| // SPDX-License-Identifier: GPL-2.0 |
| // |
| // Copyright (C) 2018 Macronix International Co., Ltd. |
| // |
| // Authors: |
| // Mason Yang <masonccyang@mxic.com.tw> |
| // zhengxunli <zhengxunli@mxic.com.tw> |
| // Boris Brezillon <boris.brezillon@bootlin.com> |
| // |
| |
| #include <linux/clk.h> |
| #include <linux/io.h> |
| #include <linux/iopoll.h> |
| #include <linux/module.h> |
| #include <linux/mtd/nand.h> |
| #include <linux/mtd/nand-ecc-mxic.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/spi/spi.h> |
| #include <linux/spi/spi-mem.h> |
| |
| #define HC_CFG 0x0 |
| #define HC_CFG_IF_CFG(x) ((x) << 27) |
| #define HC_CFG_DUAL_SLAVE BIT(31) |
| #define HC_CFG_INDIVIDUAL BIT(30) |
| #define HC_CFG_NIO(x) (((x) / 4) << 27) |
| #define HC_CFG_TYPE(s, t) ((t) << (23 + ((s) * 2))) |
| #define HC_CFG_TYPE_SPI_NOR 0 |
| #define HC_CFG_TYPE_SPI_NAND 1 |
| #define HC_CFG_TYPE_SPI_RAM 2 |
| #define HC_CFG_TYPE_RAW_NAND 3 |
| #define HC_CFG_SLV_ACT(x) ((x) << 21) |
| #define HC_CFG_CLK_PH_EN BIT(20) |
| #define HC_CFG_CLK_POL_INV BIT(19) |
| #define HC_CFG_BIG_ENDIAN BIT(18) |
| #define HC_CFG_DATA_PASS BIT(17) |
| #define HC_CFG_IDLE_SIO_LVL(x) ((x) << 16) |
| #define HC_CFG_MAN_START_EN BIT(3) |
| #define HC_CFG_MAN_START BIT(2) |
| #define HC_CFG_MAN_CS_EN BIT(1) |
| #define HC_CFG_MAN_CS_ASSERT BIT(0) |
| |
| #define INT_STS 0x4 |
| #define INT_STS_EN 0x8 |
| #define INT_SIG_EN 0xc |
| #define INT_STS_ALL GENMASK(31, 0) |
| #define INT_RDY_PIN BIT(26) |
| #define INT_RDY_SR BIT(25) |
| #define INT_LNR_SUSP BIT(24) |
| #define INT_ECC_ERR BIT(17) |
| #define INT_CRC_ERR BIT(16) |
| #define INT_LWR_DIS BIT(12) |
| #define INT_LRD_DIS BIT(11) |
| #define INT_SDMA_INT BIT(10) |
| #define INT_DMA_FINISH BIT(9) |
| #define INT_RX_NOT_FULL BIT(3) |
| #define INT_RX_NOT_EMPTY BIT(2) |
| #define INT_TX_NOT_FULL BIT(1) |
| #define INT_TX_EMPTY BIT(0) |
| |
| #define HC_EN 0x10 |
| #define HC_EN_BIT BIT(0) |
| |
| #define TXD(x) (0x14 + ((x) * 4)) |
| #define RXD 0x24 |
| |
| #define SS_CTRL(s) (0x30 + ((s) * 4)) |
| #define LRD_CFG 0x44 |
| #define LWR_CFG 0x80 |
| #define RWW_CFG 0x70 |
| #define OP_READ BIT(23) |
| #define OP_DUMMY_CYC(x) ((x) << 17) |
| #define OP_ADDR_BYTES(x) ((x) << 14) |
| #define OP_CMD_BYTES(x) (((x) - 1) << 13) |
| #define OP_OCTA_CRC_EN BIT(12) |
| #define OP_DQS_EN BIT(11) |
| #define OP_ENHC_EN BIT(10) |
| #define OP_PREAMBLE_EN BIT(9) |
| #define OP_DATA_DDR BIT(8) |
| #define OP_DATA_BUSW(x) ((x) << 6) |
| #define OP_ADDR_DDR BIT(5) |
| #define OP_ADDR_BUSW(x) ((x) << 3) |
| #define OP_CMD_DDR BIT(2) |
| #define OP_CMD_BUSW(x) (x) |
| #define OP_BUSW_1 0 |
| #define OP_BUSW_2 1 |
| #define OP_BUSW_4 2 |
| #define OP_BUSW_8 3 |
| |
| #define OCTA_CRC 0x38 |
| #define OCTA_CRC_IN_EN(s) BIT(3 + ((s) * 16)) |
| #define OCTA_CRC_CHUNK(s, x) ((fls((x) / 32)) << (1 + ((s) * 16))) |
| #define OCTA_CRC_OUT_EN(s) BIT(0 + ((s) * 16)) |
| |
| #define ONFI_DIN_CNT(s) (0x3c + (s)) |
| |
| #define LRD_CTRL 0x48 |
| #define RWW_CTRL 0x74 |
| #define LWR_CTRL 0x84 |
| #define LMODE_EN BIT(31) |
| #define LMODE_SLV_ACT(x) ((x) << 21) |
| #define LMODE_CMD1(x) ((x) << 8) |
| #define LMODE_CMD0(x) (x) |
| |
| #define LRD_ADDR 0x4c |
| #define LWR_ADDR 0x88 |
| #define LRD_RANGE 0x50 |
| #define LWR_RANGE 0x8c |
| |
| #define AXI_SLV_ADDR 0x54 |
| |
| #define DMAC_RD_CFG 0x58 |
| #define DMAC_WR_CFG 0x94 |
| #define DMAC_CFG_PERIPH_EN BIT(31) |
| #define DMAC_CFG_ALLFLUSH_EN BIT(30) |
| #define DMAC_CFG_LASTFLUSH_EN BIT(29) |
| #define DMAC_CFG_QE(x) (((x) + 1) << 16) |
| #define DMAC_CFG_BURST_LEN(x) (((x) + 1) << 12) |
| #define DMAC_CFG_BURST_SZ(x) ((x) << 8) |
| #define DMAC_CFG_DIR_READ BIT(1) |
| #define DMAC_CFG_START BIT(0) |
| |
| #define DMAC_RD_CNT 0x5c |
| #define DMAC_WR_CNT 0x98 |
| |
| #define SDMA_ADDR 0x60 |
| |
| #define DMAM_CFG 0x64 |
| #define DMAM_CFG_START BIT(31) |
| #define DMAM_CFG_CONT BIT(30) |
| #define DMAM_CFG_SDMA_GAP(x) (fls((x) / 8192) << 2) |
| #define DMAM_CFG_DIR_READ BIT(1) |
| #define DMAM_CFG_EN BIT(0) |
| |
| #define DMAM_CNT 0x68 |
| |
| #define LNR_TIMER_TH 0x6c |
| |
| #define RDM_CFG0 0x78 |
| #define RDM_CFG0_POLY(x) (x) |
| |
| #define RDM_CFG1 0x7c |
| #define RDM_CFG1_RDM_EN BIT(31) |
| #define RDM_CFG1_SEED(x) (x) |
| |
| #define LWR_SUSP_CTRL 0x90 |
| #define LWR_SUSP_CTRL_EN BIT(31) |
| |
| #define DMAS_CTRL 0x9c |
| #define DMAS_CTRL_EN BIT(31) |
| #define DMAS_CTRL_DIR_READ BIT(30) |
| |
| #define DATA_STROB 0xa0 |
| #define DATA_STROB_EDO_EN BIT(2) |
| #define DATA_STROB_INV_POL BIT(1) |
| #define DATA_STROB_DELAY_2CYC BIT(0) |
| |
| #define IDLY_CODE(x) (0xa4 + ((x) * 4)) |
| #define IDLY_CODE_VAL(x, v) ((v) << (((x) % 4) * 8)) |
| |
| #define GPIO 0xc4 |
| #define GPIO_PT(x) BIT(3 + ((x) * 16)) |
| #define GPIO_RESET(x) BIT(2 + ((x) * 16)) |
| #define GPIO_HOLDB(x) BIT(1 + ((x) * 16)) |
| #define GPIO_WPB(x) BIT((x) * 16) |
| |
| #define HC_VER 0xd0 |
| |
| #define HW_TEST(x) (0xe0 + ((x) * 4)) |
| |
| struct mxic_spi { |
| struct device *dev; |
| struct clk *ps_clk; |
| struct clk *send_clk; |
| struct clk *send_dly_clk; |
| void __iomem *regs; |
| u32 cur_speed_hz; |
| struct { |
| void __iomem *map; |
| dma_addr_t dma; |
| size_t size; |
| } linear; |
| |
| struct { |
| bool use_pipelined_conf; |
| struct nand_ecc_engine *pipelined_engine; |
| void *ctx; |
| } ecc; |
| }; |
| |
| static int mxic_spi_clk_enable(struct mxic_spi *mxic) |
| { |
| int ret; |
| |
| ret = clk_prepare_enable(mxic->send_clk); |
| if (ret) |
| return ret; |
| |
| ret = clk_prepare_enable(mxic->send_dly_clk); |
| if (ret) |
| goto err_send_dly_clk; |
| |
| return ret; |
| |
| err_send_dly_clk: |
| clk_disable_unprepare(mxic->send_clk); |
| |
| return ret; |
| } |
| |
| static void mxic_spi_clk_disable(struct mxic_spi *mxic) |
| { |
| clk_disable_unprepare(mxic->send_clk); |
| clk_disable_unprepare(mxic->send_dly_clk); |
| } |
| |
| static void mxic_spi_set_input_delay_dqs(struct mxic_spi *mxic, u8 idly_code) |
| { |
| writel(IDLY_CODE_VAL(0, idly_code) | |
| IDLY_CODE_VAL(1, idly_code) | |
| IDLY_CODE_VAL(2, idly_code) | |
| IDLY_CODE_VAL(3, idly_code), |
| mxic->regs + IDLY_CODE(0)); |
| writel(IDLY_CODE_VAL(4, idly_code) | |
| IDLY_CODE_VAL(5, idly_code) | |
| IDLY_CODE_VAL(6, idly_code) | |
| IDLY_CODE_VAL(7, idly_code), |
| mxic->regs + IDLY_CODE(1)); |
| } |
| |
| static int mxic_spi_clk_setup(struct mxic_spi *mxic, unsigned long freq) |
| { |
| int ret; |
| |
| ret = clk_set_rate(mxic->send_clk, freq); |
| if (ret) |
| return ret; |
| |
| ret = clk_set_rate(mxic->send_dly_clk, freq); |
| if (ret) |
| return ret; |
| |
| /* |
| * A constant delay range from 0x0 ~ 0x1F for input delay, |
| * the unit is 78 ps, the max input delay is 2.418 ns. |
| */ |
| mxic_spi_set_input_delay_dqs(mxic, 0xf); |
| |
| /* |
| * Phase degree = 360 * freq * output-delay |
| * where output-delay is a constant value 1 ns in FPGA. |
| * |
| * Get Phase degree = 360 * freq * 1 ns |
| * = 360 * freq * 1 sec / 1000000000 |
| * = 9 * freq / 25000000 |
| */ |
| ret = clk_set_phase(mxic->send_dly_clk, 9 * freq / 25000000); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| static int mxic_spi_set_freq(struct mxic_spi *mxic, unsigned long freq) |
| { |
| int ret; |
| |
| if (mxic->cur_speed_hz == freq) |
| return 0; |
| |
| mxic_spi_clk_disable(mxic); |
| ret = mxic_spi_clk_setup(mxic, freq); |
| if (ret) |
| return ret; |
| |
| ret = mxic_spi_clk_enable(mxic); |
| if (ret) |
| return ret; |
| |
| mxic->cur_speed_hz = freq; |
| |
| return 0; |
| } |
| |
| static void mxic_spi_hw_init(struct mxic_spi *mxic) |
| { |
| writel(0, mxic->regs + DATA_STROB); |
| writel(INT_STS_ALL, mxic->regs + INT_STS_EN); |
| writel(0, mxic->regs + HC_EN); |
| writel(0, mxic->regs + LRD_CFG); |
| writel(0, mxic->regs + LRD_CTRL); |
| writel(HC_CFG_NIO(1) | HC_CFG_TYPE(0, HC_CFG_TYPE_SPI_NOR) | |
| HC_CFG_SLV_ACT(0) | HC_CFG_MAN_CS_EN | HC_CFG_IDLE_SIO_LVL(1), |
| mxic->regs + HC_CFG); |
| } |
| |
| static u32 mxic_spi_prep_hc_cfg(struct spi_device *spi, u32 flags) |
| { |
| int nio = 1; |
| |
| if (spi->mode & (SPI_TX_OCTAL | SPI_RX_OCTAL)) |
| nio = 8; |
| else if (spi->mode & (SPI_TX_QUAD | SPI_RX_QUAD)) |
| nio = 4; |
| else if (spi->mode & (SPI_TX_DUAL | SPI_RX_DUAL)) |
| nio = 2; |
| |
| return flags | HC_CFG_NIO(nio) | |
| HC_CFG_TYPE(spi->chip_select, HC_CFG_TYPE_SPI_NOR) | |
| HC_CFG_SLV_ACT(spi->chip_select) | HC_CFG_IDLE_SIO_LVL(1); |
| } |
| |
| static u32 mxic_spi_mem_prep_op_cfg(const struct spi_mem_op *op, |
| unsigned int data_len) |
| { |
| u32 cfg = OP_CMD_BYTES(op->cmd.nbytes) | |
| OP_CMD_BUSW(fls(op->cmd.buswidth) - 1) | |
| (op->cmd.dtr ? OP_CMD_DDR : 0); |
| |
| if (op->addr.nbytes) |
| cfg |= OP_ADDR_BYTES(op->addr.nbytes) | |
| OP_ADDR_BUSW(fls(op->addr.buswidth) - 1) | |
| (op->addr.dtr ? OP_ADDR_DDR : 0); |
| |
| if (op->dummy.nbytes) |
| cfg |= OP_DUMMY_CYC(op->dummy.nbytes); |
| |
| /* Direct mapping data.nbytes field is not populated */ |
| if (data_len) { |
| cfg |= OP_DATA_BUSW(fls(op->data.buswidth) - 1) | |
| (op->data.dtr ? OP_DATA_DDR : 0); |
| if (op->data.dir == SPI_MEM_DATA_IN) { |
| cfg |= OP_READ; |
| if (op->data.dtr) |
| cfg |= OP_DQS_EN; |
| } |
| } |
| |
| return cfg; |
| } |
| |
| static int mxic_spi_data_xfer(struct mxic_spi *mxic, const void *txbuf, |
| void *rxbuf, unsigned int len) |
| { |
| unsigned int pos = 0; |
| |
| while (pos < len) { |
| unsigned int nbytes = len - pos; |
| u32 data = 0xffffffff; |
| u32 sts; |
| int ret; |
| |
| if (nbytes > 4) |
| nbytes = 4; |
| |
| if (txbuf) |
| memcpy(&data, txbuf + pos, nbytes); |
| |
| ret = readl_poll_timeout(mxic->regs + INT_STS, sts, |
| sts & INT_TX_EMPTY, 0, USEC_PER_SEC); |
| if (ret) |
| return ret; |
| |
| writel(data, mxic->regs + TXD(nbytes % 4)); |
| |
| ret = readl_poll_timeout(mxic->regs + INT_STS, sts, |
| sts & INT_TX_EMPTY, 0, USEC_PER_SEC); |
| if (ret) |
| return ret; |
| |
| ret = readl_poll_timeout(mxic->regs + INT_STS, sts, |
| sts & INT_RX_NOT_EMPTY, 0, |
| USEC_PER_SEC); |
| if (ret) |
| return ret; |
| |
| data = readl(mxic->regs + RXD); |
| if (rxbuf) { |
| data >>= (8 * (4 - nbytes)); |
| memcpy(rxbuf + pos, &data, nbytes); |
| } |
| WARN_ON(readl(mxic->regs + INT_STS) & INT_RX_NOT_EMPTY); |
| |
| pos += nbytes; |
| } |
| |
| return 0; |
| } |
| |
| static ssize_t mxic_spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc, |
| u64 offs, size_t len, void *buf) |
| { |
| struct mxic_spi *mxic = spi_master_get_devdata(desc->mem->spi->master); |
| int ret; |
| u32 sts; |
| |
| if (WARN_ON(offs + desc->info.offset + len > U32_MAX)) |
| return -EINVAL; |
| |
| writel(mxic_spi_prep_hc_cfg(desc->mem->spi, 0), mxic->regs + HC_CFG); |
| |
| writel(mxic_spi_mem_prep_op_cfg(&desc->info.op_tmpl, len), |
| mxic->regs + LRD_CFG); |
| writel(desc->info.offset + offs, mxic->regs + LRD_ADDR); |
| len = min_t(size_t, len, mxic->linear.size); |
| writel(len, mxic->regs + LRD_RANGE); |
| writel(LMODE_CMD0(desc->info.op_tmpl.cmd.opcode) | |
| LMODE_SLV_ACT(desc->mem->spi->chip_select) | |
| LMODE_EN, |
| mxic->regs + LRD_CTRL); |
| |
| if (mxic->ecc.use_pipelined_conf && desc->info.op_tmpl.data.ecc) { |
| ret = mxic_ecc_process_data_pipelined(mxic->ecc.pipelined_engine, |
| NAND_PAGE_READ, |
| mxic->linear.dma + offs); |
| if (ret) |
| return ret; |
| } else { |
| memcpy_fromio(buf, mxic->linear.map, len); |
| } |
| |
| writel(INT_LRD_DIS, mxic->regs + INT_STS); |
| writel(0, mxic->regs + LRD_CTRL); |
| |
| ret = readl_poll_timeout(mxic->regs + INT_STS, sts, |
| sts & INT_LRD_DIS, 0, USEC_PER_SEC); |
| if (ret) |
| return ret; |
| |
| return len; |
| } |
| |
| static ssize_t mxic_spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc, |
| u64 offs, size_t len, |
| const void *buf) |
| { |
| struct mxic_spi *mxic = spi_master_get_devdata(desc->mem->spi->master); |
| u32 sts; |
| int ret; |
| |
| if (WARN_ON(offs + desc->info.offset + len > U32_MAX)) |
| return -EINVAL; |
| |
| writel(mxic_spi_prep_hc_cfg(desc->mem->spi, 0), mxic->regs + HC_CFG); |
| |
| writel(mxic_spi_mem_prep_op_cfg(&desc->info.op_tmpl, len), |
| mxic->regs + LWR_CFG); |
| writel(desc->info.offset + offs, mxic->regs + LWR_ADDR); |
| len = min_t(size_t, len, mxic->linear.size); |
| writel(len, mxic->regs + LWR_RANGE); |
| writel(LMODE_CMD0(desc->info.op_tmpl.cmd.opcode) | |
| LMODE_SLV_ACT(desc->mem->spi->chip_select) | |
| LMODE_EN, |
| mxic->regs + LWR_CTRL); |
| |
| if (mxic->ecc.use_pipelined_conf && desc->info.op_tmpl.data.ecc) { |
| ret = mxic_ecc_process_data_pipelined(mxic->ecc.pipelined_engine, |
| NAND_PAGE_WRITE, |
| mxic->linear.dma + offs); |
| if (ret) |
| return ret; |
| } else { |
| memcpy_toio(mxic->linear.map, buf, len); |
| } |
| |
| writel(INT_LWR_DIS, mxic->regs + INT_STS); |
| writel(0, mxic->regs + LWR_CTRL); |
| |
| ret = readl_poll_timeout(mxic->regs + INT_STS, sts, |
| sts & INT_LWR_DIS, 0, USEC_PER_SEC); |
| if (ret) |
| return ret; |
| |
| return len; |
| } |
| |
| static bool mxic_spi_mem_supports_op(struct spi_mem *mem, |
| const struct spi_mem_op *op) |
| { |
| if (op->data.buswidth > 8 || op->addr.buswidth > 8 || |
| op->dummy.buswidth > 8 || op->cmd.buswidth > 8) |
| return false; |
| |
| if (op->data.nbytes && op->dummy.nbytes && |
| op->data.buswidth != op->dummy.buswidth) |
| return false; |
| |
| if (op->addr.nbytes > 7) |
| return false; |
| |
| return spi_mem_default_supports_op(mem, op); |
| } |
| |
| static int mxic_spi_mem_dirmap_create(struct spi_mem_dirmap_desc *desc) |
| { |
| struct mxic_spi *mxic = spi_master_get_devdata(desc->mem->spi->master); |
| |
| if (!mxic->linear.map) |
| return -EINVAL; |
| |
| if (desc->info.offset + desc->info.length > U32_MAX) |
| return -EINVAL; |
| |
| if (!mxic_spi_mem_supports_op(desc->mem, &desc->info.op_tmpl)) |
| return -EOPNOTSUPP; |
| |
| return 0; |
| } |
| |
| static int mxic_spi_mem_exec_op(struct spi_mem *mem, |
| const struct spi_mem_op *op) |
| { |
| struct mxic_spi *mxic = spi_master_get_devdata(mem->spi->master); |
| int i, ret; |
| u8 addr[8], cmd[2]; |
| |
| ret = mxic_spi_set_freq(mxic, mem->spi->max_speed_hz); |
| if (ret) |
| return ret; |
| |
| writel(mxic_spi_prep_hc_cfg(mem->spi, HC_CFG_MAN_CS_EN), |
| mxic->regs + HC_CFG); |
| |
| writel(HC_EN_BIT, mxic->regs + HC_EN); |
| |
| writel(mxic_spi_mem_prep_op_cfg(op, op->data.nbytes), |
| mxic->regs + SS_CTRL(mem->spi->chip_select)); |
| |
| writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT, |
| mxic->regs + HC_CFG); |
| |
| for (i = 0; i < op->cmd.nbytes; i++) |
| cmd[i] = op->cmd.opcode >> (8 * (op->cmd.nbytes - i - 1)); |
| |
| ret = mxic_spi_data_xfer(mxic, cmd, NULL, op->cmd.nbytes); |
| if (ret) |
| goto out; |
| |
| for (i = 0; i < op->addr.nbytes; i++) |
| addr[i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1)); |
| |
| ret = mxic_spi_data_xfer(mxic, addr, NULL, op->addr.nbytes); |
| if (ret) |
| goto out; |
| |
| ret = mxic_spi_data_xfer(mxic, NULL, NULL, op->dummy.nbytes); |
| if (ret) |
| goto out; |
| |
| ret = mxic_spi_data_xfer(mxic, |
| op->data.dir == SPI_MEM_DATA_OUT ? |
| op->data.buf.out : NULL, |
| op->data.dir == SPI_MEM_DATA_IN ? |
| op->data.buf.in : NULL, |
| op->data.nbytes); |
| |
| out: |
| writel(readl(mxic->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT, |
| mxic->regs + HC_CFG); |
| writel(0, mxic->regs + HC_EN); |
| |
| return ret; |
| } |
| |
| static const struct spi_controller_mem_ops mxic_spi_mem_ops = { |
| .supports_op = mxic_spi_mem_supports_op, |
| .exec_op = mxic_spi_mem_exec_op, |
| .dirmap_create = mxic_spi_mem_dirmap_create, |
| .dirmap_read = mxic_spi_mem_dirmap_read, |
| .dirmap_write = mxic_spi_mem_dirmap_write, |
| }; |
| |
| static const struct spi_controller_mem_caps mxic_spi_mem_caps = { |
| .dtr = true, |
| .ecc = true, |
| }; |
| |
| static void mxic_spi_set_cs(struct spi_device *spi, bool lvl) |
| { |
| struct mxic_spi *mxic = spi_master_get_devdata(spi->master); |
| |
| if (!lvl) { |
| writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_EN, |
| mxic->regs + HC_CFG); |
| writel(HC_EN_BIT, mxic->regs + HC_EN); |
| writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT, |
| mxic->regs + HC_CFG); |
| } else { |
| writel(readl(mxic->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT, |
| mxic->regs + HC_CFG); |
| writel(0, mxic->regs + HC_EN); |
| } |
| } |
| |
| static int mxic_spi_transfer_one(struct spi_master *master, |
| struct spi_device *spi, |
| struct spi_transfer *t) |
| { |
| struct mxic_spi *mxic = spi_master_get_devdata(master); |
| unsigned int busw = OP_BUSW_1; |
| int ret; |
| |
| if (t->rx_buf && t->tx_buf) { |
| if (((spi->mode & SPI_TX_QUAD) && |
| !(spi->mode & SPI_RX_QUAD)) || |
| ((spi->mode & SPI_TX_DUAL) && |
| !(spi->mode & SPI_RX_DUAL))) |
| return -ENOTSUPP; |
| } |
| |
| ret = mxic_spi_set_freq(mxic, t->speed_hz); |
| if (ret) |
| return ret; |
| |
| if (t->tx_buf) { |
| if (spi->mode & SPI_TX_QUAD) |
| busw = OP_BUSW_4; |
| else if (spi->mode & SPI_TX_DUAL) |
| busw = OP_BUSW_2; |
| } else if (t->rx_buf) { |
| if (spi->mode & SPI_RX_QUAD) |
| busw = OP_BUSW_4; |
| else if (spi->mode & SPI_RX_DUAL) |
| busw = OP_BUSW_2; |
| } |
| |
| writel(OP_CMD_BYTES(1) | OP_CMD_BUSW(busw) | |
| OP_DATA_BUSW(busw) | (t->rx_buf ? OP_READ : 0), |
| mxic->regs + SS_CTRL(0)); |
| |
| ret = mxic_spi_data_xfer(mxic, t->tx_buf, t->rx_buf, t->len); |
| if (ret) |
| return ret; |
| |
| spi_finalize_current_transfer(master); |
| |
| return 0; |
| } |
| |
| /* ECC wrapper */ |
| static int mxic_spi_mem_ecc_init_ctx(struct nand_device *nand) |
| { |
| struct nand_ecc_engine_ops *ops = mxic_ecc_get_pipelined_ops(); |
| struct mxic_spi *mxic = nand->ecc.engine->priv; |
| |
| mxic->ecc.use_pipelined_conf = true; |
| |
| return ops->init_ctx(nand); |
| } |
| |
| static void mxic_spi_mem_ecc_cleanup_ctx(struct nand_device *nand) |
| { |
| struct nand_ecc_engine_ops *ops = mxic_ecc_get_pipelined_ops(); |
| struct mxic_spi *mxic = nand->ecc.engine->priv; |
| |
| mxic->ecc.use_pipelined_conf = false; |
| |
| ops->cleanup_ctx(nand); |
| } |
| |
| static int mxic_spi_mem_ecc_prepare_io_req(struct nand_device *nand, |
| struct nand_page_io_req *req) |
| { |
| struct nand_ecc_engine_ops *ops = mxic_ecc_get_pipelined_ops(); |
| |
| return ops->prepare_io_req(nand, req); |
| } |
| |
| static int mxic_spi_mem_ecc_finish_io_req(struct nand_device *nand, |
| struct nand_page_io_req *req) |
| { |
| struct nand_ecc_engine_ops *ops = mxic_ecc_get_pipelined_ops(); |
| |
| return ops->finish_io_req(nand, req); |
| } |
| |
| static struct nand_ecc_engine_ops mxic_spi_mem_ecc_engine_pipelined_ops = { |
| .init_ctx = mxic_spi_mem_ecc_init_ctx, |
| .cleanup_ctx = mxic_spi_mem_ecc_cleanup_ctx, |
| .prepare_io_req = mxic_spi_mem_ecc_prepare_io_req, |
| .finish_io_req = mxic_spi_mem_ecc_finish_io_req, |
| }; |
| |
| static void mxic_spi_mem_ecc_remove(struct mxic_spi *mxic) |
| { |
| if (mxic->ecc.pipelined_engine) { |
| mxic_ecc_put_pipelined_engine(mxic->ecc.pipelined_engine); |
| nand_ecc_unregister_on_host_hw_engine(mxic->ecc.pipelined_engine); |
| } |
| } |
| |
| static int mxic_spi_mem_ecc_probe(struct platform_device *pdev, |
| struct mxic_spi *mxic) |
| { |
| struct nand_ecc_engine *eng; |
| |
| if (!mxic_ecc_get_pipelined_ops()) |
| return -EOPNOTSUPP; |
| |
| eng = mxic_ecc_get_pipelined_engine(pdev); |
| if (IS_ERR(eng)) |
| return PTR_ERR(eng); |
| |
| eng->dev = &pdev->dev; |
| eng->integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED; |
| eng->ops = &mxic_spi_mem_ecc_engine_pipelined_ops; |
| eng->priv = mxic; |
| mxic->ecc.pipelined_engine = eng; |
| nand_ecc_register_on_host_hw_engine(eng); |
| |
| return 0; |
| } |
| |
| static int __maybe_unused mxic_spi_runtime_suspend(struct device *dev) |
| { |
| struct spi_master *master = dev_get_drvdata(dev); |
| struct mxic_spi *mxic = spi_master_get_devdata(master); |
| |
| mxic_spi_clk_disable(mxic); |
| clk_disable_unprepare(mxic->ps_clk); |
| |
| return 0; |
| } |
| |
| static int __maybe_unused mxic_spi_runtime_resume(struct device *dev) |
| { |
| struct spi_master *master = dev_get_drvdata(dev); |
| struct mxic_spi *mxic = spi_master_get_devdata(master); |
| int ret; |
| |
| ret = clk_prepare_enable(mxic->ps_clk); |
| if (ret) { |
| dev_err(dev, "Cannot enable ps_clock.\n"); |
| return ret; |
| } |
| |
| return mxic_spi_clk_enable(mxic); |
| } |
| |
| static const struct dev_pm_ops mxic_spi_dev_pm_ops = { |
| SET_RUNTIME_PM_OPS(mxic_spi_runtime_suspend, |
| mxic_spi_runtime_resume, NULL) |
| }; |
| |
| static int mxic_spi_probe(struct platform_device *pdev) |
| { |
| struct spi_master *master; |
| struct resource *res; |
| struct mxic_spi *mxic; |
| int ret; |
| |
| master = devm_spi_alloc_master(&pdev->dev, sizeof(struct mxic_spi)); |
| if (!master) |
| return -ENOMEM; |
| |
| platform_set_drvdata(pdev, master); |
| |
| mxic = spi_master_get_devdata(master); |
| mxic->dev = &pdev->dev; |
| |
| master->dev.of_node = pdev->dev.of_node; |
| |
| mxic->ps_clk = devm_clk_get(&pdev->dev, "ps_clk"); |
| if (IS_ERR(mxic->ps_clk)) |
| return PTR_ERR(mxic->ps_clk); |
| |
| mxic->send_clk = devm_clk_get(&pdev->dev, "send_clk"); |
| if (IS_ERR(mxic->send_clk)) |
| return PTR_ERR(mxic->send_clk); |
| |
| mxic->send_dly_clk = devm_clk_get(&pdev->dev, "send_dly_clk"); |
| if (IS_ERR(mxic->send_dly_clk)) |
| return PTR_ERR(mxic->send_dly_clk); |
| |
| mxic->regs = devm_platform_ioremap_resource_byname(pdev, "regs"); |
| if (IS_ERR(mxic->regs)) |
| return PTR_ERR(mxic->regs); |
| |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dirmap"); |
| mxic->linear.map = devm_ioremap_resource(&pdev->dev, res); |
| if (!IS_ERR(mxic->linear.map)) { |
| mxic->linear.dma = res->start; |
| mxic->linear.size = resource_size(res); |
| } else { |
| mxic->linear.map = NULL; |
| } |
| |
| pm_runtime_enable(&pdev->dev); |
| master->auto_runtime_pm = true; |
| |
| master->num_chipselect = 1; |
| master->mem_ops = &mxic_spi_mem_ops; |
| master->mem_caps = &mxic_spi_mem_caps; |
| |
| master->set_cs = mxic_spi_set_cs; |
| master->transfer_one = mxic_spi_transfer_one; |
| master->bits_per_word_mask = SPI_BPW_MASK(8); |
| master->mode_bits = SPI_CPOL | SPI_CPHA | |
| SPI_RX_DUAL | SPI_TX_DUAL | |
| SPI_RX_QUAD | SPI_TX_QUAD | |
| SPI_RX_OCTAL | SPI_TX_OCTAL; |
| |
| mxic_spi_hw_init(mxic); |
| |
| ret = mxic_spi_mem_ecc_probe(pdev, mxic); |
| if (ret == -EPROBE_DEFER) { |
| pm_runtime_disable(&pdev->dev); |
| return ret; |
| } |
| |
| ret = spi_register_master(master); |
| if (ret) { |
| dev_err(&pdev->dev, "spi_register_master failed\n"); |
| pm_runtime_disable(&pdev->dev); |
| mxic_spi_mem_ecc_remove(mxic); |
| } |
| |
| return ret; |
| } |
| |
| static int mxic_spi_remove(struct platform_device *pdev) |
| { |
| struct spi_master *master = platform_get_drvdata(pdev); |
| struct mxic_spi *mxic = spi_master_get_devdata(master); |
| |
| pm_runtime_disable(&pdev->dev); |
| mxic_spi_mem_ecc_remove(mxic); |
| spi_unregister_master(master); |
| |
| return 0; |
| } |
| |
| static const struct of_device_id mxic_spi_of_ids[] = { |
| { .compatible = "mxicy,mx25f0a-spi", }, |
| { /* sentinel */ } |
| }; |
| MODULE_DEVICE_TABLE(of, mxic_spi_of_ids); |
| |
| static struct platform_driver mxic_spi_driver = { |
| .probe = mxic_spi_probe, |
| .remove = mxic_spi_remove, |
| .driver = { |
| .name = "mxic-spi", |
| .of_match_table = mxic_spi_of_ids, |
| .pm = &mxic_spi_dev_pm_ops, |
| }, |
| }; |
| module_platform_driver(mxic_spi_driver); |
| |
| MODULE_AUTHOR("Mason Yang <masonccyang@mxic.com.tw>"); |
| MODULE_DESCRIPTION("MX25F0A SPI controller driver"); |
| MODULE_LICENSE("GPL v2"); |