blob: 753ac3165061c606ca62d7372cc4825f16fd7dcd [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2019 Intel Corporation
*/
#include <drm/drm_atomic_state_helper.h>
#include "intel_bw.h"
#include "intel_drv.h"
#include "intel_sideband.h"
/* Parameters for Qclk Geyserville (QGV) */
struct intel_qgv_point {
u16 dclk, t_rp, t_rdpre, t_rc, t_ras, t_rcd;
};
struct intel_qgv_info {
struct intel_qgv_point points[3];
u8 num_points;
u8 num_channels;
u8 t_bl;
enum intel_dram_type dram_type;
};
static int icl_pcode_read_mem_global_info(struct drm_i915_private *dev_priv,
struct intel_qgv_info *qi)
{
u32 val = 0;
int ret;
ret = sandybridge_pcode_read(dev_priv,
ICL_PCODE_MEM_SUBSYSYSTEM_INFO |
ICL_PCODE_MEM_SS_READ_GLOBAL_INFO,
&val, NULL);
if (ret)
return ret;
switch (val & 0xf) {
case 0:
qi->dram_type = INTEL_DRAM_DDR4;
break;
case 1:
qi->dram_type = INTEL_DRAM_DDR3;
break;
case 2:
qi->dram_type = INTEL_DRAM_LPDDR3;
break;
case 3:
qi->dram_type = INTEL_DRAM_LPDDR3;
break;
default:
MISSING_CASE(val & 0xf);
break;
}
qi->num_channels = (val & 0xf0) >> 4;
qi->num_points = (val & 0xf00) >> 8;
qi->t_bl = qi->dram_type == INTEL_DRAM_DDR4 ? 4 : 8;
return 0;
}
static int icl_pcode_read_qgv_point_info(struct drm_i915_private *dev_priv,
struct intel_qgv_point *sp,
int point)
{
u32 val = 0, val2;
int ret;
ret = sandybridge_pcode_read(dev_priv,
ICL_PCODE_MEM_SUBSYSYSTEM_INFO |
ICL_PCODE_MEM_SS_READ_QGV_POINT_INFO(point),
&val, &val2);
if (ret)
return ret;
sp->dclk = val & 0xffff;
sp->t_rp = (val & 0xff0000) >> 16;
sp->t_rcd = (val & 0xff000000) >> 24;
sp->t_rdpre = val2 & 0xff;
sp->t_ras = (val2 & 0xff00) >> 8;
sp->t_rc = sp->t_rp + sp->t_ras;
return 0;
}
static int icl_get_qgv_points(struct drm_i915_private *dev_priv,
struct intel_qgv_info *qi)
{
int i, ret;
ret = icl_pcode_read_mem_global_info(dev_priv, qi);
if (ret)
return ret;
if (WARN_ON(qi->num_points > ARRAY_SIZE(qi->points)))
qi->num_points = ARRAY_SIZE(qi->points);
for (i = 0; i < qi->num_points; i++) {
struct intel_qgv_point *sp = &qi->points[i];
ret = icl_pcode_read_qgv_point_info(dev_priv, sp, i);
if (ret)
return ret;
DRM_DEBUG_KMS("QGV %d: DCLK=%d tRP=%d tRDPRE=%d tRAS=%d tRCD=%d tRC=%d\n",
i, sp->dclk, sp->t_rp, sp->t_rdpre, sp->t_ras,
sp->t_rcd, sp->t_rc);
}
return 0;
}
static int icl_calc_bw(int dclk, int num, int den)
{
/* multiples of 16.666MHz (100/6) */
return DIV_ROUND_CLOSEST(num * dclk * 100, den * 6);
}
static int icl_sagv_max_dclk(const struct intel_qgv_info *qi)
{
u16 dclk = 0;
int i;
for (i = 0; i < qi->num_points; i++)
dclk = max(dclk, qi->points[i].dclk);
return dclk;
}
struct intel_sa_info {
u8 deburst, mpagesize, deprogbwlimit, displayrtids;
};
static const struct intel_sa_info icl_sa_info = {
.deburst = 8,
.mpagesize = 16,
.deprogbwlimit = 25, /* GB/s */
.displayrtids = 128,
};
static int icl_get_bw_info(struct drm_i915_private *dev_priv)
{
struct intel_qgv_info qi = {};
const struct intel_sa_info *sa = &icl_sa_info;
bool is_y_tile = true; /* assume y tile may be used */
int num_channels;
int deinterleave;
int ipqdepth, ipqdepthpch;
int dclk_max;
int maxdebw;
int i, ret;
ret = icl_get_qgv_points(dev_priv, &qi);
if (ret) {
DRM_DEBUG_KMS("Failed to get memory subsystem information, ignoring bandwidth limits");
return ret;
}
num_channels = qi.num_channels;
deinterleave = DIV_ROUND_UP(num_channels, is_y_tile ? 4 : 2);
dclk_max = icl_sagv_max_dclk(&qi);
ipqdepthpch = 16;
maxdebw = min(sa->deprogbwlimit * 1000,
icl_calc_bw(dclk_max, 16, 1) * 6 / 10); /* 60% */
ipqdepth = min(ipqdepthpch, sa->displayrtids / num_channels);
for (i = 0; i < ARRAY_SIZE(dev_priv->max_bw); i++) {
struct intel_bw_info *bi = &dev_priv->max_bw[i];
int clpchgroup;
int j;
clpchgroup = (sa->deburst * deinterleave / num_channels) << i;
bi->num_planes = (ipqdepth - clpchgroup) / clpchgroup + 1;
for (j = 0; j < qi.num_points; j++) {
const struct intel_qgv_point *sp = &qi.points[j];
int ct, bw;
/*
* Max row cycle time
*
* FIXME what is the logic behind the
* assumed burst length?
*/
ct = max_t(int, sp->t_rc, sp->t_rp + sp->t_rcd +
(clpchgroup - 1) * qi.t_bl + sp->t_rdpre);
bw = icl_calc_bw(sp->dclk, clpchgroup * 32 * num_channels, ct);
bi->deratedbw[j] = min(maxdebw,
bw * 9 / 10); /* 90% */
DRM_DEBUG_KMS("BW%d / QGV %d: num_planes=%d deratedbw=%d\n",
i, j, bi->num_planes, bi->deratedbw[j]);
}
if (bi->num_planes == 1)
break;
}
return 0;
}
static unsigned int icl_max_bw(struct drm_i915_private *dev_priv,
int num_planes, int qgv_point)
{
int i;
/* Did we initialize the bw limits successfully? */
if (dev_priv->max_bw[0].num_planes == 0)
return UINT_MAX;
for (i = 0; i < ARRAY_SIZE(dev_priv->max_bw); i++) {
const struct intel_bw_info *bi =
&dev_priv->max_bw[i];
if (num_planes >= bi->num_planes)
return bi->deratedbw[qgv_point];
}
return 0;
}
void intel_bw_init_hw(struct drm_i915_private *dev_priv)
{
if (IS_GEN(dev_priv, 11))
icl_get_bw_info(dev_priv);
}
static unsigned int intel_max_data_rate(struct drm_i915_private *dev_priv,
int num_planes)
{
if (IS_GEN(dev_priv, 11))
/*
* FIXME with SAGV disabled maybe we can assume
* point 1 will always be used? Seems to match
* the behaviour observed in the wild.
*/
return min3(icl_max_bw(dev_priv, num_planes, 0),
icl_max_bw(dev_priv, num_planes, 1),
icl_max_bw(dev_priv, num_planes, 2));
else
return UINT_MAX;
}
static unsigned int intel_bw_crtc_num_active_planes(const struct intel_crtc_state *crtc_state)
{
/*
* We assume cursors are small enough
* to not not cause bandwidth problems.
*/
return hweight8(crtc_state->active_planes & ~BIT(PLANE_CURSOR));
}
static unsigned int intel_bw_crtc_data_rate(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
unsigned int data_rate = 0;
enum plane_id plane_id;
for_each_plane_id_on_crtc(crtc, plane_id) {
/*
* We assume cursors are small enough
* to not not cause bandwidth problems.
*/
if (plane_id == PLANE_CURSOR)
continue;
data_rate += crtc_state->data_rate[plane_id];
}
return data_rate;
}
void intel_bw_crtc_update(struct intel_bw_state *bw_state,
const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
bw_state->data_rate[crtc->pipe] =
intel_bw_crtc_data_rate(crtc_state);
bw_state->num_active_planes[crtc->pipe] =
intel_bw_crtc_num_active_planes(crtc_state);
DRM_DEBUG_KMS("pipe %c data rate %u num active planes %u\n",
pipe_name(crtc->pipe),
bw_state->data_rate[crtc->pipe],
bw_state->num_active_planes[crtc->pipe]);
}
static unsigned int intel_bw_num_active_planes(struct drm_i915_private *dev_priv,
const struct intel_bw_state *bw_state)
{
unsigned int num_active_planes = 0;
enum pipe pipe;
for_each_pipe(dev_priv, pipe)
num_active_planes += bw_state->num_active_planes[pipe];
return num_active_planes;
}
static unsigned int intel_bw_data_rate(struct drm_i915_private *dev_priv,
const struct intel_bw_state *bw_state)
{
unsigned int data_rate = 0;
enum pipe pipe;
for_each_pipe(dev_priv, pipe)
data_rate += bw_state->data_rate[pipe];
return data_rate;
}
int intel_bw_atomic_check(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
struct intel_crtc_state *new_crtc_state, *old_crtc_state;
struct intel_bw_state *bw_state = NULL;
unsigned int data_rate, max_data_rate;
unsigned int num_active_planes;
struct intel_crtc *crtc;
int i;
/* FIXME earlier gens need some checks too */
if (INTEL_GEN(dev_priv) < 11)
return 0;
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
unsigned int old_data_rate =
intel_bw_crtc_data_rate(old_crtc_state);
unsigned int new_data_rate =
intel_bw_crtc_data_rate(new_crtc_state);
unsigned int old_active_planes =
intel_bw_crtc_num_active_planes(old_crtc_state);
unsigned int new_active_planes =
intel_bw_crtc_num_active_planes(new_crtc_state);
/*
* Avoid locking the bw state when
* nothing significant has changed.
*/
if (old_data_rate == new_data_rate &&
old_active_planes == new_active_planes)
continue;
bw_state = intel_atomic_get_bw_state(state);
if (IS_ERR(bw_state))
return PTR_ERR(bw_state);
bw_state->data_rate[crtc->pipe] = new_data_rate;
bw_state->num_active_planes[crtc->pipe] = new_active_planes;
DRM_DEBUG_KMS("pipe %c data rate %u num active planes %u\n",
pipe_name(crtc->pipe),
bw_state->data_rate[crtc->pipe],
bw_state->num_active_planes[crtc->pipe]);
}
if (!bw_state)
return 0;
data_rate = intel_bw_data_rate(dev_priv, bw_state);
num_active_planes = intel_bw_num_active_planes(dev_priv, bw_state);
max_data_rate = intel_max_data_rate(dev_priv, num_active_planes);
data_rate = DIV_ROUND_UP(data_rate, 1000);
if (data_rate > max_data_rate) {
DRM_DEBUG_KMS("Bandwidth %u MB/s exceeds max available %d MB/s (%d active planes)\n",
data_rate, max_data_rate, num_active_planes);
return -EINVAL;
}
return 0;
}
static struct drm_private_state *intel_bw_duplicate_state(struct drm_private_obj *obj)
{
struct intel_bw_state *state;
state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
if (!state)
return NULL;
__drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
return &state->base;
}
static void intel_bw_destroy_state(struct drm_private_obj *obj,
struct drm_private_state *state)
{
kfree(state);
}
static const struct drm_private_state_funcs intel_bw_funcs = {
.atomic_duplicate_state = intel_bw_duplicate_state,
.atomic_destroy_state = intel_bw_destroy_state,
};
int intel_bw_init(struct drm_i915_private *dev_priv)
{
struct intel_bw_state *state;
state = kzalloc(sizeof(*state), GFP_KERNEL);
if (!state)
return -ENOMEM;
drm_atomic_private_obj_init(&dev_priv->drm, &dev_priv->bw_obj,
&state->base, &intel_bw_funcs);
return 0;
}