| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * |
| * Copyright (C) 2009, 2010 ARM Limited |
| * |
| * Author: Will Deacon <will.deacon@arm.com> |
| */ |
| |
| /* |
| * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility, |
| * using the CPU's debug registers. |
| */ |
| #define pr_fmt(fmt) "hw-breakpoint: " fmt |
| |
| #include <linux/errno.h> |
| #include <linux/hardirq.h> |
| #include <linux/perf_event.h> |
| #include <linux/hw_breakpoint.h> |
| #include <linux/smp.h> |
| #include <linux/cfi.h> |
| #include <linux/cpu_pm.h> |
| #include <linux/coresight.h> |
| |
| #include <asm/cacheflush.h> |
| #include <asm/cputype.h> |
| #include <asm/current.h> |
| #include <asm/hw_breakpoint.h> |
| #include <asm/traps.h> |
| |
| /* Breakpoint currently in use for each BRP. */ |
| static DEFINE_PER_CPU(struct perf_event *, bp_on_reg[ARM_MAX_BRP]); |
| |
| /* Watchpoint currently in use for each WRP. */ |
| static DEFINE_PER_CPU(struct perf_event *, wp_on_reg[ARM_MAX_WRP]); |
| |
| /* Number of BRP/WRP registers on this CPU. */ |
| static int core_num_brps __ro_after_init; |
| static int core_num_wrps __ro_after_init; |
| |
| /* Debug architecture version. */ |
| static u8 debug_arch __ro_after_init; |
| |
| /* Does debug architecture support OS Save and Restore? */ |
| static bool has_ossr __ro_after_init; |
| |
| /* Maximum supported watchpoint length. */ |
| static u8 max_watchpoint_len __ro_after_init; |
| |
| #define READ_WB_REG_CASE(OP2, M, VAL) \ |
| case ((OP2 << 4) + M): \ |
| ARM_DBG_READ(c0, c ## M, OP2, VAL); \ |
| break |
| |
| #define WRITE_WB_REG_CASE(OP2, M, VAL) \ |
| case ((OP2 << 4) + M): \ |
| ARM_DBG_WRITE(c0, c ## M, OP2, VAL); \ |
| break |
| |
| #define GEN_READ_WB_REG_CASES(OP2, VAL) \ |
| READ_WB_REG_CASE(OP2, 0, VAL); \ |
| READ_WB_REG_CASE(OP2, 1, VAL); \ |
| READ_WB_REG_CASE(OP2, 2, VAL); \ |
| READ_WB_REG_CASE(OP2, 3, VAL); \ |
| READ_WB_REG_CASE(OP2, 4, VAL); \ |
| READ_WB_REG_CASE(OP2, 5, VAL); \ |
| READ_WB_REG_CASE(OP2, 6, VAL); \ |
| READ_WB_REG_CASE(OP2, 7, VAL); \ |
| READ_WB_REG_CASE(OP2, 8, VAL); \ |
| READ_WB_REG_CASE(OP2, 9, VAL); \ |
| READ_WB_REG_CASE(OP2, 10, VAL); \ |
| READ_WB_REG_CASE(OP2, 11, VAL); \ |
| READ_WB_REG_CASE(OP2, 12, VAL); \ |
| READ_WB_REG_CASE(OP2, 13, VAL); \ |
| READ_WB_REG_CASE(OP2, 14, VAL); \ |
| READ_WB_REG_CASE(OP2, 15, VAL) |
| |
| #define GEN_WRITE_WB_REG_CASES(OP2, VAL) \ |
| WRITE_WB_REG_CASE(OP2, 0, VAL); \ |
| WRITE_WB_REG_CASE(OP2, 1, VAL); \ |
| WRITE_WB_REG_CASE(OP2, 2, VAL); \ |
| WRITE_WB_REG_CASE(OP2, 3, VAL); \ |
| WRITE_WB_REG_CASE(OP2, 4, VAL); \ |
| WRITE_WB_REG_CASE(OP2, 5, VAL); \ |
| WRITE_WB_REG_CASE(OP2, 6, VAL); \ |
| WRITE_WB_REG_CASE(OP2, 7, VAL); \ |
| WRITE_WB_REG_CASE(OP2, 8, VAL); \ |
| WRITE_WB_REG_CASE(OP2, 9, VAL); \ |
| WRITE_WB_REG_CASE(OP2, 10, VAL); \ |
| WRITE_WB_REG_CASE(OP2, 11, VAL); \ |
| WRITE_WB_REG_CASE(OP2, 12, VAL); \ |
| WRITE_WB_REG_CASE(OP2, 13, VAL); \ |
| WRITE_WB_REG_CASE(OP2, 14, VAL); \ |
| WRITE_WB_REG_CASE(OP2, 15, VAL) |
| |
| static u32 read_wb_reg(int n) |
| { |
| u32 val = 0; |
| |
| switch (n) { |
| GEN_READ_WB_REG_CASES(ARM_OP2_BVR, val); |
| GEN_READ_WB_REG_CASES(ARM_OP2_BCR, val); |
| GEN_READ_WB_REG_CASES(ARM_OP2_WVR, val); |
| GEN_READ_WB_REG_CASES(ARM_OP2_WCR, val); |
| default: |
| pr_warn("attempt to read from unknown breakpoint register %d\n", |
| n); |
| } |
| |
| return val; |
| } |
| |
| static void write_wb_reg(int n, u32 val) |
| { |
| switch (n) { |
| GEN_WRITE_WB_REG_CASES(ARM_OP2_BVR, val); |
| GEN_WRITE_WB_REG_CASES(ARM_OP2_BCR, val); |
| GEN_WRITE_WB_REG_CASES(ARM_OP2_WVR, val); |
| GEN_WRITE_WB_REG_CASES(ARM_OP2_WCR, val); |
| default: |
| pr_warn("attempt to write to unknown breakpoint register %d\n", |
| n); |
| } |
| isb(); |
| } |
| |
| /* Determine debug architecture. */ |
| static u8 get_debug_arch(void) |
| { |
| u32 didr; |
| |
| /* Do we implement the extended CPUID interface? */ |
| if (((read_cpuid_id() >> 16) & 0xf) != 0xf) { |
| pr_warn_once("CPUID feature registers not supported. " |
| "Assuming v6 debug is present.\n"); |
| return ARM_DEBUG_ARCH_V6; |
| } |
| |
| ARM_DBG_READ(c0, c0, 0, didr); |
| return (didr >> 16) & 0xf; |
| } |
| |
| u8 arch_get_debug_arch(void) |
| { |
| return debug_arch; |
| } |
| |
| static int debug_arch_supported(void) |
| { |
| u8 arch = get_debug_arch(); |
| |
| /* We don't support the memory-mapped interface. */ |
| return (arch >= ARM_DEBUG_ARCH_V6 && arch <= ARM_DEBUG_ARCH_V7_ECP14) || |
| arch >= ARM_DEBUG_ARCH_V7_1; |
| } |
| |
| /* Can we determine the watchpoint access type from the fsr? */ |
| static int debug_exception_updates_fsr(void) |
| { |
| return get_debug_arch() >= ARM_DEBUG_ARCH_V8; |
| } |
| |
| /* Determine number of WRP registers available. */ |
| static int get_num_wrp_resources(void) |
| { |
| u32 didr; |
| ARM_DBG_READ(c0, c0, 0, didr); |
| return ((didr >> 28) & 0xf) + 1; |
| } |
| |
| /* Determine number of BRP registers available. */ |
| static int get_num_brp_resources(void) |
| { |
| u32 didr; |
| ARM_DBG_READ(c0, c0, 0, didr); |
| return ((didr >> 24) & 0xf) + 1; |
| } |
| |
| /* Does this core support mismatch breakpoints? */ |
| static int core_has_mismatch_brps(void) |
| { |
| return (get_debug_arch() >= ARM_DEBUG_ARCH_V7_ECP14 && |
| get_num_brp_resources() > 1); |
| } |
| |
| /* Determine number of usable WRPs available. */ |
| static int get_num_wrps(void) |
| { |
| /* |
| * On debug architectures prior to 7.1, when a watchpoint fires, the |
| * only way to work out which watchpoint it was is by disassembling |
| * the faulting instruction and working out the address of the memory |
| * access. |
| * |
| * Furthermore, we can only do this if the watchpoint was precise |
| * since imprecise watchpoints prevent us from calculating register |
| * based addresses. |
| * |
| * Providing we have more than 1 breakpoint register, we only report |
| * a single watchpoint register for the time being. This way, we always |
| * know which watchpoint fired. In the future we can either add a |
| * disassembler and address generation emulator, or we can insert a |
| * check to see if the DFAR is set on watchpoint exception entry |
| * [the ARM ARM states that the DFAR is UNKNOWN, but experience shows |
| * that it is set on some implementations]. |
| */ |
| if (get_debug_arch() < ARM_DEBUG_ARCH_V7_1) |
| return 1; |
| |
| return get_num_wrp_resources(); |
| } |
| |
| /* Determine number of usable BRPs available. */ |
| static int get_num_brps(void) |
| { |
| int brps = get_num_brp_resources(); |
| return core_has_mismatch_brps() ? brps - 1 : brps; |
| } |
| |
| /* |
| * In order to access the breakpoint/watchpoint control registers, |
| * we must be running in debug monitor mode. Unfortunately, we can |
| * be put into halting debug mode at any time by an external debugger |
| * but there is nothing we can do to prevent that. |
| */ |
| static int monitor_mode_enabled(void) |
| { |
| u32 dscr; |
| ARM_DBG_READ(c0, c1, 0, dscr); |
| return !!(dscr & ARM_DSCR_MDBGEN); |
| } |
| |
| static int enable_monitor_mode(void) |
| { |
| u32 dscr; |
| ARM_DBG_READ(c0, c1, 0, dscr); |
| |
| /* If monitor mode is already enabled, just return. */ |
| if (dscr & ARM_DSCR_MDBGEN) |
| goto out; |
| |
| /* Write to the corresponding DSCR. */ |
| switch (get_debug_arch()) { |
| case ARM_DEBUG_ARCH_V6: |
| case ARM_DEBUG_ARCH_V6_1: |
| ARM_DBG_WRITE(c0, c1, 0, (dscr | ARM_DSCR_MDBGEN)); |
| break; |
| case ARM_DEBUG_ARCH_V7_ECP14: |
| case ARM_DEBUG_ARCH_V7_1: |
| case ARM_DEBUG_ARCH_V8: |
| case ARM_DEBUG_ARCH_V8_1: |
| case ARM_DEBUG_ARCH_V8_2: |
| case ARM_DEBUG_ARCH_V8_4: |
| ARM_DBG_WRITE(c0, c2, 2, (dscr | ARM_DSCR_MDBGEN)); |
| isb(); |
| break; |
| default: |
| return -ENODEV; |
| } |
| |
| /* Check that the write made it through. */ |
| ARM_DBG_READ(c0, c1, 0, dscr); |
| if (!(dscr & ARM_DSCR_MDBGEN)) { |
| pr_warn_once("Failed to enable monitor mode on CPU %d.\n", |
| smp_processor_id()); |
| return -EPERM; |
| } |
| |
| out: |
| return 0; |
| } |
| |
| int hw_breakpoint_slots(int type) |
| { |
| if (!debug_arch_supported()) |
| return 0; |
| |
| /* |
| * We can be called early, so don't rely on |
| * our static variables being initialised. |
| */ |
| switch (type) { |
| case TYPE_INST: |
| return get_num_brps(); |
| case TYPE_DATA: |
| return get_num_wrps(); |
| default: |
| pr_warn("unknown slot type: %d\n", type); |
| return 0; |
| } |
| } |
| |
| /* |
| * Check if 8-bit byte-address select is available. |
| * This clobbers WRP 0. |
| */ |
| static u8 get_max_wp_len(void) |
| { |
| u32 ctrl_reg; |
| struct arch_hw_breakpoint_ctrl ctrl; |
| u8 size = 4; |
| |
| if (debug_arch < ARM_DEBUG_ARCH_V7_ECP14) |
| goto out; |
| |
| memset(&ctrl, 0, sizeof(ctrl)); |
| ctrl.len = ARM_BREAKPOINT_LEN_8; |
| ctrl_reg = encode_ctrl_reg(ctrl); |
| |
| write_wb_reg(ARM_BASE_WVR, 0); |
| write_wb_reg(ARM_BASE_WCR, ctrl_reg); |
| if ((read_wb_reg(ARM_BASE_WCR) & ctrl_reg) == ctrl_reg) |
| size = 8; |
| |
| out: |
| return size; |
| } |
| |
| u8 arch_get_max_wp_len(void) |
| { |
| return max_watchpoint_len; |
| } |
| |
| /* |
| * Install a perf counter breakpoint. |
| */ |
| int arch_install_hw_breakpoint(struct perf_event *bp) |
| { |
| struct arch_hw_breakpoint *info = counter_arch_bp(bp); |
| struct perf_event **slot, **slots; |
| int i, max_slots, ctrl_base, val_base; |
| u32 addr, ctrl; |
| |
| addr = info->address; |
| ctrl = encode_ctrl_reg(info->ctrl) | 0x1; |
| |
| if (info->ctrl.type == ARM_BREAKPOINT_EXECUTE) { |
| /* Breakpoint */ |
| ctrl_base = ARM_BASE_BCR; |
| val_base = ARM_BASE_BVR; |
| slots = this_cpu_ptr(bp_on_reg); |
| max_slots = core_num_brps; |
| } else { |
| /* Watchpoint */ |
| ctrl_base = ARM_BASE_WCR; |
| val_base = ARM_BASE_WVR; |
| slots = this_cpu_ptr(wp_on_reg); |
| max_slots = core_num_wrps; |
| } |
| |
| for (i = 0; i < max_slots; ++i) { |
| slot = &slots[i]; |
| |
| if (!*slot) { |
| *slot = bp; |
| break; |
| } |
| } |
| |
| if (i == max_slots) { |
| pr_warn("Can't find any breakpoint slot\n"); |
| return -EBUSY; |
| } |
| |
| /* Override the breakpoint data with the step data. */ |
| if (info->step_ctrl.enabled) { |
| addr = info->trigger & ~0x3; |
| ctrl = encode_ctrl_reg(info->step_ctrl); |
| if (info->ctrl.type != ARM_BREAKPOINT_EXECUTE) { |
| i = 0; |
| ctrl_base = ARM_BASE_BCR + core_num_brps; |
| val_base = ARM_BASE_BVR + core_num_brps; |
| } |
| } |
| |
| /* Setup the address register. */ |
| write_wb_reg(val_base + i, addr); |
| |
| /* Setup the control register. */ |
| write_wb_reg(ctrl_base + i, ctrl); |
| return 0; |
| } |
| |
| void arch_uninstall_hw_breakpoint(struct perf_event *bp) |
| { |
| struct arch_hw_breakpoint *info = counter_arch_bp(bp); |
| struct perf_event **slot, **slots; |
| int i, max_slots, base; |
| |
| if (info->ctrl.type == ARM_BREAKPOINT_EXECUTE) { |
| /* Breakpoint */ |
| base = ARM_BASE_BCR; |
| slots = this_cpu_ptr(bp_on_reg); |
| max_slots = core_num_brps; |
| } else { |
| /* Watchpoint */ |
| base = ARM_BASE_WCR; |
| slots = this_cpu_ptr(wp_on_reg); |
| max_slots = core_num_wrps; |
| } |
| |
| /* Remove the breakpoint. */ |
| for (i = 0; i < max_slots; ++i) { |
| slot = &slots[i]; |
| |
| if (*slot == bp) { |
| *slot = NULL; |
| break; |
| } |
| } |
| |
| if (i == max_slots) { |
| pr_warn("Can't find any breakpoint slot\n"); |
| return; |
| } |
| |
| /* Ensure that we disable the mismatch breakpoint. */ |
| if (info->ctrl.type != ARM_BREAKPOINT_EXECUTE && |
| info->step_ctrl.enabled) { |
| i = 0; |
| base = ARM_BASE_BCR + core_num_brps; |
| } |
| |
| /* Reset the control register. */ |
| write_wb_reg(base + i, 0); |
| } |
| |
| static int get_hbp_len(u8 hbp_len) |
| { |
| unsigned int len_in_bytes = 0; |
| |
| switch (hbp_len) { |
| case ARM_BREAKPOINT_LEN_1: |
| len_in_bytes = 1; |
| break; |
| case ARM_BREAKPOINT_LEN_2: |
| len_in_bytes = 2; |
| break; |
| case ARM_BREAKPOINT_LEN_4: |
| len_in_bytes = 4; |
| break; |
| case ARM_BREAKPOINT_LEN_8: |
| len_in_bytes = 8; |
| break; |
| } |
| |
| return len_in_bytes; |
| } |
| |
| /* |
| * Check whether bp virtual address is in kernel space. |
| */ |
| int arch_check_bp_in_kernelspace(struct arch_hw_breakpoint *hw) |
| { |
| unsigned int len; |
| unsigned long va; |
| |
| va = hw->address; |
| len = get_hbp_len(hw->ctrl.len); |
| |
| return (va >= TASK_SIZE) && ((va + len - 1) >= TASK_SIZE); |
| } |
| |
| /* |
| * Extract generic type and length encodings from an arch_hw_breakpoint_ctrl. |
| * Hopefully this will disappear when ptrace can bypass the conversion |
| * to generic breakpoint descriptions. |
| */ |
| int arch_bp_generic_fields(struct arch_hw_breakpoint_ctrl ctrl, |
| int *gen_len, int *gen_type) |
| { |
| /* Type */ |
| switch (ctrl.type) { |
| case ARM_BREAKPOINT_EXECUTE: |
| *gen_type = HW_BREAKPOINT_X; |
| break; |
| case ARM_BREAKPOINT_LOAD: |
| *gen_type = HW_BREAKPOINT_R; |
| break; |
| case ARM_BREAKPOINT_STORE: |
| *gen_type = HW_BREAKPOINT_W; |
| break; |
| case ARM_BREAKPOINT_LOAD | ARM_BREAKPOINT_STORE: |
| *gen_type = HW_BREAKPOINT_RW; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| /* Len */ |
| switch (ctrl.len) { |
| case ARM_BREAKPOINT_LEN_1: |
| *gen_len = HW_BREAKPOINT_LEN_1; |
| break; |
| case ARM_BREAKPOINT_LEN_2: |
| *gen_len = HW_BREAKPOINT_LEN_2; |
| break; |
| case ARM_BREAKPOINT_LEN_4: |
| *gen_len = HW_BREAKPOINT_LEN_4; |
| break; |
| case ARM_BREAKPOINT_LEN_8: |
| *gen_len = HW_BREAKPOINT_LEN_8; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Construct an arch_hw_breakpoint from a perf_event. |
| */ |
| static int arch_build_bp_info(struct perf_event *bp, |
| const struct perf_event_attr *attr, |
| struct arch_hw_breakpoint *hw) |
| { |
| /* Type */ |
| switch (attr->bp_type) { |
| case HW_BREAKPOINT_X: |
| hw->ctrl.type = ARM_BREAKPOINT_EXECUTE; |
| break; |
| case HW_BREAKPOINT_R: |
| hw->ctrl.type = ARM_BREAKPOINT_LOAD; |
| break; |
| case HW_BREAKPOINT_W: |
| hw->ctrl.type = ARM_BREAKPOINT_STORE; |
| break; |
| case HW_BREAKPOINT_RW: |
| hw->ctrl.type = ARM_BREAKPOINT_LOAD | ARM_BREAKPOINT_STORE; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| /* Len */ |
| switch (attr->bp_len) { |
| case HW_BREAKPOINT_LEN_1: |
| hw->ctrl.len = ARM_BREAKPOINT_LEN_1; |
| break; |
| case HW_BREAKPOINT_LEN_2: |
| hw->ctrl.len = ARM_BREAKPOINT_LEN_2; |
| break; |
| case HW_BREAKPOINT_LEN_4: |
| hw->ctrl.len = ARM_BREAKPOINT_LEN_4; |
| break; |
| case HW_BREAKPOINT_LEN_8: |
| hw->ctrl.len = ARM_BREAKPOINT_LEN_8; |
| if ((hw->ctrl.type != ARM_BREAKPOINT_EXECUTE) |
| && max_watchpoint_len >= 8) |
| break; |
| fallthrough; |
| default: |
| return -EINVAL; |
| } |
| |
| /* |
| * Breakpoints must be of length 2 (thumb) or 4 (ARM) bytes. |
| * Watchpoints can be of length 1, 2, 4 or 8 bytes if supported |
| * by the hardware and must be aligned to the appropriate number of |
| * bytes. |
| */ |
| if (hw->ctrl.type == ARM_BREAKPOINT_EXECUTE && |
| hw->ctrl.len != ARM_BREAKPOINT_LEN_2 && |
| hw->ctrl.len != ARM_BREAKPOINT_LEN_4) |
| return -EINVAL; |
| |
| /* Address */ |
| hw->address = attr->bp_addr; |
| |
| /* Privilege */ |
| hw->ctrl.privilege = ARM_BREAKPOINT_USER; |
| if (arch_check_bp_in_kernelspace(hw)) |
| hw->ctrl.privilege |= ARM_BREAKPOINT_PRIV; |
| |
| /* Enabled? */ |
| hw->ctrl.enabled = !attr->disabled; |
| |
| /* Mismatch */ |
| hw->ctrl.mismatch = 0; |
| |
| return 0; |
| } |
| |
| /* |
| * Validate the arch-specific HW Breakpoint register settings. |
| */ |
| int hw_breakpoint_arch_parse(struct perf_event *bp, |
| const struct perf_event_attr *attr, |
| struct arch_hw_breakpoint *hw) |
| { |
| int ret = 0; |
| u32 offset, alignment_mask = 0x3; |
| |
| /* Ensure that we are in monitor debug mode. */ |
| if (!monitor_mode_enabled()) |
| return -ENODEV; |
| |
| /* Build the arch_hw_breakpoint. */ |
| ret = arch_build_bp_info(bp, attr, hw); |
| if (ret) |
| goto out; |
| |
| /* Check address alignment. */ |
| if (hw->ctrl.len == ARM_BREAKPOINT_LEN_8) |
| alignment_mask = 0x7; |
| offset = hw->address & alignment_mask; |
| switch (offset) { |
| case 0: |
| /* Aligned */ |
| break; |
| case 1: |
| case 2: |
| /* Allow halfword watchpoints and breakpoints. */ |
| if (hw->ctrl.len == ARM_BREAKPOINT_LEN_2) |
| break; |
| fallthrough; |
| case 3: |
| /* Allow single byte watchpoint. */ |
| if (hw->ctrl.len == ARM_BREAKPOINT_LEN_1) |
| break; |
| fallthrough; |
| default: |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| hw->address &= ~alignment_mask; |
| hw->ctrl.len <<= offset; |
| |
| if (is_default_overflow_handler(bp)) { |
| /* |
| * Mismatch breakpoints are required for single-stepping |
| * breakpoints. |
| */ |
| if (!core_has_mismatch_brps()) |
| return -EINVAL; |
| |
| /* We don't allow mismatch breakpoints in kernel space. */ |
| if (arch_check_bp_in_kernelspace(hw)) |
| return -EPERM; |
| |
| /* |
| * Per-cpu breakpoints are not supported by our stepping |
| * mechanism. |
| */ |
| if (!bp->hw.target) |
| return -EINVAL; |
| |
| /* |
| * We only support specific access types if the fsr |
| * reports them. |
| */ |
| if (!debug_exception_updates_fsr() && |
| (hw->ctrl.type == ARM_BREAKPOINT_LOAD || |
| hw->ctrl.type == ARM_BREAKPOINT_STORE)) |
| return -EINVAL; |
| } |
| |
| out: |
| return ret; |
| } |
| |
| /* |
| * Enable/disable single-stepping over the breakpoint bp at address addr. |
| */ |
| static void enable_single_step(struct perf_event *bp, u32 addr) |
| { |
| struct arch_hw_breakpoint *info = counter_arch_bp(bp); |
| |
| arch_uninstall_hw_breakpoint(bp); |
| info->step_ctrl.mismatch = 1; |
| info->step_ctrl.len = ARM_BREAKPOINT_LEN_4; |
| info->step_ctrl.type = ARM_BREAKPOINT_EXECUTE; |
| info->step_ctrl.privilege = info->ctrl.privilege; |
| info->step_ctrl.enabled = 1; |
| info->trigger = addr; |
| arch_install_hw_breakpoint(bp); |
| } |
| |
| static void disable_single_step(struct perf_event *bp) |
| { |
| arch_uninstall_hw_breakpoint(bp); |
| counter_arch_bp(bp)->step_ctrl.enabled = 0; |
| arch_install_hw_breakpoint(bp); |
| } |
| |
| /* |
| * Arm32 hardware does not always report a watchpoint hit address that matches |
| * one of the watchpoints set. It can also report an address "near" the |
| * watchpoint if a single instruction access both watched and unwatched |
| * addresses. There is no straight-forward way, short of disassembling the |
| * offending instruction, to map that address back to the watchpoint. This |
| * function computes the distance of the memory access from the watchpoint as a |
| * heuristic for the likelyhood that a given access triggered the watchpoint. |
| * |
| * See this same function in the arm64 platform code, which has the same |
| * problem. |
| * |
| * The function returns the distance of the address from the bytes watched by |
| * the watchpoint. In case of an exact match, it returns 0. |
| */ |
| static u32 get_distance_from_watchpoint(unsigned long addr, u32 val, |
| struct arch_hw_breakpoint_ctrl *ctrl) |
| { |
| u32 wp_low, wp_high; |
| u32 lens, lene; |
| |
| lens = __ffs(ctrl->len); |
| lene = __fls(ctrl->len); |
| |
| wp_low = val + lens; |
| wp_high = val + lene; |
| if (addr < wp_low) |
| return wp_low - addr; |
| else if (addr > wp_high) |
| return addr - wp_high; |
| else |
| return 0; |
| } |
| |
| static int watchpoint_fault_on_uaccess(struct pt_regs *regs, |
| struct arch_hw_breakpoint *info) |
| { |
| return !user_mode(regs) && info->ctrl.privilege == ARM_BREAKPOINT_USER; |
| } |
| |
| static void watchpoint_handler(unsigned long addr, unsigned int fsr, |
| struct pt_regs *regs) |
| { |
| int i, access, closest_match = 0; |
| u32 min_dist = -1, dist; |
| u32 val, ctrl_reg; |
| struct perf_event *wp, **slots; |
| struct arch_hw_breakpoint *info; |
| struct arch_hw_breakpoint_ctrl ctrl; |
| |
| slots = this_cpu_ptr(wp_on_reg); |
| |
| /* |
| * Find all watchpoints that match the reported address. If no exact |
| * match is found. Attribute the hit to the closest watchpoint. |
| */ |
| rcu_read_lock(); |
| for (i = 0; i < core_num_wrps; ++i) { |
| wp = slots[i]; |
| if (wp == NULL) |
| continue; |
| |
| /* |
| * The DFAR is an unknown value on debug architectures prior |
| * to 7.1. Since we only allow a single watchpoint on these |
| * older CPUs, we can set the trigger to the lowest possible |
| * faulting address. |
| */ |
| if (debug_arch < ARM_DEBUG_ARCH_V7_1) { |
| BUG_ON(i > 0); |
| info = counter_arch_bp(wp); |
| info->trigger = wp->attr.bp_addr; |
| } else { |
| /* Check that the access type matches. */ |
| if (debug_exception_updates_fsr()) { |
| access = (fsr & ARM_FSR_ACCESS_MASK) ? |
| HW_BREAKPOINT_W : HW_BREAKPOINT_R; |
| if (!(access & hw_breakpoint_type(wp))) |
| continue; |
| } |
| |
| val = read_wb_reg(ARM_BASE_WVR + i); |
| ctrl_reg = read_wb_reg(ARM_BASE_WCR + i); |
| decode_ctrl_reg(ctrl_reg, &ctrl); |
| dist = get_distance_from_watchpoint(addr, val, &ctrl); |
| if (dist < min_dist) { |
| min_dist = dist; |
| closest_match = i; |
| } |
| /* Is this an exact match? */ |
| if (dist != 0) |
| continue; |
| |
| /* We have a winner. */ |
| info = counter_arch_bp(wp); |
| info->trigger = addr; |
| } |
| |
| pr_debug("watchpoint fired: address = 0x%x\n", info->trigger); |
| |
| /* |
| * If we triggered a user watchpoint from a uaccess routine, |
| * then handle the stepping ourselves since userspace really |
| * can't help us with this. |
| */ |
| if (watchpoint_fault_on_uaccess(regs, info)) |
| goto step; |
| |
| perf_bp_event(wp, regs); |
| |
| /* |
| * Defer stepping to the overflow handler if one is installed. |
| * Otherwise, insert a temporary mismatch breakpoint so that |
| * we can single-step over the watchpoint trigger. |
| */ |
| if (!is_default_overflow_handler(wp)) |
| continue; |
| step: |
| enable_single_step(wp, instruction_pointer(regs)); |
| } |
| |
| if (min_dist > 0 && min_dist != -1) { |
| /* No exact match found. */ |
| wp = slots[closest_match]; |
| info = counter_arch_bp(wp); |
| info->trigger = addr; |
| pr_debug("watchpoint fired: address = 0x%x\n", info->trigger); |
| perf_bp_event(wp, regs); |
| if (is_default_overflow_handler(wp)) |
| enable_single_step(wp, instruction_pointer(regs)); |
| } |
| |
| rcu_read_unlock(); |
| } |
| |
| static void watchpoint_single_step_handler(unsigned long pc) |
| { |
| int i; |
| struct perf_event *wp, **slots; |
| struct arch_hw_breakpoint *info; |
| |
| slots = this_cpu_ptr(wp_on_reg); |
| |
| for (i = 0; i < core_num_wrps; ++i) { |
| rcu_read_lock(); |
| |
| wp = slots[i]; |
| |
| if (wp == NULL) |
| goto unlock; |
| |
| info = counter_arch_bp(wp); |
| if (!info->step_ctrl.enabled) |
| goto unlock; |
| |
| /* |
| * Restore the original watchpoint if we've completed the |
| * single-step. |
| */ |
| if (info->trigger != pc) |
| disable_single_step(wp); |
| |
| unlock: |
| rcu_read_unlock(); |
| } |
| } |
| |
| static void breakpoint_handler(unsigned long unknown, struct pt_regs *regs) |
| { |
| int i; |
| u32 ctrl_reg, val, addr; |
| struct perf_event *bp, **slots; |
| struct arch_hw_breakpoint *info; |
| struct arch_hw_breakpoint_ctrl ctrl; |
| |
| slots = this_cpu_ptr(bp_on_reg); |
| |
| /* The exception entry code places the amended lr in the PC. */ |
| addr = regs->ARM_pc; |
| |
| /* Check the currently installed breakpoints first. */ |
| for (i = 0; i < core_num_brps; ++i) { |
| rcu_read_lock(); |
| |
| bp = slots[i]; |
| |
| if (bp == NULL) |
| goto unlock; |
| |
| info = counter_arch_bp(bp); |
| |
| /* Check if the breakpoint value matches. */ |
| val = read_wb_reg(ARM_BASE_BVR + i); |
| if (val != (addr & ~0x3)) |
| goto mismatch; |
| |
| /* Possible match, check the byte address select to confirm. */ |
| ctrl_reg = read_wb_reg(ARM_BASE_BCR + i); |
| decode_ctrl_reg(ctrl_reg, &ctrl); |
| if ((1 << (addr & 0x3)) & ctrl.len) { |
| info->trigger = addr; |
| pr_debug("breakpoint fired: address = 0x%x\n", addr); |
| perf_bp_event(bp, regs); |
| if (is_default_overflow_handler(bp)) |
| enable_single_step(bp, addr); |
| goto unlock; |
| } |
| |
| mismatch: |
| /* If we're stepping a breakpoint, it can now be restored. */ |
| if (info->step_ctrl.enabled) |
| disable_single_step(bp); |
| unlock: |
| rcu_read_unlock(); |
| } |
| |
| /* Handle any pending watchpoint single-step breakpoints. */ |
| watchpoint_single_step_handler(addr); |
| } |
| |
| #ifdef CONFIG_CFI_CLANG |
| static void hw_breakpoint_cfi_handler(struct pt_regs *regs) |
| { |
| /* |
| * TODO: implementing target and type to pass to CFI using the more |
| * elaborate report_cfi_failure() requires compiler work. To be able |
| * to properly extract target information the compiler needs to |
| * emit a stable instructions sequence for the CFI checks so we can |
| * decode the instructions preceding the trap and figure out which |
| * registers were used. |
| */ |
| |
| switch (report_cfi_failure_noaddr(regs, instruction_pointer(regs))) { |
| case BUG_TRAP_TYPE_BUG: |
| die("Oops - CFI", regs, 0); |
| break; |
| case BUG_TRAP_TYPE_WARN: |
| /* Skip the breaking instruction */ |
| instruction_pointer(regs) += 4; |
| break; |
| default: |
| die("Unknown CFI error", regs, 0); |
| break; |
| } |
| } |
| #else |
| static void hw_breakpoint_cfi_handler(struct pt_regs *regs) |
| { |
| } |
| #endif |
| |
| /* |
| * Called from either the Data Abort Handler [watchpoint] or the |
| * Prefetch Abort Handler [breakpoint] with interrupts disabled. |
| */ |
| static int hw_breakpoint_pending(unsigned long addr, unsigned int fsr, |
| struct pt_regs *regs) |
| { |
| int ret = 0; |
| u32 dscr; |
| |
| preempt_disable(); |
| |
| if (interrupts_enabled(regs)) |
| local_irq_enable(); |
| |
| /* We only handle watchpoints and hardware breakpoints. */ |
| ARM_DBG_READ(c0, c1, 0, dscr); |
| |
| /* Perform perf callbacks. */ |
| switch (ARM_DSCR_MOE(dscr)) { |
| case ARM_ENTRY_BREAKPOINT: |
| breakpoint_handler(addr, regs); |
| break; |
| case ARM_ENTRY_ASYNC_WATCHPOINT: |
| WARN(1, "Asynchronous watchpoint exception taken. Debugging results may be unreliable\n"); |
| fallthrough; |
| case ARM_ENTRY_SYNC_WATCHPOINT: |
| watchpoint_handler(addr, fsr, regs); |
| break; |
| case ARM_ENTRY_CFI_BREAKPOINT: |
| hw_breakpoint_cfi_handler(regs); |
| break; |
| default: |
| ret = 1; /* Unhandled fault. */ |
| } |
| |
| preempt_enable(); |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_ARM_ERRATA_764319 |
| static int oslsr_fault; |
| |
| static int debug_oslsr_trap(struct pt_regs *regs, unsigned int instr) |
| { |
| oslsr_fault = 1; |
| instruction_pointer(regs) += 4; |
| return 0; |
| } |
| |
| static struct undef_hook debug_oslsr_hook = { |
| .instr_mask = 0xffffffff, |
| .instr_val = 0xee115e91, |
| .fn = debug_oslsr_trap, |
| }; |
| #endif |
| |
| /* |
| * One-time initialisation. |
| */ |
| static cpumask_t debug_err_mask; |
| |
| static int debug_reg_trap(struct pt_regs *regs, unsigned int instr) |
| { |
| int cpu = smp_processor_id(); |
| |
| pr_warn("Debug register access (0x%x) caused undefined instruction on CPU %d\n", |
| instr, cpu); |
| |
| /* Set the error flag for this CPU and skip the faulting instruction. */ |
| cpumask_set_cpu(cpu, &debug_err_mask); |
| instruction_pointer(regs) += 4; |
| return 0; |
| } |
| |
| static struct undef_hook debug_reg_hook = { |
| .instr_mask = 0x0fe80f10, |
| .instr_val = 0x0e000e10, |
| .fn = debug_reg_trap, |
| }; |
| |
| /* Does this core support OS Save and Restore? */ |
| static bool core_has_os_save_restore(void) |
| { |
| u32 oslsr; |
| |
| switch (get_debug_arch()) { |
| case ARM_DEBUG_ARCH_V7_1: |
| return true; |
| case ARM_DEBUG_ARCH_V7_ECP14: |
| #ifdef CONFIG_ARM_ERRATA_764319 |
| oslsr_fault = 0; |
| register_undef_hook(&debug_oslsr_hook); |
| ARM_DBG_READ(c1, c1, 4, oslsr); |
| unregister_undef_hook(&debug_oslsr_hook); |
| if (oslsr_fault) |
| return false; |
| #else |
| ARM_DBG_READ(c1, c1, 4, oslsr); |
| #endif |
| if (oslsr & ARM_OSLSR_OSLM0) |
| return true; |
| fallthrough; |
| default: |
| return false; |
| } |
| } |
| |
| static void reset_ctrl_regs(unsigned int cpu) |
| { |
| int i, raw_num_brps, err = 0; |
| u32 val; |
| |
| /* |
| * v7 debug contains save and restore registers so that debug state |
| * can be maintained across low-power modes without leaving the debug |
| * logic powered up. It is IMPLEMENTATION DEFINED whether we can access |
| * the debug registers out of reset, so we must unlock the OS Lock |
| * Access Register to avoid taking undefined instruction exceptions |
| * later on. |
| */ |
| switch (debug_arch) { |
| case ARM_DEBUG_ARCH_V6: |
| case ARM_DEBUG_ARCH_V6_1: |
| /* ARMv6 cores clear the registers out of reset. */ |
| goto out_mdbgen; |
| case ARM_DEBUG_ARCH_V7_ECP14: |
| /* |
| * Ensure sticky power-down is clear (i.e. debug logic is |
| * powered up). |
| */ |
| ARM_DBG_READ(c1, c5, 4, val); |
| if ((val & 0x1) == 0) |
| err = -EPERM; |
| |
| if (!has_ossr) |
| goto clear_vcr; |
| break; |
| case ARM_DEBUG_ARCH_V7_1: |
| /* |
| * Ensure the OS double lock is clear. |
| */ |
| ARM_DBG_READ(c1, c3, 4, val); |
| if ((val & 0x1) == 1) |
| err = -EPERM; |
| break; |
| } |
| |
| if (err) { |
| pr_warn_once("CPU %d debug is powered down!\n", cpu); |
| cpumask_or(&debug_err_mask, &debug_err_mask, cpumask_of(cpu)); |
| return; |
| } |
| |
| /* |
| * Unconditionally clear the OS lock by writing a value |
| * other than CS_LAR_KEY to the access register. |
| */ |
| ARM_DBG_WRITE(c1, c0, 4, ~CORESIGHT_UNLOCK); |
| isb(); |
| |
| /* |
| * Clear any configured vector-catch events before |
| * enabling monitor mode. |
| */ |
| clear_vcr: |
| ARM_DBG_WRITE(c0, c7, 0, 0); |
| isb(); |
| |
| if (cpumask_intersects(&debug_err_mask, cpumask_of(cpu))) { |
| pr_warn_once("CPU %d failed to disable vector catch\n", cpu); |
| return; |
| } |
| |
| /* |
| * The control/value register pairs are UNKNOWN out of reset so |
| * clear them to avoid spurious debug events. |
| */ |
| raw_num_brps = get_num_brp_resources(); |
| for (i = 0; i < raw_num_brps; ++i) { |
| write_wb_reg(ARM_BASE_BCR + i, 0UL); |
| write_wb_reg(ARM_BASE_BVR + i, 0UL); |
| } |
| |
| for (i = 0; i < core_num_wrps; ++i) { |
| write_wb_reg(ARM_BASE_WCR + i, 0UL); |
| write_wb_reg(ARM_BASE_WVR + i, 0UL); |
| } |
| |
| if (cpumask_intersects(&debug_err_mask, cpumask_of(cpu))) { |
| pr_warn_once("CPU %d failed to clear debug register pairs\n", cpu); |
| return; |
| } |
| |
| /* |
| * Have a crack at enabling monitor mode. We don't actually need |
| * it yet, but reporting an error early is useful if it fails. |
| */ |
| out_mdbgen: |
| if (enable_monitor_mode()) |
| cpumask_or(&debug_err_mask, &debug_err_mask, cpumask_of(cpu)); |
| } |
| |
| static int dbg_reset_online(unsigned int cpu) |
| { |
| local_irq_disable(); |
| reset_ctrl_regs(cpu); |
| local_irq_enable(); |
| return 0; |
| } |
| |
| #ifdef CONFIG_CPU_PM |
| static int dbg_cpu_pm_notify(struct notifier_block *self, unsigned long action, |
| void *v) |
| { |
| if (action == CPU_PM_EXIT) |
| reset_ctrl_regs(smp_processor_id()); |
| |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block dbg_cpu_pm_nb = { |
| .notifier_call = dbg_cpu_pm_notify, |
| }; |
| |
| static void __init pm_init(void) |
| { |
| cpu_pm_register_notifier(&dbg_cpu_pm_nb); |
| } |
| #else |
| static inline void pm_init(void) |
| { |
| } |
| #endif |
| |
| static int __init arch_hw_breakpoint_init(void) |
| { |
| int ret; |
| |
| debug_arch = get_debug_arch(); |
| |
| if (!debug_arch_supported()) { |
| pr_info("debug architecture 0x%x unsupported.\n", debug_arch); |
| return 0; |
| } |
| |
| /* |
| * Scorpion CPUs (at least those in APQ8060) seem to set DBGPRSR.SPD |
| * whenever a WFI is issued, even if the core is not powered down, in |
| * violation of the architecture. When DBGPRSR.SPD is set, accesses to |
| * breakpoint and watchpoint registers are treated as undefined, so |
| * this results in boot time and runtime failures when these are |
| * accessed and we unexpectedly take a trap. |
| * |
| * It's not clear if/how this can be worked around, so we blacklist |
| * Scorpion CPUs to avoid these issues. |
| */ |
| if (read_cpuid_part() == ARM_CPU_PART_SCORPION) { |
| pr_info("Scorpion CPU detected. Hardware breakpoints and watchpoints disabled\n"); |
| return 0; |
| } |
| |
| has_ossr = core_has_os_save_restore(); |
| |
| /* Determine how many BRPs/WRPs are available. */ |
| core_num_brps = get_num_brps(); |
| core_num_wrps = get_num_wrps(); |
| |
| /* |
| * We need to tread carefully here because DBGSWENABLE may be |
| * driven low on this core and there isn't an architected way to |
| * determine that. |
| */ |
| cpus_read_lock(); |
| register_undef_hook(&debug_reg_hook); |
| |
| /* |
| * Register CPU notifier which resets the breakpoint resources. We |
| * assume that a halting debugger will leave the world in a nice state |
| * for us. |
| */ |
| ret = cpuhp_setup_state_cpuslocked(CPUHP_AP_ONLINE_DYN, |
| "arm/hw_breakpoint:online", |
| dbg_reset_online, NULL); |
| unregister_undef_hook(&debug_reg_hook); |
| if (WARN_ON(ret < 0) || !cpumask_empty(&debug_err_mask)) { |
| core_num_brps = 0; |
| core_num_wrps = 0; |
| if (ret > 0) |
| cpuhp_remove_state_nocalls_cpuslocked(ret); |
| cpus_read_unlock(); |
| return 0; |
| } |
| |
| pr_info("found %d " "%s" "breakpoint and %d watchpoint registers.\n", |
| core_num_brps, core_has_mismatch_brps() ? "(+1 reserved) " : |
| "", core_num_wrps); |
| |
| /* Work out the maximum supported watchpoint length. */ |
| max_watchpoint_len = get_max_wp_len(); |
| pr_info("maximum watchpoint size is %u bytes.\n", |
| max_watchpoint_len); |
| |
| /* Register debug fault handler. */ |
| hook_fault_code(FAULT_CODE_DEBUG, hw_breakpoint_pending, SIGTRAP, |
| TRAP_HWBKPT, "watchpoint debug exception"); |
| hook_ifault_code(FAULT_CODE_DEBUG, hw_breakpoint_pending, SIGTRAP, |
| TRAP_HWBKPT, "breakpoint debug exception"); |
| cpus_read_unlock(); |
| |
| /* Register PM notifiers. */ |
| pm_init(); |
| return 0; |
| } |
| arch_initcall(arch_hw_breakpoint_init); |
| |
| void hw_breakpoint_pmu_read(struct perf_event *bp) |
| { |
| } |
| |
| /* |
| * Dummy function to register with die_notifier. |
| */ |
| int hw_breakpoint_exceptions_notify(struct notifier_block *unused, |
| unsigned long val, void *data) |
| { |
| return NOTIFY_DONE; |
| } |