|  | /* SPDX-License-Identifier: GPL-2.0+ */ | 
|  | /* | 
|  | * RCU expedited grace periods | 
|  | * | 
|  | * Copyright IBM Corporation, 2016 | 
|  | * | 
|  | * Authors: Paul E. McKenney <paulmck@linux.ibm.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/lockdep.h> | 
|  |  | 
|  | static void rcu_exp_handler(void *unused); | 
|  | static int rcu_print_task_exp_stall(struct rcu_node *rnp); | 
|  |  | 
|  | /* | 
|  | * Record the start of an expedited grace period. | 
|  | */ | 
|  | static void rcu_exp_gp_seq_start(void) | 
|  | { | 
|  | rcu_seq_start(&rcu_state.expedited_sequence); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return then value that expedited-grace-period counter will have | 
|  | * at the end of the current grace period. | 
|  | */ | 
|  | static __maybe_unused unsigned long rcu_exp_gp_seq_endval(void) | 
|  | { | 
|  | return rcu_seq_endval(&rcu_state.expedited_sequence); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Record the end of an expedited grace period. | 
|  | */ | 
|  | static void rcu_exp_gp_seq_end(void) | 
|  | { | 
|  | rcu_seq_end(&rcu_state.expedited_sequence); | 
|  | smp_mb(); /* Ensure that consecutive grace periods serialize. */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Take a snapshot of the expedited-grace-period counter. | 
|  | */ | 
|  | static unsigned long rcu_exp_gp_seq_snap(void) | 
|  | { | 
|  | unsigned long s; | 
|  |  | 
|  | smp_mb(); /* Caller's modifications seen first by other CPUs. */ | 
|  | s = rcu_seq_snap(&rcu_state.expedited_sequence); | 
|  | trace_rcu_exp_grace_period(rcu_state.name, s, TPS("snap")); | 
|  | return s; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Given a counter snapshot from rcu_exp_gp_seq_snap(), return true | 
|  | * if a full expedited grace period has elapsed since that snapshot | 
|  | * was taken. | 
|  | */ | 
|  | static bool rcu_exp_gp_seq_done(unsigned long s) | 
|  | { | 
|  | return rcu_seq_done(&rcu_state.expedited_sequence, s); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reset the ->expmaskinit values in the rcu_node tree to reflect any | 
|  | * recent CPU-online activity.  Note that these masks are not cleared | 
|  | * when CPUs go offline, so they reflect the union of all CPUs that have | 
|  | * ever been online.  This means that this function normally takes its | 
|  | * no-work-to-do fastpath. | 
|  | */ | 
|  | static void sync_exp_reset_tree_hotplug(void) | 
|  | { | 
|  | bool done; | 
|  | unsigned long flags; | 
|  | unsigned long mask; | 
|  | unsigned long oldmask; | 
|  | int ncpus = smp_load_acquire(&rcu_state.ncpus); /* Order vs. locking. */ | 
|  | struct rcu_node *rnp; | 
|  | struct rcu_node *rnp_up; | 
|  |  | 
|  | /* If no new CPUs onlined since last time, nothing to do. */ | 
|  | if (likely(ncpus == rcu_state.ncpus_snap)) | 
|  | return; | 
|  | rcu_state.ncpus_snap = ncpus; | 
|  |  | 
|  | /* | 
|  | * Each pass through the following loop propagates newly onlined | 
|  | * CPUs for the current rcu_node structure up the rcu_node tree. | 
|  | */ | 
|  | rcu_for_each_leaf_node(rnp) { | 
|  | raw_spin_lock_irqsave_rcu_node(rnp, flags); | 
|  | if (rnp->expmaskinit == rnp->expmaskinitnext) { | 
|  | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|  | continue;  /* No new CPUs, nothing to do. */ | 
|  | } | 
|  |  | 
|  | /* Update this node's mask, track old value for propagation. */ | 
|  | oldmask = rnp->expmaskinit; | 
|  | rnp->expmaskinit = rnp->expmaskinitnext; | 
|  | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|  |  | 
|  | /* If was already nonzero, nothing to propagate. */ | 
|  | if (oldmask) | 
|  | continue; | 
|  |  | 
|  | /* Propagate the new CPU up the tree. */ | 
|  | mask = rnp->grpmask; | 
|  | rnp_up = rnp->parent; | 
|  | done = false; | 
|  | while (rnp_up) { | 
|  | raw_spin_lock_irqsave_rcu_node(rnp_up, flags); | 
|  | if (rnp_up->expmaskinit) | 
|  | done = true; | 
|  | rnp_up->expmaskinit |= mask; | 
|  | raw_spin_unlock_irqrestore_rcu_node(rnp_up, flags); | 
|  | if (done) | 
|  | break; | 
|  | mask = rnp_up->grpmask; | 
|  | rnp_up = rnp_up->parent; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reset the ->expmask values in the rcu_node tree in preparation for | 
|  | * a new expedited grace period. | 
|  | */ | 
|  | static void __maybe_unused sync_exp_reset_tree(void) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct rcu_node *rnp; | 
|  |  | 
|  | sync_exp_reset_tree_hotplug(); | 
|  | rcu_for_each_node_breadth_first(rnp) { | 
|  | raw_spin_lock_irqsave_rcu_node(rnp, flags); | 
|  | WARN_ON_ONCE(rnp->expmask); | 
|  | rnp->expmask = rnp->expmaskinit; | 
|  | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return non-zero if there is no RCU expedited grace period in progress | 
|  | * for the specified rcu_node structure, in other words, if all CPUs and | 
|  | * tasks covered by the specified rcu_node structure have done their bit | 
|  | * for the current expedited grace period.  Works only for preemptible | 
|  | * RCU -- other RCU implementation use other means. | 
|  | * | 
|  | * Caller must hold the specificed rcu_node structure's ->lock | 
|  | */ | 
|  | static bool sync_rcu_preempt_exp_done(struct rcu_node *rnp) | 
|  | { | 
|  | raw_lockdep_assert_held_rcu_node(rnp); | 
|  |  | 
|  | return rnp->exp_tasks == NULL && | 
|  | READ_ONCE(rnp->expmask) == 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Like sync_rcu_preempt_exp_done(), but this function assumes the caller | 
|  | * doesn't hold the rcu_node's ->lock, and will acquire and release the lock | 
|  | * itself | 
|  | */ | 
|  | static bool sync_rcu_preempt_exp_done_unlocked(struct rcu_node *rnp) | 
|  | { | 
|  | unsigned long flags; | 
|  | bool ret; | 
|  |  | 
|  | raw_spin_lock_irqsave_rcu_node(rnp, flags); | 
|  | ret = sync_rcu_preempt_exp_done(rnp); | 
|  | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Report the exit from RCU read-side critical section for the last task | 
|  | * that queued itself during or before the current expedited preemptible-RCU | 
|  | * grace period.  This event is reported either to the rcu_node structure on | 
|  | * which the task was queued or to one of that rcu_node structure's ancestors, | 
|  | * recursively up the tree.  (Calm down, calm down, we do the recursion | 
|  | * iteratively!) | 
|  | * | 
|  | * Caller must hold the specified rcu_node structure's ->lock. | 
|  | */ | 
|  | static void __rcu_report_exp_rnp(struct rcu_node *rnp, | 
|  | bool wake, unsigned long flags) | 
|  | __releases(rnp->lock) | 
|  | { | 
|  | unsigned long mask; | 
|  |  | 
|  | for (;;) { | 
|  | if (!sync_rcu_preempt_exp_done(rnp)) { | 
|  | if (!rnp->expmask) | 
|  | rcu_initiate_boost(rnp, flags); | 
|  | else | 
|  | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|  | break; | 
|  | } | 
|  | if (rnp->parent == NULL) { | 
|  | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|  | if (wake) { | 
|  | smp_mb(); /* EGP done before wake_up(). */ | 
|  | swake_up_one(&rcu_state.expedited_wq); | 
|  | } | 
|  | break; | 
|  | } | 
|  | mask = rnp->grpmask; | 
|  | raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled */ | 
|  | rnp = rnp->parent; | 
|  | raw_spin_lock_rcu_node(rnp); /* irqs already disabled */ | 
|  | WARN_ON_ONCE(!(rnp->expmask & mask)); | 
|  | rnp->expmask &= ~mask; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Report expedited quiescent state for specified node.  This is a | 
|  | * lock-acquisition wrapper function for __rcu_report_exp_rnp(). | 
|  | */ | 
|  | static void __maybe_unused rcu_report_exp_rnp(struct rcu_node *rnp, bool wake) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | raw_spin_lock_irqsave_rcu_node(rnp, flags); | 
|  | __rcu_report_exp_rnp(rnp, wake, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Report expedited quiescent state for multiple CPUs, all covered by the | 
|  | * specified leaf rcu_node structure. | 
|  | */ | 
|  | static void rcu_report_exp_cpu_mult(struct rcu_node *rnp, | 
|  | unsigned long mask, bool wake) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | raw_spin_lock_irqsave_rcu_node(rnp, flags); | 
|  | if (!(rnp->expmask & mask)) { | 
|  | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|  | return; | 
|  | } | 
|  | rnp->expmask &= ~mask; | 
|  | __rcu_report_exp_rnp(rnp, wake, flags); /* Releases rnp->lock. */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Report expedited quiescent state for specified rcu_data (CPU). | 
|  | */ | 
|  | static void rcu_report_exp_rdp(struct rcu_data *rdp) | 
|  | { | 
|  | WRITE_ONCE(rdp->deferred_qs, false); | 
|  | rcu_report_exp_cpu_mult(rdp->mynode, rdp->grpmask, true); | 
|  | } | 
|  |  | 
|  | /* Common code for work-done checking. */ | 
|  | static bool sync_exp_work_done(unsigned long s) | 
|  | { | 
|  | if (rcu_exp_gp_seq_done(s)) { | 
|  | trace_rcu_exp_grace_period(rcu_state.name, s, TPS("done")); | 
|  | /* Ensure test happens before caller kfree(). */ | 
|  | smp_mb__before_atomic(); /* ^^^ */ | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Funnel-lock acquisition for expedited grace periods.  Returns true | 
|  | * if some other task completed an expedited grace period that this task | 
|  | * can piggy-back on, and with no mutex held.  Otherwise, returns false | 
|  | * with the mutex held, indicating that the caller must actually do the | 
|  | * expedited grace period. | 
|  | */ | 
|  | static bool exp_funnel_lock(unsigned long s) | 
|  | { | 
|  | struct rcu_data *rdp = per_cpu_ptr(&rcu_data, raw_smp_processor_id()); | 
|  | struct rcu_node *rnp = rdp->mynode; | 
|  | struct rcu_node *rnp_root = rcu_get_root(); | 
|  |  | 
|  | /* Low-contention fastpath. */ | 
|  | if (ULONG_CMP_LT(READ_ONCE(rnp->exp_seq_rq), s) && | 
|  | (rnp == rnp_root || | 
|  | ULONG_CMP_LT(READ_ONCE(rnp_root->exp_seq_rq), s)) && | 
|  | mutex_trylock(&rcu_state.exp_mutex)) | 
|  | goto fastpath; | 
|  |  | 
|  | /* | 
|  | * Each pass through the following loop works its way up | 
|  | * the rcu_node tree, returning if others have done the work or | 
|  | * otherwise falls through to acquire ->exp_mutex.  The mapping | 
|  | * from CPU to rcu_node structure can be inexact, as it is just | 
|  | * promoting locality and is not strictly needed for correctness. | 
|  | */ | 
|  | for (; rnp != NULL; rnp = rnp->parent) { | 
|  | if (sync_exp_work_done(s)) | 
|  | return true; | 
|  |  | 
|  | /* Work not done, either wait here or go up. */ | 
|  | spin_lock(&rnp->exp_lock); | 
|  | if (ULONG_CMP_GE(rnp->exp_seq_rq, s)) { | 
|  |  | 
|  | /* Someone else doing GP, so wait for them. */ | 
|  | spin_unlock(&rnp->exp_lock); | 
|  | trace_rcu_exp_funnel_lock(rcu_state.name, rnp->level, | 
|  | rnp->grplo, rnp->grphi, | 
|  | TPS("wait")); | 
|  | wait_event(rnp->exp_wq[rcu_seq_ctr(s) & 0x3], | 
|  | sync_exp_work_done(s)); | 
|  | return true; | 
|  | } | 
|  | rnp->exp_seq_rq = s; /* Followers can wait on us. */ | 
|  | spin_unlock(&rnp->exp_lock); | 
|  | trace_rcu_exp_funnel_lock(rcu_state.name, rnp->level, | 
|  | rnp->grplo, rnp->grphi, TPS("nxtlvl")); | 
|  | } | 
|  | mutex_lock(&rcu_state.exp_mutex); | 
|  | fastpath: | 
|  | if (sync_exp_work_done(s)) { | 
|  | mutex_unlock(&rcu_state.exp_mutex); | 
|  | return true; | 
|  | } | 
|  | rcu_exp_gp_seq_start(); | 
|  | trace_rcu_exp_grace_period(rcu_state.name, s, TPS("start")); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Select the CPUs within the specified rcu_node that the upcoming | 
|  | * expedited grace period needs to wait for. | 
|  | */ | 
|  | static void sync_rcu_exp_select_node_cpus(struct work_struct *wp) | 
|  | { | 
|  | int cpu; | 
|  | unsigned long flags; | 
|  | unsigned long mask_ofl_test; | 
|  | unsigned long mask_ofl_ipi; | 
|  | int ret; | 
|  | struct rcu_exp_work *rewp = | 
|  | container_of(wp, struct rcu_exp_work, rew_work); | 
|  | struct rcu_node *rnp = container_of(rewp, struct rcu_node, rew); | 
|  |  | 
|  | raw_spin_lock_irqsave_rcu_node(rnp, flags); | 
|  |  | 
|  | /* Each pass checks a CPU for identity, offline, and idle. */ | 
|  | mask_ofl_test = 0; | 
|  | for_each_leaf_node_cpu_mask(rnp, cpu, rnp->expmask) { | 
|  | unsigned long mask = leaf_node_cpu_bit(rnp, cpu); | 
|  | struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); | 
|  | int snap; | 
|  |  | 
|  | if (raw_smp_processor_id() == cpu || | 
|  | !(rnp->qsmaskinitnext & mask)) { | 
|  | mask_ofl_test |= mask; | 
|  | } else { | 
|  | snap = rcu_dynticks_snap(rdp); | 
|  | if (rcu_dynticks_in_eqs(snap)) | 
|  | mask_ofl_test |= mask; | 
|  | else | 
|  | rdp->exp_dynticks_snap = snap; | 
|  | } | 
|  | } | 
|  | mask_ofl_ipi = rnp->expmask & ~mask_ofl_test; | 
|  |  | 
|  | /* | 
|  | * Need to wait for any blocked tasks as well.	Note that | 
|  | * additional blocking tasks will also block the expedited GP | 
|  | * until such time as the ->expmask bits are cleared. | 
|  | */ | 
|  | if (rcu_preempt_has_tasks(rnp)) | 
|  | rnp->exp_tasks = rnp->blkd_tasks.next; | 
|  | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|  |  | 
|  | /* IPI the remaining CPUs for expedited quiescent state. */ | 
|  | for_each_leaf_node_cpu_mask(rnp, cpu, rnp->expmask) { | 
|  | unsigned long mask = leaf_node_cpu_bit(rnp, cpu); | 
|  | struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); | 
|  |  | 
|  | if (!(mask_ofl_ipi & mask)) | 
|  | continue; | 
|  | retry_ipi: | 
|  | if (rcu_dynticks_in_eqs_since(rdp, rdp->exp_dynticks_snap)) { | 
|  | mask_ofl_test |= mask; | 
|  | continue; | 
|  | } | 
|  | ret = smp_call_function_single(cpu, rcu_exp_handler, NULL, 0); | 
|  | if (!ret) { | 
|  | mask_ofl_ipi &= ~mask; | 
|  | continue; | 
|  | } | 
|  | /* Failed, raced with CPU hotplug operation. */ | 
|  | raw_spin_lock_irqsave_rcu_node(rnp, flags); | 
|  | if ((rnp->qsmaskinitnext & mask) && | 
|  | (rnp->expmask & mask)) { | 
|  | /* Online, so delay for a bit and try again. */ | 
|  | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|  | trace_rcu_exp_grace_period(rcu_state.name, rcu_exp_gp_seq_endval(), TPS("selectofl")); | 
|  | schedule_timeout_uninterruptible(1); | 
|  | goto retry_ipi; | 
|  | } | 
|  | /* CPU really is offline, so we can ignore it. */ | 
|  | if (!(rnp->expmask & mask)) | 
|  | mask_ofl_ipi &= ~mask; | 
|  | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|  | } | 
|  | /* Report quiescent states for those that went offline. */ | 
|  | mask_ofl_test |= mask_ofl_ipi; | 
|  | if (mask_ofl_test) | 
|  | rcu_report_exp_cpu_mult(rnp, mask_ofl_test, false); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Select the nodes that the upcoming expedited grace period needs | 
|  | * to wait for. | 
|  | */ | 
|  | static void sync_rcu_exp_select_cpus(void) | 
|  | { | 
|  | int cpu; | 
|  | struct rcu_node *rnp; | 
|  |  | 
|  | trace_rcu_exp_grace_period(rcu_state.name, rcu_exp_gp_seq_endval(), TPS("reset")); | 
|  | sync_exp_reset_tree(); | 
|  | trace_rcu_exp_grace_period(rcu_state.name, rcu_exp_gp_seq_endval(), TPS("select")); | 
|  |  | 
|  | /* Schedule work for each leaf rcu_node structure. */ | 
|  | rcu_for_each_leaf_node(rnp) { | 
|  | rnp->exp_need_flush = false; | 
|  | if (!READ_ONCE(rnp->expmask)) | 
|  | continue; /* Avoid early boot non-existent wq. */ | 
|  | if (!READ_ONCE(rcu_par_gp_wq) || | 
|  | rcu_scheduler_active != RCU_SCHEDULER_RUNNING || | 
|  | rcu_is_last_leaf_node(rnp)) { | 
|  | /* No workqueues yet or last leaf, do direct call. */ | 
|  | sync_rcu_exp_select_node_cpus(&rnp->rew.rew_work); | 
|  | continue; | 
|  | } | 
|  | INIT_WORK(&rnp->rew.rew_work, sync_rcu_exp_select_node_cpus); | 
|  | cpu = find_next_bit(&rnp->ffmask, BITS_PER_LONG, -1); | 
|  | /* If all offline, queue the work on an unbound CPU. */ | 
|  | if (unlikely(cpu > rnp->grphi - rnp->grplo)) | 
|  | cpu = WORK_CPU_UNBOUND; | 
|  | else | 
|  | cpu += rnp->grplo; | 
|  | queue_work_on(cpu, rcu_par_gp_wq, &rnp->rew.rew_work); | 
|  | rnp->exp_need_flush = true; | 
|  | } | 
|  |  | 
|  | /* Wait for workqueue jobs (if any) to complete. */ | 
|  | rcu_for_each_leaf_node(rnp) | 
|  | if (rnp->exp_need_flush) | 
|  | flush_work(&rnp->rew.rew_work); | 
|  | } | 
|  |  | 
|  | static void synchronize_sched_expedited_wait(void) | 
|  | { | 
|  | int cpu; | 
|  | unsigned long jiffies_stall; | 
|  | unsigned long jiffies_start; | 
|  | unsigned long mask; | 
|  | int ndetected; | 
|  | struct rcu_node *rnp; | 
|  | struct rcu_node *rnp_root = rcu_get_root(); | 
|  | int ret; | 
|  |  | 
|  | trace_rcu_exp_grace_period(rcu_state.name, rcu_exp_gp_seq_endval(), TPS("startwait")); | 
|  | jiffies_stall = rcu_jiffies_till_stall_check(); | 
|  | jiffies_start = jiffies; | 
|  |  | 
|  | for (;;) { | 
|  | ret = swait_event_timeout_exclusive( | 
|  | rcu_state.expedited_wq, | 
|  | sync_rcu_preempt_exp_done_unlocked(rnp_root), | 
|  | jiffies_stall); | 
|  | if (ret > 0 || sync_rcu_preempt_exp_done_unlocked(rnp_root)) | 
|  | return; | 
|  | WARN_ON(ret < 0);  /* workqueues should not be signaled. */ | 
|  | if (rcu_cpu_stall_suppress) | 
|  | continue; | 
|  | panic_on_rcu_stall(); | 
|  | pr_err("INFO: %s detected expedited stalls on CPUs/tasks: {", | 
|  | rcu_state.name); | 
|  | ndetected = 0; | 
|  | rcu_for_each_leaf_node(rnp) { | 
|  | ndetected += rcu_print_task_exp_stall(rnp); | 
|  | for_each_leaf_node_possible_cpu(rnp, cpu) { | 
|  | struct rcu_data *rdp; | 
|  |  | 
|  | mask = leaf_node_cpu_bit(rnp, cpu); | 
|  | if (!(rnp->expmask & mask)) | 
|  | continue; | 
|  | ndetected++; | 
|  | rdp = per_cpu_ptr(&rcu_data, cpu); | 
|  | pr_cont(" %d-%c%c%c", cpu, | 
|  | "O."[!!cpu_online(cpu)], | 
|  | "o."[!!(rdp->grpmask & rnp->expmaskinit)], | 
|  | "N."[!!(rdp->grpmask & rnp->expmaskinitnext)]); | 
|  | } | 
|  | } | 
|  | pr_cont(" } %lu jiffies s: %lu root: %#lx/%c\n", | 
|  | jiffies - jiffies_start, rcu_state.expedited_sequence, | 
|  | rnp_root->expmask, ".T"[!!rnp_root->exp_tasks]); | 
|  | if (ndetected) { | 
|  | pr_err("blocking rcu_node structures:"); | 
|  | rcu_for_each_node_breadth_first(rnp) { | 
|  | if (rnp == rnp_root) | 
|  | continue; /* printed unconditionally */ | 
|  | if (sync_rcu_preempt_exp_done_unlocked(rnp)) | 
|  | continue; | 
|  | pr_cont(" l=%u:%d-%d:%#lx/%c", | 
|  | rnp->level, rnp->grplo, rnp->grphi, | 
|  | rnp->expmask, | 
|  | ".T"[!!rnp->exp_tasks]); | 
|  | } | 
|  | pr_cont("\n"); | 
|  | } | 
|  | rcu_for_each_leaf_node(rnp) { | 
|  | for_each_leaf_node_possible_cpu(rnp, cpu) { | 
|  | mask = leaf_node_cpu_bit(rnp, cpu); | 
|  | if (!(rnp->expmask & mask)) | 
|  | continue; | 
|  | dump_cpu_task(cpu); | 
|  | } | 
|  | } | 
|  | jiffies_stall = 3 * rcu_jiffies_till_stall_check() + 3; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wait for the current expedited grace period to complete, and then | 
|  | * wake up everyone who piggybacked on the just-completed expedited | 
|  | * grace period.  Also update all the ->exp_seq_rq counters as needed | 
|  | * in order to avoid counter-wrap problems. | 
|  | */ | 
|  | static void rcu_exp_wait_wake(unsigned long s) | 
|  | { | 
|  | struct rcu_node *rnp; | 
|  |  | 
|  | synchronize_sched_expedited_wait(); | 
|  | rcu_exp_gp_seq_end(); | 
|  | trace_rcu_exp_grace_period(rcu_state.name, s, TPS("end")); | 
|  |  | 
|  | /* | 
|  | * Switch over to wakeup mode, allowing the next GP, but -only- the | 
|  | * next GP, to proceed. | 
|  | */ | 
|  | mutex_lock(&rcu_state.exp_wake_mutex); | 
|  |  | 
|  | rcu_for_each_node_breadth_first(rnp) { | 
|  | if (ULONG_CMP_LT(READ_ONCE(rnp->exp_seq_rq), s)) { | 
|  | spin_lock(&rnp->exp_lock); | 
|  | /* Recheck, avoid hang in case someone just arrived. */ | 
|  | if (ULONG_CMP_LT(rnp->exp_seq_rq, s)) | 
|  | rnp->exp_seq_rq = s; | 
|  | spin_unlock(&rnp->exp_lock); | 
|  | } | 
|  | smp_mb(); /* All above changes before wakeup. */ | 
|  | wake_up_all(&rnp->exp_wq[rcu_seq_ctr(rcu_state.expedited_sequence) & 0x3]); | 
|  | } | 
|  | trace_rcu_exp_grace_period(rcu_state.name, s, TPS("endwake")); | 
|  | mutex_unlock(&rcu_state.exp_wake_mutex); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Common code to drive an expedited grace period forward, used by | 
|  | * workqueues and mid-boot-time tasks. | 
|  | */ | 
|  | static void rcu_exp_sel_wait_wake(unsigned long s) | 
|  | { | 
|  | /* Initialize the rcu_node tree in preparation for the wait. */ | 
|  | sync_rcu_exp_select_cpus(); | 
|  |  | 
|  | /* Wait and clean up, including waking everyone. */ | 
|  | rcu_exp_wait_wake(s); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Work-queue handler to drive an expedited grace period forward. | 
|  | */ | 
|  | static void wait_rcu_exp_gp(struct work_struct *wp) | 
|  | { | 
|  | struct rcu_exp_work *rewp; | 
|  |  | 
|  | rewp = container_of(wp, struct rcu_exp_work, rew_work); | 
|  | rcu_exp_sel_wait_wake(rewp->rew_s); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PREEMPT_RCU | 
|  |  | 
|  | /* | 
|  | * Remote handler for smp_call_function_single().  If there is an | 
|  | * RCU read-side critical section in effect, request that the | 
|  | * next rcu_read_unlock() record the quiescent state up the | 
|  | * ->expmask fields in the rcu_node tree.  Otherwise, immediately | 
|  | * report the quiescent state. | 
|  | */ | 
|  | static void rcu_exp_handler(void *unused) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct rcu_data *rdp = this_cpu_ptr(&rcu_data); | 
|  | struct rcu_node *rnp = rdp->mynode; | 
|  | struct task_struct *t = current; | 
|  |  | 
|  | /* | 
|  | * First, the common case of not being in an RCU read-side | 
|  | * critical section.  If also enabled or idle, immediately | 
|  | * report the quiescent state, otherwise defer. | 
|  | */ | 
|  | if (!t->rcu_read_lock_nesting) { | 
|  | if (!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK)) || | 
|  | rcu_dynticks_curr_cpu_in_eqs()) { | 
|  | rcu_report_exp_rdp(rdp); | 
|  | } else { | 
|  | rdp->deferred_qs = true; | 
|  | set_tsk_need_resched(t); | 
|  | set_preempt_need_resched(); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Second, the less-common case of being in an RCU read-side | 
|  | * critical section.  In this case we can count on a future | 
|  | * rcu_read_unlock().  However, this rcu_read_unlock() might | 
|  | * execute on some other CPU, but in that case there will be | 
|  | * a future context switch.  Either way, if the expedited | 
|  | * grace period is still waiting on this CPU, set ->deferred_qs | 
|  | * so that the eventual quiescent state will be reported. | 
|  | * Note that there is a large group of race conditions that | 
|  | * can have caused this quiescent state to already have been | 
|  | * reported, so we really do need to check ->expmask. | 
|  | */ | 
|  | if (t->rcu_read_lock_nesting > 0) { | 
|  | raw_spin_lock_irqsave_rcu_node(rnp, flags); | 
|  | if (rnp->expmask & rdp->grpmask) { | 
|  | rdp->deferred_qs = true; | 
|  | t->rcu_read_unlock_special.b.exp_hint = true; | 
|  | } | 
|  | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The final and least likely case is where the interrupted | 
|  | * code was just about to or just finished exiting the RCU-preempt | 
|  | * read-side critical section, and no, we can't tell which. | 
|  | * So either way, set ->deferred_qs to flag later code that | 
|  | * a quiescent state is required. | 
|  | * | 
|  | * If the CPU is fully enabled (or if some buggy RCU-preempt | 
|  | * read-side critical section is being used from idle), just | 
|  | * invoke rcu_preempt_deferred_qs() to immediately report the | 
|  | * quiescent state.  We cannot use rcu_read_unlock_special() | 
|  | * because we are in an interrupt handler, which will cause that | 
|  | * function to take an early exit without doing anything. | 
|  | * | 
|  | * Otherwise, force a context switch after the CPU enables everything. | 
|  | */ | 
|  | rdp->deferred_qs = true; | 
|  | if (!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK)) || | 
|  | WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs())) { | 
|  | rcu_preempt_deferred_qs(t); | 
|  | } else { | 
|  | set_tsk_need_resched(t); | 
|  | set_preempt_need_resched(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* PREEMPT=y, so no PREEMPT=n expedited grace period to clean up after. */ | 
|  | static void sync_sched_exp_online_cleanup(int cpu) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Scan the current list of tasks blocked within RCU read-side critical | 
|  | * sections, printing out the tid of each that is blocking the current | 
|  | * expedited grace period. | 
|  | */ | 
|  | static int rcu_print_task_exp_stall(struct rcu_node *rnp) | 
|  | { | 
|  | struct task_struct *t; | 
|  | int ndetected = 0; | 
|  |  | 
|  | if (!rnp->exp_tasks) | 
|  | return 0; | 
|  | t = list_entry(rnp->exp_tasks->prev, | 
|  | struct task_struct, rcu_node_entry); | 
|  | list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { | 
|  | pr_cont(" P%d", t->pid); | 
|  | ndetected++; | 
|  | } | 
|  | return ndetected; | 
|  | } | 
|  |  | 
|  | #else /* #ifdef CONFIG_PREEMPT_RCU */ | 
|  |  | 
|  | /* Invoked on each online non-idle CPU for expedited quiescent state. */ | 
|  | static void rcu_exp_handler(void *unused) | 
|  | { | 
|  | struct rcu_data *rdp; | 
|  | struct rcu_node *rnp; | 
|  |  | 
|  | rdp = this_cpu_ptr(&rcu_data); | 
|  | rnp = rdp->mynode; | 
|  | if (!(READ_ONCE(rnp->expmask) & rdp->grpmask) || | 
|  | __this_cpu_read(rcu_data.cpu_no_qs.b.exp)) | 
|  | return; | 
|  | if (rcu_is_cpu_rrupt_from_idle()) { | 
|  | rcu_report_exp_rdp(this_cpu_ptr(&rcu_data)); | 
|  | return; | 
|  | } | 
|  | __this_cpu_write(rcu_data.cpu_no_qs.b.exp, true); | 
|  | /* Store .exp before .rcu_urgent_qs. */ | 
|  | smp_store_release(this_cpu_ptr(&rcu_data.rcu_urgent_qs), true); | 
|  | set_tsk_need_resched(current); | 
|  | set_preempt_need_resched(); | 
|  | } | 
|  |  | 
|  | /* Send IPI for expedited cleanup if needed at end of CPU-hotplug operation. */ | 
|  | static void sync_sched_exp_online_cleanup(int cpu) | 
|  | { | 
|  | struct rcu_data *rdp; | 
|  | int ret; | 
|  | struct rcu_node *rnp; | 
|  |  | 
|  | rdp = per_cpu_ptr(&rcu_data, cpu); | 
|  | rnp = rdp->mynode; | 
|  | if (!(READ_ONCE(rnp->expmask) & rdp->grpmask)) | 
|  | return; | 
|  | ret = smp_call_function_single(cpu, rcu_exp_handler, NULL, 0); | 
|  | WARN_ON_ONCE(ret); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Because preemptible RCU does not exist, we never have to check for | 
|  | * tasks blocked within RCU read-side critical sections that are | 
|  | * blocking the current expedited grace period. | 
|  | */ | 
|  | static int rcu_print_task_exp_stall(struct rcu_node *rnp) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ | 
|  |  | 
|  | /** | 
|  | * synchronize_rcu_expedited - Brute-force RCU grace period | 
|  | * | 
|  | * Wait for an RCU grace period, but expedite it.  The basic idea is to | 
|  | * IPI all non-idle non-nohz online CPUs.  The IPI handler checks whether | 
|  | * the CPU is in an RCU critical section, and if so, it sets a flag that | 
|  | * causes the outermost rcu_read_unlock() to report the quiescent state | 
|  | * for RCU-preempt or asks the scheduler for help for RCU-sched.  On the | 
|  | * other hand, if the CPU is not in an RCU read-side critical section, | 
|  | * the IPI handler reports the quiescent state immediately. | 
|  | * | 
|  | * Although this is a greate improvement over previous expedited | 
|  | * implementations, it is still unfriendly to real-time workloads, so is | 
|  | * thus not recommended for any sort of common-case code.  In fact, if | 
|  | * you are using synchronize_rcu_expedited() in a loop, please restructure | 
|  | * your code to batch your updates, and then Use a single synchronize_rcu() | 
|  | * instead. | 
|  | * | 
|  | * This has the same semantics as (but is more brutal than) synchronize_rcu(). | 
|  | */ | 
|  | void synchronize_rcu_expedited(void) | 
|  | { | 
|  | struct rcu_data *rdp; | 
|  | struct rcu_exp_work rew; | 
|  | struct rcu_node *rnp; | 
|  | unsigned long s; | 
|  |  | 
|  | RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || | 
|  | lock_is_held(&rcu_lock_map) || | 
|  | lock_is_held(&rcu_sched_lock_map), | 
|  | "Illegal synchronize_rcu_expedited() in RCU read-side critical section"); | 
|  |  | 
|  | /* Is the state is such that the call is a grace period? */ | 
|  | if (rcu_blocking_is_gp()) | 
|  | return; | 
|  |  | 
|  | /* If expedited grace periods are prohibited, fall back to normal. */ | 
|  | if (rcu_gp_is_normal()) { | 
|  | wait_rcu_gp(call_rcu); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Take a snapshot of the sequence number.  */ | 
|  | s = rcu_exp_gp_seq_snap(); | 
|  | if (exp_funnel_lock(s)) | 
|  | return;  /* Someone else did our work for us. */ | 
|  |  | 
|  | /* Ensure that load happens before action based on it. */ | 
|  | if (unlikely(rcu_scheduler_active == RCU_SCHEDULER_INIT)) { | 
|  | /* Direct call during scheduler init and early_initcalls(). */ | 
|  | rcu_exp_sel_wait_wake(s); | 
|  | } else { | 
|  | /* Marshall arguments & schedule the expedited grace period. */ | 
|  | rew.rew_s = s; | 
|  | INIT_WORK_ONSTACK(&rew.rew_work, wait_rcu_exp_gp); | 
|  | queue_work(rcu_gp_wq, &rew.rew_work); | 
|  | } | 
|  |  | 
|  | /* Wait for expedited grace period to complete. */ | 
|  | rdp = per_cpu_ptr(&rcu_data, raw_smp_processor_id()); | 
|  | rnp = rcu_get_root(); | 
|  | wait_event(rnp->exp_wq[rcu_seq_ctr(s) & 0x3], | 
|  | sync_exp_work_done(s)); | 
|  | smp_mb(); /* Workqueue actions happen before return. */ | 
|  |  | 
|  | /* Let the next expedited grace period start. */ | 
|  | mutex_unlock(&rcu_state.exp_mutex); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(synchronize_rcu_expedited); |