| /**************************************************************************** |
| * Driver for Solarflare network controllers and boards |
| * Copyright 2005-2006 Fen Systems Ltd. |
| * Copyright 2006-2013 Solarflare Communications Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 as published |
| * by the Free Software Foundation, incorporated herein by reference. |
| */ |
| |
| #include <linux/bitops.h> |
| #include <linux/delay.h> |
| #include <linux/interrupt.h> |
| #include <linux/pci.h> |
| #include <linux/module.h> |
| #include <linux/seq_file.h> |
| #include <linux/crc32.h> |
| #include "net_driver.h" |
| #include "bitfield.h" |
| #include "efx.h" |
| #include "nic.h" |
| #include "farch_regs.h" |
| #include "sriov.h" |
| #include "siena_sriov.h" |
| #include "io.h" |
| #include "workarounds.h" |
| |
| /* Falcon-architecture (SFC9000-family) support */ |
| |
| /************************************************************************** |
| * |
| * Configurable values |
| * |
| ************************************************************************** |
| */ |
| |
| /* This is set to 16 for a good reason. In summary, if larger than |
| * 16, the descriptor cache holds more than a default socket |
| * buffer's worth of packets (for UDP we can only have at most one |
| * socket buffer's worth outstanding). This combined with the fact |
| * that we only get 1 TX event per descriptor cache means the NIC |
| * goes idle. |
| */ |
| #define TX_DC_ENTRIES 16 |
| #define TX_DC_ENTRIES_ORDER 1 |
| |
| #define RX_DC_ENTRIES 64 |
| #define RX_DC_ENTRIES_ORDER 3 |
| |
| /* If EFX_MAX_INT_ERRORS internal errors occur within |
| * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and |
| * disable it. |
| */ |
| #define EFX_INT_ERROR_EXPIRE 3600 |
| #define EFX_MAX_INT_ERRORS 5 |
| |
| /* Depth of RX flush request fifo */ |
| #define EFX_RX_FLUSH_COUNT 4 |
| |
| /* Driver generated events */ |
| #define _EFX_CHANNEL_MAGIC_TEST 0x000101 |
| #define _EFX_CHANNEL_MAGIC_FILL 0x000102 |
| #define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103 |
| #define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104 |
| |
| #define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data)) |
| #define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8) |
| |
| #define EFX_CHANNEL_MAGIC_TEST(_channel) \ |
| _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel) |
| #define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \ |
| _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \ |
| efx_rx_queue_index(_rx_queue)) |
| #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \ |
| _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN, \ |
| efx_rx_queue_index(_rx_queue)) |
| #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \ |
| _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN, \ |
| (_tx_queue)->queue) |
| |
| static void efx_farch_magic_event(struct efx_channel *channel, u32 magic); |
| |
| /************************************************************************** |
| * |
| * Hardware access |
| * |
| **************************************************************************/ |
| |
| static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value, |
| unsigned int index) |
| { |
| efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base, |
| value, index); |
| } |
| |
| static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b, |
| const efx_oword_t *mask) |
| { |
| return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) || |
| ((a->u64[1] ^ b->u64[1]) & mask->u64[1]); |
| } |
| |
| int efx_farch_test_registers(struct efx_nic *efx, |
| const struct efx_farch_register_test *regs, |
| size_t n_regs) |
| { |
| unsigned address = 0; |
| int i, j; |
| efx_oword_t mask, imask, original, reg, buf; |
| |
| for (i = 0; i < n_regs; ++i) { |
| address = regs[i].address; |
| mask = imask = regs[i].mask; |
| EFX_INVERT_OWORD(imask); |
| |
| efx_reado(efx, &original, address); |
| |
| /* bit sweep on and off */ |
| for (j = 0; j < 128; j++) { |
| if (!EFX_EXTRACT_OWORD32(mask, j, j)) |
| continue; |
| |
| /* Test this testable bit can be set in isolation */ |
| EFX_AND_OWORD(reg, original, mask); |
| EFX_SET_OWORD32(reg, j, j, 1); |
| |
| efx_writeo(efx, ®, address); |
| efx_reado(efx, &buf, address); |
| |
| if (efx_masked_compare_oword(®, &buf, &mask)) |
| goto fail; |
| |
| /* Test this testable bit can be cleared in isolation */ |
| EFX_OR_OWORD(reg, original, mask); |
| EFX_SET_OWORD32(reg, j, j, 0); |
| |
| efx_writeo(efx, ®, address); |
| efx_reado(efx, &buf, address); |
| |
| if (efx_masked_compare_oword(®, &buf, &mask)) |
| goto fail; |
| } |
| |
| efx_writeo(efx, &original, address); |
| } |
| |
| return 0; |
| |
| fail: |
| netif_err(efx, hw, efx->net_dev, |
| "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT |
| " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg), |
| EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask)); |
| return -EIO; |
| } |
| |
| /************************************************************************** |
| * |
| * Special buffer handling |
| * Special buffers are used for event queues and the TX and RX |
| * descriptor rings. |
| * |
| *************************************************************************/ |
| |
| /* |
| * Initialise a special buffer |
| * |
| * This will define a buffer (previously allocated via |
| * efx_alloc_special_buffer()) in the buffer table, allowing |
| * it to be used for event queues, descriptor rings etc. |
| */ |
| static void |
| efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) |
| { |
| efx_qword_t buf_desc; |
| unsigned int index; |
| dma_addr_t dma_addr; |
| int i; |
| |
| EFX_WARN_ON_PARANOID(!buffer->buf.addr); |
| |
| /* Write buffer descriptors to NIC */ |
| for (i = 0; i < buffer->entries; i++) { |
| index = buffer->index + i; |
| dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE); |
| netif_dbg(efx, probe, efx->net_dev, |
| "mapping special buffer %d at %llx\n", |
| index, (unsigned long long)dma_addr); |
| EFX_POPULATE_QWORD_3(buf_desc, |
| FRF_AZ_BUF_ADR_REGION, 0, |
| FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12, |
| FRF_AZ_BUF_OWNER_ID_FBUF, 0); |
| efx_write_buf_tbl(efx, &buf_desc, index); |
| } |
| } |
| |
| /* Unmaps a buffer and clears the buffer table entries */ |
| static void |
| efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) |
| { |
| efx_oword_t buf_tbl_upd; |
| unsigned int start = buffer->index; |
| unsigned int end = (buffer->index + buffer->entries - 1); |
| |
| if (!buffer->entries) |
| return; |
| |
| netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n", |
| buffer->index, buffer->index + buffer->entries - 1); |
| |
| EFX_POPULATE_OWORD_4(buf_tbl_upd, |
| FRF_AZ_BUF_UPD_CMD, 0, |
| FRF_AZ_BUF_CLR_CMD, 1, |
| FRF_AZ_BUF_CLR_END_ID, end, |
| FRF_AZ_BUF_CLR_START_ID, start); |
| efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD); |
| } |
| |
| /* |
| * Allocate a new special buffer |
| * |
| * This allocates memory for a new buffer, clears it and allocates a |
| * new buffer ID range. It does not write into the buffer table. |
| * |
| * This call will allocate 4KB buffers, since 8KB buffers can't be |
| * used for event queues and descriptor rings. |
| */ |
| static int efx_alloc_special_buffer(struct efx_nic *efx, |
| struct efx_special_buffer *buffer, |
| unsigned int len) |
| { |
| #ifdef CONFIG_SFC_SRIOV |
| struct siena_nic_data *nic_data = efx->nic_data; |
| #endif |
| len = ALIGN(len, EFX_BUF_SIZE); |
| |
| if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL)) |
| return -ENOMEM; |
| buffer->entries = len / EFX_BUF_SIZE; |
| BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1)); |
| |
| /* Select new buffer ID */ |
| buffer->index = efx->next_buffer_table; |
| efx->next_buffer_table += buffer->entries; |
| #ifdef CONFIG_SFC_SRIOV |
| BUG_ON(efx_siena_sriov_enabled(efx) && |
| nic_data->vf_buftbl_base < efx->next_buffer_table); |
| #endif |
| |
| netif_dbg(efx, probe, efx->net_dev, |
| "allocating special buffers %d-%d at %llx+%x " |
| "(virt %p phys %llx)\n", buffer->index, |
| buffer->index + buffer->entries - 1, |
| (u64)buffer->buf.dma_addr, len, |
| buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr)); |
| |
| return 0; |
| } |
| |
| static void |
| efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) |
| { |
| if (!buffer->buf.addr) |
| return; |
| |
| netif_dbg(efx, hw, efx->net_dev, |
| "deallocating special buffers %d-%d at %llx+%x " |
| "(virt %p phys %llx)\n", buffer->index, |
| buffer->index + buffer->entries - 1, |
| (u64)buffer->buf.dma_addr, buffer->buf.len, |
| buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr)); |
| |
| efx_nic_free_buffer(efx, &buffer->buf); |
| buffer->entries = 0; |
| } |
| |
| /************************************************************************** |
| * |
| * TX path |
| * |
| **************************************************************************/ |
| |
| /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */ |
| static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue) |
| { |
| unsigned write_ptr; |
| efx_dword_t reg; |
| |
| write_ptr = tx_queue->write_count & tx_queue->ptr_mask; |
| EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr); |
| efx_writed_page(tx_queue->efx, ®, |
| FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue); |
| } |
| |
| /* Write pointer and first descriptor for TX descriptor ring */ |
| static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue, |
| const efx_qword_t *txd) |
| { |
| unsigned write_ptr; |
| efx_oword_t reg; |
| |
| BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0); |
| BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0); |
| |
| write_ptr = tx_queue->write_count & tx_queue->ptr_mask; |
| EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true, |
| FRF_AZ_TX_DESC_WPTR, write_ptr); |
| reg.qword[0] = *txd; |
| efx_writeo_page(tx_queue->efx, ®, |
| FR_BZ_TX_DESC_UPD_P0, tx_queue->queue); |
| } |
| |
| |
| /* For each entry inserted into the software descriptor ring, create a |
| * descriptor in the hardware TX descriptor ring (in host memory), and |
| * write a doorbell. |
| */ |
| void efx_farch_tx_write(struct efx_tx_queue *tx_queue) |
| { |
| struct efx_tx_buffer *buffer; |
| efx_qword_t *txd; |
| unsigned write_ptr; |
| unsigned old_write_count = tx_queue->write_count; |
| |
| tx_queue->xmit_more_available = false; |
| if (unlikely(tx_queue->write_count == tx_queue->insert_count)) |
| return; |
| |
| do { |
| write_ptr = tx_queue->write_count & tx_queue->ptr_mask; |
| buffer = &tx_queue->buffer[write_ptr]; |
| txd = efx_tx_desc(tx_queue, write_ptr); |
| ++tx_queue->write_count; |
| |
| EFX_WARN_ON_ONCE_PARANOID(buffer->flags & EFX_TX_BUF_OPTION); |
| |
| /* Create TX descriptor ring entry */ |
| BUILD_BUG_ON(EFX_TX_BUF_CONT != 1); |
| EFX_POPULATE_QWORD_4(*txd, |
| FSF_AZ_TX_KER_CONT, |
| buffer->flags & EFX_TX_BUF_CONT, |
| FSF_AZ_TX_KER_BYTE_COUNT, buffer->len, |
| FSF_AZ_TX_KER_BUF_REGION, 0, |
| FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr); |
| } while (tx_queue->write_count != tx_queue->insert_count); |
| |
| wmb(); /* Ensure descriptors are written before they are fetched */ |
| |
| if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) { |
| txd = efx_tx_desc(tx_queue, |
| old_write_count & tx_queue->ptr_mask); |
| efx_farch_push_tx_desc(tx_queue, txd); |
| ++tx_queue->pushes; |
| } else { |
| efx_farch_notify_tx_desc(tx_queue); |
| } |
| } |
| |
| unsigned int efx_farch_tx_limit_len(struct efx_tx_queue *tx_queue, |
| dma_addr_t dma_addr, unsigned int len) |
| { |
| /* Don't cross 4K boundaries with descriptors. */ |
| unsigned int limit = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1; |
| |
| len = min(limit, len); |
| |
| return len; |
| } |
| |
| |
| /* Allocate hardware resources for a TX queue */ |
| int efx_farch_tx_probe(struct efx_tx_queue *tx_queue) |
| { |
| struct efx_nic *efx = tx_queue->efx; |
| unsigned entries; |
| |
| entries = tx_queue->ptr_mask + 1; |
| return efx_alloc_special_buffer(efx, &tx_queue->txd, |
| entries * sizeof(efx_qword_t)); |
| } |
| |
| void efx_farch_tx_init(struct efx_tx_queue *tx_queue) |
| { |
| int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD; |
| struct efx_nic *efx = tx_queue->efx; |
| efx_oword_t reg; |
| |
| /* Pin TX descriptor ring */ |
| efx_init_special_buffer(efx, &tx_queue->txd); |
| |
| /* Push TX descriptor ring to card */ |
| EFX_POPULATE_OWORD_10(reg, |
| FRF_AZ_TX_DESCQ_EN, 1, |
| FRF_AZ_TX_ISCSI_DDIG_EN, 0, |
| FRF_AZ_TX_ISCSI_HDIG_EN, 0, |
| FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index, |
| FRF_AZ_TX_DESCQ_EVQ_ID, |
| tx_queue->channel->channel, |
| FRF_AZ_TX_DESCQ_OWNER_ID, 0, |
| FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue, |
| FRF_AZ_TX_DESCQ_SIZE, |
| __ffs(tx_queue->txd.entries), |
| FRF_AZ_TX_DESCQ_TYPE, 0, |
| FRF_BZ_TX_NON_IP_DROP_DIS, 1); |
| |
| EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum); |
| EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS, !csum); |
| |
| efx_writeo_table(efx, ®, efx->type->txd_ptr_tbl_base, |
| tx_queue->queue); |
| |
| EFX_POPULATE_OWORD_1(reg, |
| FRF_BZ_TX_PACE, |
| (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ? |
| FFE_BZ_TX_PACE_OFF : |
| FFE_BZ_TX_PACE_RESERVED); |
| efx_writeo_table(efx, ®, FR_BZ_TX_PACE_TBL, tx_queue->queue); |
| } |
| |
| static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue) |
| { |
| struct efx_nic *efx = tx_queue->efx; |
| efx_oword_t tx_flush_descq; |
| |
| WARN_ON(atomic_read(&tx_queue->flush_outstanding)); |
| atomic_set(&tx_queue->flush_outstanding, 1); |
| |
| EFX_POPULATE_OWORD_2(tx_flush_descq, |
| FRF_AZ_TX_FLUSH_DESCQ_CMD, 1, |
| FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue); |
| efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ); |
| } |
| |
| void efx_farch_tx_fini(struct efx_tx_queue *tx_queue) |
| { |
| struct efx_nic *efx = tx_queue->efx; |
| efx_oword_t tx_desc_ptr; |
| |
| /* Remove TX descriptor ring from card */ |
| EFX_ZERO_OWORD(tx_desc_ptr); |
| efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base, |
| tx_queue->queue); |
| |
| /* Unpin TX descriptor ring */ |
| efx_fini_special_buffer(efx, &tx_queue->txd); |
| } |
| |
| /* Free buffers backing TX queue */ |
| void efx_farch_tx_remove(struct efx_tx_queue *tx_queue) |
| { |
| efx_free_special_buffer(tx_queue->efx, &tx_queue->txd); |
| } |
| |
| /************************************************************************** |
| * |
| * RX path |
| * |
| **************************************************************************/ |
| |
| /* This creates an entry in the RX descriptor queue */ |
| static inline void |
| efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index) |
| { |
| struct efx_rx_buffer *rx_buf; |
| efx_qword_t *rxd; |
| |
| rxd = efx_rx_desc(rx_queue, index); |
| rx_buf = efx_rx_buffer(rx_queue, index); |
| EFX_POPULATE_QWORD_3(*rxd, |
| FSF_AZ_RX_KER_BUF_SIZE, |
| rx_buf->len - |
| rx_queue->efx->type->rx_buffer_padding, |
| FSF_AZ_RX_KER_BUF_REGION, 0, |
| FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr); |
| } |
| |
| /* This writes to the RX_DESC_WPTR register for the specified receive |
| * descriptor ring. |
| */ |
| void efx_farch_rx_write(struct efx_rx_queue *rx_queue) |
| { |
| struct efx_nic *efx = rx_queue->efx; |
| efx_dword_t reg; |
| unsigned write_ptr; |
| |
| while (rx_queue->notified_count != rx_queue->added_count) { |
| efx_farch_build_rx_desc( |
| rx_queue, |
| rx_queue->notified_count & rx_queue->ptr_mask); |
| ++rx_queue->notified_count; |
| } |
| |
| wmb(); |
| write_ptr = rx_queue->added_count & rx_queue->ptr_mask; |
| EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr); |
| efx_writed_page(efx, ®, FR_AZ_RX_DESC_UPD_DWORD_P0, |
| efx_rx_queue_index(rx_queue)); |
| } |
| |
| int efx_farch_rx_probe(struct efx_rx_queue *rx_queue) |
| { |
| struct efx_nic *efx = rx_queue->efx; |
| unsigned entries; |
| |
| entries = rx_queue->ptr_mask + 1; |
| return efx_alloc_special_buffer(efx, &rx_queue->rxd, |
| entries * sizeof(efx_qword_t)); |
| } |
| |
| void efx_farch_rx_init(struct efx_rx_queue *rx_queue) |
| { |
| efx_oword_t rx_desc_ptr; |
| struct efx_nic *efx = rx_queue->efx; |
| bool jumbo_en; |
| |
| /* For kernel-mode queues in Siena, the JUMBO flag enables scatter. */ |
| jumbo_en = efx->rx_scatter; |
| |
| netif_dbg(efx, hw, efx->net_dev, |
| "RX queue %d ring in special buffers %d-%d\n", |
| efx_rx_queue_index(rx_queue), rx_queue->rxd.index, |
| rx_queue->rxd.index + rx_queue->rxd.entries - 1); |
| |
| rx_queue->scatter_n = 0; |
| |
| /* Pin RX descriptor ring */ |
| efx_init_special_buffer(efx, &rx_queue->rxd); |
| |
| /* Push RX descriptor ring to card */ |
| EFX_POPULATE_OWORD_10(rx_desc_ptr, |
| FRF_AZ_RX_ISCSI_DDIG_EN, true, |
| FRF_AZ_RX_ISCSI_HDIG_EN, true, |
| FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index, |
| FRF_AZ_RX_DESCQ_EVQ_ID, |
| efx_rx_queue_channel(rx_queue)->channel, |
| FRF_AZ_RX_DESCQ_OWNER_ID, 0, |
| FRF_AZ_RX_DESCQ_LABEL, |
| efx_rx_queue_index(rx_queue), |
| FRF_AZ_RX_DESCQ_SIZE, |
| __ffs(rx_queue->rxd.entries), |
| FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ , |
| FRF_AZ_RX_DESCQ_JUMBO, jumbo_en, |
| FRF_AZ_RX_DESCQ_EN, 1); |
| efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base, |
| efx_rx_queue_index(rx_queue)); |
| } |
| |
| static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue) |
| { |
| struct efx_nic *efx = rx_queue->efx; |
| efx_oword_t rx_flush_descq; |
| |
| EFX_POPULATE_OWORD_2(rx_flush_descq, |
| FRF_AZ_RX_FLUSH_DESCQ_CMD, 1, |
| FRF_AZ_RX_FLUSH_DESCQ, |
| efx_rx_queue_index(rx_queue)); |
| efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ); |
| } |
| |
| void efx_farch_rx_fini(struct efx_rx_queue *rx_queue) |
| { |
| efx_oword_t rx_desc_ptr; |
| struct efx_nic *efx = rx_queue->efx; |
| |
| /* Remove RX descriptor ring from card */ |
| EFX_ZERO_OWORD(rx_desc_ptr); |
| efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base, |
| efx_rx_queue_index(rx_queue)); |
| |
| /* Unpin RX descriptor ring */ |
| efx_fini_special_buffer(efx, &rx_queue->rxd); |
| } |
| |
| /* Free buffers backing RX queue */ |
| void efx_farch_rx_remove(struct efx_rx_queue *rx_queue) |
| { |
| efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd); |
| } |
| |
| /************************************************************************** |
| * |
| * Flush handling |
| * |
| **************************************************************************/ |
| |
| /* efx_farch_flush_queues() must be woken up when all flushes are completed, |
| * or more RX flushes can be kicked off. |
| */ |
| static bool efx_farch_flush_wake(struct efx_nic *efx) |
| { |
| /* Ensure that all updates are visible to efx_farch_flush_queues() */ |
| smp_mb(); |
| |
| return (atomic_read(&efx->active_queues) == 0 || |
| (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT |
| && atomic_read(&efx->rxq_flush_pending) > 0)); |
| } |
| |
| static bool efx_check_tx_flush_complete(struct efx_nic *efx) |
| { |
| bool i = true; |
| efx_oword_t txd_ptr_tbl; |
| struct efx_channel *channel; |
| struct efx_tx_queue *tx_queue; |
| |
| efx_for_each_channel(channel, efx) { |
| efx_for_each_channel_tx_queue(tx_queue, channel) { |
| efx_reado_table(efx, &txd_ptr_tbl, |
| FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue); |
| if (EFX_OWORD_FIELD(txd_ptr_tbl, |
| FRF_AZ_TX_DESCQ_FLUSH) || |
| EFX_OWORD_FIELD(txd_ptr_tbl, |
| FRF_AZ_TX_DESCQ_EN)) { |
| netif_dbg(efx, hw, efx->net_dev, |
| "flush did not complete on TXQ %d\n", |
| tx_queue->queue); |
| i = false; |
| } else if (atomic_cmpxchg(&tx_queue->flush_outstanding, |
| 1, 0)) { |
| /* The flush is complete, but we didn't |
| * receive a flush completion event |
| */ |
| netif_dbg(efx, hw, efx->net_dev, |
| "flush complete on TXQ %d, so drain " |
| "the queue\n", tx_queue->queue); |
| /* Don't need to increment active_queues as it |
| * has already been incremented for the queues |
| * which did not drain |
| */ |
| efx_farch_magic_event(channel, |
| EFX_CHANNEL_MAGIC_TX_DRAIN( |
| tx_queue)); |
| } |
| } |
| } |
| |
| return i; |
| } |
| |
| /* Flush all the transmit queues, and continue flushing receive queues until |
| * they're all flushed. Wait for the DRAIN events to be received so that there |
| * are no more RX and TX events left on any channel. */ |
| static int efx_farch_do_flush(struct efx_nic *efx) |
| { |
| unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */ |
| struct efx_channel *channel; |
| struct efx_rx_queue *rx_queue; |
| struct efx_tx_queue *tx_queue; |
| int rc = 0; |
| |
| efx_for_each_channel(channel, efx) { |
| efx_for_each_channel_tx_queue(tx_queue, channel) { |
| efx_farch_flush_tx_queue(tx_queue); |
| } |
| efx_for_each_channel_rx_queue(rx_queue, channel) { |
| rx_queue->flush_pending = true; |
| atomic_inc(&efx->rxq_flush_pending); |
| } |
| } |
| |
| while (timeout && atomic_read(&efx->active_queues) > 0) { |
| /* If SRIOV is enabled, then offload receive queue flushing to |
| * the firmware (though we will still have to poll for |
| * completion). If that fails, fall back to the old scheme. |
| */ |
| if (efx_siena_sriov_enabled(efx)) { |
| rc = efx_mcdi_flush_rxqs(efx); |
| if (!rc) |
| goto wait; |
| } |
| |
| /* The hardware supports four concurrent rx flushes, each of |
| * which may need to be retried if there is an outstanding |
| * descriptor fetch |
| */ |
| efx_for_each_channel(channel, efx) { |
| efx_for_each_channel_rx_queue(rx_queue, channel) { |
| if (atomic_read(&efx->rxq_flush_outstanding) >= |
| EFX_RX_FLUSH_COUNT) |
| break; |
| |
| if (rx_queue->flush_pending) { |
| rx_queue->flush_pending = false; |
| atomic_dec(&efx->rxq_flush_pending); |
| atomic_inc(&efx->rxq_flush_outstanding); |
| efx_farch_flush_rx_queue(rx_queue); |
| } |
| } |
| } |
| |
| wait: |
| timeout = wait_event_timeout(efx->flush_wq, |
| efx_farch_flush_wake(efx), |
| timeout); |
| } |
| |
| if (atomic_read(&efx->active_queues) && |
| !efx_check_tx_flush_complete(efx)) { |
| netif_err(efx, hw, efx->net_dev, "failed to flush %d queues " |
| "(rx %d+%d)\n", atomic_read(&efx->active_queues), |
| atomic_read(&efx->rxq_flush_outstanding), |
| atomic_read(&efx->rxq_flush_pending)); |
| rc = -ETIMEDOUT; |
| |
| atomic_set(&efx->active_queues, 0); |
| atomic_set(&efx->rxq_flush_pending, 0); |
| atomic_set(&efx->rxq_flush_outstanding, 0); |
| } |
| |
| return rc; |
| } |
| |
| int efx_farch_fini_dmaq(struct efx_nic *efx) |
| { |
| struct efx_channel *channel; |
| struct efx_tx_queue *tx_queue; |
| struct efx_rx_queue *rx_queue; |
| int rc = 0; |
| |
| /* Do not attempt to write to the NIC during EEH recovery */ |
| if (efx->state != STATE_RECOVERY) { |
| /* Only perform flush if DMA is enabled */ |
| if (efx->pci_dev->is_busmaster) { |
| efx->type->prepare_flush(efx); |
| rc = efx_farch_do_flush(efx); |
| efx->type->finish_flush(efx); |
| } |
| |
| efx_for_each_channel(channel, efx) { |
| efx_for_each_channel_rx_queue(rx_queue, channel) |
| efx_farch_rx_fini(rx_queue); |
| efx_for_each_channel_tx_queue(tx_queue, channel) |
| efx_farch_tx_fini(tx_queue); |
| } |
| } |
| |
| return rc; |
| } |
| |
| /* Reset queue and flush accounting after FLR |
| * |
| * One possible cause of FLR recovery is that DMA may be failing (eg. if bus |
| * mastering was disabled), in which case we don't receive (RXQ) flush |
| * completion events. This means that efx->rxq_flush_outstanding remained at 4 |
| * after the FLR; also, efx->active_queues was non-zero (as no flush completion |
| * events were received, and we didn't go through efx_check_tx_flush_complete()) |
| * If we don't fix this up, on the next call to efx_realloc_channels() we won't |
| * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4 |
| * for batched flush requests; and the efx->active_queues gets messed up because |
| * we keep incrementing for the newly initialised queues, but it never went to |
| * zero previously. Then we get a timeout every time we try to restart the |
| * queues, as it doesn't go back to zero when we should be flushing the queues. |
| */ |
| void efx_farch_finish_flr(struct efx_nic *efx) |
| { |
| atomic_set(&efx->rxq_flush_pending, 0); |
| atomic_set(&efx->rxq_flush_outstanding, 0); |
| atomic_set(&efx->active_queues, 0); |
| } |
| |
| |
| /************************************************************************** |
| * |
| * Event queue processing |
| * Event queues are processed by per-channel tasklets. |
| * |
| **************************************************************************/ |
| |
| /* Update a channel's event queue's read pointer (RPTR) register |
| * |
| * This writes the EVQ_RPTR_REG register for the specified channel's |
| * event queue. |
| */ |
| void efx_farch_ev_read_ack(struct efx_channel *channel) |
| { |
| efx_dword_t reg; |
| struct efx_nic *efx = channel->efx; |
| |
| EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, |
| channel->eventq_read_ptr & channel->eventq_mask); |
| |
| /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size |
| * of 4 bytes, but it is really 16 bytes just like later revisions. |
| */ |
| efx_writed(efx, ®, |
| efx->type->evq_rptr_tbl_base + |
| FR_BZ_EVQ_RPTR_STEP * channel->channel); |
| } |
| |
| /* Use HW to insert a SW defined event */ |
| void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq, |
| efx_qword_t *event) |
| { |
| efx_oword_t drv_ev_reg; |
| |
| BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 || |
| FRF_AZ_DRV_EV_DATA_WIDTH != 64); |
| drv_ev_reg.u32[0] = event->u32[0]; |
| drv_ev_reg.u32[1] = event->u32[1]; |
| drv_ev_reg.u32[2] = 0; |
| drv_ev_reg.u32[3] = 0; |
| EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq); |
| efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV); |
| } |
| |
| static void efx_farch_magic_event(struct efx_channel *channel, u32 magic) |
| { |
| efx_qword_t event; |
| |
| EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE, |
| FSE_AZ_EV_CODE_DRV_GEN_EV, |
| FSF_AZ_DRV_GEN_EV_MAGIC, magic); |
| efx_farch_generate_event(channel->efx, channel->channel, &event); |
| } |
| |
| /* Handle a transmit completion event |
| * |
| * The NIC batches TX completion events; the message we receive is of |
| * the form "complete all TX events up to this index". |
| */ |
| static void |
| efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event) |
| { |
| unsigned int tx_ev_desc_ptr; |
| unsigned int tx_ev_q_label; |
| struct efx_tx_queue *tx_queue; |
| struct efx_nic *efx = channel->efx; |
| |
| if (unlikely(READ_ONCE(efx->reset_pending))) |
| return; |
| |
| if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) { |
| /* Transmit completion */ |
| tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR); |
| tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL); |
| tx_queue = efx_channel_get_tx_queue( |
| channel, tx_ev_q_label % EFX_TXQ_TYPES); |
| efx_xmit_done(tx_queue, tx_ev_desc_ptr); |
| } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) { |
| /* Rewrite the FIFO write pointer */ |
| tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL); |
| tx_queue = efx_channel_get_tx_queue( |
| channel, tx_ev_q_label % EFX_TXQ_TYPES); |
| |
| netif_tx_lock(efx->net_dev); |
| efx_farch_notify_tx_desc(tx_queue); |
| netif_tx_unlock(efx->net_dev); |
| } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) { |
| efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR); |
| } else { |
| netif_err(efx, tx_err, efx->net_dev, |
| "channel %d unexpected TX event " |
| EFX_QWORD_FMT"\n", channel->channel, |
| EFX_QWORD_VAL(*event)); |
| } |
| } |
| |
| /* Detect errors included in the rx_evt_pkt_ok bit. */ |
| static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue, |
| const efx_qword_t *event) |
| { |
| struct efx_channel *channel = efx_rx_queue_channel(rx_queue); |
| struct efx_nic *efx = rx_queue->efx; |
| bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err; |
| bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err; |
| bool rx_ev_frm_trunc, rx_ev_tobe_disc; |
| bool rx_ev_other_err, rx_ev_pause_frm; |
| bool rx_ev_hdr_type, rx_ev_mcast_pkt; |
| unsigned rx_ev_pkt_type; |
| |
| rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE); |
| rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT); |
| rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC); |
| rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE); |
| rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event, |
| FSF_AZ_RX_EV_BUF_OWNER_ID_ERR); |
| rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event, |
| FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR); |
| rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event, |
| FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR); |
| rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR); |
| rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC); |
| rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR); |
| |
| /* Every error apart from tobe_disc and pause_frm */ |
| rx_ev_other_err = (rx_ev_tcp_udp_chksum_err | |
| rx_ev_buf_owner_id_err | rx_ev_eth_crc_err | |
| rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err); |
| |
| /* Count errors that are not in MAC stats. Ignore expected |
| * checksum errors during self-test. */ |
| if (rx_ev_frm_trunc) |
| ++channel->n_rx_frm_trunc; |
| else if (rx_ev_tobe_disc) |
| ++channel->n_rx_tobe_disc; |
| else if (!efx->loopback_selftest) { |
| if (rx_ev_ip_hdr_chksum_err) |
| ++channel->n_rx_ip_hdr_chksum_err; |
| else if (rx_ev_tcp_udp_chksum_err) |
| ++channel->n_rx_tcp_udp_chksum_err; |
| } |
| |
| /* TOBE_DISC is expected on unicast mismatches; don't print out an |
| * error message. FRM_TRUNC indicates RXDP dropped the packet due |
| * to a FIFO overflow. |
| */ |
| #ifdef DEBUG |
| if (rx_ev_other_err && net_ratelimit()) { |
| netif_dbg(efx, rx_err, efx->net_dev, |
| " RX queue %d unexpected RX event " |
| EFX_QWORD_FMT "%s%s%s%s%s%s%s\n", |
| efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event), |
| rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "", |
| rx_ev_ip_hdr_chksum_err ? |
| " [IP_HDR_CHKSUM_ERR]" : "", |
| rx_ev_tcp_udp_chksum_err ? |
| " [TCP_UDP_CHKSUM_ERR]" : "", |
| rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "", |
| rx_ev_frm_trunc ? " [FRM_TRUNC]" : "", |
| rx_ev_tobe_disc ? " [TOBE_DISC]" : "", |
| rx_ev_pause_frm ? " [PAUSE]" : ""); |
| } |
| #endif |
| |
| if (efx->net_dev->features & NETIF_F_RXALL) |
| /* don't discard frame for CRC error */ |
| rx_ev_eth_crc_err = false; |
| |
| /* The frame must be discarded if any of these are true. */ |
| return (rx_ev_eth_crc_err | rx_ev_frm_trunc | |
| rx_ev_tobe_disc | rx_ev_pause_frm) ? |
| EFX_RX_PKT_DISCARD : 0; |
| } |
| |
| /* Handle receive events that are not in-order. Return true if this |
| * can be handled as a partial packet discard, false if it's more |
| * serious. |
| */ |
| static bool |
| efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index) |
| { |
| struct efx_channel *channel = efx_rx_queue_channel(rx_queue); |
| struct efx_nic *efx = rx_queue->efx; |
| unsigned expected, dropped; |
| |
| if (rx_queue->scatter_n && |
| index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) & |
| rx_queue->ptr_mask)) { |
| ++channel->n_rx_nodesc_trunc; |
| return true; |
| } |
| |
| expected = rx_queue->removed_count & rx_queue->ptr_mask; |
| dropped = (index - expected) & rx_queue->ptr_mask; |
| netif_info(efx, rx_err, efx->net_dev, |
| "dropped %d events (index=%d expected=%d)\n", |
| dropped, index, expected); |
| |
| efx_schedule_reset(efx, RESET_TYPE_DISABLE); |
| return false; |
| } |
| |
| /* Handle a packet received event |
| * |
| * The NIC gives a "discard" flag if it's a unicast packet with the |
| * wrong destination address |
| * Also "is multicast" and "matches multicast filter" flags can be used to |
| * discard non-matching multicast packets. |
| */ |
| static void |
| efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event) |
| { |
| unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt; |
| unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt; |
| unsigned expected_ptr; |
| bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont; |
| u16 flags; |
| struct efx_rx_queue *rx_queue; |
| struct efx_nic *efx = channel->efx; |
| |
| if (unlikely(READ_ONCE(efx->reset_pending))) |
| return; |
| |
| rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT); |
| rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP); |
| WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) != |
| channel->channel); |
| |
| rx_queue = efx_channel_get_rx_queue(channel); |
| |
| rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR); |
| expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) & |
| rx_queue->ptr_mask); |
| |
| /* Check for partial drops and other errors */ |
| if (unlikely(rx_ev_desc_ptr != expected_ptr) || |
| unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) { |
| if (rx_ev_desc_ptr != expected_ptr && |
| !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr)) |
| return; |
| |
| /* Discard all pending fragments */ |
| if (rx_queue->scatter_n) { |
| efx_rx_packet( |
| rx_queue, |
| rx_queue->removed_count & rx_queue->ptr_mask, |
| rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD); |
| rx_queue->removed_count += rx_queue->scatter_n; |
| rx_queue->scatter_n = 0; |
| } |
| |
| /* Return if there is no new fragment */ |
| if (rx_ev_desc_ptr != expected_ptr) |
| return; |
| |
| /* Discard new fragment if not SOP */ |
| if (!rx_ev_sop) { |
| efx_rx_packet( |
| rx_queue, |
| rx_queue->removed_count & rx_queue->ptr_mask, |
| 1, 0, EFX_RX_PKT_DISCARD); |
| ++rx_queue->removed_count; |
| return; |
| } |
| } |
| |
| ++rx_queue->scatter_n; |
| if (rx_ev_cont) |
| return; |
| |
| rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT); |
| rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK); |
| rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE); |
| |
| if (likely(rx_ev_pkt_ok)) { |
| /* If packet is marked as OK then we can rely on the |
| * hardware checksum and classification. |
| */ |
| flags = 0; |
| switch (rx_ev_hdr_type) { |
| case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP: |
| flags |= EFX_RX_PKT_TCP; |
| /* fall through */ |
| case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP: |
| flags |= EFX_RX_PKT_CSUMMED; |
| /* fall through */ |
| case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER: |
| case FSE_AZ_RX_EV_HDR_TYPE_OTHER: |
| break; |
| } |
| } else { |
| flags = efx_farch_handle_rx_not_ok(rx_queue, event); |
| } |
| |
| /* Detect multicast packets that didn't match the filter */ |
| rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT); |
| if (rx_ev_mcast_pkt) { |
| unsigned int rx_ev_mcast_hash_match = |
| EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH); |
| |
| if (unlikely(!rx_ev_mcast_hash_match)) { |
| ++channel->n_rx_mcast_mismatch; |
| flags |= EFX_RX_PKT_DISCARD; |
| } |
| } |
| |
| channel->irq_mod_score += 2; |
| |
| /* Handle received packet */ |
| efx_rx_packet(rx_queue, |
| rx_queue->removed_count & rx_queue->ptr_mask, |
| rx_queue->scatter_n, rx_ev_byte_cnt, flags); |
| rx_queue->removed_count += rx_queue->scatter_n; |
| rx_queue->scatter_n = 0; |
| } |
| |
| /* If this flush done event corresponds to a &struct efx_tx_queue, then |
| * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue |
| * of all transmit completions. |
| */ |
| static void |
| efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event) |
| { |
| struct efx_tx_queue *tx_queue; |
| int qid; |
| |
| qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA); |
| if (qid < EFX_TXQ_TYPES * (efx->n_tx_channels + efx->n_extra_tx_channels)) { |
| tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES, |
| qid % EFX_TXQ_TYPES); |
| if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) { |
| efx_farch_magic_event(tx_queue->channel, |
| EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue)); |
| } |
| } |
| } |
| |
| /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush |
| * was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add |
| * the RX queue back to the mask of RX queues in need of flushing. |
| */ |
| static void |
| efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event) |
| { |
| struct efx_channel *channel; |
| struct efx_rx_queue *rx_queue; |
| int qid; |
| bool failed; |
| |
| qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID); |
| failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL); |
| if (qid >= efx->n_channels) |
| return; |
| channel = efx_get_channel(efx, qid); |
| if (!efx_channel_has_rx_queue(channel)) |
| return; |
| rx_queue = efx_channel_get_rx_queue(channel); |
| |
| if (failed) { |
| netif_info(efx, hw, efx->net_dev, |
| "RXQ %d flush retry\n", qid); |
| rx_queue->flush_pending = true; |
| atomic_inc(&efx->rxq_flush_pending); |
| } else { |
| efx_farch_magic_event(efx_rx_queue_channel(rx_queue), |
| EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)); |
| } |
| atomic_dec(&efx->rxq_flush_outstanding); |
| if (efx_farch_flush_wake(efx)) |
| wake_up(&efx->flush_wq); |
| } |
| |
| static void |
| efx_farch_handle_drain_event(struct efx_channel *channel) |
| { |
| struct efx_nic *efx = channel->efx; |
| |
| WARN_ON(atomic_read(&efx->active_queues) == 0); |
| atomic_dec(&efx->active_queues); |
| if (efx_farch_flush_wake(efx)) |
| wake_up(&efx->flush_wq); |
| } |
| |
| static void efx_farch_handle_generated_event(struct efx_channel *channel, |
| efx_qword_t *event) |
| { |
| struct efx_nic *efx = channel->efx; |
| struct efx_rx_queue *rx_queue = |
| efx_channel_has_rx_queue(channel) ? |
| efx_channel_get_rx_queue(channel) : NULL; |
| unsigned magic, code; |
| |
| magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC); |
| code = _EFX_CHANNEL_MAGIC_CODE(magic); |
| |
| if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) { |
| channel->event_test_cpu = raw_smp_processor_id(); |
| } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) { |
| /* The queue must be empty, so we won't receive any rx |
| * events, so efx_process_channel() won't refill the |
| * queue. Refill it here */ |
| efx_fast_push_rx_descriptors(rx_queue, true); |
| } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) { |
| efx_farch_handle_drain_event(channel); |
| } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) { |
| efx_farch_handle_drain_event(channel); |
| } else { |
| netif_dbg(efx, hw, efx->net_dev, "channel %d received " |
| "generated event "EFX_QWORD_FMT"\n", |
| channel->channel, EFX_QWORD_VAL(*event)); |
| } |
| } |
| |
| static void |
| efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event) |
| { |
| struct efx_nic *efx = channel->efx; |
| unsigned int ev_sub_code; |
| unsigned int ev_sub_data; |
| |
| ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE); |
| ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA); |
| |
| switch (ev_sub_code) { |
| case FSE_AZ_TX_DESCQ_FLS_DONE_EV: |
| netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n", |
| channel->channel, ev_sub_data); |
| efx_farch_handle_tx_flush_done(efx, event); |
| #ifdef CONFIG_SFC_SRIOV |
| efx_siena_sriov_tx_flush_done(efx, event); |
| #endif |
| break; |
| case FSE_AZ_RX_DESCQ_FLS_DONE_EV: |
| netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n", |
| channel->channel, ev_sub_data); |
| efx_farch_handle_rx_flush_done(efx, event); |
| #ifdef CONFIG_SFC_SRIOV |
| efx_siena_sriov_rx_flush_done(efx, event); |
| #endif |
| break; |
| case FSE_AZ_EVQ_INIT_DONE_EV: |
| netif_dbg(efx, hw, efx->net_dev, |
| "channel %d EVQ %d initialised\n", |
| channel->channel, ev_sub_data); |
| break; |
| case FSE_AZ_SRM_UPD_DONE_EV: |
| netif_vdbg(efx, hw, efx->net_dev, |
| "channel %d SRAM update done\n", channel->channel); |
| break; |
| case FSE_AZ_WAKE_UP_EV: |
| netif_vdbg(efx, hw, efx->net_dev, |
| "channel %d RXQ %d wakeup event\n", |
| channel->channel, ev_sub_data); |
| break; |
| case FSE_AZ_TIMER_EV: |
| netif_vdbg(efx, hw, efx->net_dev, |
| "channel %d RX queue %d timer expired\n", |
| channel->channel, ev_sub_data); |
| break; |
| case FSE_AA_RX_RECOVER_EV: |
| netif_err(efx, rx_err, efx->net_dev, |
| "channel %d seen DRIVER RX_RESET event. " |
| "Resetting.\n", channel->channel); |
| atomic_inc(&efx->rx_reset); |
| efx_schedule_reset(efx, RESET_TYPE_DISABLE); |
| break; |
| case FSE_BZ_RX_DSC_ERROR_EV: |
| if (ev_sub_data < EFX_VI_BASE) { |
| netif_err(efx, rx_err, efx->net_dev, |
| "RX DMA Q %d reports descriptor fetch error." |
| " RX Q %d is disabled.\n", ev_sub_data, |
| ev_sub_data); |
| efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR); |
| } |
| #ifdef CONFIG_SFC_SRIOV |
| else |
| efx_siena_sriov_desc_fetch_err(efx, ev_sub_data); |
| #endif |
| break; |
| case FSE_BZ_TX_DSC_ERROR_EV: |
| if (ev_sub_data < EFX_VI_BASE) { |
| netif_err(efx, tx_err, efx->net_dev, |
| "TX DMA Q %d reports descriptor fetch error." |
| " TX Q %d is disabled.\n", ev_sub_data, |
| ev_sub_data); |
| efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR); |
| } |
| #ifdef CONFIG_SFC_SRIOV |
| else |
| efx_siena_sriov_desc_fetch_err(efx, ev_sub_data); |
| #endif |
| break; |
| default: |
| netif_vdbg(efx, hw, efx->net_dev, |
| "channel %d unknown driver event code %d " |
| "data %04x\n", channel->channel, ev_sub_code, |
| ev_sub_data); |
| break; |
| } |
| } |
| |
| int efx_farch_ev_process(struct efx_channel *channel, int budget) |
| { |
| struct efx_nic *efx = channel->efx; |
| unsigned int read_ptr; |
| efx_qword_t event, *p_event; |
| int ev_code; |
| int spent = 0; |
| |
| if (budget <= 0) |
| return spent; |
| |
| read_ptr = channel->eventq_read_ptr; |
| |
| for (;;) { |
| p_event = efx_event(channel, read_ptr); |
| event = *p_event; |
| |
| if (!efx_event_present(&event)) |
| /* End of events */ |
| break; |
| |
| netif_vdbg(channel->efx, intr, channel->efx->net_dev, |
| "channel %d event is "EFX_QWORD_FMT"\n", |
| channel->channel, EFX_QWORD_VAL(event)); |
| |
| /* Clear this event by marking it all ones */ |
| EFX_SET_QWORD(*p_event); |
| |
| ++read_ptr; |
| |
| ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE); |
| |
| switch (ev_code) { |
| case FSE_AZ_EV_CODE_RX_EV: |
| efx_farch_handle_rx_event(channel, &event); |
| if (++spent == budget) |
| goto out; |
| break; |
| case FSE_AZ_EV_CODE_TX_EV: |
| efx_farch_handle_tx_event(channel, &event); |
| break; |
| case FSE_AZ_EV_CODE_DRV_GEN_EV: |
| efx_farch_handle_generated_event(channel, &event); |
| break; |
| case FSE_AZ_EV_CODE_DRIVER_EV: |
| efx_farch_handle_driver_event(channel, &event); |
| break; |
| #ifdef CONFIG_SFC_SRIOV |
| case FSE_CZ_EV_CODE_USER_EV: |
| efx_siena_sriov_event(channel, &event); |
| break; |
| #endif |
| case FSE_CZ_EV_CODE_MCDI_EV: |
| efx_mcdi_process_event(channel, &event); |
| break; |
| case FSE_AZ_EV_CODE_GLOBAL_EV: |
| if (efx->type->handle_global_event && |
| efx->type->handle_global_event(channel, &event)) |
| break; |
| /* else fall through */ |
| default: |
| netif_err(channel->efx, hw, channel->efx->net_dev, |
| "channel %d unknown event type %d (data " |
| EFX_QWORD_FMT ")\n", channel->channel, |
| ev_code, EFX_QWORD_VAL(event)); |
| } |
| } |
| |
| out: |
| channel->eventq_read_ptr = read_ptr; |
| return spent; |
| } |
| |
| /* Allocate buffer table entries for event queue */ |
| int efx_farch_ev_probe(struct efx_channel *channel) |
| { |
| struct efx_nic *efx = channel->efx; |
| unsigned entries; |
| |
| entries = channel->eventq_mask + 1; |
| return efx_alloc_special_buffer(efx, &channel->eventq, |
| entries * sizeof(efx_qword_t)); |
| } |
| |
| int efx_farch_ev_init(struct efx_channel *channel) |
| { |
| efx_oword_t reg; |
| struct efx_nic *efx = channel->efx; |
| |
| netif_dbg(efx, hw, efx->net_dev, |
| "channel %d event queue in special buffers %d-%d\n", |
| channel->channel, channel->eventq.index, |
| channel->eventq.index + channel->eventq.entries - 1); |
| |
| EFX_POPULATE_OWORD_3(reg, |
| FRF_CZ_TIMER_Q_EN, 1, |
| FRF_CZ_HOST_NOTIFY_MODE, 0, |
| FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS); |
| efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, channel->channel); |
| |
| /* Pin event queue buffer */ |
| efx_init_special_buffer(efx, &channel->eventq); |
| |
| /* Fill event queue with all ones (i.e. empty events) */ |
| memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len); |
| |
| /* Push event queue to card */ |
| EFX_POPULATE_OWORD_3(reg, |
| FRF_AZ_EVQ_EN, 1, |
| FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries), |
| FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index); |
| efx_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base, |
| channel->channel); |
| |
| return 0; |
| } |
| |
| void efx_farch_ev_fini(struct efx_channel *channel) |
| { |
| efx_oword_t reg; |
| struct efx_nic *efx = channel->efx; |
| |
| /* Remove event queue from card */ |
| EFX_ZERO_OWORD(reg); |
| efx_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base, |
| channel->channel); |
| efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, channel->channel); |
| |
| /* Unpin event queue */ |
| efx_fini_special_buffer(efx, &channel->eventq); |
| } |
| |
| /* Free buffers backing event queue */ |
| void efx_farch_ev_remove(struct efx_channel *channel) |
| { |
| efx_free_special_buffer(channel->efx, &channel->eventq); |
| } |
| |
| |
| void efx_farch_ev_test_generate(struct efx_channel *channel) |
| { |
| efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel)); |
| } |
| |
| void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue) |
| { |
| efx_farch_magic_event(efx_rx_queue_channel(rx_queue), |
| EFX_CHANNEL_MAGIC_FILL(rx_queue)); |
| } |
| |
| /************************************************************************** |
| * |
| * Hardware interrupts |
| * The hardware interrupt handler does very little work; all the event |
| * queue processing is carried out by per-channel tasklets. |
| * |
| **************************************************************************/ |
| |
| /* Enable/disable/generate interrupts */ |
| static inline void efx_farch_interrupts(struct efx_nic *efx, |
| bool enabled, bool force) |
| { |
| efx_oword_t int_en_reg_ker; |
| |
| EFX_POPULATE_OWORD_3(int_en_reg_ker, |
| FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level, |
| FRF_AZ_KER_INT_KER, force, |
| FRF_AZ_DRV_INT_EN_KER, enabled); |
| efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER); |
| } |
| |
| void efx_farch_irq_enable_master(struct efx_nic *efx) |
| { |
| EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr)); |
| wmb(); /* Ensure interrupt vector is clear before interrupts enabled */ |
| |
| efx_farch_interrupts(efx, true, false); |
| } |
| |
| void efx_farch_irq_disable_master(struct efx_nic *efx) |
| { |
| /* Disable interrupts */ |
| efx_farch_interrupts(efx, false, false); |
| } |
| |
| /* Generate a test interrupt |
| * Interrupt must already have been enabled, otherwise nasty things |
| * may happen. |
| */ |
| int efx_farch_irq_test_generate(struct efx_nic *efx) |
| { |
| efx_farch_interrupts(efx, true, true); |
| return 0; |
| } |
| |
| /* Process a fatal interrupt |
| * Disable bus mastering ASAP and schedule a reset |
| */ |
| irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx) |
| { |
| efx_oword_t *int_ker = efx->irq_status.addr; |
| efx_oword_t fatal_intr; |
| int error, mem_perr; |
| |
| efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER); |
| error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR); |
| |
| netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status " |
| EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker), |
| EFX_OWORD_VAL(fatal_intr), |
| error ? "disabling bus mastering" : "no recognised error"); |
| |
| /* If this is a memory parity error dump which blocks are offending */ |
| mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) || |
| EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER)); |
| if (mem_perr) { |
| efx_oword_t reg; |
| efx_reado(efx, ®, FR_AZ_MEM_STAT); |
| netif_err(efx, hw, efx->net_dev, |
| "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n", |
| EFX_OWORD_VAL(reg)); |
| } |
| |
| /* Disable both devices */ |
| pci_clear_master(efx->pci_dev); |
| efx_farch_irq_disable_master(efx); |
| |
| /* Count errors and reset or disable the NIC accordingly */ |
| if (efx->int_error_count == 0 || |
| time_after(jiffies, efx->int_error_expire)) { |
| efx->int_error_count = 0; |
| efx->int_error_expire = |
| jiffies + EFX_INT_ERROR_EXPIRE * HZ; |
| } |
| if (++efx->int_error_count < EFX_MAX_INT_ERRORS) { |
| netif_err(efx, hw, efx->net_dev, |
| "SYSTEM ERROR - reset scheduled\n"); |
| efx_schedule_reset(efx, RESET_TYPE_INT_ERROR); |
| } else { |
| netif_err(efx, hw, efx->net_dev, |
| "SYSTEM ERROR - max number of errors seen." |
| "NIC will be disabled\n"); |
| efx_schedule_reset(efx, RESET_TYPE_DISABLE); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* Handle a legacy interrupt |
| * Acknowledges the interrupt and schedule event queue processing. |
| */ |
| irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id) |
| { |
| struct efx_nic *efx = dev_id; |
| bool soft_enabled = READ_ONCE(efx->irq_soft_enabled); |
| efx_oword_t *int_ker = efx->irq_status.addr; |
| irqreturn_t result = IRQ_NONE; |
| struct efx_channel *channel; |
| efx_dword_t reg; |
| u32 queues; |
| int syserr; |
| |
| /* Read the ISR which also ACKs the interrupts */ |
| efx_readd(efx, ®, FR_BZ_INT_ISR0); |
| queues = EFX_EXTRACT_DWORD(reg, 0, 31); |
| |
| /* Legacy interrupts are disabled too late by the EEH kernel |
| * code. Disable them earlier. |
| * If an EEH error occurred, the read will have returned all ones. |
| */ |
| if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) && |
| !efx->eeh_disabled_legacy_irq) { |
| disable_irq_nosync(efx->legacy_irq); |
| efx->eeh_disabled_legacy_irq = true; |
| } |
| |
| /* Handle non-event-queue sources */ |
| if (queues & (1U << efx->irq_level) && soft_enabled) { |
| syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT); |
| if (unlikely(syserr)) |
| return efx_farch_fatal_interrupt(efx); |
| efx->last_irq_cpu = raw_smp_processor_id(); |
| } |
| |
| if (queues != 0) { |
| efx->irq_zero_count = 0; |
| |
| /* Schedule processing of any interrupting queues */ |
| if (likely(soft_enabled)) { |
| efx_for_each_channel(channel, efx) { |
| if (queues & 1) |
| efx_schedule_channel_irq(channel); |
| queues >>= 1; |
| } |
| } |
| result = IRQ_HANDLED; |
| |
| } else { |
| efx_qword_t *event; |
| |
| /* Legacy ISR read can return zero once (SF bug 15783) */ |
| |
| /* We can't return IRQ_HANDLED more than once on seeing ISR=0 |
| * because this might be a shared interrupt. */ |
| if (efx->irq_zero_count++ == 0) |
| result = IRQ_HANDLED; |
| |
| /* Ensure we schedule or rearm all event queues */ |
| if (likely(soft_enabled)) { |
| efx_for_each_channel(channel, efx) { |
| event = efx_event(channel, |
| channel->eventq_read_ptr); |
| if (efx_event_present(event)) |
| efx_schedule_channel_irq(channel); |
| else |
| efx_farch_ev_read_ack(channel); |
| } |
| } |
| } |
| |
| if (result == IRQ_HANDLED) |
| netif_vdbg(efx, intr, efx->net_dev, |
| "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n", |
| irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg)); |
| |
| return result; |
| } |
| |
| /* Handle an MSI interrupt |
| * |
| * Handle an MSI hardware interrupt. This routine schedules event |
| * queue processing. No interrupt acknowledgement cycle is necessary. |
| * Also, we never need to check that the interrupt is for us, since |
| * MSI interrupts cannot be shared. |
| */ |
| irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id) |
| { |
| struct efx_msi_context *context = dev_id; |
| struct efx_nic *efx = context->efx; |
| efx_oword_t *int_ker = efx->irq_status.addr; |
| int syserr; |
| |
| netif_vdbg(efx, intr, efx->net_dev, |
| "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n", |
| irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker)); |
| |
| if (!likely(READ_ONCE(efx->irq_soft_enabled))) |
| return IRQ_HANDLED; |
| |
| /* Handle non-event-queue sources */ |
| if (context->index == efx->irq_level) { |
| syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT); |
| if (unlikely(syserr)) |
| return efx_farch_fatal_interrupt(efx); |
| efx->last_irq_cpu = raw_smp_processor_id(); |
| } |
| |
| /* Schedule processing of the channel */ |
| efx_schedule_channel_irq(efx->channel[context->index]); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* Setup RSS indirection table. |
| * This maps from the hash value of the packet to RXQ |
| */ |
| void efx_farch_rx_push_indir_table(struct efx_nic *efx) |
| { |
| size_t i = 0; |
| efx_dword_t dword; |
| |
| BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) != |
| FR_BZ_RX_INDIRECTION_TBL_ROWS); |
| |
| for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) { |
| EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE, |
| efx->rss_context.rx_indir_table[i]); |
| efx_writed(efx, &dword, |
| FR_BZ_RX_INDIRECTION_TBL + |
| FR_BZ_RX_INDIRECTION_TBL_STEP * i); |
| } |
| } |
| |
| void efx_farch_rx_pull_indir_table(struct efx_nic *efx) |
| { |
| size_t i = 0; |
| efx_dword_t dword; |
| |
| BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) != |
| FR_BZ_RX_INDIRECTION_TBL_ROWS); |
| |
| for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) { |
| efx_readd(efx, &dword, |
| FR_BZ_RX_INDIRECTION_TBL + |
| FR_BZ_RX_INDIRECTION_TBL_STEP * i); |
| efx->rss_context.rx_indir_table[i] = EFX_DWORD_FIELD(dword, FRF_BZ_IT_QUEUE); |
| } |
| } |
| |
| /* Looks at available SRAM resources and works out how many queues we |
| * can support, and where things like descriptor caches should live. |
| * |
| * SRAM is split up as follows: |
| * 0 buftbl entries for channels |
| * efx->vf_buftbl_base buftbl entries for SR-IOV |
| * efx->rx_dc_base RX descriptor caches |
| * efx->tx_dc_base TX descriptor caches |
| */ |
| void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw) |
| { |
| unsigned vi_count, buftbl_min, total_tx_channels; |
| |
| #ifdef CONFIG_SFC_SRIOV |
| struct siena_nic_data *nic_data = efx->nic_data; |
| #endif |
| |
| total_tx_channels = efx->n_tx_channels + efx->n_extra_tx_channels; |
| /* Account for the buffer table entries backing the datapath channels |
| * and the descriptor caches for those channels. |
| */ |
| buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE + |
| total_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE + |
| efx->n_channels * EFX_MAX_EVQ_SIZE) |
| * sizeof(efx_qword_t) / EFX_BUF_SIZE); |
| vi_count = max(efx->n_channels, total_tx_channels * EFX_TXQ_TYPES); |
| |
| #ifdef CONFIG_SFC_SRIOV |
| if (efx->type->sriov_wanted) { |
| if (efx->type->sriov_wanted(efx)) { |
| unsigned vi_dc_entries, buftbl_free; |
| unsigned entries_per_vf, vf_limit; |
| |
| nic_data->vf_buftbl_base = buftbl_min; |
| |
| vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES; |
| vi_count = max(vi_count, EFX_VI_BASE); |
| buftbl_free = (sram_lim_qw - buftbl_min - |
| vi_count * vi_dc_entries); |
| |
| entries_per_vf = ((vi_dc_entries + |
| EFX_VF_BUFTBL_PER_VI) * |
| efx_vf_size(efx)); |
| vf_limit = min(buftbl_free / entries_per_vf, |
| (1024U - EFX_VI_BASE) >> efx->vi_scale); |
| |
| if (efx->vf_count > vf_limit) { |
| netif_err(efx, probe, efx->net_dev, |
| "Reducing VF count from from %d to %d\n", |
| efx->vf_count, vf_limit); |
| efx->vf_count = vf_limit; |
| } |
| vi_count += efx->vf_count * efx_vf_size(efx); |
| } |
| } |
| #endif |
| |
| efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES; |
| efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES; |
| } |
| |
| u32 efx_farch_fpga_ver(struct efx_nic *efx) |
| { |
| efx_oword_t altera_build; |
| efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD); |
| return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER); |
| } |
| |
| void efx_farch_init_common(struct efx_nic *efx) |
| { |
| efx_oword_t temp; |
| |
| /* Set positions of descriptor caches in SRAM. */ |
| EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base); |
| efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG); |
| EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base); |
| efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG); |
| |
| /* Set TX descriptor cache size. */ |
| BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER)); |
| EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER); |
| efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG); |
| |
| /* Set RX descriptor cache size. Set low watermark to size-8, as |
| * this allows most efficient prefetching. |
| */ |
| BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER)); |
| EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER); |
| efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG); |
| EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8); |
| efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM); |
| |
| /* Program INT_KER address */ |
| EFX_POPULATE_OWORD_2(temp, |
| FRF_AZ_NORM_INT_VEC_DIS_KER, |
| EFX_INT_MODE_USE_MSI(efx), |
| FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr); |
| efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER); |
| |
| if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx)) |
| /* Use an interrupt level unused by event queues */ |
| efx->irq_level = 0x1f; |
| else |
| /* Use a valid MSI-X vector */ |
| efx->irq_level = 0; |
| |
| /* Enable all the genuinely fatal interrupts. (They are still |
| * masked by the overall interrupt mask, controlled by |
| * falcon_interrupts()). |
| * |
| * Note: All other fatal interrupts are enabled |
| */ |
| EFX_POPULATE_OWORD_3(temp, |
| FRF_AZ_ILL_ADR_INT_KER_EN, 1, |
| FRF_AZ_RBUF_OWN_INT_KER_EN, 1, |
| FRF_AZ_TBUF_OWN_INT_KER_EN, 1); |
| EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1); |
| EFX_INVERT_OWORD(temp); |
| efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER); |
| |
| /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be |
| * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q. |
| */ |
| efx_reado(efx, &temp, FR_AZ_TX_RESERVED); |
| EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe); |
| EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1); |
| EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1); |
| EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1); |
| EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1); |
| /* Enable SW_EV to inherit in char driver - assume harmless here */ |
| EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1); |
| /* Prefetch threshold 2 => fetch when descriptor cache half empty */ |
| EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2); |
| /* Disable hardware watchdog which can misfire */ |
| EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff); |
| /* Squash TX of packets of 16 bytes or less */ |
| EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1); |
| efx_writeo(efx, &temp, FR_AZ_TX_RESERVED); |
| |
| EFX_POPULATE_OWORD_4(temp, |
| /* Default values */ |
| FRF_BZ_TX_PACE_SB_NOT_AF, 0x15, |
| FRF_BZ_TX_PACE_SB_AF, 0xb, |
| FRF_BZ_TX_PACE_FB_BASE, 0, |
| /* Allow large pace values in the fast bin. */ |
| FRF_BZ_TX_PACE_BIN_TH, |
| FFE_BZ_TX_PACE_RESERVED); |
| efx_writeo(efx, &temp, FR_BZ_TX_PACE); |
| } |
| |
| /************************************************************************** |
| * |
| * Filter tables |
| * |
| ************************************************************************** |
| */ |
| |
| /* "Fudge factors" - difference between programmed value and actual depth. |
| * Due to pipelined implementation we need to program H/W with a value that |
| * is larger than the hop limit we want. |
| */ |
| #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3 |
| #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1 |
| |
| /* Hard maximum search limit. Hardware will time-out beyond 200-something. |
| * We also need to avoid infinite loops in efx_farch_filter_search() when the |
| * table is full. |
| */ |
| #define EFX_FARCH_FILTER_CTL_SRCH_MAX 200 |
| |
| /* Don't try very hard to find space for performance hints, as this is |
| * counter-productive. */ |
| #define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5 |
| |
| enum efx_farch_filter_type { |
| EFX_FARCH_FILTER_TCP_FULL = 0, |
| EFX_FARCH_FILTER_TCP_WILD, |
| EFX_FARCH_FILTER_UDP_FULL, |
| EFX_FARCH_FILTER_UDP_WILD, |
| EFX_FARCH_FILTER_MAC_FULL = 4, |
| EFX_FARCH_FILTER_MAC_WILD, |
| EFX_FARCH_FILTER_UC_DEF = 8, |
| EFX_FARCH_FILTER_MC_DEF, |
| EFX_FARCH_FILTER_TYPE_COUNT, /* number of specific types */ |
| }; |
| |
| enum efx_farch_filter_table_id { |
| EFX_FARCH_FILTER_TABLE_RX_IP = 0, |
| EFX_FARCH_FILTER_TABLE_RX_MAC, |
| EFX_FARCH_FILTER_TABLE_RX_DEF, |
| EFX_FARCH_FILTER_TABLE_TX_MAC, |
| EFX_FARCH_FILTER_TABLE_COUNT, |
| }; |
| |
| enum efx_farch_filter_index { |
| EFX_FARCH_FILTER_INDEX_UC_DEF, |
| EFX_FARCH_FILTER_INDEX_MC_DEF, |
| EFX_FARCH_FILTER_SIZE_RX_DEF, |
| }; |
| |
| struct efx_farch_filter_spec { |
| u8 type:4; |
| u8 priority:4; |
| u8 flags; |
| u16 dmaq_id; |
| u32 data[3]; |
| }; |
| |
| struct efx_farch_filter_table { |
| enum efx_farch_filter_table_id id; |
| u32 offset; /* address of table relative to BAR */ |
| unsigned size; /* number of entries */ |
| unsigned step; /* step between entries */ |
| unsigned used; /* number currently used */ |
| unsigned long *used_bitmap; |
| struct efx_farch_filter_spec *spec; |
| unsigned search_limit[EFX_FARCH_FILTER_TYPE_COUNT]; |
| }; |
| |
| struct efx_farch_filter_state { |
| struct rw_semaphore lock; /* Protects table contents */ |
| struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT]; |
| }; |
| |
| static void |
| efx_farch_filter_table_clear_entry(struct efx_nic *efx, |
| struct efx_farch_filter_table *table, |
| unsigned int filter_idx); |
| |
| /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit |
| * key derived from the n-tuple. The initial LFSR state is 0xffff. */ |
| static u16 efx_farch_filter_hash(u32 key) |
| { |
| u16 tmp; |
| |
| /* First 16 rounds */ |
| tmp = 0x1fff ^ key >> 16; |
| tmp = tmp ^ tmp >> 3 ^ tmp >> 6; |
| tmp = tmp ^ tmp >> 9; |
| /* Last 16 rounds */ |
| tmp = tmp ^ tmp << 13 ^ key; |
| tmp = tmp ^ tmp >> 3 ^ tmp >> 6; |
| return tmp ^ tmp >> 9; |
| } |
| |
| /* To allow for hash collisions, filter search continues at these |
| * increments from the first possible entry selected by the hash. */ |
| static u16 efx_farch_filter_increment(u32 key) |
| { |
| return key * 2 - 1; |
| } |
| |
| static enum efx_farch_filter_table_id |
| efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec) |
| { |
| BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP != |
| (EFX_FARCH_FILTER_TCP_FULL >> 2)); |
| BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP != |
| (EFX_FARCH_FILTER_TCP_WILD >> 2)); |
| BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP != |
| (EFX_FARCH_FILTER_UDP_FULL >> 2)); |
| BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP != |
| (EFX_FARCH_FILTER_UDP_WILD >> 2)); |
| BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC != |
| (EFX_FARCH_FILTER_MAC_FULL >> 2)); |
| BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC != |
| (EFX_FARCH_FILTER_MAC_WILD >> 2)); |
| BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC != |
| EFX_FARCH_FILTER_TABLE_RX_MAC + 2); |
| return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0); |
| } |
| |
| static void efx_farch_filter_push_rx_config(struct efx_nic *efx) |
| { |
| struct efx_farch_filter_state *state = efx->filter_state; |
| struct efx_farch_filter_table *table; |
| efx_oword_t filter_ctl; |
| |
| efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL); |
| |
| table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP]; |
| EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT, |
| table->search_limit[EFX_FARCH_FILTER_TCP_FULL] + |
| EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL); |
| EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT, |
| table->search_limit[EFX_FARCH_FILTER_TCP_WILD] + |
| EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD); |
| EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT, |
| table->search_limit[EFX_FARCH_FILTER_UDP_FULL] + |
| EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL); |
| EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT, |
| table->search_limit[EFX_FARCH_FILTER_UDP_WILD] + |
| EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD); |
| |
| table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC]; |
| if (table->size) { |
| EFX_SET_OWORD_FIELD( |
| filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT, |
| table->search_limit[EFX_FARCH_FILTER_MAC_FULL] + |
| EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL); |
| EFX_SET_OWORD_FIELD( |
| filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT, |
| table->search_limit[EFX_FARCH_FILTER_MAC_WILD] + |
| EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD); |
| } |
| |
| table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF]; |
| if (table->size) { |
| EFX_SET_OWORD_FIELD( |
| filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID, |
| table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id); |
| EFX_SET_OWORD_FIELD( |
| filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED, |
| !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags & |
| EFX_FILTER_FLAG_RX_RSS)); |
| EFX_SET_OWORD_FIELD( |
| filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID, |
| table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id); |
| EFX_SET_OWORD_FIELD( |
| filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED, |
| !!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags & |
| EFX_FILTER_FLAG_RX_RSS)); |
| |
| /* There is a single bit to enable RX scatter for all |
| * unmatched packets. Only set it if scatter is |
| * enabled in both filter specs. |
| */ |
| EFX_SET_OWORD_FIELD( |
| filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q, |
| !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags & |
| table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags & |
| EFX_FILTER_FLAG_RX_SCATTER)); |
| } else { |
| /* We don't expose 'default' filters because unmatched |
| * packets always go to the queue number found in the |
| * RSS table. But we still need to set the RX scatter |
| * bit here. |
| */ |
| EFX_SET_OWORD_FIELD( |
| filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q, |
| efx->rx_scatter); |
| } |
| |
| efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL); |
| } |
| |
| static void efx_farch_filter_push_tx_limits(struct efx_nic *efx) |
| { |
| struct efx_farch_filter_state *state = efx->filter_state; |
| struct efx_farch_filter_table *table; |
| efx_oword_t tx_cfg; |
| |
| efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG); |
| |
| table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC]; |
| if (table->size) { |
| EFX_SET_OWORD_FIELD( |
| tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE, |
| table->search_limit[EFX_FARCH_FILTER_MAC_FULL] + |
| EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL); |
| EFX_SET_OWORD_FIELD( |
| tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE, |
| table->search_limit[EFX_FARCH_FILTER_MAC_WILD] + |
| EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD); |
| } |
| |
| efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG); |
| } |
| |
| static int |
| efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec, |
| const struct efx_filter_spec *gen_spec) |
| { |
| bool is_full = false; |
| |
| if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) && gen_spec->rss_context) |
| return -EINVAL; |
| |
| spec->priority = gen_spec->priority; |
| spec->flags = gen_spec->flags; |
| spec->dmaq_id = gen_spec->dmaq_id; |
| |
| switch (gen_spec->match_flags) { |
| case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO | |
| EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT | |
| EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT): |
| is_full = true; |
| /* fall through */ |
| case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO | |
| EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): { |
| __be32 rhost, host1, host2; |
| __be16 rport, port1, port2; |
| |
| EFX_WARN_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX)); |
| |
| if (gen_spec->ether_type != htons(ETH_P_IP)) |
| return -EPROTONOSUPPORT; |
| if (gen_spec->loc_port == 0 || |
| (is_full && gen_spec->rem_port == 0)) |
| return -EADDRNOTAVAIL; |
| switch (gen_spec->ip_proto) { |
| case IPPROTO_TCP: |
| spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL : |
| EFX_FARCH_FILTER_TCP_WILD); |
| break; |
| case IPPROTO_UDP: |
| spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL : |
| EFX_FARCH_FILTER_UDP_WILD); |
| break; |
| default: |
| return -EPROTONOSUPPORT; |
| } |
| |
| /* Filter is constructed in terms of source and destination, |
| * with the odd wrinkle that the ports are swapped in a UDP |
| * wildcard filter. We need to convert from local and remote |
| * (= zero for wildcard) addresses. |
| */ |
| rhost = is_full ? gen_spec->rem_host[0] : 0; |
| rport = is_full ? gen_spec->rem_port : 0; |
| host1 = rhost; |
| host2 = gen_spec->loc_host[0]; |
| if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) { |
| port1 = gen_spec->loc_port; |
| port2 = rport; |
| } else { |
| port1 = rport; |
| port2 = gen_spec->loc_port; |
| } |
| spec->data[0] = ntohl(host1) << 16 | ntohs(port1); |
| spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16; |
| spec->data[2] = ntohl(host2); |
| |
| break; |
| } |
| |
| case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID: |
| is_full = true; |
| /* fall through */ |
| case EFX_FILTER_MATCH_LOC_MAC: |
| spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL : |
| EFX_FARCH_FILTER_MAC_WILD); |
| spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0; |
| spec->data[1] = (gen_spec->loc_mac[2] << 24 | |
| gen_spec->loc_mac[3] << 16 | |
| gen_spec->loc_mac[4] << 8 | |
| gen_spec->loc_mac[5]); |
| spec->data[2] = (gen_spec->loc_mac[0] << 8 | |
| gen_spec->loc_mac[1]); |
| break; |
| |
| case EFX_FILTER_MATCH_LOC_MAC_IG: |
| spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ? |
| EFX_FARCH_FILTER_MC_DEF : |
| EFX_FARCH_FILTER_UC_DEF); |
| memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */ |
| break; |
| |
| default: |
| return -EPROTONOSUPPORT; |
| } |
| |
| return 0; |
| } |
| |
| static void |
| efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec, |
| const struct efx_farch_filter_spec *spec) |
| { |
| bool is_full = false; |
| |
| /* *gen_spec should be completely initialised, to be consistent |
| * with efx_filter_init_{rx,tx}() and in case we want to copy |
| * it back to userland. |
| */ |
| memset(gen_spec, 0, sizeof(*gen_spec)); |
| |
| gen_spec->priority = spec->priority; |
| gen_spec->flags = spec->flags; |
| gen_spec->dmaq_id = spec->dmaq_id; |
| |
| switch (spec->type) { |
| case EFX_FARCH_FILTER_TCP_FULL: |
| case EFX_FARCH_FILTER_UDP_FULL: |
| is_full = true; |
| /* fall through */ |
| case EFX_FARCH_FILTER_TCP_WILD: |
| case EFX_FARCH_FILTER_UDP_WILD: { |
| __be32 host1, host2; |
| __be16 port1, port2; |
| |
| gen_spec->match_flags = |
| EFX_FILTER_MATCH_ETHER_TYPE | |
| EFX_FILTER_MATCH_IP_PROTO | |
| EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT; |
| if (is_full) |
| gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST | |
| EFX_FILTER_MATCH_REM_PORT); |
| gen_spec->ether_type = htons(ETH_P_IP); |
| gen_spec->ip_proto = |
| (spec->type == EFX_FARCH_FILTER_TCP_FULL || |
| spec->type == EFX_FARCH_FILTER_TCP_WILD) ? |
| IPPROTO_TCP : IPPROTO_UDP; |
| |
| host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16); |
| port1 = htons(spec->data[0]); |
| host2 = htonl(spec->data[2]); |
| port2 = htons(spec->data[1] >> 16); |
| if (spec->flags & EFX_FILTER_FLAG_TX) { |
| gen_spec->loc_host[0] = host1; |
| gen_spec->rem_host[0] = host2; |
| } else { |
| gen_spec->loc_host[0] = host2; |
| gen_spec->rem_host[0] = host1; |
| } |
| if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^ |
| (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) { |
| gen_spec->loc_port = port1; |
| gen_spec->rem_port = port2; |
| } else { |
| gen_spec->loc_port = port2; |
| gen_spec->rem_port = port1; |
| } |
| |
| break; |
| } |
| |
| case EFX_FARCH_FILTER_MAC_FULL: |
| is_full = true; |
| /* fall through */ |
| case EFX_FARCH_FILTER_MAC_WILD: |
| gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC; |
| if (is_full) |
| gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID; |
| gen_spec->loc_mac[0] = spec->data[2] >> 8; |
| gen_spec->loc_mac[1] = spec->data[2]; |
| gen_spec->loc_mac[2] = spec->data[1] >> 24; |
| gen_spec->loc_mac[3] = spec->data[1] >> 16; |
| gen_spec->loc_mac[4] = spec->data[1] >> 8; |
| gen_spec->loc_mac[5] = spec->data[1]; |
| gen_spec->outer_vid = htons(spec->data[0]); |
| break; |
| |
| case EFX_FARCH_FILTER_UC_DEF: |
| case EFX_FARCH_FILTER_MC_DEF: |
| gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG; |
| gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF; |
| break; |
| |
| default: |
| WARN_ON(1); |
| break; |
| } |
| } |
| |
| static void |
| efx_farch_filter_init_rx_auto(struct efx_nic *efx, |
| struct efx_farch_filter_spec *spec) |
| { |
| /* If there's only one channel then disable RSS for non VF |
| * traffic, thereby allowing VFs to use RSS when the PF can't. |
| */ |
| spec->priority = EFX_FILTER_PRI_AUTO; |
| spec->flags = (EFX_FILTER_FLAG_RX | |
| (efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0) | |
| (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0)); |
| spec->dmaq_id = 0; |
| } |
| |
| /* Build a filter entry and return its n-tuple key. */ |
| static u32 efx_farch_filter_build(efx_oword_t *filter, |
| struct efx_farch_filter_spec *spec) |
| { |
| u32 data3; |
| |
| switch (efx_farch_filter_spec_table_id(spec)) { |
| case EFX_FARCH_FILTER_TABLE_RX_IP: { |
| bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL || |
| spec->type == EFX_FARCH_FILTER_UDP_WILD); |
| EFX_POPULATE_OWORD_7( |
| *filter, |
| FRF_BZ_RSS_EN, |
| !!(spec->flags & EFX_FILTER_FLAG_RX_RSS), |
| FRF_BZ_SCATTER_EN, |
| !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER), |
| FRF_BZ_TCP_UDP, is_udp, |
| FRF_BZ_RXQ_ID, spec->dmaq_id, |
| EFX_DWORD_2, spec->data[2], |
| EFX_DWORD_1, spec->data[1], |
| EFX_DWORD_0, spec->data[0]); |
| data3 = is_udp; |
| break; |
| } |
| |
| case EFX_FARCH_FILTER_TABLE_RX_MAC: { |
| bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD; |
| EFX_POPULATE_OWORD_7( |
| *filter, |
| FRF_CZ_RMFT_RSS_EN, |
| !!(spec->flags & EFX_FILTER_FLAG_RX_RSS), |
| FRF_CZ_RMFT_SCATTER_EN, |
| !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER), |
| FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id, |
| FRF_CZ_RMFT_WILDCARD_MATCH, is_wild, |
| FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2], |
| FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1], |
| FRF_CZ_RMFT_VLAN_ID, spec->data[0]); |
| data3 = is_wild; |
| break; |
| } |
| |
| case EFX_FARCH_FILTER_TABLE_TX_MAC: { |
| bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD; |
| EFX_POPULATE_OWORD_5(*filter, |
| FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id, |
| FRF_CZ_TMFT_WILDCARD_MATCH, is_wild, |
| FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2], |
| FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1], |
| FRF_CZ_TMFT_VLAN_ID, spec->data[0]); |
| data3 = is_wild | spec->dmaq_id << 1; |
| break; |
| } |
| |
| default: |
| BUG(); |
| } |
| |
| return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3; |
| } |
| |
| static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left, |
| const struct efx_farch_filter_spec *right) |
| { |
| if (left->type != right->type || |
| memcmp(left->data, right->data, sizeof(left->data))) |
| return false; |
| |
| if (left->flags & EFX_FILTER_FLAG_TX && |
| left->dmaq_id != right->dmaq_id) |
| return false; |
| |
| return true; |
| } |
| |
| /* |
| * Construct/deconstruct external filter IDs. At least the RX filter |
| * IDs must be ordered by matching priority, for RX NFC semantics. |
| * |
| * Deconstruction needs to be robust against invalid IDs so that |
| * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can |
| * accept user-provided IDs. |
| */ |
| |
| #define EFX_FARCH_FILTER_MATCH_PRI_COUNT 5 |
| |
| static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = { |
| [EFX_FARCH_FILTER_TCP_FULL] = 0, |
| [EFX_FARCH_FILTER_UDP_FULL] = 0, |
| [EFX_FARCH_FILTER_TCP_WILD] = 1, |
| [EFX_FARCH_FILTER_UDP_WILD] = 1, |
| [EFX_FARCH_FILTER_MAC_FULL] = 2, |
| [EFX_FARCH_FILTER_MAC_WILD] = 3, |
| [EFX_FARCH_FILTER_UC_DEF] = 4, |
| [EFX_FARCH_FILTER_MC_DEF] = 4, |
| }; |
| |
| static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = { |
| EFX_FARCH_FILTER_TABLE_RX_IP, /* RX match pri 0 */ |
| EFX_FARCH_FILTER_TABLE_RX_IP, |
| EFX_FARCH_FILTER_TABLE_RX_MAC, |
| EFX_FARCH_FILTER_TABLE_RX_MAC, |
| EFX_FARCH_FILTER_TABLE_RX_DEF, /* RX match pri 4 */ |
| EFX_FARCH_FILTER_TABLE_TX_MAC, /* TX match pri 0 */ |
| EFX_FARCH_FILTER_TABLE_TX_MAC, /* TX match pri 1 */ |
| }; |
| |
| #define EFX_FARCH_FILTER_INDEX_WIDTH 13 |
| #define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1) |
| |
| static inline u32 |
| efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec, |
| unsigned int index) |
| { |
| unsigned int range; |
| |
| range = efx_farch_filter_type_match_pri[spec->type]; |
| if (!(spec->flags & EFX_FILTER_FLAG_RX)) |
| range += EFX_FARCH_FILTER_MATCH_PRI_COUNT; |
| |
| return range << EFX_FARCH_FILTER_INDEX_WIDTH | index; |
| } |
| |
| static inline enum efx_farch_filter_table_id |
| efx_farch_filter_id_table_id(u32 id) |
| { |
| unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH; |
| |
| if (range < ARRAY_SIZE(efx_farch_filter_range_table)) |
| return efx_farch_filter_range_table[range]; |
| else |
| return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */ |
| } |
| |
| static inline unsigned int efx_farch_filter_id_index(u32 id) |
| { |
| return id & EFX_FARCH_FILTER_INDEX_MASK; |
| } |
| |
| u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx) |
| { |
| struct efx_farch_filter_state *state = efx->filter_state; |
| unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1; |
| enum efx_farch_filter_table_id table_id; |
| |
| do { |
| table_id = efx_farch_filter_range_table[range]; |
| if (state->table[table_id].size != 0) |
| return range << EFX_FARCH_FILTER_INDEX_WIDTH | |
| state->table[table_id].size; |
| } while (range--); |
| |
| return 0; |
| } |
| |
| s32 efx_farch_filter_insert(struct efx_nic *efx, |
| struct efx_filter_spec *gen_spec, |
| bool replace_equal) |
| { |
| struct efx_farch_filter_state *state = efx->filter_state; |
| struct efx_farch_filter_table *table; |
| struct efx_farch_filter_spec spec; |
| efx_oword_t filter; |
| int rep_index, ins_index; |
| unsigned int depth = 0; |
| int rc; |
| |
| rc = efx_farch_filter_from_gen_spec(&spec, gen_spec); |
| if (rc) |
| return rc; |
| |
| down_write(&state->lock); |
| |
| table = &state->table[efx_farch_filter_spec_table_id(&spec)]; |
| if (table->size == 0) { |
| rc = -EINVAL; |
| goto out_unlock; |
| } |
| |
| netif_vdbg(efx, hw, efx->net_dev, |
| "%s: type %d search_limit=%d", __func__, spec.type, |
| table->search_limit[spec.type]); |
| |
| if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) { |
| /* One filter spec per type */ |
| BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0); |
| BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF != |
| EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF); |
| rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF; |
| ins_index = rep_index; |
| } else { |
| /* Search concurrently for |
| * (1) a filter to be replaced (rep_index): any filter |
| * with the same match values, up to the current |
| * search depth for this type, and |
| * (2) the insertion point (ins_index): (1) or any |
| * free slot before it or up to the maximum search |
| * depth for this priority |
| * We fail if we cannot find (2). |
| * |
| * We can stop once either |
| * (a) we find (1), in which case we have definitely |
| * found (2) as well; or |
| * (b) we have searched exhaustively for (1), and have |
| * either found (2) or searched exhaustively for it |
| */ |
| u32 key = efx_farch_filter_build(&filter, &spec); |
| unsigned int hash = efx_farch_filter_hash(key); |
| unsigned int incr = efx_farch_filter_increment(key); |
| unsigned int max_rep_depth = table->search_limit[spec.type]; |
| unsigned int max_ins_depth = |
| spec.priority <= EFX_FILTER_PRI_HINT ? |
| EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX : |
| EFX_FARCH_FILTER_CTL_SRCH_MAX; |
| unsigned int i = hash & (table->size - 1); |
| |
| ins_index = -1; |
| depth = 1; |
| |
| for (;;) { |
| if (!test_bit(i, table->used_bitmap)) { |
| if (ins_index < 0) |
| ins_index = i; |
| } else if (efx_farch_filter_equal(&spec, |
| &table->spec[i])) { |
| /* Case (a) */ |
| if (ins_index < 0) |
| ins_index = i; |
| rep_index = i; |
| break; |
| } |
| |
| if (depth >= max_rep_depth && |
| (ins_index >= 0 || depth >= max_ins_depth)) { |
| /* Case (b) */ |
| if (ins_index < 0) { |
| rc = -EBUSY; |
| goto out_unlock; |
| } |
| rep_index = -1; |
| break; |
| } |
| |
| i = (i + incr) & (table->size - 1); |
| ++depth; |
| } |
| } |
| |
| /* If we found a filter to be replaced, check whether we |
| * should do so |
| */ |
| if (rep_index >= 0) { |
| struct efx_farch_filter_spec *saved_spec = |
| &table->spec[rep_index]; |
| |
| if (spec.priority == saved_spec->priority && !replace_equal) { |
| rc = -EEXIST; |
| goto out_unlock; |
| } |
| if (spec.priority < saved_spec->priority) { |
| rc = -EPERM; |
| goto out_unlock; |
| } |
| if (saved_spec->priority == EFX_FILTER_PRI_AUTO || |
| saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) |
| spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO; |
| } |
| |
| /* Insert the filter */ |
| if (ins_index != rep_index) { |
| __set_bit(ins_index, table->used_bitmap); |
| ++table->used; |
| } |
| table->spec[ins_index] = spec; |
| |
| if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) { |
| efx_farch_filter_push_rx_config(efx); |
| } else { |
| if (table->search_limit[spec.type] < depth) { |
| table->search_limit[spec.type] = depth; |
| if (spec.flags & EFX_FILTER_FLAG_TX) |
| efx_farch_filter_push_tx_limits(efx); |
| else |
| efx_farch_filter_push_rx_config(efx); |
| } |
| |
| efx_writeo(efx, &filter, |
| table->offset + table->step * ins_index); |
| |
| /* If we were able to replace a filter by inserting |
| * at a lower depth, clear the replaced filter |
| */ |
| if (ins_index != rep_index && rep_index >= 0) |
| efx_farch_filter_table_clear_entry(efx, table, |
| rep_index); |
| } |
| |
| netif_vdbg(efx, hw, efx->net_dev, |
| "%s: filter type %d index %d rxq %u set", |
| __func__, spec.type, ins_index, spec.dmaq_id); |
| rc = efx_farch_filter_make_id(&spec, ins_index); |
| |
| out_unlock: |
| up_write(&state->lock); |
| return rc; |
| } |
| |
| static void |
| efx_farch_filter_table_clear_entry(struct efx_nic *efx, |
| struct efx_farch_filter_table *table, |
| unsigned int filter_idx) |
| { |
| static efx_oword_t filter; |
| |
| EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap)); |
| BUG_ON(table->offset == 0); /* can't clear MAC default filters */ |
| |
| __clear_bit(filter_idx, table->used_bitmap); |
| --table->used; |
| memset(&table->spec[filter_idx], 0, sizeof(table->spec[0])); |
| |
| efx_writeo(efx, &filter, table->offset + table->step * filter_idx); |
| |
| /* If this filter required a greater search depth than |
| * any other, the search limit for its type can now be |
| * decreased. However, it is hard to determine that |
| * unless the table has become completely empty - in |
| * which case, all its search limits can be set to 0. |
| */ |
| if (unlikely(table->used == 0)) { |
| memset(table->search_limit, 0, sizeof(table->search_limit)); |
| if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC) |
| efx_farch_filter_push_tx_limits(efx); |
| else |
| efx_farch_filter_push_rx_config(efx); |
| } |
| } |
| |
| static int efx_farch_filter_remove(struct efx_nic *efx, |
| struct efx_farch_filter_table *table, |
| unsigned int filter_idx, |
| enum efx_filter_priority priority) |
| { |
| struct efx_farch_filter_spec *spec = &table->spec[filter_idx]; |
| |
| if (!test_bit(filter_idx, table->used_bitmap) || |
| spec->priority != priority) |
| return -ENOENT; |
| |
| if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) { |
| efx_farch_filter_init_rx_auto(efx, spec); |
| efx_farch_filter_push_rx_config(efx); |
| } else { |
| efx_farch_filter_table_clear_entry(efx, table, filter_idx); |
| } |
| |
| return 0; |
| } |
| |
| int efx_farch_filter_remove_safe(struct efx_nic *efx, |
| enum efx_filter_priority priority, |
| u32 filter_id) |
| { |
| struct efx_farch_filter_state *state = efx->filter_state; |
| enum efx_farch_filter_table_id table_id; |
| struct efx_farch_filter_table *table; |
| unsigned int filter_idx; |
| struct efx_farch_filter_spec *spec; |
| int rc; |
| |
| table_id = efx_farch_filter_id_table_id(filter_id); |
| if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT) |
| return -ENOENT; |
| table = &state->table[table_id]; |
| |
| filter_idx = efx_farch_filter_id_index(filter_id); |
| if (filter_idx >= table->size) |
| return -ENOENT; |
| down_write(&state->lock); |
| spec = &table->spec[filter_idx]; |
| |
| rc = efx_farch_filter_remove(efx, table, filter_idx, priority); |
| up_write(&state->lock); |
| |
| return rc; |
| } |
| |
| int efx_farch_filter_get_safe(struct efx_nic *efx, |
| enum efx_filter_priority priority, |
| u32 filter_id, struct efx_filter_spec *spec_buf) |
| { |
| struct efx_farch_filter_state *state = efx->filter_state; |
| enum efx_farch_filter_table_id table_id; |
| struct efx_farch_filter_table *table; |
| struct efx_farch_filter_spec *spec; |
| unsigned int filter_idx; |
| int rc = -ENOENT; |
| |
| down_read(&state->lock); |
| |
| table_id = efx_farch_filter_id_table_id(filter_id); |
| if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT) |
| goto out_unlock; |
| table = &state->table[table_id]; |
| |
| filter_idx = efx_farch_filter_id_index(filter_id); |
| if (filter_idx >= table->size) |
| goto out_unlock; |
| spec = &table->spec[filter_idx]; |
| |
| if (test_bit(filter_idx, table->used_bitmap) && |
| spec->priority == priority) { |
| efx_farch_filter_to_gen_spec(spec_buf, spec); |
| rc = 0; |
| } |
| |
| out_unlock: |
| up_read(&state->lock); |
| return rc; |
| } |
| |
| static void |
| efx_farch_filter_table_clear(struct efx_nic *efx, |
| enum efx_farch_filter_table_id table_id, |
| enum efx_filter_priority priority) |
| { |
| struct efx_farch_filter_state *state = efx->filter_state; |
| struct efx_farch_filter_table *table = &state->table[table_id]; |
| unsigned int filter_idx; |
| |
| down_write(&state->lock); |
| for (filter_idx = 0; filter_idx < table->size; ++filter_idx) { |
| if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO) |
| efx_farch_filter_remove(efx, table, |
| filter_idx, priority); |
| } |
| up_write(&state->lock); |
| } |
| |
| int efx_farch_filter_clear_rx(struct efx_nic *efx, |
| enum efx_filter_priority priority) |
| { |
| efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP, |
| priority); |
| efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC, |
| priority); |
| efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF, |
| priority); |
| return 0; |
| } |
| |
| u32 efx_farch_filter_count_rx_used(struct efx_nic *efx, |
| enum efx_filter_priority priority) |
| { |
| struct efx_farch_filter_state *state = efx->filter_state; |
| enum efx_farch_filter_table_id table_id; |
| struct efx_farch_filter_table *table; |
| unsigned int filter_idx; |
| u32 count = 0; |
| |
| down_read(&state->lock); |
| |
| for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP; |
| table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF; |
| table_id++) { |
| table = &state->table[table_id]; |
| for (filter_idx = 0; filter_idx < table->size; filter_idx++) { |
| if (test_bit(filter_idx, table->used_bitmap) && |
| table->spec[filter_idx].priority == priority) |
| ++count; |
| } |
| } |
| |
| up_read(&state->lock); |
| |
| return count; |
| } |
| |
| s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx, |
| enum efx_filter_priority priority, |
| u32 *buf, u32 size) |
| { |
| struct efx_farch_filter_state *state = efx->filter_state; |
| enum efx_farch_filter_table_id table_id; |
| struct efx_farch_filter_table *table; |
| unsigned int filter_idx; |
| s32 count = 0; |
| |
| down_read(&state->lock); |
| |
| for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP; |
| table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF; |
| table_id++) { |
| table = &state->table[table_id]; |
| for (filter_idx = 0; filter_idx < table->size; filter_idx++) { |
| if (test_bit(filter_idx, table->used_bitmap) && |
| table->spec[filter_idx].priority == priority) { |
| if (count == size) { |
| count = -EMSGSIZE; |
| goto out; |
| } |
| buf[count++] = efx_farch_filter_make_id( |
| &table->spec[filter_idx], filter_idx); |
| } |
| } |
| } |
| out: |
| up_read(&state->lock); |
| |
| return count; |
| } |
| |
| /* Restore filter stater after reset */ |
| void efx_farch_filter_table_restore(struct efx_nic *efx) |
| { |
| struct efx_farch_filter_state *state = efx->filter_state; |
| enum efx_farch_filter_table_id table_id; |
| struct efx_farch_filter_table *table; |
| efx_oword_t filter; |
| unsigned int filter_idx; |
| |
| down_write(&state->lock); |
| |
| for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) { |
| table = &state->table[table_id]; |
| |
| /* Check whether this is a regular register table */ |
| if (table->step == 0) |
| continue; |
| |
| for (filter_idx = 0; filter_idx < table->size; filter_idx++) { |
| if (!test_bit(filter_idx, table->used_bitmap)) |
| continue; |
| efx_farch_filter_build(&filter, &table->spec[filter_idx]); |
| efx_writeo(efx, &filter, |
| table->offset + table->step * filter_idx); |
| } |
| } |
| |
| efx_farch_filter_push_rx_config(efx); |
| efx_farch_filter_push_tx_limits(efx); |
| |
| up_write(&state->lock); |
| } |
| |
| void efx_farch_filter_table_remove(struct efx_nic *efx) |
| { |
| struct efx_farch_filter_state *state = efx->filter_state; |
| enum efx_farch_filter_table_id table_id; |
| |
| for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) { |
| kfree(state->table[table_id].used_bitmap); |
| vfree(state->table[table_id].spec); |
| } |
| kfree(state); |
| } |
| |
| int efx_farch_filter_table_probe(struct efx_nic *efx) |
| { |
| struct efx_farch_filter_state *state; |
| struct efx_farch_filter_table *table; |
| unsigned table_id; |
| |
| state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL); |
| if (!state) |
| return -ENOMEM; |
| efx->filter_state = state; |
| |
| table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP]; |
| table->id = EFX_FARCH_FILTER_TABLE_RX_IP; |
| table->offset = FR_BZ_RX_FILTER_TBL0; |
| table->size = FR_BZ_RX_FILTER_TBL0_ROWS; |
| table->step = FR_BZ_RX_FILTER_TBL0_STEP; |
| |
| table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC]; |
| table->id = EFX_FARCH_FILTER_TABLE_RX_MAC; |
| table->offset = FR_CZ_RX_MAC_FILTER_TBL0; |
| table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS; |
| table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP; |
| |
| table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF]; |
| table->id = EFX_FARCH_FILTER_TABLE_RX_DEF; |
| table->size = EFX_FARCH_FILTER_SIZE_RX_DEF; |
| |
| table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC]; |
| table->id = EFX_FARCH_FILTER_TABLE_TX_MAC; |
| table->offset = FR_CZ_TX_MAC_FILTER_TBL0; |
| table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS; |
| table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP; |
| |
| for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) { |
| table = &state->table[table_id]; |
| if (table->size == 0) |
| continue; |
| table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size), |
| sizeof(unsigned long), |
| GFP_KERNEL); |
| if (!table->used_bitmap) |
| goto fail; |
| table->spec = vzalloc(table->size * sizeof(*table->spec)); |
| if (!table->spec) |
| goto fail; |
| } |
| |
| table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF]; |
| if (table->size) { |
| /* RX default filters must always exist */ |
| struct efx_farch_filter_spec *spec; |
| unsigned i; |
| |
| for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) { |
| spec = &table->spec[i]; |
| spec->type = EFX_FARCH_FILTER_UC_DEF + i; |
| efx_farch_filter_init_rx_auto(efx, spec); |
| __set_bit(i, table->used_bitmap); |
| } |
| } |
| |
| efx_farch_filter_push_rx_config(efx); |
| |
| return 0; |
| |
| fail: |
| efx_farch_filter_table_remove(efx); |
| return -ENOMEM; |
| } |
| |
| /* Update scatter enable flags for filters pointing to our own RX queues */ |
| void efx_farch_filter_update_rx_scatter(struct efx_nic *efx) |
| { |
| struct efx_farch_filter_state *state = efx->filter_state; |
| enum efx_farch_filter_table_id table_id; |
| struct efx_farch_filter_table *table; |
| efx_oword_t filter; |
| unsigned int filter_idx; |
| |
| down_write(&state->lock); |
| |
| for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP; |
| table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF; |
| table_id++) { |
| table = &state->table[table_id]; |
| |
| for (filter_idx = 0; filter_idx < table->size; filter_idx++) { |
| if (!test_bit(filter_idx, table->used_bitmap) || |
| table->spec[filter_idx].dmaq_id >= |
| efx->n_rx_channels) |
| continue; |
| |
| if (efx->rx_scatter) |
| table->spec[filter_idx].flags |= |
| EFX_FILTER_FLAG_RX_SCATTER; |
| else |
| table->spec[filter_idx].flags &= |
| ~EFX_FILTER_FLAG_RX_SCATTER; |
| |
| if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF) |
| /* Pushed by efx_farch_filter_push_rx_config() */ |
| continue; |
| |
| efx_farch_filter_build(&filter, &table->spec[filter_idx]); |
| efx_writeo(efx, &filter, |
| table->offset + table->step * filter_idx); |
| } |
| } |
| |
| efx_farch_filter_push_rx_config(efx); |
| |
| up_write(&state->lock); |
| } |
| |
| #ifdef CONFIG_RFS_ACCEL |
| |
| bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id, |
| unsigned int index) |
| { |
| struct efx_farch_filter_state *state = efx->filter_state; |
| struct efx_farch_filter_table *table; |
| bool ret = false; |
| |
| down_write(&state->lock); |
| table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP]; |
| if (test_bit(index, table->used_bitmap) && |
| table->spec[index].priority == EFX_FILTER_PRI_HINT && |
| rps_may_expire_flow(efx->net_dev, table->spec[index].dmaq_id, |
| flow_id, 0)) { |
| efx_farch_filter_table_clear_entry(efx, table, index); |
| ret = true; |
| } |
| |
| up_write(&state->lock); |
| return ret; |
| } |
| |
| #endif /* CONFIG_RFS_ACCEL */ |
| |
| void efx_farch_filter_sync_rx_mode(struct efx_nic *efx) |
| { |
| struct net_device *net_dev = efx->net_dev; |
| struct netdev_hw_addr *ha; |
| union efx_multicast_hash *mc_hash = &efx->multicast_hash; |
| u32 crc; |
| int bit; |
| |
| if (!efx_dev_registered(efx)) |
| return; |
| |
| netif_addr_lock_bh(net_dev); |
| |
| efx->unicast_filter = !(net_dev->flags & IFF_PROMISC); |
| |
| /* Build multicast hash table */ |
| if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) { |
| memset(mc_hash, 0xff, sizeof(*mc_hash)); |
| } else { |
| memset(mc_hash, 0x00, sizeof(*mc_hash)); |
| netdev_for_each_mc_addr(ha, net_dev) { |
| crc = ether_crc_le(ETH_ALEN, ha->addr); |
| bit = crc & (EFX_MCAST_HASH_ENTRIES - 1); |
| __set_bit_le(bit, mc_hash); |
| } |
| |
| /* Broadcast packets go through the multicast hash filter. |
| * ether_crc_le() of the broadcast address is 0xbe2612ff |
| * so we always add bit 0xff to the mask. |
| */ |
| __set_bit_le(0xff, mc_hash); |
| } |
| |
| netif_addr_unlock_bh(net_dev); |
| } |