| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Time of day based timer functions. |
| * |
| * S390 version |
| * Copyright IBM Corp. 1999, 2008 |
| * Author(s): Hartmut Penner (hp@de.ibm.com), |
| * Martin Schwidefsky (schwidefsky@de.ibm.com), |
| * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com) |
| * |
| * Derived from "arch/i386/kernel/time.c" |
| * Copyright (C) 1991, 1992, 1995 Linus Torvalds |
| */ |
| |
| #define KMSG_COMPONENT "time" |
| #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt |
| |
| #include <linux/kernel_stat.h> |
| #include <linux/errno.h> |
| #include <linux/export.h> |
| #include <linux/sched.h> |
| #include <linux/sched/clock.h> |
| #include <linux/kernel.h> |
| #include <linux/param.h> |
| #include <linux/string.h> |
| #include <linux/mm.h> |
| #include <linux/interrupt.h> |
| #include <linux/cpu.h> |
| #include <linux/stop_machine.h> |
| #include <linux/time.h> |
| #include <linux/device.h> |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #include <linux/smp.h> |
| #include <linux/types.h> |
| #include <linux/profile.h> |
| #include <linux/timex.h> |
| #include <linux/notifier.h> |
| #include <linux/timekeeper_internal.h> |
| #include <linux/clockchips.h> |
| #include <linux/gfp.h> |
| #include <linux/kprobes.h> |
| #include <linux/uaccess.h> |
| #include <vdso/vsyscall.h> |
| #include <vdso/clocksource.h> |
| #include <vdso/helpers.h> |
| #include <asm/facility.h> |
| #include <asm/delay.h> |
| #include <asm/div64.h> |
| #include <asm/vdso.h> |
| #include <asm/irq.h> |
| #include <asm/irq_regs.h> |
| #include <asm/vtimer.h> |
| #include <asm/stp.h> |
| #include <asm/cio.h> |
| #include "entry.h" |
| |
| union tod_clock tod_clock_base __section(".data"); |
| EXPORT_SYMBOL_GPL(tod_clock_base); |
| |
| u64 clock_comparator_max = -1ULL; |
| EXPORT_SYMBOL_GPL(clock_comparator_max); |
| |
| static DEFINE_PER_CPU(struct clock_event_device, comparators); |
| |
| ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier); |
| EXPORT_SYMBOL(s390_epoch_delta_notifier); |
| |
| unsigned char ptff_function_mask[16]; |
| |
| static unsigned long lpar_offset; |
| static unsigned long initial_leap_seconds; |
| static unsigned long tod_steering_end; |
| static long tod_steering_delta; |
| |
| /* |
| * Get time offsets with PTFF |
| */ |
| void __init time_early_init(void) |
| { |
| struct ptff_qto qto; |
| struct ptff_qui qui; |
| int cs; |
| |
| /* Initialize TOD steering parameters */ |
| tod_steering_end = tod_clock_base.tod; |
| for (cs = 0; cs < CS_BASES; cs++) |
| vdso_data[cs].arch_data.tod_steering_end = tod_steering_end; |
| |
| if (!test_facility(28)) |
| return; |
| |
| ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF); |
| |
| /* get LPAR offset */ |
| if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0) |
| lpar_offset = qto.tod_epoch_difference; |
| |
| /* get initial leap seconds */ |
| if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0) |
| initial_leap_seconds = (unsigned long) |
| ((long) qui.old_leap * 4096000000L); |
| } |
| |
| unsigned long long noinstr sched_clock_noinstr(void) |
| { |
| return tod_to_ns(__get_tod_clock_monotonic()); |
| } |
| |
| /* |
| * Scheduler clock - returns current time in nanosec units. |
| */ |
| unsigned long long notrace sched_clock(void) |
| { |
| return tod_to_ns(get_tod_clock_monotonic()); |
| } |
| NOKPROBE_SYMBOL(sched_clock); |
| |
| static void ext_to_timespec64(union tod_clock *clk, struct timespec64 *xt) |
| { |
| unsigned long rem, sec, nsec; |
| |
| sec = clk->us; |
| rem = do_div(sec, 1000000); |
| nsec = ((clk->sus + (rem << 12)) * 125) >> 9; |
| xt->tv_sec = sec; |
| xt->tv_nsec = nsec; |
| } |
| |
| void clock_comparator_work(void) |
| { |
| struct clock_event_device *cd; |
| |
| get_lowcore()->clock_comparator = clock_comparator_max; |
| cd = this_cpu_ptr(&comparators); |
| cd->event_handler(cd); |
| } |
| |
| static int s390_next_event(unsigned long delta, |
| struct clock_event_device *evt) |
| { |
| get_lowcore()->clock_comparator = get_tod_clock() + delta; |
| set_clock_comparator(get_lowcore()->clock_comparator); |
| return 0; |
| } |
| |
| /* |
| * Set up lowcore and control register of the current cpu to |
| * enable TOD clock and clock comparator interrupts. |
| */ |
| void init_cpu_timer(void) |
| { |
| struct clock_event_device *cd; |
| int cpu; |
| |
| get_lowcore()->clock_comparator = clock_comparator_max; |
| set_clock_comparator(get_lowcore()->clock_comparator); |
| |
| cpu = smp_processor_id(); |
| cd = &per_cpu(comparators, cpu); |
| cd->name = "comparator"; |
| cd->features = CLOCK_EVT_FEAT_ONESHOT; |
| cd->mult = 16777; |
| cd->shift = 12; |
| cd->min_delta_ns = 1; |
| cd->min_delta_ticks = 1; |
| cd->max_delta_ns = LONG_MAX; |
| cd->max_delta_ticks = ULONG_MAX; |
| cd->rating = 400; |
| cd->cpumask = cpumask_of(cpu); |
| cd->set_next_event = s390_next_event; |
| |
| clockevents_register_device(cd); |
| |
| /* Enable clock comparator timer interrupt. */ |
| local_ctl_set_bit(0, CR0_CLOCK_COMPARATOR_SUBMASK_BIT); |
| |
| /* Always allow the timing alert external interrupt. */ |
| local_ctl_set_bit(0, CR0_ETR_SUBMASK_BIT); |
| } |
| |
| static void clock_comparator_interrupt(struct ext_code ext_code, |
| unsigned int param32, |
| unsigned long param64) |
| { |
| inc_irq_stat(IRQEXT_CLK); |
| if (get_lowcore()->clock_comparator == clock_comparator_max) |
| set_clock_comparator(get_lowcore()->clock_comparator); |
| } |
| |
| static void stp_timing_alert(struct stp_irq_parm *); |
| |
| static void timing_alert_interrupt(struct ext_code ext_code, |
| unsigned int param32, unsigned long param64) |
| { |
| inc_irq_stat(IRQEXT_TLA); |
| if (param32 & 0x00038000) |
| stp_timing_alert((struct stp_irq_parm *) ¶m32); |
| } |
| |
| static void stp_reset(void); |
| |
| void read_persistent_clock64(struct timespec64 *ts) |
| { |
| union tod_clock clk; |
| u64 delta; |
| |
| delta = initial_leap_seconds + TOD_UNIX_EPOCH; |
| store_tod_clock_ext(&clk); |
| clk.eitod -= delta; |
| ext_to_timespec64(&clk, ts); |
| } |
| |
| void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, |
| struct timespec64 *boot_offset) |
| { |
| struct timespec64 boot_time; |
| union tod_clock clk; |
| u64 delta; |
| |
| delta = initial_leap_seconds + TOD_UNIX_EPOCH; |
| clk = tod_clock_base; |
| clk.eitod -= delta; |
| ext_to_timespec64(&clk, &boot_time); |
| |
| read_persistent_clock64(wall_time); |
| *boot_offset = timespec64_sub(*wall_time, boot_time); |
| } |
| |
| static u64 read_tod_clock(struct clocksource *cs) |
| { |
| unsigned long now, adj; |
| |
| preempt_disable(); /* protect from changes to steering parameters */ |
| now = get_tod_clock(); |
| adj = tod_steering_end - now; |
| if (unlikely((s64) adj > 0)) |
| /* |
| * manually steer by 1 cycle every 2^16 cycles. This |
| * corresponds to shifting the tod delta by 15. 1s is |
| * therefore steered in ~9h. The adjust will decrease |
| * over time, until it finally reaches 0. |
| */ |
| now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15); |
| preempt_enable(); |
| return now; |
| } |
| |
| static struct clocksource clocksource_tod = { |
| .name = "tod", |
| .rating = 400, |
| .read = read_tod_clock, |
| .mask = CLOCKSOURCE_MASK(64), |
| .mult = 4096000, |
| .shift = 24, |
| .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| .vdso_clock_mode = VDSO_CLOCKMODE_TOD, |
| }; |
| |
| struct clocksource * __init clocksource_default_clock(void) |
| { |
| return &clocksource_tod; |
| } |
| |
| /* |
| * Initialize the TOD clock and the CPU timer of |
| * the boot cpu. |
| */ |
| void __init time_init(void) |
| { |
| /* Reset time synchronization interfaces. */ |
| stp_reset(); |
| |
| /* request the clock comparator external interrupt */ |
| if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt)) |
| panic("Couldn't request external interrupt 0x1004"); |
| |
| /* request the timing alert external interrupt */ |
| if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt)) |
| panic("Couldn't request external interrupt 0x1406"); |
| |
| if (__clocksource_register(&clocksource_tod) != 0) |
| panic("Could not register TOD clock source"); |
| |
| /* Enable TOD clock interrupts on the boot cpu. */ |
| init_cpu_timer(); |
| |
| /* Enable cpu timer interrupts on the boot cpu. */ |
| vtime_init(); |
| } |
| |
| static DEFINE_PER_CPU(atomic_t, clock_sync_word); |
| static DEFINE_MUTEX(stp_mutex); |
| static unsigned long clock_sync_flags; |
| |
| #define CLOCK_SYNC_HAS_STP 0 |
| #define CLOCK_SYNC_STP 1 |
| #define CLOCK_SYNC_STPINFO_VALID 2 |
| |
| /* |
| * The get_clock function for the physical clock. It will get the current |
| * TOD clock, subtract the LPAR offset and write the result to *clock. |
| * The function returns 0 if the clock is in sync with the external time |
| * source. If the clock mode is local it will return -EOPNOTSUPP and |
| * -EAGAIN if the clock is not in sync with the external reference. |
| */ |
| int get_phys_clock(unsigned long *clock) |
| { |
| atomic_t *sw_ptr; |
| unsigned int sw0, sw1; |
| |
| sw_ptr = &get_cpu_var(clock_sync_word); |
| sw0 = atomic_read(sw_ptr); |
| *clock = get_tod_clock() - lpar_offset; |
| sw1 = atomic_read(sw_ptr); |
| put_cpu_var(clock_sync_word); |
| if (sw0 == sw1 && (sw0 & 0x80000000U)) |
| /* Success: time is in sync. */ |
| return 0; |
| if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) |
| return -EOPNOTSUPP; |
| if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags)) |
| return -EACCES; |
| return -EAGAIN; |
| } |
| EXPORT_SYMBOL(get_phys_clock); |
| |
| /* |
| * Make get_phys_clock() return -EAGAIN. |
| */ |
| static void disable_sync_clock(void *dummy) |
| { |
| atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word); |
| /* |
| * Clear the in-sync bit 2^31. All get_phys_clock calls will |
| * fail until the sync bit is turned back on. In addition |
| * increase the "sequence" counter to avoid the race of an |
| * stp event and the complete recovery against get_phys_clock. |
| */ |
| atomic_andnot(0x80000000, sw_ptr); |
| atomic_inc(sw_ptr); |
| } |
| |
| /* |
| * Make get_phys_clock() return 0 again. |
| * Needs to be called from a context disabled for preemption. |
| */ |
| static void enable_sync_clock(void) |
| { |
| atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word); |
| atomic_or(0x80000000, sw_ptr); |
| } |
| |
| /* |
| * Function to check if the clock is in sync. |
| */ |
| static inline int check_sync_clock(void) |
| { |
| atomic_t *sw_ptr; |
| int rc; |
| |
| sw_ptr = &get_cpu_var(clock_sync_word); |
| rc = (atomic_read(sw_ptr) & 0x80000000U) != 0; |
| put_cpu_var(clock_sync_word); |
| return rc; |
| } |
| |
| /* |
| * Apply clock delta to the global data structures. |
| * This is called once on the CPU that performed the clock sync. |
| */ |
| static void clock_sync_global(long delta) |
| { |
| unsigned long now, adj; |
| struct ptff_qto qto; |
| int cs; |
| |
| /* Fixup the monotonic sched clock. */ |
| tod_clock_base.eitod += delta; |
| /* Adjust TOD steering parameters. */ |
| now = get_tod_clock(); |
| adj = tod_steering_end - now; |
| if (unlikely((s64) adj >= 0)) |
| /* Calculate how much of the old adjustment is left. */ |
| tod_steering_delta = (tod_steering_delta < 0) ? |
| -(adj >> 15) : (adj >> 15); |
| tod_steering_delta += delta; |
| if ((abs(tod_steering_delta) >> 48) != 0) |
| panic("TOD clock sync offset %li is too large to drift\n", |
| tod_steering_delta); |
| tod_steering_end = now + (abs(tod_steering_delta) << 15); |
| for (cs = 0; cs < CS_BASES; cs++) { |
| vdso_data[cs].arch_data.tod_steering_end = tod_steering_end; |
| vdso_data[cs].arch_data.tod_steering_delta = tod_steering_delta; |
| } |
| |
| /* Update LPAR offset. */ |
| if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0) |
| lpar_offset = qto.tod_epoch_difference; |
| /* Call the TOD clock change notifier. */ |
| atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta); |
| } |
| |
| /* |
| * Apply clock delta to the per-CPU data structures of this CPU. |
| * This is called for each online CPU after the call to clock_sync_global. |
| */ |
| static void clock_sync_local(long delta) |
| { |
| /* Add the delta to the clock comparator. */ |
| if (get_lowcore()->clock_comparator != clock_comparator_max) { |
| get_lowcore()->clock_comparator += delta; |
| set_clock_comparator(get_lowcore()->clock_comparator); |
| } |
| /* Adjust the last_update_clock time-stamp. */ |
| get_lowcore()->last_update_clock += delta; |
| } |
| |
| /* Single threaded workqueue used for stp sync events */ |
| static struct workqueue_struct *time_sync_wq; |
| |
| static void __init time_init_wq(void) |
| { |
| if (time_sync_wq) |
| return; |
| time_sync_wq = create_singlethread_workqueue("timesync"); |
| } |
| |
| struct clock_sync_data { |
| atomic_t cpus; |
| int in_sync; |
| long clock_delta; |
| }; |
| |
| /* |
| * Server Time Protocol (STP) code. |
| */ |
| static bool stp_online; |
| static struct stp_sstpi stp_info; |
| static void *stp_page; |
| |
| static void stp_work_fn(struct work_struct *work); |
| static DECLARE_WORK(stp_work, stp_work_fn); |
| static struct timer_list stp_timer; |
| |
| static int __init early_parse_stp(char *p) |
| { |
| return kstrtobool(p, &stp_online); |
| } |
| early_param("stp", early_parse_stp); |
| |
| /* |
| * Reset STP attachment. |
| */ |
| static void __init stp_reset(void) |
| { |
| int rc; |
| |
| stp_page = (void *) get_zeroed_page(GFP_ATOMIC); |
| rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL); |
| if (rc == 0) |
| set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags); |
| else if (stp_online) { |
| pr_warn("The real or virtual hardware system does not provide an STP interface\n"); |
| free_page((unsigned long) stp_page); |
| stp_page = NULL; |
| stp_online = false; |
| } |
| } |
| |
| static void stp_timeout(struct timer_list *unused) |
| { |
| queue_work(time_sync_wq, &stp_work); |
| } |
| |
| static int __init stp_init(void) |
| { |
| if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) |
| return 0; |
| timer_setup(&stp_timer, stp_timeout, 0); |
| time_init_wq(); |
| if (!stp_online) |
| return 0; |
| queue_work(time_sync_wq, &stp_work); |
| return 0; |
| } |
| |
| arch_initcall(stp_init); |
| |
| /* |
| * STP timing alert. There are three causes: |
| * 1) timing status change |
| * 2) link availability change |
| * 3) time control parameter change |
| * In all three cases we are only interested in the clock source state. |
| * If a STP clock source is now available use it. |
| */ |
| static void stp_timing_alert(struct stp_irq_parm *intparm) |
| { |
| if (intparm->tsc || intparm->lac || intparm->tcpc) |
| queue_work(time_sync_wq, &stp_work); |
| } |
| |
| /* |
| * STP sync check machine check. This is called when the timing state |
| * changes from the synchronized state to the unsynchronized state. |
| * After a STP sync check the clock is not in sync. The machine check |
| * is broadcasted to all cpus at the same time. |
| */ |
| int stp_sync_check(void) |
| { |
| disable_sync_clock(NULL); |
| return 1; |
| } |
| |
| /* |
| * STP island condition machine check. This is called when an attached |
| * server attempts to communicate over an STP link and the servers |
| * have matching CTN ids and have a valid stratum-1 configuration |
| * but the configurations do not match. |
| */ |
| int stp_island_check(void) |
| { |
| disable_sync_clock(NULL); |
| return 1; |
| } |
| |
| void stp_queue_work(void) |
| { |
| queue_work(time_sync_wq, &stp_work); |
| } |
| |
| static int __store_stpinfo(void) |
| { |
| int rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi)); |
| |
| if (rc) |
| clear_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags); |
| else |
| set_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags); |
| return rc; |
| } |
| |
| static int stpinfo_valid(void) |
| { |
| return stp_online && test_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags); |
| } |
| |
| static int stp_sync_clock(void *data) |
| { |
| struct clock_sync_data *sync = data; |
| long clock_delta, flags; |
| static int first; |
| int rc; |
| |
| enable_sync_clock(); |
| if (xchg(&first, 1) == 0) { |
| /* Wait until all other cpus entered the sync function. */ |
| while (atomic_read(&sync->cpus) != 0) |
| cpu_relax(); |
| rc = 0; |
| if (stp_info.todoff || stp_info.tmd != 2) { |
| flags = vdso_update_begin(); |
| rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0, |
| &clock_delta); |
| if (rc == 0) { |
| sync->clock_delta = clock_delta; |
| clock_sync_global(clock_delta); |
| rc = __store_stpinfo(); |
| if (rc == 0 && stp_info.tmd != 2) |
| rc = -EAGAIN; |
| } |
| vdso_update_end(flags); |
| } |
| sync->in_sync = rc ? -EAGAIN : 1; |
| xchg(&first, 0); |
| } else { |
| /* Slave */ |
| atomic_dec(&sync->cpus); |
| /* Wait for in_sync to be set. */ |
| while (READ_ONCE(sync->in_sync) == 0) |
| __udelay(1); |
| } |
| if (sync->in_sync != 1) |
| /* Didn't work. Clear per-cpu in sync bit again. */ |
| disable_sync_clock(NULL); |
| /* Apply clock delta to per-CPU fields of this CPU. */ |
| clock_sync_local(sync->clock_delta); |
| |
| return 0; |
| } |
| |
| static int stp_clear_leap(void) |
| { |
| struct __kernel_timex txc; |
| int ret; |
| |
| memset(&txc, 0, sizeof(txc)); |
| |
| ret = do_adjtimex(&txc); |
| if (ret < 0) |
| return ret; |
| |
| txc.modes = ADJ_STATUS; |
| txc.status &= ~(STA_INS|STA_DEL); |
| return do_adjtimex(&txc); |
| } |
| |
| static void stp_check_leap(void) |
| { |
| struct stp_stzi stzi; |
| struct stp_lsoib *lsoib = &stzi.lsoib; |
| struct __kernel_timex txc; |
| int64_t timediff; |
| int leapdiff, ret; |
| |
| if (!stp_info.lu || !check_sync_clock()) { |
| /* |
| * Either a scheduled leap second was removed by the operator, |
| * or STP is out of sync. In both cases, clear the leap second |
| * kernel flags. |
| */ |
| if (stp_clear_leap() < 0) |
| pr_err("failed to clear leap second flags\n"); |
| return; |
| } |
| |
| if (chsc_stzi(stp_page, &stzi, sizeof(stzi))) { |
| pr_err("stzi failed\n"); |
| return; |
| } |
| |
| timediff = tod_to_ns(lsoib->nlsout - get_tod_clock()) / NSEC_PER_SEC; |
| leapdiff = lsoib->nlso - lsoib->also; |
| |
| if (leapdiff != 1 && leapdiff != -1) { |
| pr_err("Cannot schedule %d leap seconds\n", leapdiff); |
| return; |
| } |
| |
| if (timediff < 0) { |
| if (stp_clear_leap() < 0) |
| pr_err("failed to clear leap second flags\n"); |
| } else if (timediff < 7200) { |
| memset(&txc, 0, sizeof(txc)); |
| ret = do_adjtimex(&txc); |
| if (ret < 0) |
| return; |
| |
| txc.modes = ADJ_STATUS; |
| if (leapdiff > 0) |
| txc.status |= STA_INS; |
| else |
| txc.status |= STA_DEL; |
| ret = do_adjtimex(&txc); |
| if (ret < 0) |
| pr_err("failed to set leap second flags\n"); |
| /* arm Timer to clear leap second flags */ |
| mod_timer(&stp_timer, jiffies + msecs_to_jiffies(14400 * MSEC_PER_SEC)); |
| } else { |
| /* The day the leap second is scheduled for hasn't been reached. Retry |
| * in one hour. |
| */ |
| mod_timer(&stp_timer, jiffies + msecs_to_jiffies(3600 * MSEC_PER_SEC)); |
| } |
| } |
| |
| /* |
| * STP work. Check for the STP state and take over the clock |
| * synchronization if the STP clock source is usable. |
| */ |
| static void stp_work_fn(struct work_struct *work) |
| { |
| struct clock_sync_data stp_sync; |
| int rc; |
| |
| /* prevent multiple execution. */ |
| mutex_lock(&stp_mutex); |
| |
| if (!stp_online) { |
| chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL); |
| del_timer_sync(&stp_timer); |
| goto out_unlock; |
| } |
| |
| rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xf0e0, NULL); |
| if (rc) |
| goto out_unlock; |
| |
| rc = __store_stpinfo(); |
| if (rc || stp_info.c == 0) |
| goto out_unlock; |
| |
| /* Skip synchronization if the clock is already in sync. */ |
| if (!check_sync_clock()) { |
| memset(&stp_sync, 0, sizeof(stp_sync)); |
| cpus_read_lock(); |
| atomic_set(&stp_sync.cpus, num_online_cpus() - 1); |
| stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask); |
| cpus_read_unlock(); |
| } |
| |
| if (!check_sync_clock()) |
| /* |
| * There is a usable clock but the synchronization failed. |
| * Retry after a second. |
| */ |
| mod_timer(&stp_timer, jiffies + msecs_to_jiffies(MSEC_PER_SEC)); |
| else if (stp_info.lu) |
| stp_check_leap(); |
| |
| out_unlock: |
| mutex_unlock(&stp_mutex); |
| } |
| |
| /* |
| * STP subsys sysfs interface functions |
| */ |
| static const struct bus_type stp_subsys = { |
| .name = "stp", |
| .dev_name = "stp", |
| }; |
| |
| static ssize_t ctn_id_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| ssize_t ret = -ENODATA; |
| |
| mutex_lock(&stp_mutex); |
| if (stpinfo_valid()) |
| ret = sysfs_emit(buf, "%016lx\n", |
| *(unsigned long *)stp_info.ctnid); |
| mutex_unlock(&stp_mutex); |
| return ret; |
| } |
| |
| static DEVICE_ATTR_RO(ctn_id); |
| |
| static ssize_t ctn_type_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| ssize_t ret = -ENODATA; |
| |
| mutex_lock(&stp_mutex); |
| if (stpinfo_valid()) |
| ret = sysfs_emit(buf, "%i\n", stp_info.ctn); |
| mutex_unlock(&stp_mutex); |
| return ret; |
| } |
| |
| static DEVICE_ATTR_RO(ctn_type); |
| |
| static ssize_t dst_offset_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| ssize_t ret = -ENODATA; |
| |
| mutex_lock(&stp_mutex); |
| if (stpinfo_valid() && (stp_info.vbits & 0x2000)) |
| ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.dsto); |
| mutex_unlock(&stp_mutex); |
| return ret; |
| } |
| |
| static DEVICE_ATTR_RO(dst_offset); |
| |
| static ssize_t leap_seconds_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| ssize_t ret = -ENODATA; |
| |
| mutex_lock(&stp_mutex); |
| if (stpinfo_valid() && (stp_info.vbits & 0x8000)) |
| ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.leaps); |
| mutex_unlock(&stp_mutex); |
| return ret; |
| } |
| |
| static DEVICE_ATTR_RO(leap_seconds); |
| |
| static ssize_t leap_seconds_scheduled_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct stp_stzi stzi; |
| ssize_t ret; |
| |
| mutex_lock(&stp_mutex); |
| if (!stpinfo_valid() || !(stp_info.vbits & 0x8000) || !stp_info.lu) { |
| mutex_unlock(&stp_mutex); |
| return -ENODATA; |
| } |
| |
| ret = chsc_stzi(stp_page, &stzi, sizeof(stzi)); |
| mutex_unlock(&stp_mutex); |
| if (ret < 0) |
| return ret; |
| |
| if (!stzi.lsoib.p) |
| return sysfs_emit(buf, "0,0\n"); |
| |
| return sysfs_emit(buf, "%lu,%d\n", |
| tod_to_ns(stzi.lsoib.nlsout - TOD_UNIX_EPOCH) / NSEC_PER_SEC, |
| stzi.lsoib.nlso - stzi.lsoib.also); |
| } |
| |
| static DEVICE_ATTR_RO(leap_seconds_scheduled); |
| |
| static ssize_t stratum_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| ssize_t ret = -ENODATA; |
| |
| mutex_lock(&stp_mutex); |
| if (stpinfo_valid()) |
| ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.stratum); |
| mutex_unlock(&stp_mutex); |
| return ret; |
| } |
| |
| static DEVICE_ATTR_RO(stratum); |
| |
| static ssize_t time_offset_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| ssize_t ret = -ENODATA; |
| |
| mutex_lock(&stp_mutex); |
| if (stpinfo_valid() && (stp_info.vbits & 0x0800)) |
| ret = sysfs_emit(buf, "%i\n", (int)stp_info.tto); |
| mutex_unlock(&stp_mutex); |
| return ret; |
| } |
| |
| static DEVICE_ATTR_RO(time_offset); |
| |
| static ssize_t time_zone_offset_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| ssize_t ret = -ENODATA; |
| |
| mutex_lock(&stp_mutex); |
| if (stpinfo_valid() && (stp_info.vbits & 0x4000)) |
| ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.tzo); |
| mutex_unlock(&stp_mutex); |
| return ret; |
| } |
| |
| static DEVICE_ATTR_RO(time_zone_offset); |
| |
| static ssize_t timing_mode_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| ssize_t ret = -ENODATA; |
| |
| mutex_lock(&stp_mutex); |
| if (stpinfo_valid()) |
| ret = sysfs_emit(buf, "%i\n", stp_info.tmd); |
| mutex_unlock(&stp_mutex); |
| return ret; |
| } |
| |
| static DEVICE_ATTR_RO(timing_mode); |
| |
| static ssize_t timing_state_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| ssize_t ret = -ENODATA; |
| |
| mutex_lock(&stp_mutex); |
| if (stpinfo_valid()) |
| ret = sysfs_emit(buf, "%i\n", stp_info.tst); |
| mutex_unlock(&stp_mutex); |
| return ret; |
| } |
| |
| static DEVICE_ATTR_RO(timing_state); |
| |
| static ssize_t online_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| return sysfs_emit(buf, "%i\n", stp_online); |
| } |
| |
| static ssize_t online_store(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| unsigned int value; |
| |
| value = simple_strtoul(buf, NULL, 0); |
| if (value != 0 && value != 1) |
| return -EINVAL; |
| if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) |
| return -EOPNOTSUPP; |
| mutex_lock(&stp_mutex); |
| stp_online = value; |
| if (stp_online) |
| set_bit(CLOCK_SYNC_STP, &clock_sync_flags); |
| else |
| clear_bit(CLOCK_SYNC_STP, &clock_sync_flags); |
| queue_work(time_sync_wq, &stp_work); |
| mutex_unlock(&stp_mutex); |
| return count; |
| } |
| |
| /* |
| * Can't use DEVICE_ATTR because the attribute should be named |
| * stp/online but dev_attr_online already exists in this file .. |
| */ |
| static DEVICE_ATTR_RW(online); |
| |
| static struct attribute *stp_dev_attrs[] = { |
| &dev_attr_ctn_id.attr, |
| &dev_attr_ctn_type.attr, |
| &dev_attr_dst_offset.attr, |
| &dev_attr_leap_seconds.attr, |
| &dev_attr_online.attr, |
| &dev_attr_leap_seconds_scheduled.attr, |
| &dev_attr_stratum.attr, |
| &dev_attr_time_offset.attr, |
| &dev_attr_time_zone_offset.attr, |
| &dev_attr_timing_mode.attr, |
| &dev_attr_timing_state.attr, |
| NULL |
| }; |
| ATTRIBUTE_GROUPS(stp_dev); |
| |
| static int __init stp_init_sysfs(void) |
| { |
| return subsys_system_register(&stp_subsys, stp_dev_groups); |
| } |
| |
| device_initcall(stp_init_sysfs); |