PWFIELD_GDI_MASK; |
| pwfield |= PGDIR_SHIFT << MIPS_PWFIELD_GDI_SHIFT; |
| /* re-initialize the PTI field including the even/odd bit */ |
| pwfield &= ~MIPS_PWFIELD_PTI_MASK; |
| pwfield |= PAGE_SHIFT << MIPS_PWFIELD_PTI_SHIFT; |
| if (CONFIG_PGTABLE_LEVELS >= 3) { |
| pwfield &= ~MIPS_PWFIELD_MDI_MASK; |
| pwfield |= PMD_SHIFT << MIPS_PWFIELD_MDI_SHIFT; |
| } |
| /* Set the PTEI right shift */ |
| ptei = _PAGE_GLOBAL_SHIFT << MIPS_PWFIELD_PTEI_SHIFT; |
| pwfield |= ptei; |
| write_c0_pwfield(pwfield); |
| /* Check whether the PTEI value is supported */ |
| back_to_back_c0_hazard(); |
| pwfield = read_c0_pwfield(); |
| if (((pwfield & MIPS_PWFIELD_PTEI_MASK) << MIPS_PWFIELD_PTEI_SHIFT) |
| != ptei) { |
| pr_warn("Unsupported PTEI field value: 0x%lx. HTW will not be enabled", |
| ptei); |
| /* |
| * Drop option to avoid HTW being enabled via another path |
| * (eg htw_reset()) |
| */ |
| current_cpu_data.options &= ~MIPS_CPU_HTW; |
| return; |
| } |
| |
| pwsize = ilog2(PTRS_PER_PGD) << MIPS_PWSIZE_GDW_SHIFT; |
| pwsize |= ilog2(PTRS_PER_PTE) << MIPS_PWSIZE_PTW_SHIFT; |
| if (CONFIG_PGTABLE_LEVELS >= 3) |
| pwsize |= ilog2(PTRS_PER_PMD) << MIPS_PWSIZE_MDW_SHIFT; |
| |
| /* Set pointer size to size of directory pointers */ |
| if (IS_ENABLED(CONFIG_64BIT)) |
| pwsize |= MIPS_PWSIZE_PS_MASK; |
| /* PTEs may be multiple pointers long (e.g. with XPA) */ |
| pwsize |= ((PTE_T_LOG2 - PGD_T_LOG2) << MIPS_PWSIZE_PTEW_SHIFT) |
| & MIPS_PWSIZE_PTEW_MASK; |
| |
| write_c0_pwsize(pwsize); |
| |
| /* Make sure everything is set before we enable the HTW */ |
| back_to_back_c0_hazard(); |
| |
| /* |
| * Enable HTW (and only for XUSeg on 64-bit), and disable the rest of |
| * the pwctl fields. |
| */ |
| config = 1 << MIPS_PWCTL_PWEN_SHIFT; |
| if (IS_ENABLED(CONFIG_64BIT)) |
| config |= MIPS_PWCTL_XU_MASK; |
| write_c0_pwctl(config); |
| pr_info("Hardware Page Table Walker enabled\n"); |
| |
| print_htw_config(); |
| } |
| |
| static void config_xpa_params(void) |
| { |
| #ifdef CONFIG_XPA |
| unsigned int pagegrain; |
| |
| if (mips_xpa_disabled) { |
| pr_info("Extended Physical Addressing (XPA) disabled\n"); |
| return; |
| } |
| |
| pagegrain = read_c0_pagegrain(); |
| write_c0_pagegrain(pagegrain | PG_ELPA); |
| back_to_back_c0_hazard(); |
| pagegrain = read_c0_pagegrain(); |
| |
| if (pagegrain & PG_ELPA) |
| pr_info("Extended Physical Addressing (XPA) enabled\n"); |
| else |
| panic("Extended Physical Addressing (XPA) disabled"); |
| #endif |
| } |
| |
| static void check_pabits(void) |
| { |
| unsigned long entry; |
| unsigned pabits, fillbits; |
| |
| if (!cpu_has_rixi || !_PAGE_NO_EXEC) { |
| /* |
| * We'll only be making use of the fact that we can rotate bits |
| * into the fill if the CPU supports RIXI, so don't bother |
| * probing this for CPUs which don't. |
| */ |
| return; |
| } |
| |
| write_c0_entrylo0(~0ul); |
| back_to_back_c0_hazard(); |
| entry = read_c0_entrylo0(); |
| |
| /* clear all non-PFN bits */ |
| entry &= ~((1 << MIPS_ENTRYLO_PFN_SHIFT) - 1); |
| entry &= ~(MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI); |
| |
| /* find a lower bound on PABITS, and upper bound on fill bits */ |
| pabits = fls_long(entry) + 6; |
| fillbits = max_t(int, (int)BITS_PER_LONG - pabits, 0); |
| |
| /* minus the RI & XI bits */ |
| fillbits -= min_t(unsigned, fillbits, 2); |
| |
| if (fillbits >= ilog2(_PAGE_NO_EXEC)) |
| fill_includes_sw_bits = true; |
| |
| pr_debug("Entry* registers contain %u fill bits\n", fillbits); |
| } |
| |
| void build_tlb_refill_handler(void) |
| { |
| /* |
| * The refill handler is generated per-CPU, multi-node systems |
| * may have local storage for it. The other handlers are only |
| * needed once. |
| */ |
| static int run_once = 0; |
| |
| if (IS_ENABLED(CONFIG_XPA) && !cpu_has_rixi) |
| panic("Kernels supporting XPA currently require CPUs with RIXI"); |
| |
| output_pgtable_bits_defines(); |
| check_pabits(); |
| |
| #ifdef CONFIG_64BIT |
| check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3); |
| #endif |
| |
| if (cpu_has_3kex) { |
| #ifndef CONFIG_MIPS_PGD_C0_CONTEXT |
| if (!run_once) { |
| build_setup_pgd(); |
| build_r3000_tlb_refill_handler(); |
| build_r3000_tlb_load_handler(); |
| build_r3000_tlb_store_handler(); |
| build_r3000_tlb_modify_handler(); |
| flush_tlb_handlers(); |
| run_once++; |
| } |
| #else |
| panic("No R3000 TLB refill handler"); |
| #endif |
| return; |
| } |
| |
| if (cpu_has_ldpte) |
| setup_pw(); |
| |
| if (!run_once) { |
| scratch_reg = allocate_kscratch(); |
| build_setup_pgd(); |
| build_r4000_tlb_load_handler(); |
| build_r4000_tlb_store_handler(); |
| build_r4000_tlb_modify_handler(); |
| if (cpu_has_ldpte) |
| build_loongson3_tlb_refill_handler(); |
| else |
| build_r4000_tlb_refill_handler(); |
| flush_tlb_handlers(); |
| run_once++; |
| } |
| if (cpu_has_xpa) |
| config_xpa_params(); |
| if (cpu_has_htw) |
| config_htw_params(); |
| } |