| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Extensible Firmware Interface |
| * |
| * Based on Extensible Firmware Interface Specification version 2.4 |
| * |
| * Copyright (C) 2013, 2014 Linaro Ltd. |
| */ |
| |
| #include <linux/efi.h> |
| #include <linux/init.h> |
| #include <linux/kmemleak.h> |
| #include <linux/screen_info.h> |
| #include <linux/vmalloc.h> |
| |
| #include <asm/efi.h> |
| #include <asm/stacktrace.h> |
| |
| static bool region_is_misaligned(const efi_memory_desc_t *md) |
| { |
| if (PAGE_SIZE == EFI_PAGE_SIZE) |
| return false; |
| return !PAGE_ALIGNED(md->phys_addr) || |
| !PAGE_ALIGNED(md->num_pages << EFI_PAGE_SHIFT); |
| } |
| |
| /* |
| * Only regions of type EFI_RUNTIME_SERVICES_CODE need to be |
| * executable, everything else can be mapped with the XN bits |
| * set. Also take the new (optional) RO/XP bits into account. |
| */ |
| static __init pteval_t create_mapping_protection(efi_memory_desc_t *md) |
| { |
| u64 attr = md->attribute; |
| u32 type = md->type; |
| |
| if (type == EFI_MEMORY_MAPPED_IO) { |
| pgprot_t prot = __pgprot(PROT_DEVICE_nGnRE); |
| |
| if (arm64_is_protected_mmio(md->phys_addr, |
| md->num_pages << EFI_PAGE_SHIFT)) |
| prot = pgprot_encrypted(prot); |
| else |
| prot = pgprot_decrypted(prot); |
| return pgprot_val(prot); |
| } |
| |
| if (region_is_misaligned(md)) { |
| static bool __initdata code_is_misaligned; |
| |
| /* |
| * Regions that are not aligned to the OS page size cannot be |
| * mapped with strict permissions, as those might interfere |
| * with the permissions that are needed by the adjacent |
| * region's mapping. However, if we haven't encountered any |
| * misaligned runtime code regions so far, we can safely use |
| * non-executable permissions for non-code regions. |
| */ |
| code_is_misaligned |= (type == EFI_RUNTIME_SERVICES_CODE); |
| |
| return code_is_misaligned ? pgprot_val(PAGE_KERNEL_EXEC) |
| : pgprot_val(PAGE_KERNEL); |
| } |
| |
| /* R-- */ |
| if ((attr & (EFI_MEMORY_XP | EFI_MEMORY_RO)) == |
| (EFI_MEMORY_XP | EFI_MEMORY_RO)) |
| return pgprot_val(PAGE_KERNEL_RO); |
| |
| /* R-X */ |
| if (attr & EFI_MEMORY_RO) |
| return pgprot_val(PAGE_KERNEL_ROX); |
| |
| /* RW- */ |
| if (((attr & (EFI_MEMORY_RP | EFI_MEMORY_WP | EFI_MEMORY_XP)) == |
| EFI_MEMORY_XP) || |
| type != EFI_RUNTIME_SERVICES_CODE) |
| return pgprot_val(PAGE_KERNEL); |
| |
| /* RWX */ |
| return pgprot_val(PAGE_KERNEL_EXEC); |
| } |
| |
| int __init efi_create_mapping(struct mm_struct *mm, efi_memory_desc_t *md) |
| { |
| pteval_t prot_val = create_mapping_protection(md); |
| bool page_mappings_only = (md->type == EFI_RUNTIME_SERVICES_CODE || |
| md->type == EFI_RUNTIME_SERVICES_DATA); |
| |
| /* |
| * If this region is not aligned to the page size used by the OS, the |
| * mapping will be rounded outwards, and may end up sharing a page |
| * frame with an adjacent runtime memory region. Given that the page |
| * table descriptor covering the shared page will be rewritten when the |
| * adjacent region gets mapped, we must avoid block mappings here so we |
| * don't have to worry about splitting them when that happens. |
| */ |
| if (region_is_misaligned(md)) |
| page_mappings_only = true; |
| |
| create_pgd_mapping(mm, md->phys_addr, md->virt_addr, |
| md->num_pages << EFI_PAGE_SHIFT, |
| __pgprot(prot_val | PTE_NG), page_mappings_only); |
| return 0; |
| } |
| |
| struct set_perm_data { |
| const efi_memory_desc_t *md; |
| bool has_bti; |
| }; |
| |
| static int __init set_permissions(pte_t *ptep, unsigned long addr, void *data) |
| { |
| struct set_perm_data *spd = data; |
| const efi_memory_desc_t *md = spd->md; |
| pte_t pte = __ptep_get(ptep); |
| |
| if (md->attribute & EFI_MEMORY_RO) |
| pte = set_pte_bit(pte, __pgprot(PTE_RDONLY)); |
| if (md->attribute & EFI_MEMORY_XP) |
| pte = set_pte_bit(pte, __pgprot(PTE_PXN)); |
| else if (system_supports_bti_kernel() && spd->has_bti) |
| pte = set_pte_bit(pte, __pgprot(PTE_GP)); |
| __set_pte(ptep, pte); |
| return 0; |
| } |
| |
| int __init efi_set_mapping_permissions(struct mm_struct *mm, |
| efi_memory_desc_t *md, |
| bool has_bti) |
| { |
| struct set_perm_data data = { md, has_bti }; |
| |
| BUG_ON(md->type != EFI_RUNTIME_SERVICES_CODE && |
| md->type != EFI_RUNTIME_SERVICES_DATA); |
| |
| if (region_is_misaligned(md)) |
| return 0; |
| |
| /* |
| * Calling apply_to_page_range() is only safe on regions that are |
| * guaranteed to be mapped down to pages. Since we are only called |
| * for regions that have been mapped using efi_create_mapping() above |
| * (and this is checked by the generic Memory Attributes table parsing |
| * routines), there is no need to check that again here. |
| */ |
| return apply_to_page_range(mm, md->virt_addr, |
| md->num_pages << EFI_PAGE_SHIFT, |
| set_permissions, &data); |
| } |
| |
| /* |
| * UpdateCapsule() depends on the system being shutdown via |
| * ResetSystem(). |
| */ |
| bool efi_poweroff_required(void) |
| { |
| return efi_enabled(EFI_RUNTIME_SERVICES); |
| } |
| |
| asmlinkage efi_status_t efi_handle_corrupted_x18(efi_status_t s, const char *f) |
| { |
| pr_err_ratelimited(FW_BUG "register x18 corrupted by EFI %s\n", f); |
| return s; |
| } |
| |
| static DEFINE_RAW_SPINLOCK(efi_rt_lock); |
| |
| void arch_efi_call_virt_setup(void) |
| { |
| efi_virtmap_load(); |
| __efi_fpsimd_begin(); |
| raw_spin_lock(&efi_rt_lock); |
| } |
| |
| void arch_efi_call_virt_teardown(void) |
| { |
| raw_spin_unlock(&efi_rt_lock); |
| __efi_fpsimd_end(); |
| efi_virtmap_unload(); |
| } |
| |
| asmlinkage u64 *efi_rt_stack_top __ro_after_init; |
| |
| asmlinkage efi_status_t __efi_rt_asm_recover(void); |
| |
| bool efi_runtime_fixup_exception(struct pt_regs *regs, const char *msg) |
| { |
| /* Check whether the exception occurred while running the firmware */ |
| if (!current_in_efi() || regs->pc >= TASK_SIZE_64) |
| return false; |
| |
| pr_err(FW_BUG "Unable to handle %s in EFI runtime service\n", msg); |
| add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); |
| clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); |
| |
| regs->regs[0] = EFI_ABORTED; |
| regs->regs[30] = efi_rt_stack_top[-1]; |
| regs->pc = (u64)__efi_rt_asm_recover; |
| |
| if (IS_ENABLED(CONFIG_SHADOW_CALL_STACK)) |
| regs->regs[18] = efi_rt_stack_top[-2]; |
| |
| return true; |
| } |
| |
| /* EFI requires 8 KiB of stack space for runtime services */ |
| static_assert(THREAD_SIZE >= SZ_8K); |
| |
| static int __init arm64_efi_rt_init(void) |
| { |
| void *p; |
| |
| if (!efi_enabled(EFI_RUNTIME_SERVICES)) |
| return 0; |
| |
| p = __vmalloc_node(THREAD_SIZE, THREAD_ALIGN, GFP_KERNEL, |
| NUMA_NO_NODE, &&l); |
| l: if (!p) { |
| pr_warn("Failed to allocate EFI runtime stack\n"); |
| clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); |
| return -ENOMEM; |
| } |
| |
| kmemleak_not_leak(p); |
| efi_rt_stack_top = p + THREAD_SIZE; |
| return 0; |
| } |
| core_initcall(arm64_efi_rt_init); |