blob: e79f15293492d5dba31666d0d134cde9648abe4c [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (C) 2012 Regents of the University of California
*/
#ifndef _ASM_RISCV_PGTABLE_H
#define _ASM_RISCV_PGTABLE_H
#include <linux/mmzone.h>
#include <linux/sizes.h>
#include <asm/pgtable-bits.h>
#ifndef CONFIG_MMU
#define KERNEL_LINK_ADDR PAGE_OFFSET
#define KERN_VIRT_SIZE (UL(-1))
#else
#define ADDRESS_SPACE_END (UL(-1))
#ifdef CONFIG_64BIT
/* Leave 2GB for kernel and BPF at the end of the address space */
#define KERNEL_LINK_ADDR (ADDRESS_SPACE_END - SZ_2G + 1)
#else
#define KERNEL_LINK_ADDR PAGE_OFFSET
#endif
/* Number of entries in the page global directory */
#define PTRS_PER_PGD (PAGE_SIZE / sizeof(pgd_t))
/* Number of entries in the page table */
#define PTRS_PER_PTE (PAGE_SIZE / sizeof(pte_t))
/*
* Half of the kernel address space (1/4 of the entries of the page global
* directory) is for the direct mapping.
*/
#define KERN_VIRT_SIZE ((PTRS_PER_PGD / 2 * PGDIR_SIZE) / 2)
#define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1)
#define VMALLOC_END PAGE_OFFSET
#define VMALLOC_START (PAGE_OFFSET - VMALLOC_SIZE)
#define BPF_JIT_REGION_SIZE (SZ_128M)
#ifdef CONFIG_64BIT
#define BPF_JIT_REGION_START (BPF_JIT_REGION_END - BPF_JIT_REGION_SIZE)
#define BPF_JIT_REGION_END (MODULES_END)
#else
#define BPF_JIT_REGION_START (PAGE_OFFSET - BPF_JIT_REGION_SIZE)
#define BPF_JIT_REGION_END (VMALLOC_END)
#endif
/* Modules always live before the kernel */
#ifdef CONFIG_64BIT
/* This is used to define the end of the KASAN shadow region */
#define MODULES_LOWEST_VADDR (KERNEL_LINK_ADDR - SZ_2G)
#define MODULES_VADDR (PFN_ALIGN((unsigned long)&_end) - SZ_2G)
#define MODULES_END (PFN_ALIGN((unsigned long)&_start))
#else
#define MODULES_VADDR VMALLOC_START
#define MODULES_END VMALLOC_END
#endif
/*
* Roughly size the vmemmap space to be large enough to fit enough
* struct pages to map half the virtual address space. Then
* position vmemmap directly below the VMALLOC region.
*/
#define VA_BITS_SV32 32
#ifdef CONFIG_64BIT
#define VA_BITS_SV39 39
#define VA_BITS_SV48 48
#define VA_BITS_SV57 57
#define VA_BITS (pgtable_l5_enabled ? \
VA_BITS_SV57 : (pgtable_l4_enabled ? VA_BITS_SV48 : VA_BITS_SV39))
#else
#define VA_BITS VA_BITS_SV32
#endif
#define VMEMMAP_SHIFT \
(VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
#define VMEMMAP_SIZE BIT(VMEMMAP_SHIFT)
#define VMEMMAP_END VMALLOC_START
#define VMEMMAP_START (VMALLOC_START - VMEMMAP_SIZE)
/*
* Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel
* is configured with CONFIG_SPARSEMEM_VMEMMAP enabled.
*/
#define vmemmap ((struct page *)VMEMMAP_START - (phys_ram_base >> PAGE_SHIFT))
#define PCI_IO_SIZE SZ_16M
#define PCI_IO_END VMEMMAP_START
#define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE)
#define FIXADDR_TOP PCI_IO_START
#ifdef CONFIG_64BIT
#define MAX_FDT_SIZE PMD_SIZE
#define FIX_FDT_SIZE (MAX_FDT_SIZE + SZ_2M)
#define FIXADDR_SIZE (PMD_SIZE + FIX_FDT_SIZE)
#else
#define MAX_FDT_SIZE PGDIR_SIZE
#define FIX_FDT_SIZE MAX_FDT_SIZE
#define FIXADDR_SIZE (PGDIR_SIZE + FIX_FDT_SIZE)
#endif
#define FIXADDR_START (FIXADDR_TOP - FIXADDR_SIZE)
#endif
#ifndef __ASSEMBLY__
#include <asm/page.h>
#include <asm/tlbflush.h>
#include <linux/mm_types.h>
#include <asm/compat.h>
#define __page_val_to_pfn(_val) (((_val) & _PAGE_PFN_MASK) >> _PAGE_PFN_SHIFT)
#ifdef CONFIG_64BIT
#include <asm/pgtable-64.h>
#define VA_USER_SV39 (UL(1) << (VA_BITS_SV39 - 1))
#define VA_USER_SV48 (UL(1) << (VA_BITS_SV48 - 1))
#define VA_USER_SV57 (UL(1) << (VA_BITS_SV57 - 1))
#define MMAP_VA_BITS_64 ((VA_BITS >= VA_BITS_SV48) ? VA_BITS_SV48 : VA_BITS)
#define MMAP_MIN_VA_BITS_64 (VA_BITS_SV39)
#define MMAP_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_VA_BITS_64)
#define MMAP_MIN_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_MIN_VA_BITS_64)
#else
#include <asm/pgtable-32.h>
#endif /* CONFIG_64BIT */
#include <linux/page_table_check.h>
#ifdef CONFIG_XIP_KERNEL
#define XIP_FIXUP(addr) ({ \
extern char _sdata[], _start[], _end[]; \
uintptr_t __rom_start_data = CONFIG_XIP_PHYS_ADDR \
+ (uintptr_t)&_sdata - (uintptr_t)&_start; \
uintptr_t __rom_end_data = CONFIG_XIP_PHYS_ADDR \
+ (uintptr_t)&_end - (uintptr_t)&_start; \
uintptr_t __a = (uintptr_t)(addr); \
(__a >= __rom_start_data && __a < __rom_end_data) ? \
__a - __rom_start_data + CONFIG_PHYS_RAM_BASE : __a; \
})
#else
#define XIP_FIXUP(addr) (addr)
#endif /* CONFIG_XIP_KERNEL */
struct pt_alloc_ops {
pte_t *(*get_pte_virt)(phys_addr_t pa);
phys_addr_t (*alloc_pte)(uintptr_t va);
#ifndef __PAGETABLE_PMD_FOLDED
pmd_t *(*get_pmd_virt)(phys_addr_t pa);
phys_addr_t (*alloc_pmd)(uintptr_t va);
pud_t *(*get_pud_virt)(phys_addr_t pa);
phys_addr_t (*alloc_pud)(uintptr_t va);
p4d_t *(*get_p4d_virt)(phys_addr_t pa);
phys_addr_t (*alloc_p4d)(uintptr_t va);
#endif
};
extern struct pt_alloc_ops pt_ops __meminitdata;
#ifdef CONFIG_MMU
/* Number of PGD entries that a user-mode program can use */
#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
/* Page protection bits */
#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER)
#define PAGE_NONE __pgprot(_PAGE_PROT_NONE | _PAGE_READ)
#define PAGE_READ __pgprot(_PAGE_BASE | _PAGE_READ)
#define PAGE_WRITE __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE)
#define PAGE_EXEC __pgprot(_PAGE_BASE | _PAGE_EXEC)
#define PAGE_READ_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
#define PAGE_WRITE_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | \
_PAGE_EXEC | _PAGE_WRITE)
#define PAGE_COPY PAGE_READ
#define PAGE_COPY_EXEC PAGE_READ_EXEC
#define PAGE_SHARED PAGE_WRITE
#define PAGE_SHARED_EXEC PAGE_WRITE_EXEC
#define _PAGE_KERNEL (_PAGE_READ \
| _PAGE_WRITE \
| _PAGE_PRESENT \
| _PAGE_ACCESSED \
| _PAGE_DIRTY \
| _PAGE_GLOBAL)
#define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
#define PAGE_KERNEL_READ __pgprot(_PAGE_KERNEL & ~_PAGE_WRITE)
#define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL | _PAGE_EXEC)
#define PAGE_KERNEL_READ_EXEC __pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \
| _PAGE_EXEC)
#define PAGE_TABLE __pgprot(_PAGE_TABLE)
#define _PAGE_IOREMAP ((_PAGE_KERNEL & ~_PAGE_MTMASK) | _PAGE_IO)
#define PAGE_KERNEL_IO __pgprot(_PAGE_IOREMAP)
extern pgd_t swapper_pg_dir[];
extern pgd_t trampoline_pg_dir[];
extern pgd_t early_pg_dir[];
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline int pmd_present(pmd_t pmd)
{
/*
* Checking for _PAGE_LEAF is needed too because:
* When splitting a THP, split_huge_page() will temporarily clear
* the present bit, in this situation, pmd_present() and
* pmd_trans_huge() still needs to return true.
*/
return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE | _PAGE_LEAF));
}
#else
static inline int pmd_present(pmd_t pmd)
{
return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
}
#endif
static inline int pmd_none(pmd_t pmd)
{
return (pmd_val(pmd) == 0);
}
static inline int pmd_bad(pmd_t pmd)
{
return !pmd_present(pmd) || (pmd_val(pmd) & _PAGE_LEAF);
}
#define pmd_leaf pmd_leaf
static inline bool pmd_leaf(pmd_t pmd)
{
return pmd_present(pmd) && (pmd_val(pmd) & _PAGE_LEAF);
}
static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
{
WRITE_ONCE(*pmdp, pmd);
}
static inline void pmd_clear(pmd_t *pmdp)
{
set_pmd(pmdp, __pmd(0));
}
static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot)
{
unsigned long prot_val = pgprot_val(prot);
ALT_THEAD_PMA(prot_val);
return __pgd((pfn << _PAGE_PFN_SHIFT) | prot_val);
}
static inline unsigned long _pgd_pfn(pgd_t pgd)
{
return __page_val_to_pfn(pgd_val(pgd));
}
static inline struct page *pmd_page(pmd_t pmd)
{
return pfn_to_page(__page_val_to_pfn(pmd_val(pmd)));
}
static inline unsigned long pmd_page_vaddr(pmd_t pmd)
{
return (unsigned long)pfn_to_virt(__page_val_to_pfn(pmd_val(pmd)));
}
static inline pte_t pmd_pte(pmd_t pmd)
{
return __pte(pmd_val(pmd));
}
static inline pte_t pud_pte(pud_t pud)
{
return __pte(pud_val(pud));
}
#ifdef CONFIG_RISCV_ISA_SVNAPOT
#include <asm/cpufeature.h>
static __always_inline bool has_svnapot(void)
{
return riscv_has_extension_likely(RISCV_ISA_EXT_SVNAPOT);
}
static inline unsigned long pte_napot(pte_t pte)
{
return pte_val(pte) & _PAGE_NAPOT;
}
static inline pte_t pte_mknapot(pte_t pte, unsigned int order)
{
int pos = order - 1 + _PAGE_PFN_SHIFT;
unsigned long napot_bit = BIT(pos);
unsigned long napot_mask = ~GENMASK(pos, _PAGE_PFN_SHIFT);
return __pte((pte_val(pte) & napot_mask) | napot_bit | _PAGE_NAPOT);
}
#else
static __always_inline bool has_svnapot(void) { return false; }
static inline unsigned long pte_napot(pte_t pte)
{
return 0;
}
#endif /* CONFIG_RISCV_ISA_SVNAPOT */
/* Yields the page frame number (PFN) of a page table entry */
static inline unsigned long pte_pfn(pte_t pte)
{
unsigned long res = __page_val_to_pfn(pte_val(pte));
if (has_svnapot() && pte_napot(pte))
res = res & (res - 1UL);
return res;
}
#define pte_page(x) pfn_to_page(pte_pfn(x))
/* Constructs a page table entry */
static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
{
unsigned long prot_val = pgprot_val(prot);
ALT_THEAD_PMA(prot_val);
return __pte((pfn << _PAGE_PFN_SHIFT) | prot_val);
}
#define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
static inline int pte_present(pte_t pte)
{
return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
}
#define pte_accessible pte_accessible
static inline unsigned long pte_accessible(struct mm_struct *mm, pte_t a)
{
if (pte_val(a) & _PAGE_PRESENT)
return true;
if ((pte_val(a) & _PAGE_PROT_NONE) &&
atomic_read(&mm->tlb_flush_pending))
return true;
return false;
}
static inline int pte_none(pte_t pte)
{
return (pte_val(pte) == 0);
}
static inline int pte_write(pte_t pte)
{
return pte_val(pte) & _PAGE_WRITE;
}
static inline int pte_exec(pte_t pte)
{
return pte_val(pte) & _PAGE_EXEC;
}
static inline int pte_user(pte_t pte)
{
return pte_val(pte) & _PAGE_USER;
}
static inline int pte_huge(pte_t pte)
{
return pte_present(pte) && (pte_val(pte) & _PAGE_LEAF);
}
static inline int pte_dirty(pte_t pte)
{
return pte_val(pte) & _PAGE_DIRTY;
}
static inline int pte_young(pte_t pte)
{
return pte_val(pte) & _PAGE_ACCESSED;
}
static inline int pte_special(pte_t pte)
{
return pte_val(pte) & _PAGE_SPECIAL;
}
#ifdef CONFIG_ARCH_HAS_PTE_DEVMAP
static inline int pte_devmap(pte_t pte)
{
return pte_val(pte) & _PAGE_DEVMAP;
}
#endif
/* static inline pte_t pte_rdprotect(pte_t pte) */
static inline pte_t pte_wrprotect(pte_t pte)
{
return __pte(pte_val(pte) & ~(_PAGE_WRITE));
}
/* static inline pte_t pte_mkread(pte_t pte) */
static inline pte_t pte_mkwrite_novma(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_WRITE);
}
/* static inline pte_t pte_mkexec(pte_t pte) */
static inline pte_t pte_mkdirty(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_DIRTY);
}
static inline pte_t pte_mkclean(pte_t pte)
{
return __pte(pte_val(pte) & ~(_PAGE_DIRTY));
}
static inline pte_t pte_mkyoung(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_ACCESSED);
}
static inline pte_t pte_mkold(pte_t pte)
{
return __pte(pte_val(pte) & ~(_PAGE_ACCESSED));
}
static inline pte_t pte_mkspecial(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_SPECIAL);
}
static inline pte_t pte_mkdevmap(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_DEVMAP);
}
static inline pte_t pte_mkhuge(pte_t pte)
{
return pte;
}
#ifdef CONFIG_RISCV_ISA_SVNAPOT
#define pte_leaf_size(pte) (pte_napot(pte) ? \
napot_cont_size(napot_cont_order(pte)) :\
PAGE_SIZE)
#endif
#ifdef CONFIG_NUMA_BALANCING
/*
* See the comment in include/asm-generic/pgtable.h
*/
static inline int pte_protnone(pte_t pte)
{
return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)) == _PAGE_PROT_NONE;
}
static inline int pmd_protnone(pmd_t pmd)
{
return pte_protnone(pmd_pte(pmd));
}
#endif
/* Modify page protection bits */
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
unsigned long newprot_val = pgprot_val(newprot);
ALT_THEAD_PMA(newprot_val);
return __pte((pte_val(pte) & _PAGE_CHG_MASK) | newprot_val);
}
#define pgd_ERROR(e) \
pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e))
/* Commit new configuration to MMU hardware */
static inline void update_mmu_cache_range(struct vm_fault *vmf,
struct vm_area_struct *vma, unsigned long address,
pte_t *ptep, unsigned int nr)
{
asm goto(ALTERNATIVE("nop", "j %l[svvptc]", 0, RISCV_ISA_EXT_SVVPTC, 1)
: : : : svvptc);
/*
* The kernel assumes that TLBs don't cache invalid entries, but
* in RISC-V, SFENCE.VMA specifies an ordering constraint, not a
* cache flush; it is necessary even after writing invalid entries.
* Relying on flush_tlb_fix_spurious_fault would suffice, but
* the extra traps reduce performance. So, eagerly SFENCE.VMA.
*/
while (nr--)
local_flush_tlb_page(address + nr * PAGE_SIZE);
svvptc:;
/*
* Svvptc guarantees that the new valid pte will be visible within
* a bounded timeframe, so when the uarch does not cache invalid
* entries, we don't have to do anything.
*/
}
#define update_mmu_cache(vma, addr, ptep) \
update_mmu_cache_range(NULL, vma, addr, ptep, 1)
#define update_mmu_tlb_range(vma, addr, ptep, nr) \
update_mmu_cache_range(NULL, vma, addr, ptep, nr)
static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp)
{
pte_t *ptep = (pte_t *)pmdp;
update_mmu_cache(vma, address, ptep);
}
#define __HAVE_ARCH_PTE_SAME
static inline int pte_same(pte_t pte_a, pte_t pte_b)
{
return pte_val(pte_a) == pte_val(pte_b);
}
/*
* Certain architectures need to do special things when PTEs within
* a page table are directly modified. Thus, the following hook is
* made available.
*/
static inline void set_pte(pte_t *ptep, pte_t pteval)
{
WRITE_ONCE(*ptep, pteval);
}
void flush_icache_pte(struct mm_struct *mm, pte_t pte);
static inline void __set_pte_at(struct mm_struct *mm, pte_t *ptep, pte_t pteval)
{
if (pte_present(pteval) && pte_exec(pteval))
flush_icache_pte(mm, pteval);
set_pte(ptep, pteval);
}
#define PFN_PTE_SHIFT _PAGE_PFN_SHIFT
static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pteval, unsigned int nr)
{
page_table_check_ptes_set(mm, ptep, pteval, nr);
for (;;) {
__set_pte_at(mm, ptep, pteval);
if (--nr == 0)
break;
ptep++;
pte_val(pteval) += 1 << _PAGE_PFN_SHIFT;
}
}
#define set_ptes set_ptes
static inline void pte_clear(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)
{
__set_pte_at(mm, ptep, __pte(0));
}
#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS /* defined in mm/pgtable.c */
extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
pte_t *ptep, pte_t entry, int dirty);
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG /* defined in mm/pgtable.c */
extern int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long address,
pte_t *ptep);
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
unsigned long address, pte_t *ptep)
{
pte_t pte = __pte(atomic_long_xchg((atomic_long_t *)ptep, 0));
page_table_check_pte_clear(mm, pte);
return pte;
}
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
static inline void ptep_set_wrprotect(struct mm_struct *mm,
unsigned long address, pte_t *ptep)
{
atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep);
}
#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
unsigned long address, pte_t *ptep)
{
/*
* This comment is borrowed from x86, but applies equally to RISC-V:
*
* Clearing the accessed bit without a TLB flush
* doesn't cause data corruption. [ It could cause incorrect
* page aging and the (mistaken) reclaim of hot pages, but the
* chance of that should be relatively low. ]
*
* So as a performance optimization don't flush the TLB when
* clearing the accessed bit, it will eventually be flushed by
* a context switch or a VM operation anyway. [ In the rare
* event of it not getting flushed for a long time the delay
* shouldn't really matter because there's no real memory
* pressure for swapout to react to. ]
*/
return ptep_test_and_clear_young(vma, address, ptep);
}
#define pgprot_nx pgprot_nx
static inline pgprot_t pgprot_nx(pgprot_t _prot)
{
return __pgprot(pgprot_val(_prot) & ~_PAGE_EXEC);
}
#define pgprot_noncached pgprot_noncached
static inline pgprot_t pgprot_noncached(pgprot_t _prot)
{
unsigned long prot = pgprot_val(_prot);
prot &= ~_PAGE_MTMASK;
prot |= _PAGE_IO;
return __pgprot(prot);
}
#define pgprot_writecombine pgprot_writecombine
static inline pgprot_t pgprot_writecombine(pgprot_t _prot)
{
unsigned long prot = pgprot_val(_prot);
prot &= ~_PAGE_MTMASK;
prot |= _PAGE_NOCACHE;
return __pgprot(prot);
}
/*
* THP functions
*/
static inline pmd_t pte_pmd(pte_t pte)
{
return __pmd(pte_val(pte));
}
static inline pmd_t pmd_mkhuge(pmd_t pmd)
{
return pmd;
}
static inline pmd_t pmd_mkinvalid(pmd_t pmd)
{
return __pmd(pmd_val(pmd) & ~(_PAGE_PRESENT|_PAGE_PROT_NONE));
}
#define __pmd_to_phys(pmd) (__page_val_to_pfn(pmd_val(pmd)) << PAGE_SHIFT)
static inline unsigned long pmd_pfn(pmd_t pmd)
{
return ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT);
}
#define __pud_to_phys(pud) (__page_val_to_pfn(pud_val(pud)) << PAGE_SHIFT)
#define pud_pfn pud_pfn
static inline unsigned long pud_pfn(pud_t pud)
{
return ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT);
}
static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
{
return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
}
#define pmd_write pmd_write
static inline int pmd_write(pmd_t pmd)
{
return pte_write(pmd_pte(pmd));
}
#define pud_write pud_write
static inline int pud_write(pud_t pud)
{
return pte_write(pud_pte(pud));
}
#define pmd_dirty pmd_dirty
static inline int pmd_dirty(pmd_t pmd)
{
return pte_dirty(pmd_pte(pmd));
}
#define pmd_young pmd_young
static inline int pmd_young(pmd_t pmd)
{
return pte_young(pmd_pte(pmd));
}
static inline int pmd_user(pmd_t pmd)
{
return pte_user(pmd_pte(pmd));
}
static inline pmd_t pmd_mkold(pmd_t pmd)
{
return pte_pmd(pte_mkold(pmd_pte(pmd)));
}
static inline pmd_t pmd_mkyoung(pmd_t pmd)
{
return pte_pmd(pte_mkyoung(pmd_pte(pmd)));
}
static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
{
return pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)));
}
static inline pmd_t pmd_wrprotect(pmd_t pmd)
{
return pte_pmd(pte_wrprotect(pmd_pte(pmd)));
}
static inline pmd_t pmd_mkclean(pmd_t pmd)
{
return pte_pmd(pte_mkclean(pmd_pte(pmd)));
}
static inline pmd_t pmd_mkdirty(pmd_t pmd)
{
return pte_pmd(pte_mkdirty(pmd_pte(pmd)));
}
static inline pmd_t pmd_mkdevmap(pmd_t pmd)
{
return pte_pmd(pte_mkdevmap(pmd_pte(pmd)));
}
static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp, pmd_t pmd)
{
page_table_check_pmd_set(mm, pmdp, pmd);
return __set_pte_at(mm, (pte_t *)pmdp, pmd_pte(pmd));
}
static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
pud_t *pudp, pud_t pud)
{
page_table_check_pud_set(mm, pudp, pud);
return __set_pte_at(mm, (pte_t *)pudp, pud_pte(pud));
}
#ifdef CONFIG_PAGE_TABLE_CHECK
static inline bool pte_user_accessible_page(pte_t pte)
{
return pte_present(pte) && pte_user(pte);
}
static inline bool pmd_user_accessible_page(pmd_t pmd)
{
return pmd_leaf(pmd) && pmd_user(pmd);
}
static inline bool pud_user_accessible_page(pud_t pud)
{
return pud_leaf(pud) && pud_user(pud);
}
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline int pmd_trans_huge(pmd_t pmd)
{
return pmd_leaf(pmd);
}
#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp,
pmd_t entry, int dirty)
{
return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty);
}
#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp)
{
return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
}
#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
unsigned long address, pmd_t *pmdp)
{
pmd_t pmd = __pmd(atomic_long_xchg((atomic_long_t *)pmdp, 0));
page_table_check_pmd_clear(mm, pmd);
return pmd;
}
#define __HAVE_ARCH_PMDP_SET_WRPROTECT
static inline void pmdp_set_wrprotect(struct mm_struct *mm,
unsigned long address, pmd_t *pmdp)
{
ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
}
#define pmdp_establish pmdp_establish
static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp, pmd_t pmd)
{
page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
return __pmd(atomic_long_xchg((atomic_long_t *)pmdp, pmd_val(pmd)));
}
#define pmdp_collapse_flush pmdp_collapse_flush
extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp);
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
/*
* Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
* are !pte_none() && !pte_present().
*
* Format of swap PTE:
* bit 0: _PAGE_PRESENT (zero)
* bit 1 to 3: _PAGE_LEAF (zero)
* bit 5: _PAGE_PROT_NONE (zero)
* bit 6: exclusive marker
* bits 7 to 11: swap type
* bits 12 to XLEN-1: swap offset
*/
#define __SWP_TYPE_SHIFT 7
#define __SWP_TYPE_BITS 5
#define __SWP_TYPE_MASK ((1UL << __SWP_TYPE_BITS) - 1)
#define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
#define MAX_SWAPFILES_CHECK() \
BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
#define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
#define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT)
#define __swp_entry(type, offset) ((swp_entry_t) \
{ (((type) & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT) | \
((offset) << __SWP_OFFSET_SHIFT) })
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
static inline int pte_swp_exclusive(pte_t pte)
{
return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
}
static inline pte_t pte_swp_mkexclusive(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE);
}
static inline pte_t pte_swp_clear_exclusive(pte_t pte)
{
return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE);
}
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
#define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) })
#define __swp_entry_to_pmd(swp) __pmd((swp).val)
#endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
/*
* In the RV64 Linux scheme, we give the user half of the virtual-address space
* and give the kernel the other (upper) half.
*/
#ifdef CONFIG_64BIT
#define KERN_VIRT_START (-(BIT(VA_BITS)) + TASK_SIZE)
#else
#define KERN_VIRT_START FIXADDR_START
#endif
/*
* Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32.
* Note that PGDIR_SIZE must evenly divide TASK_SIZE.
* Task size is:
* - 0x9fc00000 (~2.5GB) for RV32.
* - 0x4000000000 ( 256GB) for RV64 using SV39 mmu
* - 0x800000000000 ( 128TB) for RV64 using SV48 mmu
* - 0x100000000000000 ( 64PB) for RV64 using SV57 mmu
*
* Note that PGDIR_SIZE must evenly divide TASK_SIZE since "RISC-V
* Instruction Set Manual Volume II: Privileged Architecture" states that
* "load and store effective addresses, which are 64bits, must have bits
* 63–48 all equal to bit 47, or else a page-fault exception will occur."
* Similarly for SV57, bits 63–57 must be equal to bit 56.
*/
#ifdef CONFIG_64BIT
#define TASK_SIZE_64 (PGDIR_SIZE * PTRS_PER_PGD / 2)
#define TASK_SIZE_MAX LONG_MAX
#ifdef CONFIG_COMPAT
#define TASK_SIZE_32 (_AC(0x80000000, UL) - PAGE_SIZE)
#define TASK_SIZE (is_compat_task() ? \
TASK_SIZE_32 : TASK_SIZE_64)
#else
#define TASK_SIZE TASK_SIZE_64
#endif
#else
#define TASK_SIZE FIXADDR_START
#endif
#else /* CONFIG_MMU */
#define PAGE_SHARED __pgprot(0)
#define PAGE_KERNEL __pgprot(0)
#define swapper_pg_dir NULL
#define TASK_SIZE _AC(-1, UL)
#define VMALLOC_START _AC(0, UL)
#define VMALLOC_END TASK_SIZE
#endif /* !CONFIG_MMU */
extern char _start[];
extern void *_dtb_early_va;
extern uintptr_t _dtb_early_pa;
#if defined(CONFIG_XIP_KERNEL) && defined(CONFIG_MMU)
#define dtb_early_va (*(void **)XIP_FIXUP(&_dtb_early_va))
#define dtb_early_pa (*(uintptr_t *)XIP_FIXUP(&_dtb_early_pa))
#else
#define dtb_early_va _dtb_early_va
#define dtb_early_pa _dtb_early_pa
#endif /* CONFIG_XIP_KERNEL */
extern u64 satp_mode;
void paging_init(void);
void misc_mem_init(void);
/*
* ZERO_PAGE is a global shared page that is always zero,
* used for zero-mapped memory areas, etc.
*/
extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
#endif /* !__ASSEMBLY__ */
#endif /* _ASM_RISCV_PGTABLE_H */