| /* |
| * Copyright © 2006-2016 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| * DEALINGS IN THE SOFTWARE. |
| */ |
| |
| #include "intel_dpio_phy.h" |
| #include "intel_dpll_mgr.h" |
| #include "intel_drv.h" |
| |
| /** |
| * DOC: Display PLLs |
| * |
| * Display PLLs used for driving outputs vary by platform. While some have |
| * per-pipe or per-encoder dedicated PLLs, others allow the use of any PLL |
| * from a pool. In the latter scenario, it is possible that multiple pipes |
| * share a PLL if their configurations match. |
| * |
| * This file provides an abstraction over display PLLs. The function |
| * intel_shared_dpll_init() initializes the PLLs for the given platform. The |
| * users of a PLL are tracked and that tracking is integrated with the atomic |
| * modest interface. During an atomic operation, a PLL can be requested for a |
| * given CRTC and encoder configuration by calling intel_get_shared_dpll() and |
| * a previously used PLL can be released with intel_release_shared_dpll(). |
| * Changes to the users are first staged in the atomic state, and then made |
| * effective by calling intel_shared_dpll_swap_state() during the atomic |
| * commit phase. |
| */ |
| |
| static void |
| intel_atomic_duplicate_dpll_state(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll_state *shared_dpll) |
| { |
| enum intel_dpll_id i; |
| |
| /* Copy shared dpll state */ |
| for (i = 0; i < dev_priv->num_shared_dpll; i++) { |
| struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i]; |
| |
| shared_dpll[i] = pll->state; |
| } |
| } |
| |
| static struct intel_shared_dpll_state * |
| intel_atomic_get_shared_dpll_state(struct drm_atomic_state *s) |
| { |
| struct intel_atomic_state *state = to_intel_atomic_state(s); |
| |
| WARN_ON(!drm_modeset_is_locked(&s->dev->mode_config.connection_mutex)); |
| |
| if (!state->dpll_set) { |
| state->dpll_set = true; |
| |
| intel_atomic_duplicate_dpll_state(to_i915(s->dev), |
| state->shared_dpll); |
| } |
| |
| return state->shared_dpll; |
| } |
| |
| /** |
| * intel_get_shared_dpll_by_id - get a DPLL given its id |
| * @dev_priv: i915 device instance |
| * @id: pll id |
| * |
| * Returns: |
| * A pointer to the DPLL with @id |
| */ |
| struct intel_shared_dpll * |
| intel_get_shared_dpll_by_id(struct drm_i915_private *dev_priv, |
| enum intel_dpll_id id) |
| { |
| return &dev_priv->shared_dplls[id]; |
| } |
| |
| /** |
| * intel_get_shared_dpll_id - get the id of a DPLL |
| * @dev_priv: i915 device instance |
| * @pll: the DPLL |
| * |
| * Returns: |
| * The id of @pll |
| */ |
| enum intel_dpll_id |
| intel_get_shared_dpll_id(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll) |
| { |
| if (WARN_ON(pll < dev_priv->shared_dplls|| |
| pll > &dev_priv->shared_dplls[dev_priv->num_shared_dpll])) |
| return -1; |
| |
| return (enum intel_dpll_id) (pll - dev_priv->shared_dplls); |
| } |
| |
| /* For ILK+ */ |
| void assert_shared_dpll(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll, |
| bool state) |
| { |
| bool cur_state; |
| struct intel_dpll_hw_state hw_state; |
| |
| if (WARN(!pll, "asserting DPLL %s with no DPLL\n", onoff(state))) |
| return; |
| |
| cur_state = pll->info->funcs->get_hw_state(dev_priv, pll, &hw_state); |
| I915_STATE_WARN(cur_state != state, |
| "%s assertion failure (expected %s, current %s)\n", |
| pll->info->name, onoff(state), onoff(cur_state)); |
| } |
| |
| /** |
| * intel_prepare_shared_dpll - call a dpll's prepare hook |
| * @crtc_state: CRTC, and its state, which has a shared dpll |
| * |
| * This calls the PLL's prepare hook if it has one and if the PLL is not |
| * already enabled. The prepare hook is platform specific. |
| */ |
| void intel_prepare_shared_dpll(const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| struct intel_shared_dpll *pll = crtc_state->shared_dpll; |
| |
| if (WARN_ON(pll == NULL)) |
| return; |
| |
| mutex_lock(&dev_priv->dpll_lock); |
| WARN_ON(!pll->state.crtc_mask); |
| if (!pll->active_mask) { |
| DRM_DEBUG_DRIVER("setting up %s\n", pll->info->name); |
| WARN_ON(pll->on); |
| assert_shared_dpll_disabled(dev_priv, pll); |
| |
| pll->info->funcs->prepare(dev_priv, pll); |
| } |
| mutex_unlock(&dev_priv->dpll_lock); |
| } |
| |
| /** |
| * intel_enable_shared_dpll - enable a CRTC's shared DPLL |
| * @crtc_state: CRTC, and its state, which has a shared DPLL |
| * |
| * Enable the shared DPLL used by @crtc. |
| */ |
| void intel_enable_shared_dpll(const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| struct intel_shared_dpll *pll = crtc_state->shared_dpll; |
| unsigned int crtc_mask = drm_crtc_mask(&crtc->base); |
| unsigned int old_mask; |
| |
| if (WARN_ON(pll == NULL)) |
| return; |
| |
| mutex_lock(&dev_priv->dpll_lock); |
| old_mask = pll->active_mask; |
| |
| if (WARN_ON(!(pll->state.crtc_mask & crtc_mask)) || |
| WARN_ON(pll->active_mask & crtc_mask)) |
| goto out; |
| |
| pll->active_mask |= crtc_mask; |
| |
| DRM_DEBUG_KMS("enable %s (active %x, on? %d) for crtc %d\n", |
| pll->info->name, pll->active_mask, pll->on, |
| crtc->base.base.id); |
| |
| if (old_mask) { |
| WARN_ON(!pll->on); |
| assert_shared_dpll_enabled(dev_priv, pll); |
| goto out; |
| } |
| WARN_ON(pll->on); |
| |
| DRM_DEBUG_KMS("enabling %s\n", pll->info->name); |
| pll->info->funcs->enable(dev_priv, pll); |
| pll->on = true; |
| |
| out: |
| mutex_unlock(&dev_priv->dpll_lock); |
| } |
| |
| /** |
| * intel_disable_shared_dpll - disable a CRTC's shared DPLL |
| * @crtc_state: CRTC, and its state, which has a shared DPLL |
| * |
| * Disable the shared DPLL used by @crtc. |
| */ |
| void intel_disable_shared_dpll(const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| struct intel_shared_dpll *pll = crtc_state->shared_dpll; |
| unsigned int crtc_mask = drm_crtc_mask(&crtc->base); |
| |
| /* PCH only available on ILK+ */ |
| if (INTEL_GEN(dev_priv) < 5) |
| return; |
| |
| if (pll == NULL) |
| return; |
| |
| mutex_lock(&dev_priv->dpll_lock); |
| if (WARN_ON(!(pll->active_mask & crtc_mask))) |
| goto out; |
| |
| DRM_DEBUG_KMS("disable %s (active %x, on? %d) for crtc %d\n", |
| pll->info->name, pll->active_mask, pll->on, |
| crtc->base.base.id); |
| |
| assert_shared_dpll_enabled(dev_priv, pll); |
| WARN_ON(!pll->on); |
| |
| pll->active_mask &= ~crtc_mask; |
| if (pll->active_mask) |
| goto out; |
| |
| DRM_DEBUG_KMS("disabling %s\n", pll->info->name); |
| pll->info->funcs->disable(dev_priv, pll); |
| pll->on = false; |
| |
| out: |
| mutex_unlock(&dev_priv->dpll_lock); |
| } |
| |
| static struct intel_shared_dpll * |
| intel_find_shared_dpll(struct intel_crtc_state *crtc_state, |
| enum intel_dpll_id range_min, |
| enum intel_dpll_id range_max) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| struct intel_shared_dpll *pll, *unused_pll = NULL; |
| struct intel_shared_dpll_state *shared_dpll; |
| enum intel_dpll_id i; |
| |
| shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state); |
| |
| for (i = range_min; i <= range_max; i++) { |
| pll = &dev_priv->shared_dplls[i]; |
| |
| /* Only want to check enabled timings first */ |
| if (shared_dpll[i].crtc_mask == 0) { |
| if (!unused_pll) |
| unused_pll = pll; |
| continue; |
| } |
| |
| if (memcmp(&crtc_state->dpll_hw_state, |
| &shared_dpll[i].hw_state, |
| sizeof(crtc_state->dpll_hw_state)) == 0) { |
| DRM_DEBUG_KMS("[CRTC:%d:%s] sharing existing %s (crtc mask 0x%08x, active %x)\n", |
| crtc->base.base.id, crtc->base.name, |
| pll->info->name, |
| shared_dpll[i].crtc_mask, |
| pll->active_mask); |
| return pll; |
| } |
| } |
| |
| /* Ok no matching timings, maybe there's a free one? */ |
| if (unused_pll) { |
| DRM_DEBUG_KMS("[CRTC:%d:%s] allocated %s\n", |
| crtc->base.base.id, crtc->base.name, |
| unused_pll->info->name); |
| return unused_pll; |
| } |
| |
| return NULL; |
| } |
| |
| static void |
| intel_reference_shared_dpll(struct intel_shared_dpll *pll, |
| struct intel_crtc_state *crtc_state) |
| { |
| struct intel_shared_dpll_state *shared_dpll; |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); |
| const enum intel_dpll_id id = pll->info->id; |
| |
| shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state); |
| |
| if (shared_dpll[id].crtc_mask == 0) |
| shared_dpll[id].hw_state = |
| crtc_state->dpll_hw_state; |
| |
| crtc_state->shared_dpll = pll; |
| DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->info->name, |
| pipe_name(crtc->pipe)); |
| |
| shared_dpll[id].crtc_mask |= 1 << crtc->pipe; |
| } |
| |
| /** |
| * intel_shared_dpll_swap_state - make atomic DPLL configuration effective |
| * @state: atomic state |
| * |
| * This is the dpll version of drm_atomic_helper_swap_state() since the |
| * helper does not handle driver-specific global state. |
| * |
| * For consistency with atomic helpers this function does a complete swap, |
| * i.e. it also puts the current state into @state, even though there is no |
| * need for that at this moment. |
| */ |
| void intel_shared_dpll_swap_state(struct drm_atomic_state *state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(state->dev); |
| struct intel_shared_dpll_state *shared_dpll; |
| struct intel_shared_dpll *pll; |
| enum intel_dpll_id i; |
| |
| if (!to_intel_atomic_state(state)->dpll_set) |
| return; |
| |
| shared_dpll = to_intel_atomic_state(state)->shared_dpll; |
| for (i = 0; i < dev_priv->num_shared_dpll; i++) { |
| struct intel_shared_dpll_state tmp; |
| |
| pll = &dev_priv->shared_dplls[i]; |
| |
| tmp = pll->state; |
| pll->state = shared_dpll[i]; |
| shared_dpll[i] = tmp; |
| } |
| } |
| |
| static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll, |
| struct intel_dpll_hw_state *hw_state) |
| { |
| const enum intel_dpll_id id = pll->info->id; |
| intel_wakeref_t wakeref; |
| u32 val; |
| |
| wakeref = intel_display_power_get_if_enabled(dev_priv, |
| POWER_DOMAIN_DISPLAY_CORE); |
| if (!wakeref) |
| return false; |
| |
| val = I915_READ(PCH_DPLL(id)); |
| hw_state->dpll = val; |
| hw_state->fp0 = I915_READ(PCH_FP0(id)); |
| hw_state->fp1 = I915_READ(PCH_FP1(id)); |
| |
| intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref); |
| |
| return val & DPLL_VCO_ENABLE; |
| } |
| |
| static void ibx_pch_dpll_prepare(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll) |
| { |
| const enum intel_dpll_id id = pll->info->id; |
| |
| I915_WRITE(PCH_FP0(id), pll->state.hw_state.fp0); |
| I915_WRITE(PCH_FP1(id), pll->state.hw_state.fp1); |
| } |
| |
| static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv) |
| { |
| u32 val; |
| bool enabled; |
| |
| I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))); |
| |
| val = I915_READ(PCH_DREF_CONTROL); |
| enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK | |
| DREF_SUPERSPREAD_SOURCE_MASK)); |
| I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n"); |
| } |
| |
| static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll) |
| { |
| const enum intel_dpll_id id = pll->info->id; |
| |
| /* PCH refclock must be enabled first */ |
| ibx_assert_pch_refclk_enabled(dev_priv); |
| |
| I915_WRITE(PCH_DPLL(id), pll->state.hw_state.dpll); |
| |
| /* Wait for the clocks to stabilize. */ |
| POSTING_READ(PCH_DPLL(id)); |
| udelay(150); |
| |
| /* The pixel multiplier can only be updated once the |
| * DPLL is enabled and the clocks are stable. |
| * |
| * So write it again. |
| */ |
| I915_WRITE(PCH_DPLL(id), pll->state.hw_state.dpll); |
| POSTING_READ(PCH_DPLL(id)); |
| udelay(200); |
| } |
| |
| static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll) |
| { |
| const enum intel_dpll_id id = pll->info->id; |
| |
| I915_WRITE(PCH_DPLL(id), 0); |
| POSTING_READ(PCH_DPLL(id)); |
| udelay(200); |
| } |
| |
| static struct intel_shared_dpll * |
| ibx_get_dpll(struct intel_crtc_state *crtc_state, |
| struct intel_encoder *encoder) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| struct intel_shared_dpll *pll; |
| enum intel_dpll_id i; |
| |
| if (HAS_PCH_IBX(dev_priv)) { |
| /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */ |
| i = (enum intel_dpll_id) crtc->pipe; |
| pll = &dev_priv->shared_dplls[i]; |
| |
| DRM_DEBUG_KMS("[CRTC:%d:%s] using pre-allocated %s\n", |
| crtc->base.base.id, crtc->base.name, |
| pll->info->name); |
| } else { |
| pll = intel_find_shared_dpll(crtc_state, |
| DPLL_ID_PCH_PLL_A, |
| DPLL_ID_PCH_PLL_B); |
| } |
| |
| if (!pll) |
| return NULL; |
| |
| /* reference the pll */ |
| intel_reference_shared_dpll(pll, crtc_state); |
| |
| return pll; |
| } |
| |
| static void ibx_dump_hw_state(struct drm_i915_private *dev_priv, |
| const struct intel_dpll_hw_state *hw_state) |
| { |
| DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, " |
| "fp0: 0x%x, fp1: 0x%x\n", |
| hw_state->dpll, |
| hw_state->dpll_md, |
| hw_state->fp0, |
| hw_state->fp1); |
| } |
| |
| static const struct intel_shared_dpll_funcs ibx_pch_dpll_funcs = { |
| .prepare = ibx_pch_dpll_prepare, |
| .enable = ibx_pch_dpll_enable, |
| .disable = ibx_pch_dpll_disable, |
| .get_hw_state = ibx_pch_dpll_get_hw_state, |
| }; |
| |
| static void hsw_ddi_wrpll_enable(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll) |
| { |
| const enum intel_dpll_id id = pll->info->id; |
| |
| I915_WRITE(WRPLL_CTL(id), pll->state.hw_state.wrpll); |
| POSTING_READ(WRPLL_CTL(id)); |
| udelay(20); |
| } |
| |
| static void hsw_ddi_spll_enable(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll) |
| { |
| I915_WRITE(SPLL_CTL, pll->state.hw_state.spll); |
| POSTING_READ(SPLL_CTL); |
| udelay(20); |
| } |
| |
| static void hsw_ddi_wrpll_disable(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll) |
| { |
| const enum intel_dpll_id id = pll->info->id; |
| u32 val; |
| |
| val = I915_READ(WRPLL_CTL(id)); |
| I915_WRITE(WRPLL_CTL(id), val & ~WRPLL_PLL_ENABLE); |
| POSTING_READ(WRPLL_CTL(id)); |
| } |
| |
| static void hsw_ddi_spll_disable(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll) |
| { |
| u32 val; |
| |
| val = I915_READ(SPLL_CTL); |
| I915_WRITE(SPLL_CTL, val & ~SPLL_PLL_ENABLE); |
| POSTING_READ(SPLL_CTL); |
| } |
| |
| static bool hsw_ddi_wrpll_get_hw_state(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll, |
| struct intel_dpll_hw_state *hw_state) |
| { |
| const enum intel_dpll_id id = pll->info->id; |
| intel_wakeref_t wakeref; |
| u32 val; |
| |
| wakeref = intel_display_power_get_if_enabled(dev_priv, |
| POWER_DOMAIN_DISPLAY_CORE); |
| if (!wakeref) |
| return false; |
| |
| val = I915_READ(WRPLL_CTL(id)); |
| hw_state->wrpll = val; |
| |
| intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref); |
| |
| return val & WRPLL_PLL_ENABLE; |
| } |
| |
| static bool hsw_ddi_spll_get_hw_state(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll, |
| struct intel_dpll_hw_state *hw_state) |
| { |
| intel_wakeref_t wakeref; |
| u32 val; |
| |
| wakeref = intel_display_power_get_if_enabled(dev_priv, |
| POWER_DOMAIN_DISPLAY_CORE); |
| if (!wakeref) |
| return false; |
| |
| val = I915_READ(SPLL_CTL); |
| hw_state->spll = val; |
| |
| intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref); |
| |
| return val & SPLL_PLL_ENABLE; |
| } |
| |
| #define LC_FREQ 2700 |
| #define LC_FREQ_2K U64_C(LC_FREQ * 2000) |
| |
| #define P_MIN 2 |
| #define P_MAX 64 |
| #define P_INC 2 |
| |
| /* Constraints for PLL good behavior */ |
| #define REF_MIN 48 |
| #define REF_MAX 400 |
| #define VCO_MIN 2400 |
| #define VCO_MAX 4800 |
| |
| struct hsw_wrpll_rnp { |
| unsigned p, n2, r2; |
| }; |
| |
| static unsigned hsw_wrpll_get_budget_for_freq(int clock) |
| { |
| unsigned budget; |
| |
| switch (clock) { |
| case 25175000: |
| case 25200000: |
| case 27000000: |
| case 27027000: |
| case 37762500: |
| case 37800000: |
| case 40500000: |
| case 40541000: |
| case 54000000: |
| case 54054000: |
| case 59341000: |
| case 59400000: |
| case 72000000: |
| case 74176000: |
| case 74250000: |
| case 81000000: |
| case 81081000: |
| case 89012000: |
| case 89100000: |
| case 108000000: |
| case 108108000: |
| case 111264000: |
| case 111375000: |
| case 148352000: |
| case 148500000: |
| case 162000000: |
| case 162162000: |
| case 222525000: |
| case 222750000: |
| case 296703000: |
| case 297000000: |
| budget = 0; |
| break; |
| case 233500000: |
| case 245250000: |
| case 247750000: |
| case 253250000: |
| case 298000000: |
| budget = 1500; |
| break; |
| case 169128000: |
| case 169500000: |
| case 179500000: |
| case 202000000: |
| budget = 2000; |
| break; |
| case 256250000: |
| case 262500000: |
| case 270000000: |
| case 272500000: |
| case 273750000: |
| case 280750000: |
| case 281250000: |
| case 286000000: |
| case 291750000: |
| budget = 4000; |
| break; |
| case 267250000: |
| case 268500000: |
| budget = 5000; |
| break; |
| default: |
| budget = 1000; |
| break; |
| } |
| |
| return budget; |
| } |
| |
| static void hsw_wrpll_update_rnp(u64 freq2k, unsigned int budget, |
| unsigned int r2, unsigned int n2, |
| unsigned int p, |
| struct hsw_wrpll_rnp *best) |
| { |
| u64 a, b, c, d, diff, diff_best; |
| |
| /* No best (r,n,p) yet */ |
| if (best->p == 0) { |
| best->p = p; |
| best->n2 = n2; |
| best->r2 = r2; |
| return; |
| } |
| |
| /* |
| * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to |
| * freq2k. |
| * |
| * delta = 1e6 * |
| * abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) / |
| * freq2k; |
| * |
| * and we would like delta <= budget. |
| * |
| * If the discrepancy is above the PPM-based budget, always prefer to |
| * improve upon the previous solution. However, if you're within the |
| * budget, try to maximize Ref * VCO, that is N / (P * R^2). |
| */ |
| a = freq2k * budget * p * r2; |
| b = freq2k * budget * best->p * best->r2; |
| diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2); |
| diff_best = abs_diff(freq2k * best->p * best->r2, |
| LC_FREQ_2K * best->n2); |
| c = 1000000 * diff; |
| d = 1000000 * diff_best; |
| |
| if (a < c && b < d) { |
| /* If both are above the budget, pick the closer */ |
| if (best->p * best->r2 * diff < p * r2 * diff_best) { |
| best->p = p; |
| best->n2 = n2; |
| best->r2 = r2; |
| } |
| } else if (a >= c && b < d) { |
| /* If A is below the threshold but B is above it? Update. */ |
| best->p = p; |
| best->n2 = n2; |
| best->r2 = r2; |
| } else if (a >= c && b >= d) { |
| /* Both are below the limit, so pick the higher n2/(r2*r2) */ |
| if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) { |
| best->p = p; |
| best->n2 = n2; |
| best->r2 = r2; |
| } |
| } |
| /* Otherwise a < c && b >= d, do nothing */ |
| } |
| |
| static void |
| hsw_ddi_calculate_wrpll(int clock /* in Hz */, |
| unsigned *r2_out, unsigned *n2_out, unsigned *p_out) |
| { |
| u64 freq2k; |
| unsigned p, n2, r2; |
| struct hsw_wrpll_rnp best = { 0, 0, 0 }; |
| unsigned budget; |
| |
| freq2k = clock / 100; |
| |
| budget = hsw_wrpll_get_budget_for_freq(clock); |
| |
| /* Special case handling for 540 pixel clock: bypass WR PLL entirely |
| * and directly pass the LC PLL to it. */ |
| if (freq2k == 5400000) { |
| *n2_out = 2; |
| *p_out = 1; |
| *r2_out = 2; |
| return; |
| } |
| |
| /* |
| * Ref = LC_FREQ / R, where Ref is the actual reference input seen by |
| * the WR PLL. |
| * |
| * We want R so that REF_MIN <= Ref <= REF_MAX. |
| * Injecting R2 = 2 * R gives: |
| * REF_MAX * r2 > LC_FREQ * 2 and |
| * REF_MIN * r2 < LC_FREQ * 2 |
| * |
| * Which means the desired boundaries for r2 are: |
| * LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN |
| * |
| */ |
| for (r2 = LC_FREQ * 2 / REF_MAX + 1; |
| r2 <= LC_FREQ * 2 / REF_MIN; |
| r2++) { |
| |
| /* |
| * VCO = N * Ref, that is: VCO = N * LC_FREQ / R |
| * |
| * Once again we want VCO_MIN <= VCO <= VCO_MAX. |
| * Injecting R2 = 2 * R and N2 = 2 * N, we get: |
| * VCO_MAX * r2 > n2 * LC_FREQ and |
| * VCO_MIN * r2 < n2 * LC_FREQ) |
| * |
| * Which means the desired boundaries for n2 are: |
| * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ |
| */ |
| for (n2 = VCO_MIN * r2 / LC_FREQ + 1; |
| n2 <= VCO_MAX * r2 / LC_FREQ; |
| n2++) { |
| |
| for (p = P_MIN; p <= P_MAX; p += P_INC) |
| hsw_wrpll_update_rnp(freq2k, budget, |
| r2, n2, p, &best); |
| } |
| } |
| |
| *n2_out = best.n2; |
| *p_out = best.p; |
| *r2_out = best.r2; |
| } |
| |
| static struct intel_shared_dpll *hsw_ddi_hdmi_get_dpll(struct intel_crtc_state *crtc_state) |
| { |
| struct intel_shared_dpll *pll; |
| u32 val; |
| unsigned int p, n2, r2; |
| |
| hsw_ddi_calculate_wrpll(crtc_state->port_clock * 1000, &r2, &n2, &p); |
| |
| val = WRPLL_PLL_ENABLE | WRPLL_REF_LCPLL | |
| WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) | |
| WRPLL_DIVIDER_POST(p); |
| |
| crtc_state->dpll_hw_state.wrpll = val; |
| |
| pll = intel_find_shared_dpll(crtc_state, |
| DPLL_ID_WRPLL1, DPLL_ID_WRPLL2); |
| |
| if (!pll) |
| return NULL; |
| |
| return pll; |
| } |
| |
| static struct intel_shared_dpll * |
| hsw_ddi_dp_get_dpll(struct intel_crtc_state *crtc_state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); |
| struct intel_shared_dpll *pll; |
| enum intel_dpll_id pll_id; |
| int clock = crtc_state->port_clock; |
| |
| switch (clock / 2) { |
| case 81000: |
| pll_id = DPLL_ID_LCPLL_810; |
| break; |
| case 135000: |
| pll_id = DPLL_ID_LCPLL_1350; |
| break; |
| case 270000: |
| pll_id = DPLL_ID_LCPLL_2700; |
| break; |
| default: |
| DRM_DEBUG_KMS("Invalid clock for DP: %d\n", clock); |
| return NULL; |
| } |
| |
| pll = intel_get_shared_dpll_by_id(dev_priv, pll_id); |
| |
| if (!pll) |
| return NULL; |
| |
| return pll; |
| } |
| |
| static struct intel_shared_dpll * |
| hsw_get_dpll(struct intel_crtc_state *crtc_state, |
| struct intel_encoder *encoder) |
| { |
| struct intel_shared_dpll *pll; |
| |
| memset(&crtc_state->dpll_hw_state, 0, |
| sizeof(crtc_state->dpll_hw_state)); |
| |
| if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) { |
| pll = hsw_ddi_hdmi_get_dpll(crtc_state); |
| } else if (intel_crtc_has_dp_encoder(crtc_state)) { |
| pll = hsw_ddi_dp_get_dpll(crtc_state); |
| } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) { |
| if (WARN_ON(crtc_state->port_clock / 2 != 135000)) |
| return NULL; |
| |
| crtc_state->dpll_hw_state.spll = |
| SPLL_PLL_ENABLE | SPLL_FREQ_1350MHz | SPLL_REF_MUXED_SSC; |
| |
| pll = intel_find_shared_dpll(crtc_state, |
| DPLL_ID_SPLL, DPLL_ID_SPLL); |
| } else { |
| return NULL; |
| } |
| |
| if (!pll) |
| return NULL; |
| |
| intel_reference_shared_dpll(pll, crtc_state); |
| |
| return pll; |
| } |
| |
| static void hsw_dump_hw_state(struct drm_i915_private *dev_priv, |
| const struct intel_dpll_hw_state *hw_state) |
| { |
| DRM_DEBUG_KMS("dpll_hw_state: wrpll: 0x%x spll: 0x%x\n", |
| hw_state->wrpll, hw_state->spll); |
| } |
| |
| static const struct intel_shared_dpll_funcs hsw_ddi_wrpll_funcs = { |
| .enable = hsw_ddi_wrpll_enable, |
| .disable = hsw_ddi_wrpll_disable, |
| .get_hw_state = hsw_ddi_wrpll_get_hw_state, |
| }; |
| |
| static const struct intel_shared_dpll_funcs hsw_ddi_spll_funcs = { |
| .enable = hsw_ddi_spll_enable, |
| .disable = hsw_ddi_spll_disable, |
| .get_hw_state = hsw_ddi_spll_get_hw_state, |
| }; |
| |
| static void hsw_ddi_lcpll_enable(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll) |
| { |
| } |
| |
| static void hsw_ddi_lcpll_disable(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll) |
| { |
| } |
| |
| static bool hsw_ddi_lcpll_get_hw_state(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll, |
| struct intel_dpll_hw_state *hw_state) |
| { |
| return true; |
| } |
| |
| static const struct intel_shared_dpll_funcs hsw_ddi_lcpll_funcs = { |
| .enable = hsw_ddi_lcpll_enable, |
| .disable = hsw_ddi_lcpll_disable, |
| .get_hw_state = hsw_ddi_lcpll_get_hw_state, |
| }; |
| |
| struct skl_dpll_regs { |
| i915_reg_t ctl, cfgcr1, cfgcr2; |
| }; |
| |
| /* this array is indexed by the *shared* pll id */ |
| static const struct skl_dpll_regs skl_dpll_regs[4] = { |
| { |
| /* DPLL 0 */ |
| .ctl = LCPLL1_CTL, |
| /* DPLL 0 doesn't support HDMI mode */ |
| }, |
| { |
| /* DPLL 1 */ |
| .ctl = LCPLL2_CTL, |
| .cfgcr1 = DPLL_CFGCR1(SKL_DPLL1), |
| .cfgcr2 = DPLL_CFGCR2(SKL_DPLL1), |
| }, |
| { |
| /* DPLL 2 */ |
| .ctl = WRPLL_CTL(0), |
| .cfgcr1 = DPLL_CFGCR1(SKL_DPLL2), |
| .cfgcr2 = DPLL_CFGCR2(SKL_DPLL2), |
| }, |
| { |
| /* DPLL 3 */ |
| .ctl = WRPLL_CTL(1), |
| .cfgcr1 = DPLL_CFGCR1(SKL_DPLL3), |
| .cfgcr2 = DPLL_CFGCR2(SKL_DPLL3), |
| }, |
| }; |
| |
| static void skl_ddi_pll_write_ctrl1(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll) |
| { |
| const enum intel_dpll_id id = pll->info->id; |
| u32 val; |
| |
| val = I915_READ(DPLL_CTRL1); |
| |
| val &= ~(DPLL_CTRL1_HDMI_MODE(id) | |
| DPLL_CTRL1_SSC(id) | |
| DPLL_CTRL1_LINK_RATE_MASK(id)); |
| val |= pll->state.hw_state.ctrl1 << (id * 6); |
| |
| I915_WRITE(DPLL_CTRL1, val); |
| POSTING_READ(DPLL_CTRL1); |
| } |
| |
| static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll) |
| { |
| const struct skl_dpll_regs *regs = skl_dpll_regs; |
| const enum intel_dpll_id id = pll->info->id; |
| |
| skl_ddi_pll_write_ctrl1(dev_priv, pll); |
| |
| I915_WRITE(regs[id].cfgcr1, pll->state.hw_state.cfgcr1); |
| I915_WRITE(regs[id].cfgcr2, pll->state.hw_state.cfgcr2); |
| POSTING_READ(regs[id].cfgcr1); |
| POSTING_READ(regs[id].cfgcr2); |
| |
| /* the enable bit is always bit 31 */ |
| I915_WRITE(regs[id].ctl, |
| I915_READ(regs[id].ctl) | LCPLL_PLL_ENABLE); |
| |
| if (intel_wait_for_register(&dev_priv->uncore, |
| DPLL_STATUS, |
| DPLL_LOCK(id), |
| DPLL_LOCK(id), |
| 5)) |
| DRM_ERROR("DPLL %d not locked\n", id); |
| } |
| |
| static void skl_ddi_dpll0_enable(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll) |
| { |
| skl_ddi_pll_write_ctrl1(dev_priv, pll); |
| } |
| |
| static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll) |
| { |
| const struct skl_dpll_regs *regs = skl_dpll_regs; |
| const enum intel_dpll_id id = pll->info->id; |
| |
| /* the enable bit is always bit 31 */ |
| I915_WRITE(regs[id].ctl, |
| I915_READ(regs[id].ctl) & ~LCPLL_PLL_ENABLE); |
| POSTING_READ(regs[id].ctl); |
| } |
| |
| static void skl_ddi_dpll0_disable(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll) |
| { |
| } |
| |
| static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll, |
| struct intel_dpll_hw_state *hw_state) |
| { |
| u32 val; |
| const struct skl_dpll_regs *regs = skl_dpll_regs; |
| const enum intel_dpll_id id = pll->info->id; |
| intel_wakeref_t wakeref; |
| bool ret; |
| |
| wakeref = intel_display_power_get_if_enabled(dev_priv, |
| POWER_DOMAIN_DISPLAY_CORE); |
| if (!wakeref) |
| return false; |
| |
| ret = false; |
| |
| val = I915_READ(regs[id].ctl); |
| if (!(val & LCPLL_PLL_ENABLE)) |
| goto out; |
| |
| val = I915_READ(DPLL_CTRL1); |
| hw_state->ctrl1 = (val >> (id * 6)) & 0x3f; |
| |
| /* avoid reading back stale values if HDMI mode is not enabled */ |
| if (val & DPLL_CTRL1_HDMI_MODE(id)) { |
| hw_state->cfgcr1 = I915_READ(regs[id].cfgcr1); |
| hw_state->cfgcr2 = I915_READ(regs[id].cfgcr2); |
| } |
| ret = true; |
| |
| out: |
| intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref); |
| |
| return ret; |
| } |
| |
| static bool skl_ddi_dpll0_get_hw_state(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll, |
| struct intel_dpll_hw_state *hw_state) |
| { |
| const struct skl_dpll_regs *regs = skl_dpll_regs; |
| const enum intel_dpll_id id = pll->info->id; |
| intel_wakeref_t wakeref; |
| u32 val; |
| bool ret; |
| |
| wakeref = intel_display_power_get_if_enabled(dev_priv, |
| POWER_DOMAIN_DISPLAY_CORE); |
| if (!wakeref) |
| return false; |
| |
| ret = false; |
| |
| /* DPLL0 is always enabled since it drives CDCLK */ |
| val = I915_READ(regs[id].ctl); |
| if (WARN_ON(!(val & LCPLL_PLL_ENABLE))) |
| goto out; |
| |
| val = I915_READ(DPLL_CTRL1); |
| hw_state->ctrl1 = (val >> (id * 6)) & 0x3f; |
| |
| ret = true; |
| |
| out: |
| intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref); |
| |
| return ret; |
| } |
| |
| struct skl_wrpll_context { |
| u64 min_deviation; /* current minimal deviation */ |
| u64 central_freq; /* chosen central freq */ |
| u64 dco_freq; /* chosen dco freq */ |
| unsigned int p; /* chosen divider */ |
| }; |
| |
| static void skl_wrpll_context_init(struct skl_wrpll_context *ctx) |
| { |
| memset(ctx, 0, sizeof(*ctx)); |
| |
| ctx->min_deviation = U64_MAX; |
| } |
| |
| /* DCO freq must be within +1%/-6% of the DCO central freq */ |
| #define SKL_DCO_MAX_PDEVIATION 100 |
| #define SKL_DCO_MAX_NDEVIATION 600 |
| |
| static void skl_wrpll_try_divider(struct skl_wrpll_context *ctx, |
| u64 central_freq, |
| u64 dco_freq, |
| unsigned int divider) |
| { |
| u64 deviation; |
| |
| deviation = div64_u64(10000 * abs_diff(dco_freq, central_freq), |
| central_freq); |
| |
| /* positive deviation */ |
| if (dco_freq >= central_freq) { |
| if (deviation < SKL_DCO_MAX_PDEVIATION && |
| deviation < ctx->min_deviation) { |
| ctx->min_deviation = deviation; |
| ctx->central_freq = central_freq; |
| ctx->dco_freq = dco_freq; |
| ctx->p = divider; |
| } |
| /* negative deviation */ |
| } else if (deviation < SKL_DCO_MAX_NDEVIATION && |
| deviation < ctx->min_deviation) { |
| ctx->min_deviation = deviation; |
| ctx->central_freq = central_freq; |
| ctx->dco_freq = dco_freq; |
| ctx->p = divider; |
| } |
| } |
| |
| static void skl_wrpll_get_multipliers(unsigned int p, |
| unsigned int *p0 /* out */, |
| unsigned int *p1 /* out */, |
| unsigned int *p2 /* out */) |
| { |
| /* even dividers */ |
| if (p % 2 == 0) { |
| unsigned int half = p / 2; |
| |
| if (half == 1 || half == 2 || half == 3 || half == 5) { |
| *p0 = 2; |
| *p1 = 1; |
| *p2 = half; |
| } else if (half % 2 == 0) { |
| *p0 = 2; |
| *p1 = half / 2; |
| *p2 = 2; |
| } else if (half % 3 == 0) { |
| *p0 = 3; |
| *p1 = half / 3; |
| *p2 = 2; |
| } else if (half % 7 == 0) { |
| *p0 = 7; |
| *p1 = half / 7; |
| *p2 = 2; |
| } |
| } else if (p == 3 || p == 9) { /* 3, 5, 7, 9, 15, 21, 35 */ |
| *p0 = 3; |
| *p1 = 1; |
| *p2 = p / 3; |
| } else if (p == 5 || p == 7) { |
| *p0 = p; |
| *p1 = 1; |
| *p2 = 1; |
| } else if (p == 15) { |
| *p0 = 3; |
| *p1 = 1; |
| *p2 = 5; |
| } else if (p == 21) { |
| *p0 = 7; |
| *p1 = 1; |
| *p2 = 3; |
| } else if (p == 35) { |
| *p0 = 7; |
| *p1 = 1; |
| *p2 = 5; |
| } |
| } |
| |
| struct skl_wrpll_params { |
| u32 dco_fraction; |
| u32 dco_integer; |
| u32 qdiv_ratio; |
| u32 qdiv_mode; |
| u32 kdiv; |
| u32 pdiv; |
| u32 central_freq; |
| }; |
| |
| static void skl_wrpll_params_populate(struct skl_wrpll_params *params, |
| u64 afe_clock, |
| u64 central_freq, |
| u32 p0, u32 p1, u32 p2) |
| { |
| u64 dco_freq; |
| |
| switch (central_freq) { |
| case 9600000000ULL: |
| params->central_freq = 0; |
| break; |
| case 9000000000ULL: |
| params->central_freq = 1; |
| break; |
| case 8400000000ULL: |
| params->central_freq = 3; |
| } |
| |
| switch (p0) { |
| case 1: |
| params->pdiv = 0; |
| break; |
| case 2: |
| params->pdiv = 1; |
| break; |
| case 3: |
| params->pdiv = 2; |
| break; |
| case 7: |
| params->pdiv = 4; |
| break; |
| default: |
| WARN(1, "Incorrect PDiv\n"); |
| } |
| |
| switch (p2) { |
| case 5: |
| params->kdiv = 0; |
| break; |
| case 2: |
| params->kdiv = 1; |
| break; |
| case 3: |
| params->kdiv = 2; |
| break; |
| case 1: |
| params->kdiv = 3; |
| break; |
| default: |
| WARN(1, "Incorrect KDiv\n"); |
| } |
| |
| params->qdiv_ratio = p1; |
| params->qdiv_mode = (params->qdiv_ratio == 1) ? 0 : 1; |
| |
| dco_freq = p0 * p1 * p2 * afe_clock; |
| |
| /* |
| * Intermediate values are in Hz. |
| * Divide by MHz to match bsepc |
| */ |
| params->dco_integer = div_u64(dco_freq, 24 * MHz(1)); |
| params->dco_fraction = |
| div_u64((div_u64(dco_freq, 24) - |
| params->dco_integer * MHz(1)) * 0x8000, MHz(1)); |
| } |
| |
| static bool |
| skl_ddi_calculate_wrpll(int clock /* in Hz */, |
| struct skl_wrpll_params *wrpll_params) |
| { |
| u64 afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */ |
| u64 dco_central_freq[3] = { 8400000000ULL, |
| 9000000000ULL, |
| 9600000000ULL }; |
| static const int even_dividers[] = { 4, 6, 8, 10, 12, 14, 16, 18, 20, |
| 24, 28, 30, 32, 36, 40, 42, 44, |
| 48, 52, 54, 56, 60, 64, 66, 68, |
| 70, 72, 76, 78, 80, 84, 88, 90, |
| 92, 96, 98 }; |
| static const int odd_dividers[] = { 3, 5, 7, 9, 15, 21, 35 }; |
| static const struct { |
| const int *list; |
| int n_dividers; |
| } dividers[] = { |
| { even_dividers, ARRAY_SIZE(even_dividers) }, |
| { odd_dividers, ARRAY_SIZE(odd_dividers) }, |
| }; |
| struct skl_wrpll_context ctx; |
| unsigned int dco, d, i; |
| unsigned int p0, p1, p2; |
| |
| skl_wrpll_context_init(&ctx); |
| |
| for (d = 0; d < ARRAY_SIZE(dividers); d++) { |
| for (dco = 0; dco < ARRAY_SIZE(dco_central_freq); dco++) { |
| for (i = 0; i < dividers[d].n_dividers; i++) { |
| unsigned int p = dividers[d].list[i]; |
| u64 dco_freq = p * afe_clock; |
| |
| skl_wrpll_try_divider(&ctx, |
| dco_central_freq[dco], |
| dco_freq, |
| p); |
| /* |
| * Skip the remaining dividers if we're sure to |
| * have found the definitive divider, we can't |
| * improve a 0 deviation. |
| */ |
| if (ctx.min_deviation == 0) |
| goto skip_remaining_dividers; |
| } |
| } |
| |
| skip_remaining_dividers: |
| /* |
| * If a solution is found with an even divider, prefer |
| * this one. |
| */ |
| if (d == 0 && ctx.p) |
| break; |
| } |
| |
| if (!ctx.p) { |
| DRM_DEBUG_DRIVER("No valid divider found for %dHz\n", clock); |
| return false; |
| } |
| |
| /* |
| * gcc incorrectly analyses that these can be used without being |
| * initialized. To be fair, it's hard to guess. |
| */ |
| p0 = p1 = p2 = 0; |
| skl_wrpll_get_multipliers(ctx.p, &p0, &p1, &p2); |
| skl_wrpll_params_populate(wrpll_params, afe_clock, ctx.central_freq, |
| p0, p1, p2); |
| |
| return true; |
| } |
| |
| static bool skl_ddi_hdmi_pll_dividers(struct intel_crtc_state *crtc_state) |
| { |
| u32 ctrl1, cfgcr1, cfgcr2; |
| struct skl_wrpll_params wrpll_params = { 0, }; |
| |
| /* |
| * See comment in intel_dpll_hw_state to understand why we always use 0 |
| * as the DPLL id in this function. |
| */ |
| ctrl1 = DPLL_CTRL1_OVERRIDE(0); |
| |
| ctrl1 |= DPLL_CTRL1_HDMI_MODE(0); |
| |
| if (!skl_ddi_calculate_wrpll(crtc_state->port_clock * 1000, |
| &wrpll_params)) |
| return false; |
| |
| cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE | |
| DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) | |
| wrpll_params.dco_integer; |
| |
| cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) | |
| DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) | |
| DPLL_CFGCR2_KDIV(wrpll_params.kdiv) | |
| DPLL_CFGCR2_PDIV(wrpll_params.pdiv) | |
| wrpll_params.central_freq; |
| |
| memset(&crtc_state->dpll_hw_state, 0, |
| sizeof(crtc_state->dpll_hw_state)); |
| |
| crtc_state->dpll_hw_state.ctrl1 = ctrl1; |
| crtc_state->dpll_hw_state.cfgcr1 = cfgcr1; |
| crtc_state->dpll_hw_state.cfgcr2 = cfgcr2; |
| return true; |
| } |
| |
| static bool |
| skl_ddi_dp_set_dpll_hw_state(struct intel_crtc_state *crtc_state) |
| { |
| u32 ctrl1; |
| |
| /* |
| * See comment in intel_dpll_hw_state to understand why we always use 0 |
| * as the DPLL id in this function. |
| */ |
| ctrl1 = DPLL_CTRL1_OVERRIDE(0); |
| switch (crtc_state->port_clock / 2) { |
| case 81000: |
| ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0); |
| break; |
| case 135000: |
| ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0); |
| break; |
| case 270000: |
| ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0); |
| break; |
| /* eDP 1.4 rates */ |
| case 162000: |
| ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, 0); |
| break; |
| case 108000: |
| ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, 0); |
| break; |
| case 216000: |
| ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, 0); |
| break; |
| } |
| |
| memset(&crtc_state->dpll_hw_state, 0, |
| sizeof(crtc_state->dpll_hw_state)); |
| |
| crtc_state->dpll_hw_state.ctrl1 = ctrl1; |
| |
| return true; |
| } |
| |
| static struct intel_shared_dpll * |
| skl_get_dpll(struct intel_crtc_state *crtc_state, |
| struct intel_encoder *encoder) |
| { |
| struct intel_shared_dpll *pll; |
| bool bret; |
| |
| if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) { |
| bret = skl_ddi_hdmi_pll_dividers(crtc_state); |
| if (!bret) { |
| DRM_DEBUG_KMS("Could not get HDMI pll dividers.\n"); |
| return NULL; |
| } |
| } else if (intel_crtc_has_dp_encoder(crtc_state)) { |
| bret = skl_ddi_dp_set_dpll_hw_state(crtc_state); |
| if (!bret) { |
| DRM_DEBUG_KMS("Could not set DP dpll HW state.\n"); |
| return NULL; |
| } |
| } else { |
| return NULL; |
| } |
| |
| if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP)) |
| pll = intel_find_shared_dpll(crtc_state, |
| DPLL_ID_SKL_DPLL0, |
| DPLL_ID_SKL_DPLL0); |
| else |
| pll = intel_find_shared_dpll(crtc_state, |
| DPLL_ID_SKL_DPLL1, |
| DPLL_ID_SKL_DPLL3); |
| if (!pll) |
| return NULL; |
| |
| intel_reference_shared_dpll(pll, crtc_state); |
| |
| return pll; |
| } |
| |
| static void skl_dump_hw_state(struct drm_i915_private *dev_priv, |
| const struct intel_dpll_hw_state *hw_state) |
| { |
| DRM_DEBUG_KMS("dpll_hw_state: " |
| "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n", |
| hw_state->ctrl1, |
| hw_state->cfgcr1, |
| hw_state->cfgcr2); |
| } |
| |
| static const struct intel_shared_dpll_funcs skl_ddi_pll_funcs = { |
| .enable = skl_ddi_pll_enable, |
| .disable = skl_ddi_pll_disable, |
| .get_hw_state = skl_ddi_pll_get_hw_state, |
| }; |
| |
| static const struct intel_shared_dpll_funcs skl_ddi_dpll0_funcs = { |
| .enable = skl_ddi_dpll0_enable, |
| .disable = skl_ddi_dpll0_disable, |
| .get_hw_state = skl_ddi_dpll0_get_hw_state, |
| }; |
| |
| static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll) |
| { |
| u32 temp; |
| enum port port = (enum port)pll->info->id; /* 1:1 port->PLL mapping */ |
| enum dpio_phy phy; |
| enum dpio_channel ch; |
| |
| bxt_port_to_phy_channel(dev_priv, port, &phy, &ch); |
| |
| /* Non-SSC reference */ |
| temp = I915_READ(BXT_PORT_PLL_ENABLE(port)); |
| temp |= PORT_PLL_REF_SEL; |
| I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp); |
| |
| if (IS_GEMINILAKE(dev_priv)) { |
| temp = I915_READ(BXT_PORT_PLL_ENABLE(port)); |
| temp |= PORT_PLL_POWER_ENABLE; |
| I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp); |
| |
| if (wait_for_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) & |
| PORT_PLL_POWER_STATE), 200)) |
| DRM_ERROR("Power state not set for PLL:%d\n", port); |
| } |
| |
| /* Disable 10 bit clock */ |
| temp = I915_READ(BXT_PORT_PLL_EBB_4(phy, ch)); |
| temp &= ~PORT_PLL_10BIT_CLK_ENABLE; |
| I915_WRITE(BXT_PORT_PLL_EBB_4(phy, ch), temp); |
| |
| /* Write P1 & P2 */ |
| temp = I915_READ(BXT_PORT_PLL_EBB_0(phy, ch)); |
| temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK); |
| temp |= pll->state.hw_state.ebb0; |
| I915_WRITE(BXT_PORT_PLL_EBB_0(phy, ch), temp); |
| |
| /* Write M2 integer */ |
| temp = I915_READ(BXT_PORT_PLL(phy, ch, 0)); |
| temp &= ~PORT_PLL_M2_MASK; |
| temp |= pll->state.hw_state.pll0; |
| I915_WRITE(BXT_PORT_PLL(phy, ch, 0), temp); |
| |
| /* Write N */ |
| temp = I915_READ(BXT_PORT_PLL(phy, ch, 1)); |
| temp &= ~PORT_PLL_N_MASK; |
| temp |= pll->state.hw_state.pll1; |
| I915_WRITE(BXT_PORT_PLL(phy, ch, 1), temp); |
| |
| /* Write M2 fraction */ |
| temp = I915_READ(BXT_PORT_PLL(phy, ch, 2)); |
| temp &= ~PORT_PLL_M2_FRAC_MASK; |
| temp |= pll->state.hw_state.pll2; |
| I915_WRITE(BXT_PORT_PLL(phy, ch, 2), temp); |
| |
| /* Write M2 fraction enable */ |
| temp = I915_READ(BXT_PORT_PLL(phy, ch, 3)); |
| temp &= ~PORT_PLL_M2_FRAC_ENABLE; |
| temp |= pll->state.hw_state.pll3; |
| I915_WRITE(BXT_PORT_PLL(phy, ch, 3), temp); |
| |
| /* Write coeff */ |
| temp = I915_READ(BXT_PORT_PLL(phy, ch, 6)); |
| temp &= ~PORT_PLL_PROP_COEFF_MASK; |
| temp &= ~PORT_PLL_INT_COEFF_MASK; |
| temp &= ~PORT_PLL_GAIN_CTL_MASK; |
| temp |= pll->state.hw_state.pll6; |
| I915_WRITE(BXT_PORT_PLL(phy, ch, 6), temp); |
| |
| /* Write calibration val */ |
| temp = I915_READ(BXT_PORT_PLL(phy, ch, 8)); |
| temp &= ~PORT_PLL_TARGET_CNT_MASK; |
| temp |= pll->state.hw_state.pll8; |
| I915_WRITE(BXT_PORT_PLL(phy, ch, 8), temp); |
| |
| temp = I915_READ(BXT_PORT_PLL(phy, ch, 9)); |
| temp &= ~PORT_PLL_LOCK_THRESHOLD_MASK; |
| temp |= pll->state.hw_state.pll9; |
| I915_WRITE(BXT_PORT_PLL(phy, ch, 9), temp); |
| |
| temp = I915_READ(BXT_PORT_PLL(phy, ch, 10)); |
| temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H; |
| temp &= ~PORT_PLL_DCO_AMP_MASK; |
| temp |= pll->state.hw_state.pll10; |
| I915_WRITE(BXT_PORT_PLL(phy, ch, 10), temp); |
| |
| /* Recalibrate with new settings */ |
| temp = I915_READ(BXT_PORT_PLL_EBB_4(phy, ch)); |
| temp |= PORT_PLL_RECALIBRATE; |
| I915_WRITE(BXT_PORT_PLL_EBB_4(phy, ch), temp); |
| temp &= ~PORT_PLL_10BIT_CLK_ENABLE; |
| temp |= pll->state.hw_state.ebb4; |
| I915_WRITE(BXT_PORT_PLL_EBB_4(phy, ch), temp); |
| |
| /* Enable PLL */ |
| temp = I915_READ(BXT_PORT_PLL_ENABLE(port)); |
| temp |= PORT_PLL_ENABLE; |
| I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp); |
| POSTING_READ(BXT_PORT_PLL_ENABLE(port)); |
| |
| if (wait_for_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) & PORT_PLL_LOCK), |
| 200)) |
| DRM_ERROR("PLL %d not locked\n", port); |
| |
| if (IS_GEMINILAKE(dev_priv)) { |
| temp = I915_READ(BXT_PORT_TX_DW5_LN0(phy, ch)); |
| temp |= DCC_DELAY_RANGE_2; |
| I915_WRITE(BXT_PORT_TX_DW5_GRP(phy, ch), temp); |
| } |
| |
| /* |
| * While we write to the group register to program all lanes at once we |
| * can read only lane registers and we pick lanes 0/1 for that. |
| */ |
| temp = I915_READ(BXT_PORT_PCS_DW12_LN01(phy, ch)); |
| temp &= ~LANE_STAGGER_MASK; |
| temp &= ~LANESTAGGER_STRAP_OVRD; |
| temp |= pll->state.hw_state.pcsdw12; |
| I915_WRITE(BXT_PORT_PCS_DW12_GRP(phy, ch), temp); |
| } |
| |
| static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll) |
| { |
| enum port port = (enum port)pll->info->id; /* 1:1 port->PLL mapping */ |
| u32 temp; |
| |
| temp = I915_READ(BXT_PORT_PLL_ENABLE(port)); |
| temp &= ~PORT_PLL_ENABLE; |
| I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp); |
| POSTING_READ(BXT_PORT_PLL_ENABLE(port)); |
| |
| if (IS_GEMINILAKE(dev_priv)) { |
| temp = I915_READ(BXT_PORT_PLL_ENABLE(port)); |
| temp &= ~PORT_PLL_POWER_ENABLE; |
| I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp); |
| |
| if (wait_for_us(!(I915_READ(BXT_PORT_PLL_ENABLE(port)) & |
| PORT_PLL_POWER_STATE), 200)) |
| DRM_ERROR("Power state not reset for PLL:%d\n", port); |
| } |
| } |
| |
| static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll, |
| struct intel_dpll_hw_state *hw_state) |
| { |
| enum port port = (enum port)pll->info->id; /* 1:1 port->PLL mapping */ |
| intel_wakeref_t wakeref; |
| enum dpio_phy phy; |
| enum dpio_channel ch; |
| u32 val; |
| bool ret; |
| |
| bxt_port_to_phy_channel(dev_priv, port, &phy, &ch); |
| |
| wakeref = intel_display_power_get_if_enabled(dev_priv, |
| POWER_DOMAIN_DISPLAY_CORE); |
| if (!wakeref) |
| return false; |
| |
| ret = false; |
| |
| val = I915_READ(BXT_PORT_PLL_ENABLE(port)); |
| if (!(val & PORT_PLL_ENABLE)) |
| goto out; |
| |
| hw_state->ebb0 = I915_READ(BXT_PORT_PLL_EBB_0(phy, ch)); |
| hw_state->ebb0 &= PORT_PLL_P1_MASK | PORT_PLL_P2_MASK; |
| |
| hw_state->ebb4 = I915_READ(BXT_PORT_PLL_EBB_4(phy, ch)); |
| hw_state->ebb4 &= PORT_PLL_10BIT_CLK_ENABLE; |
| |
| hw_state->pll0 = I915_READ(BXT_PORT_PLL(phy, ch, 0)); |
| hw_state->pll0 &= PORT_PLL_M2_MASK; |
| |
| hw_state->pll1 = I915_READ(BXT_PORT_PLL(phy, ch, 1)); |
| hw_state->pll1 &= PORT_PLL_N_MASK; |
| |
| hw_state->pll2 = I915_READ(BXT_PORT_PLL(phy, ch, 2)); |
| hw_state->pll2 &= PORT_PLL_M2_FRAC_MASK; |
| |
| hw_state->pll3 = I915_READ(BXT_PORT_PLL(phy, ch, 3)); |
| hw_state->pll3 &= PORT_PLL_M2_FRAC_ENABLE; |
| |
| hw_state->pll6 = I915_READ(BXT_PORT_PLL(phy, ch, 6)); |
| hw_state->pll6 &= PORT_PLL_PROP_COEFF_MASK | |
| PORT_PLL_INT_COEFF_MASK | |
| PORT_PLL_GAIN_CTL_MASK; |
| |
| hw_state->pll8 = I915_READ(BXT_PORT_PLL(phy, ch, 8)); |
| hw_state->pll8 &= PORT_PLL_TARGET_CNT_MASK; |
| |
| hw_state->pll9 = I915_READ(BXT_PORT_PLL(phy, ch, 9)); |
| hw_state->pll9 &= PORT_PLL_LOCK_THRESHOLD_MASK; |
| |
| hw_state->pll10 = I915_READ(BXT_PORT_PLL(phy, ch, 10)); |
| hw_state->pll10 &= PORT_PLL_DCO_AMP_OVR_EN_H | |
| PORT_PLL_DCO_AMP_MASK; |
| |
| /* |
| * While we write to the group register to program all lanes at once we |
| * can read only lane registers. We configure all lanes the same way, so |
| * here just read out lanes 0/1 and output a note if lanes 2/3 differ. |
| */ |
| hw_state->pcsdw12 = I915_READ(BXT_PORT_PCS_DW12_LN01(phy, ch)); |
| if (I915_READ(BXT_PORT_PCS_DW12_LN23(phy, ch)) != hw_state->pcsdw12) |
| DRM_DEBUG_DRIVER("lane stagger config different for lane 01 (%08x) and 23 (%08x)\n", |
| hw_state->pcsdw12, |
| I915_READ(BXT_PORT_PCS_DW12_LN23(phy, ch))); |
| hw_state->pcsdw12 &= LANE_STAGGER_MASK | LANESTAGGER_STRAP_OVRD; |
| |
| ret = true; |
| |
| out: |
| intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref); |
| |
| return ret; |
| } |
| |
| /* bxt clock parameters */ |
| struct bxt_clk_div { |
| int clock; |
| u32 p1; |
| u32 p2; |
| u32 m2_int; |
| u32 m2_frac; |
| bool m2_frac_en; |
| u32 n; |
| |
| int vco; |
| }; |
| |
| /* pre-calculated values for DP linkrates */ |
| static const struct bxt_clk_div bxt_dp_clk_val[] = { |
| {162000, 4, 2, 32, 1677722, 1, 1}, |
| {270000, 4, 1, 27, 0, 0, 1}, |
| {540000, 2, 1, 27, 0, 0, 1}, |
| {216000, 3, 2, 32, 1677722, 1, 1}, |
| {243000, 4, 1, 24, 1258291, 1, 1}, |
| {324000, 4, 1, 32, 1677722, 1, 1}, |
| {432000, 3, 1, 32, 1677722, 1, 1} |
| }; |
| |
| static bool |
| bxt_ddi_hdmi_pll_dividers(struct intel_crtc_state *crtc_state, |
| struct bxt_clk_div *clk_div) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); |
| struct dpll best_clock; |
| |
| /* Calculate HDMI div */ |
| /* |
| * FIXME: tie the following calculation into |
| * i9xx_crtc_compute_clock |
| */ |
| if (!bxt_find_best_dpll(crtc_state, &best_clock)) { |
| DRM_DEBUG_DRIVER("no PLL dividers found for clock %d pipe %c\n", |
| crtc_state->port_clock, |
| pipe_name(crtc->pipe)); |
| return false; |
| } |
| |
| clk_div->p1 = best_clock.p1; |
| clk_div->p2 = best_clock.p2; |
| WARN_ON(best_clock.m1 != 2); |
| clk_div->n = best_clock.n; |
| clk_div->m2_int = best_clock.m2 >> 22; |
| clk_div->m2_frac = best_clock.m2 & ((1 << 22) - 1); |
| clk_div->m2_frac_en = clk_div->m2_frac != 0; |
| |
| clk_div->vco = best_clock.vco; |
| |
| return true; |
| } |
| |
| static void bxt_ddi_dp_pll_dividers(struct intel_crtc_state *crtc_state, |
| struct bxt_clk_div *clk_div) |
| { |
| int clock = crtc_state->port_clock; |
| int i; |
| |
| *clk_div = bxt_dp_clk_val[0]; |
| for (i = 0; i < ARRAY_SIZE(bxt_dp_clk_val); ++i) { |
| if (bxt_dp_clk_val[i].clock == clock) { |
| *clk_div = bxt_dp_clk_val[i]; |
| break; |
| } |
| } |
| |
| clk_div->vco = clock * 10 / 2 * clk_div->p1 * clk_div->p2; |
| } |
| |
| static bool bxt_ddi_set_dpll_hw_state(struct intel_crtc_state *crtc_state, |
| const struct bxt_clk_div *clk_div) |
| { |
| struct intel_dpll_hw_state *dpll_hw_state = &crtc_state->dpll_hw_state; |
| int clock = crtc_state->port_clock; |
| int vco = clk_div->vco; |
| u32 prop_coef, int_coef, gain_ctl, targ_cnt; |
| u32 lanestagger; |
| |
| memset(dpll_hw_state, 0, sizeof(*dpll_hw_state)); |
| |
| if (vco >= 6200000 && vco <= 6700000) { |
| prop_coef = 4; |
| int_coef = 9; |
| gain_ctl = 3; |
| targ_cnt = 8; |
| } else if ((vco > 5400000 && vco < 6200000) || |
| (vco >= 4800000 && vco < 5400000)) { |
| prop_coef = 5; |
| int_coef = 11; |
| gain_ctl = 3; |
| targ_cnt = 9; |
| } else if (vco == 5400000) { |
| prop_coef = 3; |
| int_coef = 8; |
| gain_ctl = 1; |
| targ_cnt = 9; |
| } else { |
| DRM_ERROR("Invalid VCO\n"); |
| return false; |
| } |
| |
| if (clock > 270000) |
| lanestagger = 0x18; |
| else if (clock > 135000) |
| lanestagger = 0x0d; |
| else if (clock > 67000) |
| lanestagger = 0x07; |
| else if (clock > 33000) |
| lanestagger = 0x04; |
| else |
| lanestagger = 0x02; |
| |
| dpll_hw_state->ebb0 = PORT_PLL_P1(clk_div->p1) | PORT_PLL_P2(clk_div->p2); |
| dpll_hw_state->pll0 = clk_div->m2_int; |
| dpll_hw_state->pll1 = PORT_PLL_N(clk_div->n); |
| dpll_hw_state->pll2 = clk_div->m2_frac; |
| |
| if (clk_div->m2_frac_en) |
| dpll_hw_state->pll3 = PORT_PLL_M2_FRAC_ENABLE; |
| |
| dpll_hw_state->pll6 = prop_coef | PORT_PLL_INT_COEFF(int_coef); |
| dpll_hw_state->pll6 |= PORT_PLL_GAIN_CTL(gain_ctl); |
| |
| dpll_hw_state->pll8 = targ_cnt; |
| |
| dpll_hw_state->pll9 = 5 << PORT_PLL_LOCK_THRESHOLD_SHIFT; |
| |
| dpll_hw_state->pll10 = |
| PORT_PLL_DCO_AMP(PORT_PLL_DCO_AMP_DEFAULT) |
| | PORT_PLL_DCO_AMP_OVR_EN_H; |
| |
| dpll_hw_state->ebb4 = PORT_PLL_10BIT_CLK_ENABLE; |
| |
| dpll_hw_state->pcsdw12 = LANESTAGGER_STRAP_OVRD | lanestagger; |
| |
| return true; |
| } |
| |
| static bool |
| bxt_ddi_dp_set_dpll_hw_state(struct intel_crtc_state *crtc_state) |
| { |
| struct bxt_clk_div clk_div = {}; |
| |
| bxt_ddi_dp_pll_dividers(crtc_state, &clk_div); |
| |
| return bxt_ddi_set_dpll_hw_state(crtc_state, &clk_div); |
| } |
| |
| static bool |
| bxt_ddi_hdmi_set_dpll_hw_state(struct intel_crtc_state *crtc_state) |
| { |
| struct bxt_clk_div clk_div = {}; |
| |
| bxt_ddi_hdmi_pll_dividers(crtc_state, &clk_div); |
| |
| return bxt_ddi_set_dpll_hw_state(crtc_state, &clk_div); |
| } |
| |
| static struct intel_shared_dpll * |
| bxt_get_dpll(struct intel_crtc_state *crtc_state, |
| struct intel_encoder *encoder) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| struct intel_shared_dpll *pll; |
| enum intel_dpll_id id; |
| |
| if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) && |
| !bxt_ddi_hdmi_set_dpll_hw_state(crtc_state)) |
| return NULL; |
| |
| if (intel_crtc_has_dp_encoder(crtc_state) && |
| !bxt_ddi_dp_set_dpll_hw_state(crtc_state)) |
| return NULL; |
| |
| /* 1:1 mapping between ports and PLLs */ |
| id = (enum intel_dpll_id) encoder->port; |
| pll = intel_get_shared_dpll_by_id(dev_priv, id); |
| |
| DRM_DEBUG_KMS("[CRTC:%d:%s] using pre-allocated %s\n", |
| crtc->base.base.id, crtc->base.name, pll->info->name); |
| |
| intel_reference_shared_dpll(pll, crtc_state); |
| |
| return pll; |
| } |
| |
| static void bxt_dump_hw_state(struct drm_i915_private *dev_priv, |
| const struct intel_dpll_hw_state *hw_state) |
| { |
| DRM_DEBUG_KMS("dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x," |
| "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, " |
| "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n", |
| hw_state->ebb0, |
| hw_state->ebb4, |
| hw_state->pll0, |
| hw_state->pll1, |
| hw_state->pll2, |
| hw_state->pll3, |
| hw_state->pll6, |
| hw_state->pll8, |
| hw_state->pll9, |
| hw_state->pll10, |
| hw_state->pcsdw12); |
| } |
| |
| static const struct intel_shared_dpll_funcs bxt_ddi_pll_funcs = { |
| .enable = bxt_ddi_pll_enable, |
| .disable = bxt_ddi_pll_disable, |
| .get_hw_state = bxt_ddi_pll_get_hw_state, |
| }; |
| |
| struct intel_dpll_mgr { |
| const struct dpll_info *dpll_info; |
| |
| struct intel_shared_dpll *(*get_dpll)(struct intel_crtc_state *crtc_state, |
| struct intel_encoder *encoder); |
| |
| void (*dump_hw_state)(struct drm_i915_private *dev_priv, |
| const struct intel_dpll_hw_state *hw_state); |
| }; |
| |
| static const struct dpll_info pch_plls[] = { |
| { "PCH DPLL A", &ibx_pch_dpll_funcs, DPLL_ID_PCH_PLL_A, 0 }, |
| { "PCH DPLL B", &ibx_pch_dpll_funcs, DPLL_ID_PCH_PLL_B, 0 }, |
| { }, |
| }; |
| |
| static const struct intel_dpll_mgr pch_pll_mgr = { |
| .dpll_info = pch_plls, |
| .get_dpll = ibx_get_dpll, |
| .dump_hw_state = ibx_dump_hw_state, |
| }; |
| |
| static const struct dpll_info hsw_plls[] = { |
| { "WRPLL 1", &hsw_ddi_wrpll_funcs, DPLL_ID_WRPLL1, 0 }, |
| { "WRPLL 2", &hsw_ddi_wrpll_funcs, DPLL_ID_WRPLL2, 0 }, |
| { "SPLL", &hsw_ddi_spll_funcs, DPLL_ID_SPLL, 0 }, |
| { "LCPLL 810", &hsw_ddi_lcpll_funcs, DPLL_ID_LCPLL_810, INTEL_DPLL_ALWAYS_ON }, |
| { "LCPLL 1350", &hsw_ddi_lcpll_funcs, DPLL_ID_LCPLL_1350, INTEL_DPLL_ALWAYS_ON }, |
| { "LCPLL 2700", &hsw_ddi_lcpll_funcs, DPLL_ID_LCPLL_2700, INTEL_DPLL_ALWAYS_ON }, |
| { }, |
| }; |
| |
| static const struct intel_dpll_mgr hsw_pll_mgr = { |
| .dpll_info = hsw_plls, |
| .get_dpll = hsw_get_dpll, |
| .dump_hw_state = hsw_dump_hw_state, |
| }; |
| |
| static const struct dpll_info skl_plls[] = { |
| { "DPLL 0", &skl_ddi_dpll0_funcs, DPLL_ID_SKL_DPLL0, INTEL_DPLL_ALWAYS_ON }, |
| { "DPLL 1", &skl_ddi_pll_funcs, DPLL_ID_SKL_DPLL1, 0 }, |
| { "DPLL 2", &skl_ddi_pll_funcs, DPLL_ID_SKL_DPLL2, 0 }, |
| { "DPLL 3", &skl_ddi_pll_funcs, DPLL_ID_SKL_DPLL3, 0 }, |
| { }, |
| }; |
| |
| static const struct intel_dpll_mgr skl_pll_mgr = { |
| .dpll_info = skl_plls, |
| .get_dpll = skl_get_dpll, |
| .dump_hw_state = skl_dump_hw_state, |
| }; |
| |
| static const struct dpll_info bxt_plls[] = { |
| { "PORT PLL A", &bxt_ddi_pll_funcs, DPLL_ID_SKL_DPLL0, 0 }, |
| { "PORT PLL B", &bxt_ddi_pll_funcs, DPLL_ID_SKL_DPLL1, 0 }, |
| { "PORT PLL C", &bxt_ddi_pll_funcs, DPLL_ID_SKL_DPLL2, 0 }, |
| { }, |
| }; |
| |
| static const struct intel_dpll_mgr bxt_pll_mgr = { |
| .dpll_info = bxt_plls, |
| .get_dpll = bxt_get_dpll, |
| .dump_hw_state = bxt_dump_hw_state, |
| }; |
| |
| static void cnl_ddi_pll_enable(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll) |
| { |
| const enum intel_dpll_id id = pll->info->id; |
| u32 val; |
| |
| /* 1. Enable DPLL power in DPLL_ENABLE. */ |
| val = I915_READ(CNL_DPLL_ENABLE(id)); |
| val |= PLL_POWER_ENABLE; |
| I915_WRITE(CNL_DPLL_ENABLE(id), val); |
| |
| /* 2. Wait for DPLL power state enabled in DPLL_ENABLE. */ |
| if (intel_wait_for_register(&dev_priv->uncore, |
| CNL_DPLL_ENABLE(id), |
| PLL_POWER_STATE, |
| PLL_POWER_STATE, |
| 5)) |
| DRM_ERROR("PLL %d Power not enabled\n", id); |
| |
| /* |
| * 3. Configure DPLL_CFGCR0 to set SSC enable/disable, |
| * select DP mode, and set DP link rate. |
| */ |
| val = pll->state.hw_state.cfgcr0; |
| I915_WRITE(CNL_DPLL_CFGCR0(id), val); |
| |
| /* 4. Reab back to ensure writes completed */ |
| POSTING_READ(CNL_DPLL_CFGCR0(id)); |
| |
| /* 3. Configure DPLL_CFGCR0 */ |
| /* Avoid touch CFGCR1 if HDMI mode is not enabled */ |
| if (pll->state.hw_state.cfgcr0 & DPLL_CFGCR0_HDMI_MODE) { |
| val = pll->state.hw_state.cfgcr1; |
| I915_WRITE(CNL_DPLL_CFGCR1(id), val); |
| /* 4. Reab back to ensure writes completed */ |
| POSTING_READ(CNL_DPLL_CFGCR1(id)); |
| } |
| |
| /* |
| * 5. If the frequency will result in a change to the voltage |
| * requirement, follow the Display Voltage Frequency Switching |
| * Sequence Before Frequency Change |
| * |
| * Note: DVFS is actually handled via the cdclk code paths, |
| * hence we do nothing here. |
| */ |
| |
| /* 6. Enable DPLL in DPLL_ENABLE. */ |
| val = I915_READ(CNL_DPLL_ENABLE(id)); |
| val |= PLL_ENABLE; |
| I915_WRITE(CNL_DPLL_ENABLE(id), val); |
| |
| /* 7. Wait for PLL lock status in DPLL_ENABLE. */ |
| if (intel_wait_for_register(&dev_priv->uncore, |
| CNL_DPLL_ENABLE(id), |
| PLL_LOCK, |
| PLL_LOCK, |
| 5)) |
| DRM_ERROR("PLL %d not locked\n", id); |
| |
| /* |
| * 8. If the frequency will result in a change to the voltage |
| * requirement, follow the Display Voltage Frequency Switching |
| * Sequence After Frequency Change |
| * |
| * Note: DVFS is actually handled via the cdclk code paths, |
| * hence we do nothing here. |
| */ |
| |
| /* |
| * 9. turn on the clock for the DDI and map the DPLL to the DDI |
| * Done at intel_ddi_clk_select |
| */ |
| } |
| |
| static void cnl_ddi_pll_disable(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll) |
| { |
| const enum intel_dpll_id id = pll->info->id; |
| u32 val; |
| |
| /* |
| * 1. Configure DPCLKA_CFGCR0 to turn off the clock for the DDI. |
| * Done at intel_ddi_post_disable |
| */ |
| |
| /* |
| * 2. If the frequency will result in a change to the voltage |
| * requirement, follow the Display Voltage Frequency Switching |
| * Sequence Before Frequency Change |
| * |
| * Note: DVFS is actually handled via the cdclk code paths, |
| * hence we do nothing here. |
| */ |
| |
| /* 3. Disable DPLL through DPLL_ENABLE. */ |
| val = I915_READ(CNL_DPLL_ENABLE(id)); |
| val &= ~PLL_ENABLE; |
| I915_WRITE(CNL_DPLL_ENABLE(id), val); |
| |
| /* 4. Wait for PLL not locked status in DPLL_ENABLE. */ |
| if (intel_wait_for_register(&dev_priv->uncore, |
| CNL_DPLL_ENABLE(id), |
| PLL_LOCK, |
| 0, |
| 5)) |
| DRM_ERROR("PLL %d locked\n", id); |
| |
| /* |
| * 5. If the frequency will result in a change to the voltage |
| * requirement, follow the Display Voltage Frequency Switching |
| * Sequence After Frequency Change |
| * |
| * Note: DVFS is actually handled via the cdclk code paths, |
| * hence we do nothing here. |
| */ |
| |
| /* 6. Disable DPLL power in DPLL_ENABLE. */ |
| val = I915_READ(CNL_DPLL_ENABLE(id)); |
| val &= ~PLL_POWER_ENABLE; |
| I915_WRITE(CNL_DPLL_ENABLE(id), val); |
| |
| /* 7. Wait for DPLL power state disabled in DPLL_ENABLE. */ |
| if (intel_wait_for_register(&dev_priv->uncore, |
| CNL_DPLL_ENABLE(id), |
| PLL_POWER_STATE, |
| 0, |
| 5)) |
| DRM_ERROR("PLL %d Power not disabled\n", id); |
| } |
| |
| static bool cnl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll, |
| struct intel_dpll_hw_state *hw_state) |
| { |
| const enum intel_dpll_id id = pll->info->id; |
| intel_wakeref_t wakeref; |
| u32 val; |
| bool ret; |
| |
| wakeref = intel_display_power_get_if_enabled(dev_priv, |
| POWER_DOMAIN_DISPLAY_CORE); |
| if (!wakeref) |
| return false; |
| |
| ret = false; |
| |
| val = I915_READ(CNL_DPLL_ENABLE(id)); |
| if (!(val & PLL_ENABLE)) |
| goto out; |
| |
| val = I915_READ(CNL_DPLL_CFGCR0(id)); |
| hw_state->cfgcr0 = val; |
| |
| /* avoid reading back stale values if HDMI mode is not enabled */ |
| if (val & DPLL_CFGCR0_HDMI_MODE) { |
| hw_state->cfgcr1 = I915_READ(CNL_DPLL_CFGCR1(id)); |
| } |
| ret = true; |
| |
| out: |
| intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref); |
| |
| return ret; |
| } |
| |
| static void cnl_wrpll_get_multipliers(int bestdiv, int *pdiv, |
| int *qdiv, int *kdiv) |
| { |
| /* even dividers */ |
| if (bestdiv % 2 == 0) { |
| if (bestdiv == 2) { |
| *pdiv = 2; |
| *qdiv = 1; |
| *kdiv = 1; |
| } else if (bestdiv % 4 == 0) { |
| *pdiv = 2; |
| *qdiv = bestdiv / 4; |
| *kdiv = 2; |
| } else if (bestdiv % 6 == 0) { |
| *pdiv = 3; |
| *qdiv = bestdiv / 6; |
| *kdiv = 2; |
| } else if (bestdiv % 5 == 0) { |
| *pdiv = 5; |
| *qdiv = bestdiv / 10; |
| *kdiv = 2; |
| } else if (bestdiv % 14 == 0) { |
| *pdiv = 7; |
| *qdiv = bestdiv / 14; |
| *kdiv = 2; |
| } |
| } else { |
| if (bestdiv == 3 || bestdiv == 5 || bestdiv == 7) { |
| *pdiv = bestdiv; |
| *qdiv = 1; |
| *kdiv = 1; |
| } else { /* 9, 15, 21 */ |
| *pdiv = bestdiv / 3; |
| *qdiv = 1; |
| *kdiv = 3; |
| } |
| } |
| } |
| |
| static void cnl_wrpll_params_populate(struct skl_wrpll_params *params, |
| u32 dco_freq, u32 ref_freq, |
| int pdiv, int qdiv, int kdiv) |
| { |
| u32 dco; |
| |
| switch (kdiv) { |
| case 1: |
| params->kdiv = 1; |
| break; |
| case 2: |
| params->kdiv = 2; |
| break; |
| case 3: |
| params->kdiv = 4; |
| break; |
| default: |
| WARN(1, "Incorrect KDiv\n"); |
| } |
| |
| switch (pdiv) { |
| case 2: |
| params->pdiv = 1; |
| break; |
| case 3: |
| params->pdiv = 2; |
| break; |
| case 5: |
| params->pdiv = 4; |
| break; |
| case 7: |
| params->pdiv = 8; |
| break; |
| default: |
| WARN(1, "Incorrect PDiv\n"); |
| } |
| |
| WARN_ON(kdiv != 2 && qdiv != 1); |
| |
| params->qdiv_ratio = qdiv; |
| params->qdiv_mode = (qdiv == 1) ? 0 : 1; |
| |
| dco = div_u64((u64)dco_freq << 15, ref_freq); |
| |
| params->dco_integer = dco >> 15; |
| params->dco_fraction = dco & 0x7fff; |
| } |
| |
| int cnl_hdmi_pll_ref_clock(struct drm_i915_private *dev_priv) |
| { |
| int ref_clock = dev_priv->cdclk.hw.ref; |
| |
| /* |
| * For ICL+, the spec states: if reference frequency is 38.4, |
| * use 19.2 because the DPLL automatically divides that by 2. |
| */ |
| if (INTEL_GEN(dev_priv) >= 11 && ref_clock == 38400) |
| ref_clock = 19200; |
| |
| return ref_clock; |
| } |
| |
| static bool |
| cnl_ddi_calculate_wrpll(struct intel_crtc_state *crtc_state, |
| struct skl_wrpll_params *wrpll_params) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); |
| u32 afe_clock = crtc_state->port_clock * 5; |
| u32 ref_clock; |
| u32 dco_min = 7998000; |
| u32 dco_max = 10000000; |
| u32 dco_mid = (dco_min + dco_max) / 2; |
| static const int dividers[] = { 2, 4, 6, 8, 10, 12, 14, 16, |
| 18, 20, 24, 28, 30, 32, 36, 40, |
| 42, 44, 48, 50, 52, 54, 56, 60, |
| 64, 66, 68, 70, 72, 76, 78, 80, |
| 84, 88, 90, 92, 96, 98, 100, 102, |
| 3, 5, 7, 9, 15, 21 }; |
| u32 dco, best_dco = 0, dco_centrality = 0; |
| u32 best_dco_centrality = U32_MAX; /* Spec meaning of 999999 MHz */ |
| int d, best_div = 0, pdiv = 0, qdiv = 0, kdiv = 0; |
| |
| for (d = 0; d < ARRAY_SIZE(dividers); d++) { |
| dco = afe_clock * dividers[d]; |
| |
| if ((dco <= dco_max) && (dco >= dco_min)) { |
| dco_centrality = abs(dco - dco_mid); |
| |
| if (dco_centrality < best_dco_centrality) { |
| best_dco_centrality = dco_centrality; |
| best_div = dividers[d]; |
| best_dco = dco; |
| } |
| } |
| } |
| |
| if (best_div == 0) |
| return false; |
| |
| cnl_wrpll_get_multipliers(best_div, &pdiv, &qdiv, &kdiv); |
| |
| ref_clock = cnl_hdmi_pll_ref_clock(dev_priv); |
| |
| cnl_wrpll_params_populate(wrpll_params, best_dco, ref_clock, |
| pdiv, qdiv, kdiv); |
| |
| return true; |
| } |
| |
| static bool cnl_ddi_hdmi_pll_dividers(struct intel_crtc_state *crtc_state) |
| { |
| u32 cfgcr0, cfgcr1; |
| struct skl_wrpll_params wrpll_params = { 0, }; |
| |
| cfgcr0 = DPLL_CFGCR0_HDMI_MODE; |
| |
| if (!cnl_ddi_calculate_wrpll(crtc_state, &wrpll_params)) |
| return false; |
| |
| cfgcr0 |= DPLL_CFGCR0_DCO_FRACTION(wrpll_params.dco_fraction) | |
| wrpll_params.dco_integer; |
| |
| cfgcr1 = DPLL_CFGCR1_QDIV_RATIO(wrpll_params.qdiv_ratio) | |
| DPLL_CFGCR1_QDIV_MODE(wrpll_params.qdiv_mode) | |
| DPLL_CFGCR1_KDIV(wrpll_params.kdiv) | |
| DPLL_CFGCR1_PDIV(wrpll_params.pdiv) | |
| DPLL_CFGCR1_CENTRAL_FREQ; |
| |
| memset(&crtc_state->dpll_hw_state, 0, |
| sizeof(crtc_state->dpll_hw_state)); |
| |
| crtc_state->dpll_hw_state.cfgcr0 = cfgcr0; |
| crtc_state->dpll_hw_state.cfgcr1 = cfgcr1; |
| return true; |
| } |
| |
| static bool |
| cnl_ddi_dp_set_dpll_hw_state(struct intel_crtc_state *crtc_state) |
| { |
| u32 cfgcr0; |
| |
| cfgcr0 = DPLL_CFGCR0_SSC_ENABLE; |
| |
| switch (crtc_state->port_clock / 2) { |
| case 81000: |
| cfgcr0 |= DPLL_CFGCR0_LINK_RATE_810; |
| break; |
| case 135000: |
| cfgcr0 |= DPLL_CFGCR0_LINK_RATE_1350; |
| break; |
| case 270000: |
| cfgcr0 |= DPLL_CFGCR0_LINK_RATE_2700; |
| break; |
| /* eDP 1.4 rates */ |
| case 162000: |
| cfgcr0 |= DPLL_CFGCR0_LINK_RATE_1620; |
| break; |
| case 108000: |
| cfgcr0 |= DPLL_CFGCR0_LINK_RATE_1080; |
| break; |
| case 216000: |
| cfgcr0 |= DPLL_CFGCR0_LINK_RATE_2160; |
| break; |
| case 324000: |
| /* Some SKUs may require elevated I/O voltage to support this */ |
| cfgcr0 |= DPLL_CFGCR0_LINK_RATE_3240; |
| break; |
| case 405000: |
| /* Some SKUs may require elevated I/O voltage to support this */ |
| cfgcr0 |= DPLL_CFGCR0_LINK_RATE_4050; |
| break; |
| } |
| |
| memset(&crtc_state->dpll_hw_state, 0, |
| sizeof(crtc_state->dpll_hw_state)); |
| |
| crtc_state->dpll_hw_state.cfgcr0 = cfgcr0; |
| |
| return true; |
| } |
| |
| static struct intel_shared_dpll * |
| cnl_get_dpll(struct intel_crtc_state *crtc_state, |
| struct intel_encoder *encoder) |
| { |
| struct intel_shared_dpll *pll; |
| bool bret; |
| |
| if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) { |
| bret = cnl_ddi_hdmi_pll_dividers(crtc_state); |
| if (!bret) { |
| DRM_DEBUG_KMS("Could not get HDMI pll dividers.\n"); |
| return NULL; |
| } |
| } else if (intel_crtc_has_dp_encoder(crtc_state)) { |
| bret = cnl_ddi_dp_set_dpll_hw_state(crtc_state); |
| if (!bret) { |
| DRM_DEBUG_KMS("Could not set DP dpll HW state.\n"); |
| return NULL; |
| } |
| } else { |
| DRM_DEBUG_KMS("Skip DPLL setup for output_types 0x%x\n", |
| crtc_state->output_types); |
| return NULL; |
| } |
| |
| pll = intel_find_shared_dpll(crtc_state, |
| DPLL_ID_SKL_DPLL0, |
| DPLL_ID_SKL_DPLL2); |
| if (!pll) { |
| DRM_DEBUG_KMS("No PLL selected\n"); |
| return NULL; |
| } |
| |
| intel_reference_shared_dpll(pll, crtc_state); |
| |
| return pll; |
| } |
| |
| static void cnl_dump_hw_state(struct drm_i915_private *dev_priv, |
| const struct intel_dpll_hw_state *hw_state) |
| { |
| DRM_DEBUG_KMS("dpll_hw_state: " |
| "cfgcr0: 0x%x, cfgcr1: 0x%x\n", |
| hw_state->cfgcr0, |
| hw_state->cfgcr1); |
| } |
| |
| static const struct intel_shared_dpll_funcs cnl_ddi_pll_funcs = { |
| .enable = cnl_ddi_pll_enable, |
| .disable = cnl_ddi_pll_disable, |
| .get_hw_state = cnl_ddi_pll_get_hw_state, |
| }; |
| |
| static const struct dpll_info cnl_plls[] = { |
| { "DPLL 0", &cnl_ddi_pll_funcs, DPLL_ID_SKL_DPLL0, 0 }, |
| { "DPLL 1", &cnl_ddi_pll_funcs, DPLL_ID_SKL_DPLL1, 0 }, |
| { "DPLL 2", &cnl_ddi_pll_funcs, DPLL_ID_SKL_DPLL2, 0 }, |
| { }, |
| }; |
| |
| static const struct intel_dpll_mgr cnl_pll_mgr = { |
| .dpll_info = cnl_plls, |
| .get_dpll = cnl_get_dpll, |
| .dump_hw_state = cnl_dump_hw_state, |
| }; |
| |
| struct icl_combo_pll_params { |
| int clock; |
| struct skl_wrpll_params wrpll; |
| }; |
| |
| /* |
| * These values alrea already adjusted: they're the bits we write to the |
| * registers, not the logical values. |
| */ |
| static const struct icl_combo_pll_params icl_dp_combo_pll_24MHz_values[] = { |
| { 540000, |
| { .dco_integer = 0x151, .dco_fraction = 0x4000, /* [0]: 5.4 */ |
| .pdiv = 0x2 /* 3 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, |
| { 270000, |
| { .dco_integer = 0x151, .dco_fraction = 0x4000, /* [1]: 2.7 */ |
| .pdiv = 0x2 /* 3 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, |
| { 162000, |
| { .dco_integer = 0x151, .dco_fraction = 0x4000, /* [2]: 1.62 */ |
| .pdiv = 0x4 /* 5 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, |
| { 324000, |
| { .dco_integer = 0x151, .dco_fraction = 0x4000, /* [3]: 3.24 */ |
| .pdiv = 0x4 /* 5 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, |
| { 216000, |
| { .dco_integer = 0x168, .dco_fraction = 0x0000, /* [4]: 2.16 */ |
| .pdiv = 0x1 /* 2 */, .kdiv = 2, .qdiv_mode = 1, .qdiv_ratio = 2, }, }, |
| { 432000, |
| { .dco_integer = 0x168, .dco_fraction = 0x0000, /* [5]: 4.32 */ |
| .pdiv = 0x1 /* 2 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, |
| { 648000, |
| { .dco_integer = 0x195, .dco_fraction = 0x0000, /* [6]: 6.48 */ |
| .pdiv = 0x2 /* 3 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, |
| { 810000, |
| { .dco_integer = 0x151, .dco_fraction = 0x4000, /* [7]: 8.1 */ |
| .pdiv = 0x1 /* 2 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, |
| }; |
| |
| |
| /* Also used for 38.4 MHz values. */ |
| static const struct icl_combo_pll_params icl_dp_combo_pll_19_2MHz_values[] = { |
| { 540000, |
| { .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [0]: 5.4 */ |
| .pdiv = 0x2 /* 3 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, |
| { 270000, |
| { .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [1]: 2.7 */ |
| .pdiv = 0x2 /* 3 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, |
| { 162000, |
| { .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [2]: 1.62 */ |
| .pdiv = 0x4 /* 5 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, |
| { 324000, |
| { .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [3]: 3.24 */ |
| .pdiv = 0x4 /* 5 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, |
| { 216000, |
| { .dco_integer = 0x1C2, .dco_fraction = 0x0000, /* [4]: 2.16 */ |
| .pdiv = 0x1 /* 2 */, .kdiv = 2, .qdiv_mode = 1, .qdiv_ratio = 2, }, }, |
| { 432000, |
| { .dco_integer = 0x1C2, .dco_fraction = 0x0000, /* [5]: 4.32 */ |
| .pdiv = 0x1 /* 2 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, |
| { 648000, |
| { .dco_integer = 0x1FA, .dco_fraction = 0x2000, /* [6]: 6.48 */ |
| .pdiv = 0x2 /* 3 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, |
| { 810000, |
| { .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [7]: 8.1 */ |
| .pdiv = 0x1 /* 2 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, |
| }; |
| |
| static const struct skl_wrpll_params icl_tbt_pll_24MHz_values = { |
| .dco_integer = 0x151, .dco_fraction = 0x4000, |
| .pdiv = 0x4 /* 5 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, |
| }; |
| |
| static const struct skl_wrpll_params icl_tbt_pll_19_2MHz_values = { |
| .dco_integer = 0x1A5, .dco_fraction = 0x7000, |
| .pdiv = 0x4 /* 5 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, |
| }; |
| |
| static bool icl_calc_dp_combo_pll(struct intel_crtc_state *crtc_state, |
| struct skl_wrpll_params *pll_params) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); |
| const struct icl_combo_pll_params *params = |
| dev_priv->cdclk.hw.ref == 24000 ? |
| icl_dp_combo_pll_24MHz_values : |
| icl_dp_combo_pll_19_2MHz_values; |
| int clock = crtc_state->port_clock; |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(icl_dp_combo_pll_24MHz_values); i++) { |
| if (clock == params[i].clock) { |
| *pll_params = params[i].wrpll; |
| return true; |
| } |
| } |
| |
| MISSING_CASE(clock); |
| return false; |
| } |
| |
| static bool icl_calc_tbt_pll(struct intel_crtc_state *crtc_state, |
| struct skl_wrpll_params *pll_params) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); |
| |
| *pll_params = dev_priv->cdclk.hw.ref == 24000 ? |
| icl_tbt_pll_24MHz_values : icl_tbt_pll_19_2MHz_values; |
| return true; |
| } |
| |
| static bool icl_calc_dpll_state(struct intel_crtc_state *crtc_state, |
| struct intel_encoder *encoder) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); |
| u32 cfgcr0, cfgcr1; |
| struct skl_wrpll_params pll_params = { 0 }; |
| bool ret; |
| |
| if (intel_port_is_tc(dev_priv, encoder->port)) |
| ret = icl_calc_tbt_pll(crtc_state, &pll_params); |
| else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) || |
| intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) |
| ret = cnl_ddi_calculate_wrpll(crtc_state, &pll_params); |
| else |
| ret = icl_calc_dp_combo_pll(crtc_state, &pll_params); |
| |
| if (!ret) |
| return false; |
| |
| cfgcr0 = DPLL_CFGCR0_DCO_FRACTION(pll_params.dco_fraction) | |
| pll_params.dco_integer; |
| |
| cfgcr1 = DPLL_CFGCR1_QDIV_RATIO(pll_params.qdiv_ratio) | |
| DPLL_CFGCR1_QDIV_MODE(pll_params.qdiv_mode) | |
| DPLL_CFGCR1_KDIV(pll_params.kdiv) | |
| DPLL_CFGCR1_PDIV(pll_params.pdiv) | |
| DPLL_CFGCR1_CENTRAL_FREQ_8400; |
| |
| memset(&crtc_state->dpll_hw_state, 0, |
| sizeof(crtc_state->dpll_hw_state)); |
| |
| crtc_state->dpll_hw_state.cfgcr0 = cfgcr0; |
| crtc_state->dpll_hw_state.cfgcr1 = cfgcr1; |
| |
| return true; |
| } |
| |
| |
| static enum tc_port icl_pll_id_to_tc_port(enum intel_dpll_id id) |
| { |
| return id - DPLL_ID_ICL_MGPLL1; |
| } |
| |
| enum intel_dpll_id icl_tc_port_to_pll_id(enum tc_port tc_port) |
| { |
| return tc_port + DPLL_ID_ICL_MGPLL1; |
| } |
| |
| static bool icl_mg_pll_find_divisors(int clock_khz, bool is_dp, bool use_ssc, |
| u32 *target_dco_khz, |
| struct intel_dpll_hw_state *state) |
| { |
| u32 dco_min_freq, dco_max_freq; |
| int div1_vals[] = {7, 5, 3, 2}; |
| unsigned int i; |
| int div2; |
| |
| dco_min_freq = is_dp ? 8100000 : use_ssc ? 8000000 : 7992000; |
| dco_max_freq = is_dp ? 8100000 : 10000000; |
| |
| for (i = 0; i < ARRAY_SIZE(div1_vals); i++) { |
| int div1 = div1_vals[i]; |
| |
| for (div2 = 10; div2 > 0; div2--) { |
| int dco = div1 * div2 * clock_khz * 5; |
| int a_divratio, tlinedrv, inputsel; |
| u32 hsdiv; |
| |
| if (dco < dco_min_freq || dco > dco_max_freq) |
| continue; |
| |
| if (div2 >= 2) { |
| a_divratio = is_dp ? 10 : 5; |
| tlinedrv = 2; |
| } else { |
| a_divratio = 5; |
| tlinedrv = 0; |
| } |
| inputsel = is_dp ? 0 : 1; |
| |
| switch (div1) { |
| default: |
| MISSING_CASE(div1); |
| /* fall through */ |
| case 2: |
| hsdiv = MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_2; |
| break; |
| case 3: |
| hsdiv = MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_3; |
| break; |
| case 5: |
| hsdiv = MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_5; |
| break; |
| case 7: |
| hsdiv = MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_7; |
| break; |
| } |
| |
| *target_dco_khz = dco; |
| |
| state->mg_refclkin_ctl = MG_REFCLKIN_CTL_OD_2_MUX(1); |
| |
| state->mg_clktop2_coreclkctl1 = |
| MG_CLKTOP2_CORECLKCTL1_A_DIVRATIO(a_divratio); |
| |
| state->mg_clktop2_hsclkctl = |
| MG_CLKTOP2_HSCLKCTL_TLINEDRV_CLKSEL(tlinedrv) | |
| MG_CLKTOP2_HSCLKCTL_CORE_INPUTSEL(inputsel) | |
| hsdiv | |
| MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO(div2); |
| |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| /* |
| * The specification for this function uses real numbers, so the math had to be |
| * adapted to integer-only calculation, that's why it looks so different. |
| */ |
| static bool icl_calc_mg_pll_state(struct intel_crtc_state *crtc_state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); |
| struct intel_dpll_hw_state *pll_state = &crtc_state->dpll_hw_state; |
| int refclk_khz = dev_priv->cdclk.hw.ref; |
| int clock = crtc_state->port_clock; |
| u32 dco_khz, m1div, m2div_int, m2div_rem, m2div_frac; |
| u32 iref_ndiv, iref_trim, iref_pulse_w; |
| u32 prop_coeff, int_coeff; |
| u32 tdc_targetcnt, feedfwgain; |
| u64 ssc_stepsize, ssc_steplen, ssc_steplog; |
| u64 tmp; |
| bool use_ssc = false; |
| bool is_dp = !intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI); |
| |
| memset(pll_state, 0, sizeof(*pll_state)); |
| |
| if (!icl_mg_pll_find_divisors(clock, is_dp, use_ssc, &dco_khz, |
| pll_state)) { |
| DRM_DEBUG_KMS("Failed to find divisors for clock %d\n", clock); |
| return false; |
| } |
| |
| m1div = 2; |
| m2div_int = dco_khz / (refclk_khz * m1div); |
| if (m2div_int > 255) { |
| m1div = 4; |
| m2div_int = dco_khz / (refclk_khz * m1div); |
| if (m2div_int > 255) { |
| DRM_DEBUG_KMS("Failed to find mdiv for clock %d\n", |
| clock); |
| return false; |
| } |
| } |
| m2div_rem = dco_khz % (refclk_khz * m1div); |
| |
| tmp = (u64)m2div_rem * (1 << 22); |
| do_div(tmp, refclk_khz * m1div); |
| m2div_frac = tmp; |
| |
| switch (refclk_khz) { |
| case 19200: |
| iref_ndiv = 1; |
| iref_trim = 28; |
| iref_pulse_w = 1; |
| break; |
| case 24000: |
| iref_ndiv = 1; |
| iref_trim = 25; |
| iref_pulse_w = 2; |
| break; |
| case 38400: |
| iref_ndiv = 2; |
| iref_trim = 28; |
| iref_pulse_w = 1; |
| break; |
| default: |
| MISSING_CASE(refclk_khz); |
| return false; |
| } |
| |
| /* |
| * tdc_res = 0.000003 |
| * tdc_targetcnt = int(2 / (tdc_res * 8 * 50 * 1.1) / refclk_mhz + 0.5) |
| * |
| * The multiplication by 1000 is due to refclk MHz to KHz conversion. It |
| * was supposed to be a division, but we rearranged the operations of |
| * the formula to avoid early divisions so we don't multiply the |
| * rounding errors. |
| * |
| * 0.000003 * 8 * 50 * 1.1 = 0.00132, also known as 132 / 100000, which |
| * we also rearrange to work with integers. |
| * |
| * The 0.5 transformed to 5 results in a multiplication by 10 and the |
| * last division by 10. |
| */ |
| tdc_targetcnt = (2 * 1000 * 100000 * 10 / (132 * refclk_khz) + 5) / 10; |
| |
| /* |
| * Here we divide dco_khz by 10 in order to allow the dividend to fit in |
| * 32 bits. That's not a problem since we round the division down |
| * anyway. |
| */ |
| feedfwgain = (use_ssc || m2div_rem > 0) ? |
| m1div * 1000000 * 100 / (dco_khz * 3 / 10) : 0; |
| |
| if (dco_khz >= 9000000) { |
| prop_coeff = 5; |
| int_coeff = 10; |
| } else { |
| prop_coeff = 4; |
| int_coeff = 8; |
| } |
| |
| if (use_ssc) { |
| tmp = mul_u32_u32(dco_khz, 47 * 32); |
| do_div(tmp, refclk_khz * m1div * 10000); |
| ssc_stepsize = tmp; |
| |
| tmp = mul_u32_u32(dco_khz, 1000); |
| ssc_steplen = DIV_ROUND_UP_ULL(tmp, 32 * 2 * 32); |
| } else { |
| ssc_stepsize = 0; |
| ssc_steplen = 0; |
| } |
| ssc_steplog = 4; |
| |
| pll_state->mg_pll_div0 = (m2div_rem > 0 ? MG_PLL_DIV0_FRACNEN_H : 0) | |
| MG_PLL_DIV0_FBDIV_FRAC(m2div_frac) | |
| MG_PLL_DIV0_FBDIV_INT(m2div_int); |
| |
| pll_state->mg_pll_div1 = MG_PLL_DIV1_IREF_NDIVRATIO(iref_ndiv) | |
| MG_PLL_DIV1_DITHER_DIV_2 | |
| MG_PLL_DIV1_NDIVRATIO(1) | |
| MG_PLL_DIV1_FBPREDIV(m1div); |
| |
| pll_state->mg_pll_lf = MG_PLL_LF_TDCTARGETCNT(tdc_targetcnt) | |
| MG_PLL_LF_AFCCNTSEL_512 | |
| MG_PLL_LF_GAINCTRL(1) | |
| MG_PLL_LF_INT_COEFF(int_coeff) | |
| MG_PLL_LF_PROP_COEFF(prop_coeff); |
| |
| pll_state->mg_pll_frac_lock = MG_PLL_FRAC_LOCK_TRUELOCK_CRIT_32 | |
| MG_PLL_FRAC_LOCK_EARLYLOCK_CRIT_32 | |
| MG_PLL_FRAC_LOCK_LOCKTHRESH(10) | |
| MG_PLL_FRAC_LOCK_DCODITHEREN | |
| MG_PLL_FRAC_LOCK_FEEDFWRDGAIN(feedfwgain); |
| if (use_ssc || m2div_rem > 0) |
| pll_state->mg_pll_frac_lock |= MG_PLL_FRAC_LOCK_FEEDFWRDCAL_EN; |
| |
| pll_state->mg_pll_ssc = (use_ssc ? MG_PLL_SSC_EN : 0) | |
| MG_PLL_SSC_TYPE(2) | |
| MG_PLL_SSC_STEPLENGTH(ssc_steplen) | |
| MG_PLL_SSC_STEPNUM(ssc_steplog) | |
| MG_PLL_SSC_FLLEN | |
| MG_PLL_SSC_STEPSIZE(ssc_stepsize); |
| |
| pll_state->mg_pll_tdc_coldst_bias = MG_PLL_TDC_COLDST_COLDSTART | |
| MG_PLL_TDC_COLDST_IREFINT_EN | |
| MG_PLL_TDC_COLDST_REFBIAS_START_PULSE_W(iref_pulse_w) | |
| MG_PLL_TDC_TDCOVCCORR_EN | |
| MG_PLL_TDC_TDCSEL(3); |
| |
| pll_state->mg_pll_bias = MG_PLL_BIAS_BIAS_GB_SEL(3) | |
| MG_PLL_BIAS_INIT_DCOAMP(0x3F) | |
| MG_PLL_BIAS_BIAS_BONUS(10) | |
| MG_PLL_BIAS_BIASCAL_EN | |
| MG_PLL_BIAS_CTRIM(12) | |
| MG_PLL_BIAS_VREF_RDAC(4) | |
| MG_PLL_BIAS_IREFTRIM(iref_trim); |
| |
| if (refclk_khz == 38400) { |
| pll_state->mg_pll_tdc_coldst_bias_mask = MG_PLL_TDC_COLDST_COLDSTART; |
| pll_state->mg_pll_bias_mask = 0; |
| } else { |
| pll_state->mg_pll_tdc_coldst_bias_mask = -1U; |
| pll_state->mg_pll_bias_mask = -1U; |
| } |
| |
| pll_state->mg_pll_tdc_coldst_bias &= pll_state->mg_pll_tdc_coldst_bias_mask; |
| pll_state->mg_pll_bias &= pll_state->mg_pll_bias_mask; |
| |
| return true; |
| } |
| |
| static struct intel_shared_dpll * |
| icl_get_dpll(struct intel_crtc_state *crtc_state, |
| struct intel_encoder *encoder) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); |
| struct intel_digital_port *intel_dig_port; |
| struct intel_shared_dpll *pll; |
| enum port port = encoder->port; |
| enum intel_dpll_id min, max; |
| bool ret; |
| |
| if (intel_port_is_combophy(dev_priv, port)) { |
| min = DPLL_ID_ICL_DPLL0; |
| max = DPLL_ID_ICL_DPLL1; |
| ret = icl_calc_dpll_state(crtc_state, encoder); |
| } else if (intel_port_is_tc(dev_priv, port)) { |
| if (encoder->type == INTEL_OUTPUT_DP_MST) { |
| struct intel_dp_mst_encoder *mst_encoder; |
| |
| mst_encoder = enc_to_mst(&encoder->base); |
| intel_dig_port = mst_encoder->primary; |
| } else { |
| intel_dig_port = enc_to_dig_port(&encoder->base); |
| } |
| |
| if (intel_dig_port->tc_type == TC_PORT_TBT) { |
| min = DPLL_ID_ICL_TBTPLL; |
| max = min; |
| ret = icl_calc_dpll_state(crtc_state, encoder); |
| } else { |
| enum tc_port tc_port; |
| |
| tc_port = intel_port_to_tc(dev_priv, port); |
| min = icl_tc_port_to_pll_id(tc_port); |
| max = min; |
| ret = icl_calc_mg_pll_state(crtc_state); |
| } |
| } else { |
| MISSING_CASE(port); |
| return NULL; |
| } |
| |
| if (!ret) { |
| DRM_DEBUG_KMS("Could not calculate PLL state.\n"); |
| return NULL; |
| } |
| |
| |
| pll = intel_find_shared_dpll(crtc_state, min, max); |
| if (!pll) { |
| DRM_DEBUG_KMS("No PLL selected\n"); |
| return NULL; |
| } |
| |
| intel_reference_shared_dpll(pll, crtc_state); |
| |
| return pll; |
| } |
| |
| static bool mg_pll_get_hw_state(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll, |
| struct intel_dpll_hw_state *hw_state) |
| { |
| const enum intel_dpll_id id = pll->info->id; |
| enum tc_port tc_port = icl_pll_id_to_tc_port(id); |
| intel_wakeref_t wakeref; |
| bool ret = false; |
| u32 val; |
| |
| wakeref = intel_display_power_get_if_enabled(dev_priv, |
| POWER_DOMAIN_DISPLAY_CORE); |
| if (!wakeref) |
| return false; |
| |
| val = I915_READ(MG_PLL_ENABLE(tc_port)); |
| if (!(val & PLL_ENABLE)) |
| goto out; |
| |
| hw_state->mg_refclkin_ctl = I915_READ(MG_REFCLKIN_CTL(tc_port)); |
| hw_state->mg_refclkin_ctl &= MG_REFCLKIN_CTL_OD_2_MUX_MASK; |
| |
| hw_state->mg_clktop2_coreclkctl1 = |
| I915_READ(MG_CLKTOP2_CORECLKCTL1(tc_port)); |
| hw_state->mg_clktop2_coreclkctl1 &= |
| MG_CLKTOP2_CORECLKCTL1_A_DIVRATIO_MASK; |
| |
| hw_state->mg_clktop2_hsclkctl = |
| I915_READ(MG_CLKTOP2_HSCLKCTL(tc_port)); |
| hw_state->mg_clktop2_hsclkctl &= |
| MG_CLKTOP2_HSCLKCTL_TLINEDRV_CLKSEL_MASK | |
| MG_CLKTOP2_HSCLKCTL_CORE_INPUTSEL_MASK | |
| MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_MASK | |
| MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO_MASK; |
| |
| hw_state->mg_pll_div0 = I915_READ(MG_PLL_DIV0(tc_port)); |
| hw_state->mg_pll_div1 = I915_READ(MG_PLL_DIV1(tc_port)); |
| hw_state->mg_pll_lf = I915_READ(MG_PLL_LF(tc_port)); |
| hw_state->mg_pll_frac_lock = I915_READ(MG_PLL_FRAC_LOCK(tc_port)); |
| hw_state->mg_pll_ssc = I915_READ(MG_PLL_SSC(tc_port)); |
| |
| hw_state->mg_pll_bias = I915_READ(MG_PLL_BIAS(tc_port)); |
| hw_state->mg_pll_tdc_coldst_bias = |
| I915_READ(MG_PLL_TDC_COLDST_BIAS(tc_port)); |
| |
| if (dev_priv->cdclk.hw.ref == 38400) { |
| hw_state->mg_pll_tdc_coldst_bias_mask = MG_PLL_TDC_COLDST_COLDSTART; |
| hw_state->mg_pll_bias_mask = 0; |
| } else { |
| hw_state->mg_pll_tdc_coldst_bias_mask = -1U; |
| hw_state->mg_pll_bias_mask = -1U; |
| } |
| |
| hw_state->mg_pll_tdc_coldst_bias &= hw_state->mg_pll_tdc_coldst_bias_mask; |
| hw_state->mg_pll_bias &= hw_state->mg_pll_bias_mask; |
| |
| ret = true; |
| out: |
| intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref); |
| return ret; |
| } |
| |
| static bool icl_pll_get_hw_state(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll, |
| struct intel_dpll_hw_state *hw_state, |
| i915_reg_t enable_reg) |
| { |
| const enum intel_dpll_id id = pll->info->id; |
| intel_wakeref_t wakeref; |
| bool ret = false; |
| u32 val; |
| |
| wakeref = intel_display_power_get_if_enabled(dev_priv, |
| POWER_DOMAIN_DISPLAY_CORE); |
| if (!wakeref) |
| return false; |
| |
| val = I915_READ(enable_reg); |
| if (!(val & PLL_ENABLE)) |
| goto out; |
| |
| hw_state->cfgcr0 = I915_READ(ICL_DPLL_CFGCR0(id)); |
| hw_state->cfgcr1 = I915_READ(ICL_DPLL_CFGCR1(id)); |
| |
| ret = true; |
| out: |
| intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref); |
| return ret; |
| } |
| |
| static bool combo_pll_get_hw_state(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll, |
| struct intel_dpll_hw_state *hw_state) |
| { |
| return icl_pll_get_hw_state(dev_priv, pll, hw_state, |
| CNL_DPLL_ENABLE(pll->info->id)); |
| } |
| |
| static bool tbt_pll_get_hw_state(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll, |
| struct intel_dpll_hw_state *hw_state) |
| { |
| return icl_pll_get_hw_state(dev_priv, pll, hw_state, TBT_PLL_ENABLE); |
| } |
| |
| static void icl_dpll_write(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll) |
| { |
| struct intel_dpll_hw_state *hw_state = &pll->state.hw_state; |
| const enum intel_dpll_id id = pll->info->id; |
| |
| I915_WRITE(ICL_DPLL_CFGCR0(id), hw_state->cfgcr0); |
| I915_WRITE(ICL_DPLL_CFGCR1(id), hw_state->cfgcr1); |
| POSTING_READ(ICL_DPLL_CFGCR1(id)); |
| } |
| |
| static void icl_mg_pll_write(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll) |
| { |
| struct intel_dpll_hw_state *hw_state = &pll->state.hw_state; |
| enum tc_port tc_port = icl_pll_id_to_tc_port(pll->info->id); |
| u32 val; |
| |
| /* |
| * Some of the following registers have reserved fields, so program |
| * these with RMW based on a mask. The mask can be fixed or generated |
| * during the calc/readout phase if the mask depends on some other HW |
| * state like refclk, see icl_calc_mg_pll_state(). |
| */ |
| val = I915_READ(MG_REFCLKIN_CTL(tc_port)); |
| val &= ~MG_REFCLKIN_CTL_OD_2_MUX_MASK; |
| val |= hw_state->mg_refclkin_ctl; |
| I915_WRITE(MG_REFCLKIN_CTL(tc_port), val); |
| |
| val = I915_READ(MG_CLKTOP2_CORECLKCTL1(tc_port)); |
| val &= ~MG_CLKTOP2_CORECLKCTL1_A_DIVRATIO_MASK; |
| val |= hw_state->mg_clktop2_coreclkctl1; |
| I915_WRITE(MG_CLKTOP2_CORECLKCTL1(tc_port), val); |
| |
| val = I915_READ(MG_CLKTOP2_HSCLKCTL(tc_port)); |
| val &= ~(MG_CLKTOP2_HSCLKCTL_TLINEDRV_CLKSEL_MASK | |
| MG_CLKTOP2_HSCLKCTL_CORE_INPUTSEL_MASK | |
| MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_MASK | |
| MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO_MASK); |
| val |= hw_state->mg_clktop2_hsclkctl; |
| I915_WRITE(MG_CLKTOP2_HSCLKCTL(tc_port), val); |
| |
| I915_WRITE(MG_PLL_DIV0(tc_port), hw_state->mg_pll_div0); |
| I915_WRITE(MG_PLL_DIV1(tc_port), hw_state->mg_pll_div1); |
| I915_WRITE(MG_PLL_LF(tc_port), hw_state->mg_pll_lf); |
| I915_WRITE(MG_PLL_FRAC_LOCK(tc_port), hw_state->mg_pll_frac_lock); |
| I915_WRITE(MG_PLL_SSC(tc_port), hw_state->mg_pll_ssc); |
| |
| val = I915_READ(MG_PLL_BIAS(tc_port)); |
| val &= ~hw_state->mg_pll_bias_mask; |
| val |= hw_state->mg_pll_bias; |
| I915_WRITE(MG_PLL_BIAS(tc_port), val); |
| |
| val = I915_READ(MG_PLL_TDC_COLDST_BIAS(tc_port)); |
| val &= ~hw_state->mg_pll_tdc_coldst_bias_mask; |
| val |= hw_state->mg_pll_tdc_coldst_bias; |
| I915_WRITE(MG_PLL_TDC_COLDST_BIAS(tc_port), val); |
| |
| POSTING_READ(MG_PLL_TDC_COLDST_BIAS(tc_port)); |
| } |
| |
| static void icl_pll_power_enable(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll, |
| i915_reg_t enable_reg) |
| { |
| u32 val; |
| |
| val = I915_READ(enable_reg); |
| val |= PLL_POWER_ENABLE; |
| I915_WRITE(enable_reg, val); |
| |
| /* |
| * The spec says we need to "wait" but it also says it should be |
| * immediate. |
| */ |
| if (intel_wait_for_register(&dev_priv->uncore, enable_reg, |
| PLL_POWER_STATE, PLL_POWER_STATE, 1)) |
| DRM_ERROR("PLL %d Power not enabled\n", pll->info->id); |
| } |
| |
| static void icl_pll_enable(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll, |
| i915_reg_t enable_reg) |
| { |
| u32 val; |
| |
| val = I915_READ(enable_reg); |
| val |= PLL_ENABLE; |
| I915_WRITE(enable_reg, val); |
| |
| /* Timeout is actually 600us. */ |
| if (intel_wait_for_register(&dev_priv->uncore, enable_reg, |
| PLL_LOCK, PLL_LOCK, 1)) |
| DRM_ERROR("PLL %d not locked\n", pll->info->id); |
| } |
| |
| static void combo_pll_enable(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll) |
| { |
| i915_reg_t enable_reg = CNL_DPLL_ENABLE(pll->info->id); |
| |
| icl_pll_power_enable(dev_priv, pll, enable_reg); |
| |
| icl_dpll_write(dev_priv, pll); |
| |
| /* |
| * DVFS pre sequence would be here, but in our driver the cdclk code |
| * paths should already be setting the appropriate voltage, hence we do |
| * nothing here. |
| */ |
| |
| icl_pll_enable(dev_priv, pll, enable_reg); |
| |
| /* DVFS post sequence would be here. See the comment above. */ |
| } |
| |
| static void tbt_pll_enable(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll) |
| { |
| icl_pll_power_enable(dev_priv, pll, TBT_PLL_ENABLE); |
| |
| icl_dpll_write(dev_priv, pll); |
| |
| /* |
| * DVFS pre sequence would be here, but in our driver the cdclk code |
| * paths should already be setting the appropriate voltage, hence we do |
| * nothing here. |
| */ |
| |
| icl_pll_enable(dev_priv, pll, TBT_PLL_ENABLE); |
| |
| /* DVFS post sequence would be here. See the comment above. */ |
| } |
| |
| static void mg_pll_enable(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll) |
| { |
| i915_reg_t enable_reg = |
| MG_PLL_ENABLE(icl_pll_id_to_tc_port(pll->info->id)); |
| |
| icl_pll_power_enable(dev_priv, pll, enable_reg); |
| |
| icl_mg_pll_write(dev_priv, pll); |
| |
| /* |
| * DVFS pre sequence would be here, but in our driver the cdclk code |
| * paths should already be setting the appropriate voltage, hence we do |
| * nothing here. |
| */ |
| |
| icl_pll_enable(dev_priv, pll, enable_reg); |
| |
| /* DVFS post sequence would be here. See the comment above. */ |
| } |
| |
| static void icl_pll_disable(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll, |
| i915_reg_t enable_reg) |
| { |
| u32 val; |
| |
| /* The first steps are done by intel_ddi_post_disable(). */ |
| |
| /* |
| * DVFS pre sequence would be here, but in our driver the cdclk code |
| * paths should already be setting the appropriate voltage, hence we do |
| * nothign here. |
| */ |
| |
| val = I915_READ(enable_reg); |
| val &= ~PLL_ENABLE; |
| I915_WRITE(enable_reg, val); |
| |
| /* Timeout is actually 1us. */ |
| if (intel_wait_for_register(&dev_priv->uncore, |
| enable_reg, PLL_LOCK, 0, 1)) |
| DRM_ERROR("PLL %d locked\n", pll->info->id); |
| |
| /* DVFS post sequence would be here. See the comment above. */ |
| |
| val = I915_READ(enable_reg); |
| val &= ~PLL_POWER_ENABLE; |
| I915_WRITE(enable_reg, val); |
| |
| /* |
| * The spec says we need to "wait" but it also says it should be |
| * immediate. |
| */ |
| if (intel_wait_for_register(&dev_priv->uncore, |
| enable_reg, PLL_POWER_STATE, 0, 1)) |
| DRM_ERROR("PLL %d Power not disabled\n", pll->info->id); |
| } |
| |
| static void combo_pll_disable(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll) |
| { |
| icl_pll_disable(dev_priv, pll, CNL_DPLL_ENABLE(pll->info->id)); |
| } |
| |
| static void tbt_pll_disable(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll) |
| { |
| icl_pll_disable(dev_priv, pll, TBT_PLL_ENABLE); |
| } |
| |
| static void mg_pll_disable(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll) |
| { |
| i915_reg_t enable_reg = |
| MG_PLL_ENABLE(icl_pll_id_to_tc_port(pll->info->id)); |
| |
| icl_pll_disable(dev_priv, pll, enable_reg); |
| } |
| |
| static void icl_dump_hw_state(struct drm_i915_private *dev_priv, |
| const struct intel_dpll_hw_state *hw_state) |
| { |
| DRM_DEBUG_KMS("dpll_hw_state: cfgcr0: 0x%x, cfgcr1: 0x%x, " |
| "mg_refclkin_ctl: 0x%x, hg_clktop2_coreclkctl1: 0x%x, " |
| "mg_clktop2_hsclkctl: 0x%x, mg_pll_div0: 0x%x, " |
| "mg_pll_div2: 0x%x, mg_pll_lf: 0x%x, " |
| "mg_pll_frac_lock: 0x%x, mg_pll_ssc: 0x%x, " |
| "mg_pll_bias: 0x%x, mg_pll_tdc_coldst_bias: 0x%x\n", |
| hw_state->cfgcr0, hw_state->cfgcr1, |
| hw_state->mg_refclkin_ctl, |
| hw_state->mg_clktop2_coreclkctl1, |
| hw_state->mg_clktop2_hsclkctl, |
| hw_state->mg_pll_div0, |
| hw_state->mg_pll_div1, |
| hw_state->mg_pll_lf, |
| hw_state->mg_pll_frac_lock, |
| hw_state->mg_pll_ssc, |
| hw_state->mg_pll_bias, |
| hw_state->mg_pll_tdc_coldst_bias); |
| } |
| |
| static const struct intel_shared_dpll_funcs combo_pll_funcs = { |
| .enable = combo_pll_enable, |
| .disable = combo_pll_disable, |
| .get_hw_state = combo_pll_get_hw_state, |
| }; |
| |
| static const struct intel_shared_dpll_funcs tbt_pll_funcs = { |
| .enable = tbt_pll_enable, |
| .disable = tbt_pll_disable, |
| .get_hw_state = tbt_pll_get_hw_state, |
| }; |
| |
| static const struct intel_shared_dpll_funcs mg_pll_funcs = { |
| .enable = mg_pll_enable, |
| .disable = mg_pll_disable, |
| .get_hw_state = mg_pll_get_hw_state, |
| }; |
| |
| static const struct dpll_info icl_plls[] = { |
| { "DPLL 0", &combo_pll_funcs, DPLL_ID_ICL_DPLL0, 0 }, |
| { "DPLL 1", &combo_pll_funcs, DPLL_ID_ICL_DPLL1, 0 }, |
| { "TBT PLL", &tbt_pll_funcs, DPLL_ID_ICL_TBTPLL, 0 }, |
| { "MG PLL 1", &mg_pll_funcs, DPLL_ID_ICL_MGPLL1, 0 }, |
| { "MG PLL 2", &mg_pll_funcs, DPLL_ID_ICL_MGPLL2, 0 }, |
| { "MG PLL 3", &mg_pll_funcs, DPLL_ID_ICL_MGPLL3, 0 }, |
| { "MG PLL 4", &mg_pll_funcs, DPLL_ID_ICL_MGPLL4, 0 }, |
| { }, |
| }; |
| |
| static const struct intel_dpll_mgr icl_pll_mgr = { |
| .dpll_info = icl_plls, |
| .get_dpll = icl_get_dpll, |
| .dump_hw_state = icl_dump_hw_state, |
| }; |
| |
| static const struct dpll_info ehl_plls[] = { |
| { "DPLL 0", &combo_pll_funcs, DPLL_ID_ICL_DPLL0, 0 }, |
| { "DPLL 1", &combo_pll_funcs, DPLL_ID_ICL_DPLL1, 0 }, |
| { }, |
| }; |
| |
| static const struct intel_dpll_mgr ehl_pll_mgr = { |
| .dpll_info = ehl_plls, |
| .get_dpll = icl_get_dpll, |
| .dump_hw_state = icl_dump_hw_state, |
| }; |
| |
| /** |
| * intel_shared_dpll_init - Initialize shared DPLLs |
| * @dev: drm device |
| * |
| * Initialize shared DPLLs for @dev. |
| */ |
| void intel_shared_dpll_init(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| const struct intel_dpll_mgr *dpll_mgr = NULL; |
| const struct dpll_info *dpll_info; |
| int i; |
| |
| if (IS_ELKHARTLAKE(dev_priv)) |
| dpll_mgr = &ehl_pll_mgr; |
| else if (INTEL_GEN(dev_priv) >= 11) |
| dpll_mgr = &icl_pll_mgr; |
| else if (IS_CANNONLAKE(dev_priv)) |
| dpll_mgr = &cnl_pll_mgr; |
| else if (IS_GEN9_BC(dev_priv)) |
| dpll_mgr = &skl_pll_mgr; |
| else if (IS_GEN9_LP(dev_priv)) |
| dpll_mgr = &bxt_pll_mgr; |
| else if (HAS_DDI(dev_priv)) |
| dpll_mgr = &hsw_pll_mgr; |
| else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) |
| dpll_mgr = &pch_pll_mgr; |
| |
| if (!dpll_mgr) { |
| dev_priv->num_shared_dpll = 0; |
| return; |
| } |
| |
| dpll_info = dpll_mgr->dpll_info; |
| |
| for (i = 0; dpll_info[i].name; i++) { |
| WARN_ON(i != dpll_info[i].id); |
| dev_priv->shared_dplls[i].info = &dpll_info[i]; |
| } |
| |
| dev_priv->dpll_mgr = dpll_mgr; |
| dev_priv->num_shared_dpll = i; |
| mutex_init(&dev_priv->dpll_lock); |
| |
| BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS); |
| } |
| |
| /** |
| * intel_get_shared_dpll - get a shared DPLL for CRTC and encoder combination |
| * @crtc_state: atomic state for the crtc |
| * @encoder: encoder |
| * |
| * Find an appropriate DPLL for the given CRTC and encoder combination. A |
| * reference from the @crtc_state to the returned pll is registered in the |
| * atomic state. That configuration is made effective by calling |
| * intel_shared_dpll_swap_state(). The reference should be released by calling |
| * intel_release_shared_dpll(). |
| * |
| * Returns: |
| * A shared DPLL to be used by @crtc_state and @encoder. |
| */ |
| struct intel_shared_dpll * |
| intel_get_shared_dpll(struct intel_crtc_state *crtc_state, |
| struct intel_encoder *encoder) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); |
| const struct intel_dpll_mgr *dpll_mgr = dev_priv->dpll_mgr; |
| |
| if (WARN_ON(!dpll_mgr)) |
| return NULL; |
| |
| return dpll_mgr->get_dpll(crtc_state, encoder); |
| } |
| |
| /** |
| * intel_release_shared_dpll - end use of DPLL by CRTC in atomic state |
| * @dpll: dpll in use by @crtc |
| * @crtc: crtc |
| * @state: atomic state |
| * |
| * This function releases the reference from @crtc to @dpll from the |
| * atomic @state. The new configuration is made effective by calling |
| * intel_shared_dpll_swap_state(). |
| */ |
| void intel_release_shared_dpll(struct intel_shared_dpll *dpll, |
| struct intel_crtc *crtc, |
| struct drm_atomic_state *state) |
| { |
| struct intel_shared_dpll_state *shared_dpll_state; |
| |
| shared_dpll_state = intel_atomic_get_shared_dpll_state(state); |
| shared_dpll_state[dpll->info->id].crtc_mask &= ~(1 << crtc->pipe); |
| } |
| |
| /** |
| * intel_shared_dpll_dump_hw_state - write hw_state to dmesg |
| * @dev_priv: i915 drm device |
| * @hw_state: hw state to be written to the log |
| * |
| * Write the relevant values in @hw_state to dmesg using DRM_DEBUG_KMS. |
| */ |
| void intel_dpll_dump_hw_state(struct drm_i915_private *dev_priv, |
| const struct intel_dpll_hw_state *hw_state) |
| { |
| if (dev_priv->dpll_mgr) { |
| dev_priv->dpll_mgr->dump_hw_state(dev_priv, hw_state); |
| } else { |
| /* fallback for platforms that don't use the shared dpll |
| * infrastructure |
| */ |
| DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, " |
| "fp0: 0x%x, fp1: 0x%x\n", |
| hw_state->dpll, |
| hw_state->dpll_md, |
| hw_state->fp0, |
| hw_state->fp1); |
| } |
| } |